Find here the overview of the Success stories
Due to the very limited resources provided by Internet-of-Things (IoT) nodes, today’s commonly used design approach to trade off development time with software efficiency is not competitive any longer. Therefore, an industry-wide effort is needed to provide measures for fast and efficient IoT software development. The main goal of the COMPACT project is to provide novel solutions for the application-specific and customer-oriented realisation of ultra-small IoT nodes with a focus on software generation for IoT nodes with ultra-small memory footprints and ultralow power consumption.
Nowadays, quality software has come to mean “easy to adapt” because of the constant pressure to change. Consequently, modern software teams seek a delicate balance between two opposing forces: striving for reliability and striving for agility. The TESTOMAT project will support software teams to strike the right balance by increasing the development speed without sacrificing quality. The project will ultimately result in a Test Automation Improvement Model, which will define key improvement areas in test automation, with the focus on measurable improvement steps.
The PARTNER project offers solutions to support the optimal patient journey for chronic diseases through the health system for appropriate personalised care. Data and information collection will be continuous, seamless and patient-centric. Extension of data collection beyond the walls of hospitals will enhance the capture of the full depth of patient data to more accurately reflect their states of wellness and health. Fast collaborative workflows of interpreted and harmonised data representations will increase the productivity of the caregivers and better justify the patient-centric decisions.
Currently, the exchange of local material information in a Computer-aided engineering (CAE) software workflow is not standardised and raises a lot of manual and case-by-case implementation efforts and costs. For a holistic design of manufacturing processes and product functionality, the knowledge of the detailed and local material behaviour is required. The project VMAP therefore aims to gain a common understanding and interoperable definitions for virtual material models in CAE and to establish an open and vendor-neutral ‘Material Data Exchange Interface Standard’ community which will carry on the standardisation efforts into the future.
Interoperability, along with security and privacy of personal data, are the two most important limitations for the growth of the Internet of Things (IoT) market. Interoperability increases the complexity of service production processes and the cost of production. Lack of security and trust for the protection of privacy puts a barrier between service providers and consumers. To solve these issues, PARFAIT aims to develop a platform for protecting personal data in IoT applications and to reduce the complexity of integrating and deploying services in today’s IoT technology by providing interoperable software libraries, tools and SDK elements.
STARLIT will develop technologies in radiation oncology to improve the quality of life for cancer survivors by improving treatment accuracy and minimising unintended doses to healthy tissue in image-guided radiation therapy. This will be done by using magnetic resonance imaging for 4D anatomy assessment to enable on-line treatment planning, real-time 4D dose accumulation, target tracking, and plan adaptation based on concurrent imaging of anatomy and biomarkers.
Software-Intensive Systems and Services (SIS) require more agile, round-trip engineering processes that better leverage legacy assets, and more systematic and automated variability management. REVaMP² has conceived, developed and evaluated the first comprehensive automation toolchain and associated process to support the round-trip engineering of SIS Product Lines, enabling the profitable engineering of mass-customised products and services across many different domains.
SPEAR aims to develop a flexible optimization platform that helps to improve a broad spectrum of industrial production processes in terms of energy-related aspects. Hence, a focus within the project is the energy optimization of plants’ production processes, production lines and (industrial) buildings. The platform will be used to optimize the energy consumption of existing and new production plants, and the method will be applicable to both virtual commissioning as well as running production systems.
Engineering is the most time-consuming aspect of innovation and products are increasing in complexity, yet there has not been a corresponding growth in the number of people involved in production facility planning. Due to the reduction in cycle times needed to remain competitive, combined with highly individualised products and the fact that one changed parameter can affect many other areas, problems in the line can have serious time and cost consequences for businesses.
Traditional media is losing ground to personalised experiences. Children of today, for example, don’t even know what it’s like to have a set of TV channels with fixed broadcasting timeslots for your favourite shows; they choose what to watch at the time they want. And they even produce thousands of pieces of content on their own each day. This trend in the entertainment business can also be seen in society, where city representatives no longer make decisions on their own. Everybody wants to be involved, or at least can be.
A key challenge faced by city operators, municipalities and political decision makers is the fragmentation of information into silo-oriented closed systems and organisation models. This project aims to deliver an integrated 3D digital model and information platform that facilitates information collection, sharing, management, analysis and dissemination from diverse public and private urban infrastructures and resources. The platform supports public authorities to improve quality and efficiency of municipal services. Furthermore, adequate security and authentication methods allow selected urban data sources to be exposed to the full smart city ecosystem, enabling new innovative data-driven applications and services.
Today automotive software-intensive systems are developed in silos by each car manufacturer or original equipment manufacturer (OEM) in-house. This approach cannot meet the long-term challenges of the industry. One solution is to establish a standard car-to-cloud connection, open for external applications and the use of open source software wherever possible without compromising safety and security. The APPSTACLE result will include an open and secure cloud platform that interconnects a wide range of vehicles to the cloud via open in-car and Internet connection and is supported by an integrated open source software development ecosystem.