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2 INTRODUCTION 

Semiconductor manufacturing processes are among the world's most complex industrial 

processes1. There are approximately 300–400 process steps in a wafer production with up to 

80 different types of machines2. The re-entry properties and the diversity of equipment 

suppliers complicate the processes even more. This is the case for the semiconductor industry 

in particular, which focuses on a high product mix to supply the market with customised and 

specialised products used, e.g. in the automotive and home appliance industry. Additionally, 

the cost of a single machine, such as lithography tools, may exceed US$20 million, higher than 

most other industries3. Raising manufacturing efficiency via synchronising the scheduling of 

production lot flows and maintenance is therefore a critical and demanding task to maximise 

the return on investments. Moreover, it has been demonstrated that a good maintenance policy 

reduces the production loss of machines as unexpected machine failures can be reduced4,5,6. 

Conventionally, machine condition-based job assignment or scheduling mainly relies on 

domain experience and knowledge of experienced employees. In the current state, existing 

theoretical approaches cannot easily replace experience and human knowledge required for 

holistic scheduling and planning of production and maintenance activities. However, the 

evolution towards Industry 4.0 standards with easy access to terabytes of data made available 

through IoT opens new perspectives for training AI approaches. Our aim in this updated 

deliverable is to provide the latest state-of-the-art of job shop scheduling and maintenance 

planning in the semiconductor industry, after the project has ended. We take both, scientific 

literature and industrial practice of the industry partners in the consortium, into account. 

2.1 Overview and scope of the deliverable 

Chapter 3 gives an overview of the academic state-of-the-art. We first describe the methodology 

of our literature review and present the results regarding production scheduling, maintenance 

planning and approaches that integrate these two aspects. 

In Chapter 4, we present the industrial state-of-the-art based on a survey among the project 

partners from industry. First, we describe the questionnaire used for the survey and second, 

we present the results. 

2.2 Achievements compared to the project objectives 

This updated version of the document goes beyond the project’s objectives. 

 
1 Mönch, L., Fowler, J. W., Mason, S. J. (2013). Production Planning and Control for Semiconductor 

Wafer Fabrication Facilities. Springer, New York. 
2 Chung, S.-H., Huang, H.-W. (2002). Cycle time estimation for wafer fab with engineering lots. IIE 

Transactions 34 (105-118). 
3 Johnzén, C., Dauzère-Pérès, S., Vialletelle, P. (2006). Flexibility measures for qualification 

management in wafer fabs. Production Planning & Control 22(1) (81–90). 
4 Luo, M., Yan, H. C., Hu, B., Zhou, J. H., Pang, C. K. (2015). A data-driven two-stage maintenance 

framework for degradation prediction in semiconductor manufacturing industries. Computers & 

Industrial Engineering 85 (414–422). 
5 Tag, P. H., Zhang, M. T. (2006). E-Manufacturing in the semiconductor industry. IEEE Robotics and 

Automation Magazine 13(4) (25–32). 
6 Yu, H.-C., Lin, K.-Y., Chien, C.-F. (2014). Hierarchical indices to detect equipment condition changes 

with high dimensional data for semiconductor manufacturing. Journal of Intelligent Manufacturing 

25(5) (933–943). 
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3 SCIENTIFIC STATE-OF-THE-ART ANALYSIS 

Production scheduling in a complex job shop environment such as wafer fabrication facilities 

has been of research interest since the 1960s7. Herein, scheduling is considered the planning 

process that deals with allocating resources to tasks over given periods8. In the context of job 

shop scheduling, jobs will be assigned to machines for a specific period in the future9, with the 

primary aim to ensure effective and efficient use of available resources10. The challenges and 

complexities described above necessitate effective scheduling policies to maintain a 

competitive advantage and remain profitable in operational terms. Since Kim et al.11 divided 

scheduling into release and dispatch in semiconductor fabrication systems, the dominance of 

job release policies based on simple heuristics has been efficaciously demonstrated by several 

authors in the literature12,13,14. 

 

Figure 1 shows an overview of production planning and production control in semiconductor 

manufacturing, according to Mönch, Fowler, and Mason (2013)1. Production planning is 

 
7 Conway, R. W., Maxwell, W. L., Miller, L. W. (1967). Theory of scheduling. Wesley Publishing Company. 
8 Pinedo, M. (2016). Scheduling. Springer International Publishing. 
9 Aytug, H., Lawley, M. A., McKay, K., Mohan, S., Uzsoy, R. (2005). Executing production schedules in 

the face of uncertainties: A review and some future directions. European Journal of Operational 

Research 161(1) (86-110). 
10 Branke, J., Nguyen, S., Pickardt, C. W., Zhang, M. (2016). Automated design of production scheduling 

heuristics: A review. IEEE Transactions on Evolutionary Computation 20(1) (110-124). 
11 Kim, Y.-D., Kim, J. G., Choi, B., Kim, H.-U. (2001). Production scheduling in a semiconductor wafer 

fabrication facility producing multiple product types with distinct due dates. IEEE Transactions on 

Robotics and Automation 17(5) (589–598). 
12 Rose, O. (1999). CONLOAD-a new lot release rule for semiconductor wafer fabs. Proceedings of the 

1999 Winter Simulation Conference (850–855). 
13 Qi, C., Sivakumar, A. I., Gershwin, S. B. (2009). An efficient new job release control methodology. 

International Journal of Production Research 47(3) (703–731). 
14 Li, Y., Jiang, Z., Jia, W. (2014). An integrated release and dispatch policy for semiconductor wafer 

fabrication. International Journal of Production Research 52(8) (2275–2292). 
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Figure 1. Production planning and production control in semiconductor manufacturing 

(adapted from Mönch, Fowler and Mason (2013)1). 
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considered a long-term oriented process with a time horizon from weeks to a year where a 

production program is created first and then refined in a more detailed order release scheme, 

which defines sets of jobs with associated release times. In contrast, production control is 

short-term oriented. Scheduling is defined as "the process of allocation of scarce resources 

over time”1 with the goal to optimise one or more objectives (i.e. throughput, utilisation, or lead-

time). Dispatching is the activity to assign the next job to be processed from a set of jobs 

awaiting service on an available machine in the manufacturing area. 

 

In our literature review, we focus on scheduling production activities and maintenance planning 

in semiconductor manufacturing processes.  

3.1 Methodology 

Our state-of-the-art analysis provided in the Full Project Proposal forms the basis of this 

literature review. For the first version of the analysis, we extend it with a literature research 

using the Scopus database. We searched for all papers with keywords containing "Scheduling" 

or "Maintenance" combined with "Semiconductor", "Wafer", or "Fab" (Appendix A provides the 

entire search string). We only considered English-language papers published in high-quality 

journals (indicated by a Journal Impact Factor of 1 or higher) between 2009 and 2021. Further, 

we only included articles published in the research areas "Engineering", "Mathematics", and 

"Decision Science" to exclude publications concerned with chemical process engineering, 

medicine, and energy. This procedure led to a set of 344 papers that were analysed in detail. 

During the project phase, we continuously updated the literature review, and included the 

paper in the following analysis. 

3.2 High-performance scheduling 

The highly dynamic production environment and the rapid changes in product mix ratio in 

semiconductor manufacturing require the implementation of efficient scheduling mechanisms, 

not only for elected equipment tools but also for the entire fab. Many studies15,16,17,18 indicate 

that wafer fabrication needs to be understood as a make-to-order manufacturing system in 

which bottlenecks often shift with unbalanced workloads caused by complex product-mix 

orders19. In combination with random events like sudden machine breakdowns, rework, line 

incidents and the like, this results in increased variability of the performance measures of 

interest (e.g. cycle time, throughput, and number of tardy orders) and decreases the delivery 

reliability of the fab. 

 

Beyond that, there are different areas in semiconductor manufacturing systems where different 

processes take place. To some extent, these necessitate different scheduling approaches as 

well. The following processes can be differentiated in frontend and backend of semiconductor 

manufacturing fabs: 

 
15 Ma, Y., Qiao, F., Zhao, F., Sutherland, J. (2017). Dynamic scheduling of a semiconductor production 

line based on a composite rule set. Applied Sciences 7(10). 
16 Priore, P., Ponte, B., Puente, J., Gómez, A. (2018). Learning-based scheduling of flexible 

manufacturing systems using ensemble methods. Computers & Industrial Engineering 126. 
17 Chung S.-H., Huang, C.-Y. (2003). The design of rapid production planning mechanism for the 

product mix changing in a wafer fabrication, Journal of the Chinese Institute of Industrial Engineers 

20(2). 
18 Chien, C.-F., Hsu, C.-Y., Hsiao, C.-W. (2012). Manufacturing intelligence to forecast and reduce 

semiconductor cycle time. Journal of Intelligent Manufacturing 23(6). 
19 Shiue, Y.-R., Lee, K.-C., Su, C.-T. (2020). A Reinforcement Learning Approach to Dynamic Scheduling 

a Product-Mix Flexibility Environment. IEEE Access 8. 
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Table 1. Processes in semiconductor fabs according to Mönch et al. (2013)1. 

 Process Description 

F
ro

n
te

n
d

 

Oxidation / diffusion The surface of a wafer is deposited with a layer of 

material via oxidation or diffusion. The used furnaces 

are usually batch machines. 

Film deposition Dielectric or metal layers are deposited onto wafers. 

Photolithography Wafers are coated with a photosensitive polymer and a 

pattern is produced by projecting ultraviolet light 

through a reticle. This process can be repeated many 

times to build circuits on the wafer.  

Etching After photolithography, leftover photoresist is removed 

from the wafer. 

Ion implantation The surface of the wafer is selectively deposited with 

dopant ions.  

Planarisation The wafer surface is cleaned and levelled.  

B
a

c
k

e
n

d
 Assembly The main assembly covers dicing saw, die attach, wire 

bonding and optical inspection. In areas with less strict 

clean-room conditions, packaging, molding, lid sealing 

and environmental testing area carried out. 

Wafer test Electrical and heat-stress tests are performed. 

 

Mathematical programming approaches can be used to find the optimal solution to the 

deterministic job shop scheduling problem. However, real-world systems often exhibit a high 

level of complexity, making these methods unsuitable for practical problems, mainly due to a 

high implementation effort and long computational runtimes20. Especially in stochastic and 

dynamic environments, the required computing time to get a solution becomes crucial. In 

semiconductor wafer fabrication facilities, these stochastic and dynamic events might be 

machine breakdowns, new job arrivals, stochastic processing times or changes of due dates, 

which make job shop scheduling an NP-hard problem21 and the application of heuristics 

common22. 

 

Therefore, one approach in the literature is to select an optimal scheduling strategy by 

comparative experimentation: Singh and Mathirajan23 investigate the impact of 15 release 

policies and three dispatching policies on the performance of a fictional but representative 

semiconductor facility in a simulation study. Different scheduling policies and their impact on 

the performance of a multi-product manufacturing system with finite buffers and sequence-

dependent setup times are analysed in another study using continuous-time Markov chain 

models24. In particular, the impact on system throughput is investigated and conditions that 

 
20 Branke, J., Nguyen, S., Pickardt, C. W., Zhang, M. (2016). Automated design of production scheduling 

heuristics: A review. IEEE Transactions on Evolutionary Computation 20(1) (110-124). 
21 Garey, M. R., Johnson, D. S., Sethi, R. (1976). The complexity of flow-shop and jobshop scheduling. 

Mathematics of operations research 1(2) (117-129). 
22 Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J. R. (2010). A classification of 

hyper-heuristic approaches. Handbook of Metaheuristics (449-468). 
23 Singh, R., Mathirajan, M. (2018). Experimental investigation for performance assessment of 

scheduling policies in semiconductor wafer fabrication – a simulation approach. International Journal 

of Advanced Manufacturing Technology 99. 
24 Feng, W., Zheng, L., Li, J. (2012). Scheduling policies in multi-product manufacturing systems with 

sequence-dependent setup times and finite buffers. International Journal of Production Research 

50(24).  
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characterise the single policies' superiority are identified. Min and Yih25 develop a scheduler 

for selecting dispatching rules for dispatching decision variables to obtain the desired 

performance measures given by a user for each production interval. 

 

However, both approaches – mathematical programming and experimental selection – are not 

suitable for the problem instances we face in AISSI. Therefore, in the following, we will limit 

ourselves to approaches that seem appropriate for our project. The remainder of this section 

is structured as follows. Cluster tools are the core production equipment in a wafer fab. 

Scheduling cluster tools is a major sub-problem when it comes to efficient scheduling of wafer 

fabs. We give a review of the main methods in section 3.2.1. However, the sole focus on 

scheduling cluster tools produces local optimisation minima that do not consider the overall 

fab performance (e.g. in terms of throughput, cycle time, and work-in-progress). Therefore, we 

also provide an overview of approaches for batch scheduling in section 3.2.2 and for WIP and 

line balancing in section 3.2.3. Moreover, we present approaches based on artificial 

intelligence (AI) and adaptive methods in section 3.2.4 and approaches that are specified for 

certain areas in semiconductor manufacturing fabs in section 3.2.5. 

3.2.1 Cluster tool scheduling 

Cluster tools are automated robotic manufacturing systems used for wafer fabrication that 

provide a reconfigurable, flexible, and efficient production environment26,27,28 and are adopted 

for almost all fabrication processes28. A cluster tool consists of process modules, a wafer 

handling robot, which serves all process modules, and so-called loadlocks for wafer cassette 

loading and unloading28. Scheduling cluster tools is a major sub-problem for the production 

planning of semiconductor manufacturers since they require high investment, which 

necessitates efficient operation. Moreover, scheduling a cluster tool is a non-trivial task since 

it requires concurrently scheduling the robot and wafer processing, while buffer space is rare 

and constraints regarding the production process occur28. Therefore, a plethora of publications 

that address the topic of scheduling cluster tools can be found. 

 

For operating cluster tools, the robot and the processing modules need to be scheduled 

simultaneously28 where both tasks heavily depend on each other. For this purpose, Petri Nets 

have been used by many authors28,29,30,31. Some studies assume that a wafer can stay in the 

processing module for unlimited time, an assumption that is, however, found to be not always 

tenable in practice concerning wafer surface quality28. Adding wafer residency time constraints 

further complicates the scheduling problem. Branch-and-bound algorithms compensate for this 

 
25 Min, H.-S., Yih, Y. (2003). Selection of dispatching rules on multiple dispatching decision points in 

real-time scheduling of a semiconductor wafer fabrication system. International Journal of Production 

Research 41(16) (3921-3941). 
26 Bader, M., Hall, R., Strasser, G. (1990). Integrated processing equipment. Solid State Technology 

33(5). 
27 Burggraaf, P. (1995). Coping with the high cost of wafer fabs. Semiconductor International 38. 
28 Pan, C., Zhou, M., Qiao, Y., Wu, N. (2018). Scheduling Cluster Tools in Semiconductor Manufacturing: 

Recent Advances and Challenges. IEEE Transactions on Automation Science and Engineering 15(2). 
29 Chen, Y. F., Li, Z. W., Barkaoui, K., Giua, A. (2015). On the enforcement of a class of nonlinear 

constraints on Petri nets. Automatica 55(5). 
30 Chen, Y. F., Li, Z. W., Barkaoui, K., Wu, N. Q., Zhou, M. C. (2017). Compact supervisory control of 

discrete event systems by Petri nets with data inhibitor arcs. IEEE Transactions on Systems Man 

Cybernetics-Systems 47(2). 
31 Chen, Y., Li, Z., Zhou, M. (2014). Optimal supervisory control of flexible manufacturing systems by 

Petri nets: A set classification approach. IEEE Transactions on Automation Science and Engineering 

11(2). 
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requirement32,33 but are computationally time-consuming28, which justifies the adoption of 

heuristic approaches34,35,36. For example, a genetic algorithm combined with a simulation 

model was used to generate optimal processing sequences of lots at cluster tools37. 

 

In real manufacturing environments, robot activity time and wafer processing time are not 

deterministic but rather subject to random variation and sometimes abrupt random 

disturbances28,34. Unpredictable variations arise, such as wafer alignment failure and retrial 

with a failure probability between 3% and 10% depending on the cluster tool, process module 

delay, communication delay, and computer processing delay28. Therefore, it is necessary to find 

an efficient scheduling and control method such that a cluster tool is robust to random 

disturbances at task time28. To address this problem, an earliest start strategy with time 

variation within finite intervals38 and a dynamic adjustment of the robot waiting time to offset 

the effect of activity time variation is proposed39,40,41,42. Another approach applies a timetabling 

technique for real-time scheduling and allows to take wafer transfer delay into account43. An 

algorithm for short-term scheduling of cluster tools based on arrival time estimation has been 

proposed as well44. While random variations and disturbances can occur and affect the system 

at any time, transient behaviour occurs in start-up and close-down phases, where a cluster tool 

 
32 An, Y. J., Kim, Y. D., Choi, S. W. (2016). Minimizing makespan in a two-machine flowshop with a 

limited waiting time constraint and sequence-dependent setup times. Computers & Operations 

Research 71. 
33 Bouquard, J. L., Lenté, C. (2006), Two-machine flow shop scheduling problems with minimal and 

maximal delays. 4OR 4(1). 
34 Kim, J. H., Lee, T. E., Lee, H. Y., Park, D. B. (2003). Scheduling analysis of timed-constrained dual-

armed cluster tools. IEEE Transactions on Semiconductor Manufacturing 16(3). 
35 Lee, T. E., Park, S. H. (2005). An extended event graph with negative places and tokens for timed 

window constraints. IEEE Transactions on Automation Science and Engineering 2(4). 
36 Yoon, H. J., Lee, D. Y. (2005). Online scheduling of integrated single-wafer processing tools with 

temporal constraints. IEEE Transactions on Semiconductor Manufacturing 18(3). 
37 Dümmler, M. (1999). Using simulation and genetic algorithms to improve cluster tool performance. 

Proceedings of the 1999 Winter Simulation Conference (875–879). 
38 Kim, J. H., Lee, T. E. (2008). Schedulability analysis of time-constrained cluster tools with bounded 

time variation by an extended Petri net. IEEE Transactions on Automation Science and Engineering 

5(3). 
39 Wu, N. Q., Zhou, M. C. (2010). Analysis of wafer sojourn time in dual-arm cluster tools with residency 

time constraint and activity time variation. IEEE Transactions on Semiconductor Manufacturing 23(1). 
40 Qu, N. Q., Zhou, M. C. (2012). Modeling, analysis and control of dual-arm cluster tools with residency 

time constraint and activity time variation based on Petri nets. IEEE Transactions on Automation 

Science and Engineering 9(2). 
41 Wu, N. Q., Zhou, M. C. (2012). Schedulability analysis and optimal scheduling of dual-arm cluster 

tools with residency time constraint and activity time variation. IEEE Transactions on Automation 

Science and Engineering 9(1). 
42 Qiao, Y., Wu, N., Yang, F., Zhou, M., Zhu, Q., Qu, T. (2019). Robust Scheduling of Time-Constrained 

Dual-Arm Cluster Tools with Wafer Revisiting and Activity Time Disturbance. IEEE Transactions on 

Systems Man Cybernetics-Systems 49(6). 
43 Lim, S.-Y., Park, Y.-J., Lee, H., Hur, S. (2014). A real-time scheduling method for the cluster tool with 

wafer transfer delay. International Journal of Production Research 52(4). 
44 Tu, Y.-M. (2021). Short-term scheduling model of cluster tool in wafer fabrication. Mathematics 9. 
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is filled and emptied due to, e.g. maintenance activities, and appropriate scheduling 

approaches are required45,46,47.  

 

Beyond single cluster tools, several of these can be connected to multi-cluster tools with 

different structures and these need to be scheduled as well. Time constraints and multiple 

wafer product types have been taken into account to schedule48 such systems. One-wafer cyclic 

schedules with minimal cycle time, conditions for their existence, and algorithms to determine 

the schedules are investigated for linear49,50 and treelike51 multi-cluster tools. 

 

Another important characteristic of cluster tools is the number of arms, i.e. the differentiation 

between single-arm and dual-arm cluster tools. While in a single-arm cluster tool, only one arm 

has to be scheduled, a dual-arm cluster tool enables to handle more wafers at once but at the 

same time scheduling approaches which are adapted to this characteristic are necessary. In 

the literature, approaches for both scheduling single-arm cluster tools52 and dual-arm cluster 

tools53 are presented. 

 

Despite the efforts and advances in the problem of cluster tool scheduling, two aspects prevent 

the provided results from being considered sufficient for scheduling an entire semiconductor 

manufacturing fab. On the one hand, as technology improves and market demand changes, 

new requirements (e.g. lot switching scheduling, multiple wafer type processing, chamber 

cleaning requirements, and failure response policies) are made on tool scheduling28. On the 

other hand, cluster tools are integrated into a manufacturing system with revisiting product 

flows, which further complicates the planning process and – since guaranteeing deadlock-

freedom is mandatory – makes well-known scheduling algorithms infeasible28. 

 

In summary, methods of mathematical programming, as well as heuristics, prove to be an 

efficient and computational light approach to schedule cluster tools. However, the focus on 

scheduling cluster tools results in local optima, as the overall flow in the fab is not taken into 

consideration. 

 
45 Kim, T.-K., Jung, C., Lee, T.-E. (2012). Scheduling start-up and close-down periods of dual-armed 

cluster tools with wafer delay regulation. International Journal of Production Research 50(10). 
46 Zhu, Q., Zhou, M., Qiao, Y., Wu, N. (2018). Petri net modeling and scheduling of a close-down 

process for time-constrained single-arm cluster tools. IEEE Transactions on Systems Man Cybernetics-

Systems 48(3). 
47 Yang, F., Qiao, Y., Gao, K., Wu, N., Zhu, Y., Simon, I.W., Su, R. (2020). Efficient Approach to 

Scheduling of Transient Processes for Time-Constrained Single-Arm Cluster Tools with Parallel 

Chambers. IEEE Transactions on Systems Man Cybernetics-Systems 50(10). 
48 Liu, M.-X., Zhou, B.-H. (2013). Modelling and scheduling analysis of multi-cluster tools with residency 

constraints based on time constraint sets. International Journal of Production Research 51(16). 
49 Bai, L., Wu, N., Li, Z., Zhou, M. (2016). Optimal One-Wafer Cyclic Scheduling and Buffer Space 

Configuration for Single-Arm Multicluster Tools with Linear Topology. IEEE Transactions on Systems 

Man Cybernetics-Systems 46(10). 
50 Yang, F., Wu, N., Qiao, Y., Zhou, M. (2017). Optimal One-Wafer Cyclic Scheduling of Time-Constrained 

Hybrid Multicluster Tools via Petri Nets. IEEE Transactions on Systems Man Cybernetics-Systems 

47(11). 
51 Yang, F.J., Wu, N.Q., Qiao, Y., Zhou, M.C. (2018). Optimal One-Wafer Cyclic Scheduling of Hybrid 

Multirobot Cluster Tools With Tree Topology. IEEE Transactions on Systems Man Cybernetics-Systems 

48(2). 
52 Yang, F., Wu, N., Qiao, Y., Zhou, M., Su, R., Qu, T. (2020). Modeling and Optimal Cyclic Scheduling of 

Time-Constrained Single-Robot-Arm Cluster Tools via Petri Nets and Linear Programming. IEEE 

Transactions on Systems Man Cybernetics-Systems 50(3).  
53 Zhu, Q., Zhou, M., Qiao, Y., Wu, N., Hou, Y. (2020). Multiobjective Scheduling of Dual-Blade Robotic 

Cells in Wafer Fabrication. IEEE Transactions on Systems Man Cybernetics-Systems 50(12).  



D1.1 

Updated State-of-the-Art analysis 

AISSI_Deliverable_D11_Updated_SotA_v1_2024-06-18.docx 11/29 

3.2.2 Batch scheduling 

Some processes in semiconductor manufacturing allow to process lots in batches – e.g. in the 

diffusion and oxidation area. In contrast to processes where single lots have to be scheduled, 

this poses additional requirements for the scheduling task. In the scientific literature, batch 

scheduling is approached by mathematical optimisation54,55,56,57, genetic algorithms58,59 or with 

other heuristics60,61. In particular, Trindade et al.56 develop mixed-integer linear programming 

formulations for single and parallel processing machines with and without job release times. 

Jula and Leachman57 take into account resource constraints when scheduling parallel batch 

machines. Wang and Uzsoy62 consider the problem of scheduling a single batch machine with 

job release dates to minimise maximum lateness. They use a genetic algorithm coupled with 

dynamic programming techniques to solve the problem. Mönch et al.63 use genetic algorithms 

coupled with time window techniques and decision theory approaches. Yugma et al.64 present 

a scheduling approach dedicated to the diffusion area in semiconductor manufacturing and 

which utilises simulated annealing. Mönch et al.65 use a neural network to adjust the look-

ahead parameter in the Apparent Tardiness Cost (ATC) dispatching rule for parallel batch 

machines. 

 

 
54 Lee, J.-H., Kim, S.H., Lee, Y.H. (2013). Discrete lot sizing and scheduling problem under batch 

processing constraints in the semiconductor manufacturing. International Journal of Advanced 

Manufacturing Technology 69. 
55 Lee, Y.H., Lee, Y.H. (2013). Minimising makespan heuristics for scheduling a single batch machine 

processing machine with non-identical job sizes. International Journal of Production Research 51(12).  
56 Trindade, R.S., de Araújo, O.C.B., Fampa, M.H.C., Müller, F.M. (2018). Modelling and symmetry 

breaking in scheduling problems on batch processing machines. International Journal of Production 

Research 56(22).  
57 Jula, P., Leachman, R.C. (2010). Coordinated multistage scheduling of parallel batch-processing 

machines under multiresource constraints. Operations Research 58(4).  
58 Su, G., Wang, X. (2011). Weighted nested partitions based on differential evolution (WNPDE) 

algorithm-based scheduling of parallel batching processing machines (BPM) with incompatible families 

and dynamic lot arrival. International Journal of Computer Integrated Manufacturing 24(6).  
59 Noroozi, A., Mokhtari, H., Kamal Abadi, I.N. (2013). Research on computational intelligence algorithms 

with adaptive learning approach for scheduling problems with batch processing machines. 

Neurocomputing 101.  
60 Chen, H., Du, B., Huang, G.Q. (2010). Metaheuristics to minimise makespan on parallel batch 

processing machines with dynamic job arrivals. International Journal of Computer Integrated 

Manufacturing 23(10). 
61 Zhou, S., Chen, H., Xu, R., Li, X. (2014). Minimising makespan on a single batch processing machine 

with dynamic job arrivals and non-identical job sizes. International Journal of Production Research 

52(8).  
62 Wang, C., Uzsoy, R. (2002). A Genetic Algorithm to Minimize Maximum Lateness on a Batch 

Processing Machine. Computers & Operations Research 29(12). 
63 Mönch, L., Balasubramanian, H., Fowler, J. W., Pfund, M. E. (2005). Heuristic scheduling of jobs on 

parallel batch machines with incompatible families and unequal ready times of the jobs. Computers & 

Operations Research 32 (2731–2750). 
64 Yugma, C., Dauzère-Pérès, S., Artigues, C., Derreumaux, A., Sibille, O. (2012). A batching and 

scheduling algorithm for the diffusion area in semiconductor manufacturing. International Journal of 

Production Research 50(8).  
65 Mönch, L., Zimmermann, J., Otto, P. (2006). Machine learning techniques for scheduling jobs with 

incompatible families and unequal ready times on parallel batch machines. Engineering Applications of 

Artificial Intelligence 19(3) (235-245). 
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3.2.3 Scheduling focused on line balancing and WIP balancing 

Apart from batch scheduling, Lee et al.66 present a systematic approach for assigning wafers 

to machines in semiconductor manufacturing to maximise wafer yield while satisfying a pre-

determined target level of productivity. In this course, line balancing is addressed as well. Line 

balancing is also focused by Yu et al.67, applying a prediction-based dynamic scheduling 

method with a multi-layer perceptron. They determine a prediction model based on a simulation 

dataset of empirical industrial manufacturing facilities and incorporate the predictions in a 

dynamic dispatching rule for optimal load balancing based on the queue length at each 

workstation. 

 

Production processes are usually constrained by machines which are a bottleneck. 

Consequently, scheduling these bottleneck machines is of great importance with regard to the 

performance of the whole fab. Chiou and Wu68 present and test seven metaheuristics for 

scheduling bottleneck machines in semiconductor manufacturing facilities. In particular, an 

appropriate allocation of jobs to various machines is considered in their work. Another 

approach to control and schedule bottlenecks is presented by Hu et al.69. They propose a 

dynamic WIP control strategy comprising offline target WIP level setting and online WIP control. 

Based on detected and classified bottlenecks, target WIP levels are allocated to the bottlenecks 

to avoid process fluctuations because of unpredictable events. During real-time dispatching, 

upstream machines of bottlenecks modify their dispatching order to adjust the deviation of WIP 

levels at the bottlenecks. The current WIP distribution of the entire system is taken into account 

by Siebert et al.70 as well. They propose a fluid model lot dispatching policy that considers travel 

times and iteratively optimises lot selection based on the current WIP distribution. 

 

3.2.4 AI-based and adaptive scheduling and dispatching rules 

Since modelling scheduling rules can be tedious and time-consuming, automated generation 

of heuristics is frequently performed using machine learning techniques. These so-called hyper-

heuristics are defined as an automated methodology for selecting or generating heuristics to 

solve complex computational search problems22. Hyper-heuristics can be trained and applied 

on static, deterministic and stochastic instances71. 

 

Huang and Chen72 propose an online rescheduling mechanism combined with theory of 

constraints (TOC) and deploy a genetic algorithm for searching dispatching rule sets. Lin and 

 
66 Lee, D.-H., Lee, C.-H., Choi, S.-H., Kim, K.-J. (2019). A method for wafer assignment in semiconductor 

wafer fabrication considering both quality and productivity perspectives. Journal of Manufacturing 

Systems 52.  
67 Yu, Q., Yang, H., Lin, K.-Y., Li, L. (2020). A predictive dispatching rule assisted by multi-layer 

perceptron for scheduling wafer fabrication lines. Journal of Computing and Information Science in 

Engineering 20(3).  
68 Chiou, C.-W., Wu, M.-C. (2014). Scheduling of multiple in-line steppers for semiconductor wafer fabs. 

International Journal of Systems Science 45(3).  
69 Hu, H., Jiang, Z., Zhang, H. (2010). A dynamic WIP control strategy for bottlenecks in a wafer 

fabrication system. International Journal of Production Research 48(17).  
70 Siebert, M., Bartlett, K., Kim, H., Ahmed, S., Lee, J., Nazzal, D., Nemhauser, G., Sokol, J. (2018). Lot 

targeting and lot dispatching decision policies for semiconductor manufacturing: optimisation under 

uncertainty with simulation validation. International Journal of Production Research 56(1-2).  
71 Hildebrandt, T., Heger, J., Scholz-Reiter, B. (2010). Towards improved dispatching rules for complex 

shop or scenarios: a genetic programming approach. Proceedings of the 12th annual conference on 

Genetic and evolutionary computation (257–264). 
72 Huang, H., Chen, T. (2006). A New Approach to On-Line Rescheduling for a Semiconductor Foundry 

Fab. 2006 IEEE International Conference on Systems, Man and Cybernetics (4727-4732). 
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Chen73 combine a genetic algorithm with simulation to optimise scheduling decisions in a 

semiconductor backend assembly facility. Hwang and Jang74 deploy an AI approach based on 

Q-learning for scheduling automated transport systems. Waschneck et al.75 propose applying 

Deep Q Network agents, a deep reinforcement learning approach for global job shop scheduling 

across several production workcentres. Based on the insight that approaches of reinforcement 

learning allow to set up powerful decision-making systems (e.g. for playing games like chess or 

Go), Kuhnle et al.76 present an adaptive production control system based on reinforcement 

learning. In particular, they address the design of a reinforcement learning approach with 

regard to state, action and reward function. Additionally, they identify robust designs for 

reinforcement learning systems and present a real-world example of a semiconductor 

manufacturer. With regard to reinforcement learning methods usually being considered as 

'black box' models, Kuhnle et al.77 propose an approach to increase the plausibility of 

reinforcement learning based control strategies. They combine methods with high prediction 

accuracy (e.g. neural networks) on the one hand and high explainability (e.g. decision trees) on 

the other hand. 

 

Shiue et al.78 propose a reinforcement learning-based dynamic scheduling method that applies 

the multiple dynamic scheduling rule selection (MDSR) mechanism to effectively respond to 

product-mix ratio variations in semiconductor wafer fabrication systems. The proposed 

reinforcement learning (RL) approach is based on Q-learning. It uses a dynamic and multi-pass 

approach for deciding MDSRs, which is applied following the status of the production system 

at the beginning of the scheduling interval. The system then decides the most suitable MDSRs 

for the next scheduling interval. 

 

A fuzzy neural network (FNN) based rescheduling decision model is implemented by Zhang et 

al.79, which can rapidly choose an optimised rescheduling strategy to schedule the 

semiconductor wafer fabrication lines according to current system disturbances. 

 

A self-adaptive agent-based fuzzy-neural system is constructed by Chen (2011)80 to enhance 

the performance of scheduling jobs in a wafer fabrication factory. The system integrates 

dispatching, performance evaluation and reporting, and scheduling policy optimisation. Unlike 

in past studies, a single pre-determined scheduling algorithm is used for all agents. In this 

study, every agent develops and modifies its own scheduling algorithm to adapt to local 

conditions. 

 
73 Lin, J. T., Chen, C.-M. (2015). Simulation optimization approach for hybrid flow shop scheduling 

problem in semiconductor back-end manufacturing. Simulation Modelling Practice and Theory 51. 
74 Hwang, I., Jang, Y. J. (2019). Q(λ) learning-based dynamic route guidance algorithm for overhead 

hoist transport systems in semiconductor fabs. International Journal of Production Research (1-23). 
75 Waschneck, B., Reichstaller, A., Belzner, L., Altenmüller, T., Bauernhansl, T., Knapp, A., Kyek, A. 

(2018). Optimization of global production scheduling with deep reinforcement learning. Procedia CIRP 

72(1) (1264-1269). 
76 Kuhnle, A., Kaiser, J.-P., Theiß, F., Stricker, N., Lanza, G. (2021). Designing an adaptive production 

control system using reinforecement learning. Journal of Intelligent Manufacturing 32.  
77 Kuhnle, A., May, M. C., Schäfer, L., Lanza, G. (2021). Explainable reinforcement learning in 

production control of job shop manufacturing system. International Journal of Production Research. 
78 Shiue, Y.-R., Lee, K.-C., Su, C.-T. (2020). A Reinforcement Learning Approach to Dynamic Scheduling 

in a Product-Mix Flexibility Environment. IEEE Access 8. 
79 Zhang, J., Qin, W., Wu, L.H., Zhai, W.B. (2014). Fuzzy neural network-based rescheduling decision 

mechanism for semiconductor manufacturing. Computers in Industry 65, pp. 1115 – 1125. 
80 Chen, T. (2011). A self-adaptive agent-based fuzzy-neural scheduling system for a wafer fabrication 

factory. Expert Systems with Applications 38, (7158 – 7168). 
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Zhang et al.81 present an imperialist competitive algorithm incorporating remaining cycle time 

prediction for photolithography machines' scheduling problem with the objective of total 

completion time minimisation. A deep autoencoder neural network is presented at first to 

predict remaining cycle time, responding to the environmental changes. Secondly, an 

imperialist competitive algorithm in the framework of a rolling horizon strategy is proposed to 

address the scheduling problem, incorporated with the accurately predicted remaining cycle 

time. 

 

To minimise the makespan for a multichip product (MCP) scheduling problem, Park et al.82 

propose a setup change scheduling method using reinforcement learning (RL) in which each 

agent determines setup decisions in a decentralised manner and learns a centralised policy by 

sharing a neural network among the agents to deal with the changes in the number of 

machines. Furthermore, novel definitions of state, action, and reward are proposed to address 

the variabilities in production requirements and initial setup status. 

 

Lee et al.83 formulate the fab scheduling problem as a semi Markov decision process and 

propose a reinforcement learning method combined with a fab simulator to determine a 

dispatching policy. 

 

Kovács et al. (2022)84  present a scalable, open-source tool for simulating factories up to real-

world size, which allows researchers to develop and experiment with adaptive scheduling 

techniques for semiconductor manufacturing from prototyping to large-scale experiments. The 

authors also supply a dataset generator that enables prototyping and testing scheduling 

methods on small-scale fab models and demonstrate the scalability of the simulator based on 

the SMT202085 datasets. 

 

Wu et al. (2022)86  consider the problem of job scheduling of diffusion furnaces in semicon-

ductor fabrication facilities. This problem belongs to a special class of flexible job-shop 

scheduling with complicated constraints including batch processing, re-entrance, and time-

windows. To reduce the complexity of the planning problem, the authors identify several 

properties, which are exploited to develop an efficient dynamic programming algorithm and a 

genetic algorithm based heuristic. The performance of the algorithms is validated by historical 

data, which was acquired throughout an entire month and was retrieved from the MES of a real 

fab. On a daily basis, there were around 300 products, 500 recipes, and 4000 ∼ 5000 jobs (or 

lots) at the diffusion area. The authors demonstrate that the algorithm, compared with existing 

methods, gives a higher throughput rate and improves the scheduling efficiency. 

 
81 Zhang, P., Zhao, X., Sheng, X., Zhang, J. (2018). An Imperialist Competitive Algorithm Incorporating 

Remaining Cycle Time Prediction for Photolithography Machines Scheduling. IEEE Access 6. 
82 Park, I.-B., Huh, J., Kim, J., Park, J. (2020). A Reinforcement Learning Approach to Robust Scheduling 

of Semiconductor Manufacturing Facilities. IEEE Transactions on Automation Science and Engineering 

17(3) (1420–1431). 
83 Lee, W., Ko, K., Shin, H. (2019). Simulation-Based Multi-Objective Fab Scheduling by using 

Reinforcement Learning. Proceedings of the 2019 Winter Simulation Conference. 
84 B. Kovács, Pierre Tassel, R. Ali, M. El-Kholany, M. Gebser, G. Seide (2022). A Customizable Simulator 

for Articial Intelligence Research to Schedule Semicondutor Fabs. Annual SEMI Advanced 

Semiconductor Manufacturing Conference (ASMC). 
85 D. Kopp, M. Hassoun, A. Kalir, L. Mönch (2020). SMT2020 — A Semiconductor Manufacturing 

Testbed. IEEE Transactions on Semiconductor Manufacturing, 33(4). 
86 K. Wu, E. Huang, M. Wang, M. Zheng (2022). Job scheduling of diffusion furnaces in semiconductor 

fabrication facilities. European Journal of Operational Research, 301(1). 
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Lee and Lee (2022)87 analyze the interplay between production planning and scheduling since 

non-executable production plans result in scheduling errors due to inconsistent decisions. The 

authors deploy deep reinforcement learning (RL) to deal with a scheduling process operating 

within the production plan. Deep Q-network is conjugated, and a novel state, action, and reward 

are suggested to optimize the scheduling policy. As a result, the performance of the proposed 

deep RL method is compared to other dispatching rules, and the proposed method outperforms 

the other scheduling methods in diverse cases. 

 

Tassel et al. (2023)88 present an approach to fab scheduling using "self-supervised 

reinforcement learning." The authors introduce a comprehensive feature set that represents 

the current state within the fab. The proposed objective function aims to minimize both the 

average delay and the average throughput time of all lots. The model architecture employed is 

a neural network with global multihead self-attention, which takes the features of all lots as 

input and predicts the priorities for each machine or machine group, guiding the production of 

the lots in accordance with the described objective function. Tassel et al. (2023)88 provide 

extensive empirical results of the trained agent. The authors use the SMT2020 model (Hassoun 

et al. 2019)89 as the training and evaluation platform, which is considered the standard 

environment for assessing scheduling methods in high-mix/low-volume semiconductor 

manufacturing. From the numerical results, the authors conclude that the agent significantly 

improves fab performance compared to previous approaches. Despite the promising 

performance results of the trained agent presented by the authors, the AISSI consortium 

identifies several open issues. First, Tassel et al. (2023)88 consider only locally available 

information at individual machine groups, without incorporating global state information. 

Specifically, there is a lack of information about the lots currently being processed and the 

status of all other machines in the production system. As a result, the agent's knowledge is 

limited to a small selection of lots for the immediate next production step. Given the state 

model developed in AISSI (Schulz et al. 2022)90, it is surprising that the agent can achieve the 

reported performance. 

 

In summary, the scheduling approach presented by Tassel et al. (2023)88 is of great interest to 

the AISSI research project. Particularly notable is the agent's ability to achieve good results on 

the reference model SMT2020 (Hassoun et al. 2019)89. However, the aforementioned 

limitations of the agent suggest that the architecture pursued in AISSI could lead to better 

outcomes. Specifically, AISSI's approach of using a Monte Carlo tree search to utilize global 

state information for foresighted planning is considered more convincing. In planned 

publications, the approach presented by Tassel et al. (2023)88 should be cited and compared. 

 

3.2.5 Area-specific scheduling approaches 

In semiconductor manufacturing, there are different areas where different production steps 

are executed (see Table 1). As different technologies and characteristics hallmark these areas, 

 
87 Y. H. Lee, S. Lee (2022). Deep reinforcement learning based scheduling within production plan in 

semiconductor fabrication. Expert Systems with Applications (191). 
88 Tassel, P., Kovács, B., Gebser, M., Schekotihin, K., Stöckermann, P., Seidel, G. (2023). Semiconduc-

tor Fab Scheduling with Self-Supervised and Reinforcement Learning. Proceedings of the 2023 Winter 

Simulation Conference, pp. 1924-1935. 
89 Hassoun, M., Kopp, D., Mönch, L., Kalir, A. (2019). A new high-volume/low-mix simulation testbed for 

semiconductor manufacturing. Proceedings of the 2019 Winter Simulation Conference, pp. 2419-

2428. 
90 Schulz, B., Jacobi, C., Gisbrecht, A., Evangelos, A., Chan, C.W., Gan, B.P. (2022). Graph Representa-

tion and Embedding for Semiconductor Manufacturing Fab States. Proceedings of the 2022 Winter 

Simulation Conference. 
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area-specific scheduling approaches can be differentiated. One core area in semiconductor 

manufacturing is photolithography. For scheduling purposes within the photolithography area, 

a framework for rolling horizon scheduling91, a dynamic scheduling method based on a 

Kohonen neural network92, a metaheuristic that takes auxiliary resources into account93 and a 

mixed-integer programming model, as well as a heuristic to optimise scheduling of 

photolithography processes with both individual and cluster tools,94 are proposed. Another 

publication is concerned with the rescheduling problem in the photolithography area and 

applies simulated annealing, a genetic algorithm and tabu search to approach it. Additionally, 

an approach for sensitivity search is proposed95. 

 

Another area in semiconductor manufacturing is the final testing stage. The final testing 

scheduling problem in semiconductor manufacturing has been addressed in several 

publications where both heuristics96 and genetic algorithms97,98 are utilised. Different 

methodological approaches have been proposed for the wafer sorting scheduling problem that 

has to be solved in the course of testing wafers99,100,101. 

 

3.3 Maintenance planning 

Typically, the status of machines is assumed to be independent of the production schedule. 

However, advanced process technologies require high conformance to process specifications. 

Even though a machine is shown as available in the Manufacturing Execution System (MES), 

the process quality may not be guaranteed due to machine deterioration102. Additionally, from 

a long-term viewpoint, the probability of machine failures naturally increases with the age of a 

 
91 Zhang, P., Lv, Y., Zhang, J. (2018). An improved imperialist competitive algorithm based 

photolithography machines scheduling. International Journal of Production Research 56(3).  
92 Zhou, B.-H., Li, X., Fung, R.Y.K. (2015). Dynamic scheduling of photolithography process based on 

Kohonen neural network. Journal of Intelligent Manufacturing 26. 
93 Bitar, A., Dauzère-Pérès, S., Yugma, C., Roussel, R. (2016). A memetic algorithm to solve an 

unrelated parallel machine scheduling problem with auxiliary resources in semiconductor 

manufacturing. Journal of Scheduling 19. 
94 Chalil Madathil, S., Nambiar, S., Mason, S.J., Kurz, M.E. (2018). On scheduling a photolithography 

area containing cluster tools. Computers & Industrial Engineering 121. 
95 Hung, Y.-F., Liang, C.-H., Chen, J.C. (2013). Sensitivity search for the rescheduling of semiconductor 

photolithography operations. International Journal of Advanced Manufacturing Technology 67.  
96 Wang, S., Wang, L., Liu, M., Xu, Y. (2015). A hybrid estimation of distribution algorithm for the 

semiconductor final testing scheduling problem. Journal of Intelligent Manufacturing 26. 
97 Wang, S., Wang, L. (2015). A knowledge-based multi-agent evolutionary algorithm for semiconductor 

final testing scheduling problem. Knowledge-Based Systems 84. 
98 Zheng, X.-L., Wang, L., Wang, S.-Y. (2014). A novel fruit fly optimization algorithm for the 

semiconductor final testing scheduling problem. Knowledge-Based Systems 57. 
99 Ying, K.-C. (2012). Scheduling identical wafer sorting parallel machines with sequence-dependent 

setup times using an iterated greedy heuristic. International Journal of Production Research 50(10). 
100 Ying, K.-C., Lin, S.-W. (2014). Efficient wafer sorting scheduling using a hybrid artificial immune 

system. Journal of the Operational Research Society 65(2). 
101 Lin, S.-W., Lee, Z.-J., Ying, K.-C., Lin, R.-H. (2011). Meta-heuristic algorithms for wafer sorting 

scheduling problems. Journal of the Operational Research Society 62(1). 
102 Sloan, T. W., Shanthikumar, J. G. (2002). Using in-line equipment condition and yield information for 

maintenance scheduling and dispatching in semiconductor wafer fabs. IIE Transactions 34(2) (191–

209). 
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machine103. However, as time-based maintenance often causes over-maintenance104, while 

still not fully being able to address the problem of unplanned downtime, predictive 

maintenance is gaining popularity. In the Machine Learning (ML) community, Predictive 

Maintenance (PdM) is typically modelled either as a problem of Failure Prediction (FP)105 or of 

estimating the Remaining Useful Life (RUL)106. Guan et al.107 present a framework for 

throughput-driven condition-based maintenance aiming at predictive maintenance for heavily 

utilised and reconfigurable production equipment. 

 

Another common method is to evaluate the machine condition in the Advanced Process Control 

(APC) framework through calculating an Equipment Health Indicator (EHI)108,109. To evaluate 

EHI, several methodologies have been developed in the literature. The multivariate process 

capability index is commonly used to integrate multiple parameters into an overall EHI. A recipe-

independent EHI and its hierarchical monitoring scheme are further proposed to evaluate the 

machine health and to diagnose faults systematically110. 

 

Susto et al.111 generate so-called "health factors" or quantitative indicators of a system's status 

associated with a given maintenance issue and determine their relationship to operating costs 

and failure risk. They train multiple classification modules with different prediction horizons to 

provide different performance tradeoffs in terms of frequency of unexpected breaks and 

unexploited lifetime and then employ this information in an operating cost-based maintenance 

decision system to minimise expected costs. Luo et al.112 employ back-propagation Neural 

Networks and evolvable NN for the degradation prediction and multiple regression forecasting 

to check prediction accuracies. Zhang et al.113 propose a purely data-driven approach for 

solving the Health Indicator Learning (HIL) problem based on Deep Reinforcement Learning 

 
103 Kamien, M. I., Schwartz, N. L. (1971). Optimal maintenance and sale age for a machine subject to 

failure. Management Science 17(8) (B495–B504). 
104 Ahmad, R., Kamaruddin, S. (2012). An overview of time-based and condition-based maintenance in 

industrial application. Computers & Industrial Engineering 63(1) (135–149). 
105 Babu, G.S., Zhao, P., Li, X. L. (2016). Deep convolutional neural network based regression approach 

for estimation of remaining useful life. International Conference on Database Systems for Advanced 

Applications (214–228). 
106 El-Koujok, M., Gouriveau, R., Zerhouni, N. (2011). Reducing arbitrary choices in model building for 

prognostics: An approach by applying parsimony principle on an evolving neuro-fuzzy system. 

Microelectronics Reliability 51(2) (310–320). 
107 Guan, C.S., Kuang, Y.C., Ooi, M.P.-L. (2013). Throughput-driven condition-based maintenance for 

frequently reconfigured mass production equipment. International Journal of Advanced Manufacturing 

Technology 65.  
108 Holfeld, A., Barlovic, R., Good, R. P. (2007). A fab-wide APC sampling application. IEEE Transactions 

on Semiconductor Manufacturing 20(4) (393–399). 
109 Obeid, A., Dauzère-Pérès, S., Yugma, C. (2012). Scheduling on parallel machines with time 

constraints and equipment health factors. IEEE Conference on Automation Science and Engineering 

(401–406). 
110 Blue, J., Gleispach, D., Roussy, A., Scheibelhofer, P. (2013). Tool condition diagnosis with a recipe-

independent hierarchical monitoring scheme. IEEE Transactions on Semiconductor Manufacturing 

26(1) (82–91). 
111 Susto, G.A., Schirru, A., Pampuri, S., McLoone, S. (2015). Machine Learning for Predictive 

Maintenance: A Multple Classifier Approach. IEEE Transactions on Industrial Informatics 11(3). 
112 Luo, M., Yan, H.-C., Hu, B., Zhou, J.-H., Pang, C. K. (2015). A data-driven two-stage maintenance 

framework for degradation prediction in semiconductor manufacturing industries. Computers & 

Industrial Engineering 85 (414–422). 
113 Zhang, C., Gupta, C., Farahat, A., Ristovski, K., Ghosh, D. (2019). Equipment Health Indicator 

Learning Using Deep Reinforcement Learning. Machine Learning and Knowledge Discovery in 

Databases, Springer International Publishing (488-504). 
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(DRL). They find the HIL problem can be mapped to a credit assignment problem. DRL learns 

from failures by naturally back-propagating the credit of failures into intermediate states. 

 

Ramírez-Hernández et al.114 present architecture and implementation of a software for 

preventive maintenance optimisation, which is based on algorithms for optimal scheduling of 

preventive maintenance tasks in semiconductor manufacturing. Additionally, results from 

applying this software in simulation case studies based on real industrial data are reported.  

 

3.4 Integrated production and maintenance planning 

In highly flexible and highly integrated manufacturing systems – such as semiconductor 

manufacturing – dynamic interactions between equipment conditions, operations executed on 

the tools and product quality necessitate joint decision-making in maintenance scheduling and 

production operations115. 

 

Lee and Ni116 present a decision-making architecture to determine maintenance and 

production dispatching policies based on condition monitoring information and the relationship 

between machine degradation and product quality. They apply a Markov decision process for 

long-term decision-making and mathematical programming for short-term decision-making. 

Celen and Djurdjanovic117 address the aspect that the condition of equipment is usually not 

perfectly observable by applying a partially observable Markov decision process to model the 

interaction of production and maintenance activities. Chung et al.118 propose a binary integer 

programming model and a heuristic for a single machine scheduling problem with maintenance 

activities and irregular intervals in between. In another study, Tonke and Grunow119 investigate 

simultaneous scheduling of preventive maintenance, shutdowns and production of robotic 

cells in semiconductor manufacturing and show that integrating production and maintenance 

scheduling has substantial advantages. Li and Ma120 develop a particle swarm optimisation 

algorithm to solve an integrated preventive maintenance and production scheduling problem 

of a re-entrant job shop and evaluate the model with simple simulation experiments. Ao et al.121 

propose a two-step strategy to approach the integrated decision problem of production and 

maintenance. First, a dynamic maintenance plan including time points for maintenance is 

determined based on a Markov decision process. Second, an integrated decision model for 

 
114 Ramírez-Hernández, J.A., Crabtree, J., Yao, X., Fernandez, E., Fu, M.C., Janakiram, M., Marcus, S.I., 

O'Connor, M., Patel, N. (2010). Optimal preventive maintenance scheduling in semiconductor 

manufacturing systems: Software tool and simulation case studies. IEEE Transactions on 

Semiconductor Manufacturing 23(3).  
115 Celen, M., Djurdjanovic, D. (2012). Operation-dependent maintenance scheduling in flexible 

manufacturing systems. CIRP Journal of Manufacturing Science and Technology 5, (296 – 308). 
116 Lee, S., Ni, J. (2013). Joint decision making for maintenance and production scheduling of 

production systems. International Journal of Advanced Manufacturing Technology 66.  
117 Celen, M., Djurdjanovic, D. (2020). Integrated maintenance and operations decision making with 

imperfect degradation state observations. Journal of Manufacturing Systems 55.  
118 Chung, T.-P., Xue, Z., Wu, T., Shih, S.C. (2019). Minimising total completion time on single-machine 

scheduling with new integrated maintenance activities. International Journal of Production Research 

57(3).  
119 Tonke, D., Grunow, M. (2018). Maintenance, shutdown and production scheduling in 

semiconductor robotic cells. International Journal of Production Research 56(9).  
120 Li, R., Ma, H. (2017). Integrating Preventive Maintenance Planning and Production Scheduling 

under Reentrant Job Shop. Mathematical Problems in Engineering. 
121 Ao, Y., Zhang, H., Wang, C. (2019). Research of an integrated decision model for production 

scheduling and maintenance planning with economic objective. Computers & Industrial Engineering 

137. 
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production and maintenance and to balance a production line when times for production and 

maintenance are conflicting is set up. 

 

Applying EHI in production control helps identify machine failures that prolong production cycle 

times and improve the production schedule's effectiveness. Many studies in the literature have 

proposed and discussed condition-based maintenance models122,123,124. A two-level 

maintenance methodology for manufacturing systems is proposed by Xia et al.125, in which 

machine-level predictive maintenance schedules are considered first and then a variable 

maintenance time window is used to optimise system-level maintenance. Such condition-based 

maintenance and health management can further be considered in batch production with 

variable lot sizes126. Both long and short-term machine deterioration and condition-based 

maintenance motivate the integration of machine conditions in scheduling decisions. 

 

Information on the condition of machines facilitates the quality improvement of scheduling 

decisions. Exploiting degradation modelling and monitoring, Cholette et al.127 consider 

preventive maintenance events and production sequencing jointly to design an integrated 

decision policy, achieving higher expected profits than a traditional maintenance policy. Kao et 

al.128 adopt a Markov decision process model to include machine deterioration and determine 

equipment maintenance and production schedules for maximising the long-run expected 

average profit. These works mainly focus on a single tool or a set of homogeneous tools. For 

scheduling a cluster tool taking into account chamber conditions and maintenance activities a 

genetic algorithm is presented129. 

 

Some works addressed equipment condition related scheduling problems. For example, 

machine condition parameters are considered by Doleschal et al.130 in the optimal schedule to 

improve yield. However, the machine condition is modelled as a constant over the whole 

scheduling horizon, ignoring that the machine condition changes after processing wafers. To 

model and illustrate the integration of EHI in scheduling decisions to balance between 

 
122 Cheng, G. Q., Zhou, B. H., Li, L. (2017). Joint optimization of lot sizing and condition-based 

maintenance for multi-component production systems. Computers & Industrial Engineering 110 (538–

549). 
123 Cui, W., Lu, Z., Li, C., Han, X. (2018). A proactive approach to solve integrated production scheduling 

and maintenance planning problem in flow shops. Computers & Industrial Engineering 115 (342–353). 
124 Luo, M., Yan, H. C., Hu, B., Zhou, J. H., Pang, C. K. (2015). A data-driven two-stage maintenance 

framework for degradation prediction in semiconductor manufacturing industries. Computers & 

Industrial Engineering 85 (414–422). 
125 Xia, T., Tao, X. Y., Xi, L. (2017). Operation process rebuilding (OPR)-oriented maintenance policy for 

changeable system structures. IEEE Transactions on Automation Science and Engineering 14(1) (139–

148). 
126 Xia, T., Jin, X., Xi, L., Ni, J. (2015). Production-driven opportunistic maintenance for batch production 

based on MAM–APB scheduling. European Journal of Operational Research 240 (781–790). 
127 Cholette, M. E., Celen, M., Djurdjanovic, D., Rasberry, J. D. (2013). Condition monitoring and 

operational decision making in semiconductor manufacturing. IEEE Transaction on Semiconductor 

Manufacturing 26(4) (454–464). 
128 Kao, Y. -T., Zhan, S.-C., Chang, S.-C., Ho, J.-H., Wang, P., Luh, P. B., Chang, J. (2011). Near optimal 

furnace tool allocation with batching and waiting time constraints. IEEE Conference on Automation 

Science and Engineering (108–113). 
129 Lee, S., Ni, J. (2012). Genetic algorithm for job scheduling with maintenance consideration in 

semiconductor manufacturing process. Mathematical Problems in Engineering.  
130 Doleschal, D., Weigert, G., Klemmt, A. (2015). Yield integrated scheduling using machine condition 

parameter. Proceedings of the 2015 Winter Simulation Conference (2953–2963). 
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productivity and quality risk, Kao et al.131 present two mixed-integer linear programs to 

schedule jobs on heterogeneous parallel batching machines. They demonstrate that both 

problems are NP-hard, meaning that solving the problems for large instances in a highly 

dynamic manufacturing environment requires fast heuristic algorithms, which are not yet 

available. 

 

Geurtsen et al.132 study a new scheduling problem on unrelated parallel machines with 

simultaneous scheduling of jobs and resource-constrained preventive maintenance activities. 

They develop a mathematical model to investigate preventive maintenance activities that are 

known in advance and that have to be scheduled in one of its given discrete time windows 

within the scheduling horizon. Cui et al.133 investigate the integration of production planning 

and maintenance planning to optimise the quality robustness and solution robustness of 

schedules for flow shops with failure uncertainty. 

 

The multi-objective flexible job shop scheduling problem with maintenance activities is 

approached with a novel discrete artificial bee colony algorithm by Li et al.134. First, a schedule 

without maintenance activities is generated. They are inserted dynamically afterwards based 

on a heuristic. The algorithm results in highly effective and efficient performance for a set of 

well-known benchmark instances from literature. 

 

Kaihara et al.135 present a method for re-entrant production floor optimisation using Lagrangian 

decomposition coordination. By regarding maintenance as jobs that are limited by a starting 

and finishing time, the proposed approach produces a schedule that can facilitate proper 

maintenance. 

 
131 Kao, Y.-T. , Dauzère-Pérès, S., Blue, J., Chang, S.-C. (2018). Impact of integrating equipment health 

in production scheduling for semiconductor fabrication. Computers & Industrial Engineering 120 (450-

459). 
132 Geurtsen, M., Adan, J., Stokkermans, J., Adan, I. J. B. F., Akcay, A. (2020). Integrated Maintenance & 

Production Scheduling (in preparation). 
133 Cui, W., Lu, Z., Li, C., Han, X. (2018). A proactive approach to solve integrated production scheduling 

and maintenance planning problem in flow shops. Computers & Industrial Engineering 115 (342-353). 
134 Li, J., Pan, Q., Tasgetiren, M. (2014). A discrete artificial bee colony algorithm for the multi-objective 

flexible job-shop scheduling problem with maintenance activities. Applied Mathematical Modelling 38 

(1111-1132). 
135 Kaihara, T., Fujii, N., Tsujibe, A., Nonaka, Y. (2010). Proactive maintenance scheduling in a re-

entrant flow shop using Lagrangian decomposition coordination method. CIRP Annals 59(1) (453–456) 
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4 INDUSTRIAL STATE-OF-THE-ART ANALYSIS 

In chapter 3, a broad overview of methods and approaches for production scheduling and 

maintenance planning in the semiconductor industry was presented. While these approaches 

provide various relevant thoughts for practical applications, most of them have been tested 

and demonstrated using exemplary data or small examples from practice. At the interface of 

scientific approaches and practical applications, a common understanding of challenges and 

solution approaches is required. 

 

As the project AISSI aimed at implementing sophisticated scientific approaches for production 

scheduling in industry, a survey has been conducted to grasp the understanding, definitions 

and terminology of the partners from industry in this domains. This provides the counterpart of 

the scientific perspective in chapter 3 and aims at establishing a common base and 

understanding for the work throughout the project. The results of the survey are summarized 

in Chapter 4.1. Additionally, in Chapter 4.2, we give an update on the state-of-the-art in the 

entire market, as well as on the development efforts regarding AI-approaches in industry. 

 

4.1 Survey among the industry partners in the consortium 

 

The core of the survey was a questionnaire that was distributed to all project partners from 

industry. The questionnaire covers different aspects that are relevant to grasp the industrial 

state-of-the-art regarding production scheduling and maintenance planning. To provide an 

overview of the state-of-the-art in semiconductor manufacturing regarding the aspects listed in 

the section above, the feedback of the project partners in the filled questionnaires was 

aggregated and a summary is presented below. 

 

While there are definitions of and differentiation between the terms scheduling and dispatching 

and the corresponding time horizons in the scientific literature (see Figure 1), experience shows 

that these terms and the corresponding time horizons are not unique and unambiguous in 

industrial practice. Therefore, the first question in the questionnaire addressed these two 

terms, their use and the respective time horizon. On the one hand, the feedback from the 

project partners corresponds with the structure proposed by Mönch, Fowler and Mason1 shown 

in Figure 1 with regard to the fact that scheduling refers to a longer time horizon than 

dispatching. However, the project partners state exact time horizons of scheduling and 

dispatching that differ between hours, shifts and a day (scheduling) and between real-time and 

seconds (dispatching) respectively. Additionally, it is pointed out that the time horizon of 

scheduling depends on the tool group and the number of production steps involved. The stated 

time horizons implicitly indicate that scheduling refers to determining a (production and/or 

maintenance) plan while dispatching is concerned with real-time decision-making and 

execution of such a plan. This insight provides the base for another dimension to differ 

scheduling and dispatching along. Scheduling is usually approached based on some objective 

function and by methods from the operations research domain. A common objective is to 

optimise an assignment or ordering problem mathematically. On the other hand, dispatching 

tends to be either based on heuristic rules or refers to a dispatch list that comprises certain 

lots in a certain order and is used as a prescription for operators and machines. The creation 

of a dispatch list may or may not be based on scheduling outcomes. 

 

The second question of the questionnaire referred to the focus of scheduling: Does it address 

single machines independently or are several machines, equipment groups or the like taken 

into account holistically? This differentiation is motivated by the assumption that scheduling 

decisions only taking into account single machines independently might result in locally optimal 
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decisions (for the single machine of interest) but do not necessarily result in globally optimal 

decisions (for the whole fab, an equipment group or several machines). Scheduling of several 

single machines independently might even result in local decisions that negatively affect each 

other. The feedback from the project partners indicates that single machines are the primary 

focus of dispatching. However, the incorporation of criteria that exceed the scope of a single 

machine but are associated with the whole factory is emphasised. On the other hand, the 

broader scope of equipment groups and sequences of equipment groups is usually addressed 

by scheduling. In particular, scheduling is common for lithography, implantation and furnace 

areas. However, the feedback from the partners points out that neither dispatching nor 

scheduling addresses a whole factory at once. 

 

Regarding different criteria that are taken into account to come to a dispatching and/or 

scheduling decision, the questionnaire also aimed to record the criteria applied by the project 

partners from industry. The corresponding question proposes several common criteria and 

allows to add and describe other criteria as well. From the feedback of the industry partners, it 

becomes apparent that multiple criteria are taken into account for dispatching and/or 

scheduling by the project partners from industry (multiple answers were allowed). Moreover, 

the results showed that dynamic and lot-specific criteria like batching, priorities and due dates 

are of higher relevance in industry than machine-specific and more static criteria like the queue 

length and the processing time. It is also worth noting that the approach of 'First-Come-First-

Served' (FCFS) – which corresponds to not taking any decision/not making any change at a 

given production and/or maintenance plan – is of minor relevance in industry.  
 

In research, there are approaches that focus on either production scheduling or maintenance 

scheduling only and approaches that integrate production and maintenance scheduling (see 

Chapter 3). As both production and maintenance take place on each machine, they depend on 

each other and have to share the limited time. For this reason, an integrated approach for 

production and maintenance scheduling seems reasonable from a theoretical point of view. To 

grasp the state-of-the-art in industry regarding this issue, a corresponding question is also 

contained in the questionnaire. The survey revealed that production planning and maintenance 

planning are exclusively executed separately. Maintenance activities are then manually 

integrated into the production schedule. Doing so, the expected WIP for the single machines is 

taken into account and maintenance activities are preferably planned for points in time when 

there is low WIP for a machine. Consequently, production is implicitly prioritised over 

maintenance.  

 

To summarise, while all planning approaches require some input data to base their decisions 

on, approaches from the domain of machine learning and artificial intelligence tend to have 

higher requirements regarding the amount of input data. Therefore, data availability and 

accessibility are essential for implementing planning approaches based on machine learning 

and artificial intelligence. Hence, the extent of data availability and accessibility at the project 

partners is inquired in the last question of the questionnaire. The project partners report to 

have data, e.g. lot trace data, stored and available for use in a digital twin and other planning 

approaches. However, challenges might occur with regard to very detailed and specific data 

and appropriate consolidation and aggregation procedures of the data.  

 

4.2 State-of-the-art in the market 

 

Artificial intelligence and machine learning (AI/ML) hold substantial potential to create 

significant business value for semiconductor companies across various operational stages, 

from research and chip design to production and sales. However, a recent McKinsey survey136 
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of semiconductor-device makers revealed that only about 30 percent of respondents are 

currently realizing value from AI/ML. These companies have heavily invested in AI/ML talent, 

data infrastructure, technology, and other enablers, and have fully scaled their initial use cases. 

The remaining 70 percent are still in the pilot phase, with their progress stalled. McKinsey 

anticipates a rapid acceleration in AI/ML adoption in the semiconductor industry in the coming 

years. Companies that scale up their AI/ML efforts now are likely to capture the full benefits of 

these technologies. 

 

The study focuses on device makers, including integrated device manufacturers (IDMs), fabless 

players, foundries, and semiconductor assembly and test services (SATS). It highlights the high 

capital requirements in the semiconductor industry, which operates in a winner-takes-most or 

winner-takes-all environment. Companies constantly strive to shorten product life cycles and 

innovate aggressively to maintain competitiveness. However, with each new technology node, 

the stakes rise significantly, as research, design, and production equipment costs increase 

drastically. For instance, research and design costs for developing a chip have surged from 

approximately $28 million at the 65-nanometer (nm) node to around $540 million at the 

leading-edge 5 nm node. Similarly, fab construction costs for these nodes have escalated from 

$400 million to $5.4 billion. 

 

As semiconductor companies aim to enhance productivity in research, chip design, and 

manufacturing while accelerating time to market, AI/ML is becoming an essential tool across 

the value chain. McKinsey's research indicates that AI/ML currently contributes between $5 

billion and $8 billion annually to semiconductor companies' earnings before interest and taxes 

(see Figure 2). Although impressive, this represents only about 10 percent of AI/ML's full 

potential in the industry. Within the next two to three years, AI/ML could potentially generate 

between $35 billion and $40 billion in annual value. Over a longer period, gains achieved four 

or more years in the future could rise to between $85 billion and $95 billion per year. This 

amount is equivalent to approximately 20 percent of the industry's current annual revenue of 

$500 billion and nearly equal to its 2019 capital expenditures of $110 billion. While a 

significant portion of this value will be passed on to customers, the competitive advantage for 

early adopters will be substantial and undeniable. 

 
Figure 2. Impact of AI on semiconductor EBIT, $ billion (McKinsey, 2023)136. 

 

 
136 McKinsey and Company (2023). Scaling AI in the sector that enables it: Lessons for semiconductor-

device makers. Online (last access: 28.06.2024): 
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The study underscores the transformative potential of AI/ML in the semiconductor industry, 

highlighting how these technologies can drive significant value across research, design, 

production, and sales processes. Despite this promise, only about 30 percent of semiconductor 

companies have fully harnessed AI/ML, with the majority still in pilot phases. This mirrors 

broader trends identified in Gartner’s Hype Cycle for Smart Manufacturing and Service 

Operations, which provides a comprehensive view of innovative concepts and emerging 

technologies. 

 

Gartner's Hype Cycle137 (cf. Figure 3) reveals that manufacturing operations leaders face 

economic headwinds and disruptions across supply chains and labor markets. They must 

navigate these challenges by adopting balanced strategies that explore, implement, and scale 

new technologies. This approach is critical for making data-driven decisions and ensuring 

reliable, efficient operations. The Hype Cycle outlines the maturity, business impact, market 

adoption, and obstacles of various technologies, aiding leaders in balancing risk, cost 

pressures, capability building, and continuous improvement. 

 

 
Figure 3. Gartner’s Hype Cycle for Manufacturing Operations Strategy, 2023 (Gartner, 2023)137. 

 

For the research project AISSI, we want to shed light on the core concepts Machine learning 

and Manufacturing operations management (MOM). 

 

Machine learning is a technical discipline that identifies patterns and generates predictions by 

analyzing large datasets. Unlike manual or conventional analytics, machine learning leverages 

vast amounts of data to uncover patterns, generate insights, and predict future outcomes. In 

the realm of manufacturing operations, machine learning is a crucial enabler of smart factories 

and connected workers. It has a high business impact, offering incremental improvements by 

identifying undetected patterns with fewer preconceived user assumptions. However, 

 
https://www.mckinsey.com/industries/semiconductors/our-insights/scaling-ai-in-the-sector-that-

enables-it-lessons-for-semiconductor-device-makers  
137 Gartner, 2023: Hype Cycle for Manufacturing Operations Strategy, 2023. Published 25 July 2023 - 

ID G00792955. By Analyst(s): Simon Jacobson. 

https://www.mckinsey.com/industries/semiconductors/our-insights/scaling-ai-in-the-sector-that-enables-it-lessons-for-semiconductor-device-makers
https://www.mckinsey.com/industries/semiconductors/our-insights/scaling-ai-in-the-sector-that-enables-it-lessons-for-semiconductor-device-makers


D1.1 

Updated State-of-the-Art analysis 

AISSI_Deliverable_D11_Updated_SotA_v1_2024-06-18.docx 25/29 

obstacles include the complexity of data and biases, which can lead to a lack of trust in 

algorithms. 

 

Manufacturing operations management (MOM) application suites are designed to support the 

end-to-end management of manufacturing processes, aiming to optimize production. These 

applications encompass detailed production scheduling, production resource management 

(covering materials, assets, and labor), process and product reliability (quality), and 

manufacturing data analytics. The rationale behind MOM application suites is that specialized 

capabilities across the manufacturing plant spectrum provide greater flexibility and agility. By 

fostering process optimization, MOM applications reduce the need for multiple disparate 

applications from different vendors, thereby increasing business impact. However, an obstacle 

is the preferred vendor approach to building MOM application suites, which can introduce yet 

another platform, adding complexity and cost integration points between the MOM platform 

and enterprise applications. 

 

In concluision, both, machine learning and MOM applications play pivotal roles in advancing 

manufacturing operations. Machine learning enhances decision accuracy and operational 

efficiency by leveraging production data more effectively, while MOM applications streamline 

and optimize manufacturing processes. Both technologies are integral to achieving the agility, 

sustainability, and digital transformation that modern manufacturing environments demand. 

As semiconductor companies strive to harness the full potential of AI/ML, incorporating 

machine learning and MOM applications can significantly contribute to improved productivity, 

faster time to market, and overall competitive advantage. 

 

It is interesting to see that both concepts are found in the “Trough of Disillusionment” (cf. Figure 

3), which is a phase where the initial excitement and inflated expectations for a technology 

have diminished, often due to challenges in implementation, integration, or realizing tangible 

benefits. Both machine learning and Manufacturing Operations Management (MOM) 

applications are currently considered to be in this phase for semiconductor smart 

manufacturing and service operations. Several reasons can be found for this: 

 

1. Data Complexity and Quality: Implementing machine learning in manufacturing 

requires vast amounts of high-quality data. In semiconductor manufacturing, data can 

be complex and heterogeneous, making it difficult to integrate and analyze effectively. 

Incomplete, inconsistent, or biased data can lead to inaccurate predictions and 

reduced trust in machine learning algorithms. 

2. Scalability Issues: While pilot projects may show promising results, scaling machine 

learning solutions across the entire manufacturing process can be challenging. 

Differences in equipment, processes, and data standards across production lines can 

complicate scaling efforts. 

3. Algorithmic Trust: The intricate nature of semiconductor manufacturing processes 

means that stakeholders need to trust the predictions and decisions made by machine 

learning algorithms. However, if the algorithms are perceived as black boxes with 

unclear decision-making processes, gaining this trust can be difficult. 

4. Integration with Existing Systems: Integrating machine learning solutions with legacy 

systems and existing IT infrastructure can be complex and costly. Ensuring seamless 

data flow and communication between new AI/ML systems and traditional 

manufacturing systems poses significant challenges. 
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5. High Expectations vs. Reality: Initially, there may be high expectations for MOM 

applications to revolutionize manufacturing operations. However, the practical 

challenges of implementing these systems, such as customization to fit specific 

manufacturing environments and achieving interoperability with other systems, can 

temper these expectations. 

6. Cost and Resource Allocation: The deployment of comprehensive MOM application 

suites can be expensive, both in terms of initial investment and ongoing maintenance. 

Companies may struggle to justify these costs, especially if the return on investment is 

not immediately apparent. 

 

4.3 Conclusion 

 

To summarize, it becomes evidend that AI/ML's full potential in the semiconductor industry 

aligns with the broader manufacturing trends of leveraging advanced technologies to enhance 

agility, sustainability, and operational efficiency. Both, the McKinsey study and Gartner’s Hype-

Cylce highlight the necessity of scaling innovative technologies to stay competitive and drive 

significant business value. As semiconductor companies strive to enhance productivity and 

accelerate time to market, adopting AI/ML alongside other emerging technologies from the 

Hype Cycle can provide a robust framework for navigating current and future industry 

challenges. 

 

Navigating the Trough of Disillusionment requires semiconductor companies to adopt a 

resilient and strategic approach, focusing on incremental improvements and learning from 

early implementations. In the research project AISSI, we have been working on cutting-edge 

topics for smart manufacturing initiatives. Both academia and industry place great emphasis 

on the significance of the wide array of topics that we address in AISSI. These topics are crucial 

for the advancement of innovative concepts, as well as the maturation and emergence of 

cutting-edge technologies. It is important to acknowledge that AISSI is not the sole initiative 

conducting research on AI solutions for semiconductor scheduling. However, we firmly believe 

that we helped shifting the market’s boundaries with our contributions. 
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6 NOTES 

6.1 Abbreviations  

A list of used abbreviations. 

 
Abbreviation Meaning 

ML Machine learning 

AI Artificial intelligence 

RL Reinforcement learning 

DRL Deep reinforcement learning 

MDSR Multiple dynamic scheduling rules 

FMS Flexible manufacturing system 

FAB Semiconductor wafer fabrication 

NN Neural network 

FNN Fuzzy neural network 

MCP Multichip products 

EHI Equipment health indicator 

PdM Predictive maintenance 

RUL Remaining useful life 

APC Advanced process control 

WIP Work in process 

6.2 Terminology 

A list of used terminology. 

 
Term Explanation 

SotA State-of-the-Art 

 



D1.1 

Updated State-of-the-Art analysis 

AISSI_Deliverable_D11_Updated_SotA_v1_2024-06-18.docx 29/29 

APPENDIX A. SEARCH STRING 

Using the "advanced search" function in the Scopus database138, we deployed the following 

search string for the literature research: 

 

KEY ( ( "Scheduling" OR "Maintenance" ) AND ( "Semiconductor" OR "Wafer" OR "Fab" ) ) AND ( 

LIMIT-TO ( PUBSTAGE,"final" ) ) AND ( LIMIT-TO ( DOCTYPE,"ar" ) ) AND ( LIMIT-TO ( 

SUBJAREA,"ENGI" ) OR LIMIT-TO ( SUBJAREA,"COMP" ) OR LIMIT-TO ( SUBJAREA,"MATH" ) OR 

LIMIT-TO ( SUBJAREA,"DECI" ) OR LIMIT-TO ( SUBJAREA,"BUSI" ) OR LIMIT-TO ( 

SUBJAREA,"ECON" ) ) AND ( LIMIT-TO ( LANGUAGE,"English" ) ) AND ( LIMIT-TO ( SRCTYPE,"j" ) ) 

 

Additionally, we did only took into account publications from journals with a Journal Impact 

Factor139 greater than 1 and which have been published between 2009 and 2021.  

 

 

 
138 https://www.scopus.com/  
139 https://impactfactorforjournal.com/  
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