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Abstract 
 
This document is part of the deliverables of the ASIMOV project. It concentrates on the technical aspects 

on realizing an ASIMOV solution with the aim to facilitate the reader to realize digital twinning for other 

use cases and industries. It gives an overview of technologies, standards and methods that were used 

within the project and describes a possible architecture while accentuating aspects for the use in 

production that go beyond the prototypes that were realized during the course of the project. 
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1 Introduction 

 
The motivation to use a digital twin to optimize physical systems in comparison to traditional methods is 
often to reduce time and costs.  
Being able to reduce time and costs, however, is tightly connected with a technical realization that follows 
an efficient, scalable architecture and keeps development efforts reasonable. 
While deliverables of WP 2 looked at an ASIMOV solution from a more theoretical point of view, this 
deliverable focuses on technologies, possible architectures and matters of consideration when designing 
and implementing an ASIMOV solution for other problems. 
It will give an overview of technology and standards that are related to the use-cases of the consortium 
in section 2. Section 3 will be then about the architecture that may be reused by other industries, pointing 
to aspects to consider. 
However, while the document also handles requirements that typically come up at later stages of 
development, the reader has to keep in mind that the content of this document was created with the 
experience from the prototypes that the consortium members implemented which was not a solution in 
production. 
 
 

2 State of the art of technology and methods in the ASIMOV context 

This section describes existing technology and methods that form the building blocks for the ASIMOV 
solution. The ASIMOV solution will be presented in the following chapter as the combination of those with 
emergence effects. 
 
2.1 Technology and Methods for Infrastructure 

2.1.1 Data Storage 

When building an Asimov solution, the aspect of how to realize data storage must be addressed. 
In the following section it is shortly shown what data may exist, what storage systems exist and what 
aspects should get attention.  
  
Data can fall into these categories: 
  
Input Data: 

- Raw data utilized for pre-training the model. 
- Configuration: Parameters defining system behavior. 
- Templates: Configurable input files that change seldomly 
- External Data: Information sourced from third-party APIs or databases. 

Data During Use: 
- Logs: Continuous streaming of system activities that may be important to save centrally for 

monitoring, documentation, debugging and validation purposes. 
- State Information: Current system state, including active runs, current metrics, system load. 
- Data Exchange Between Components: Messages and intermediate results for debugging 

purposes. 
Output Data: 

- Model: Trained machine learning models. 
- Aggregation of Logs: Summarized system logs. 
- Validation Information: Results of data validation processes. 
- Report: Analytical summaries or presentations. 

 
Taking into account the different form that the mentioned data is probably going to have, it is very likely 
that different storage solutions have to be used to efficiently retrieve, process and store data. 
In addition to having a system that "just works" there might be additional requirements for later use in 
production based on the company policies for operational use. 
  
For example, the following aspects might have to be considered: 
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- Protection: Implementation of encryption, access controls, and authentication mechanisms to 

safeguard data integrity, confidentiality, and compliance with regulatory requirements. 
- Access Control: Granular control over user permissions and privileges, regulating data access, 

manipulation, and sharing to mitigate risks and ensure accountability. 
- Localization: Storage and access of data within specific geographical regions or network 

segments, optimizing latency, compliance, and regulatory requirements. 
- Sharing: Facilitation of controlled data sharing among authorized users, applications, or systems, 

while preserving data integrity, confidentiality, and traceability. 
- Replication: Duplication of data across multiple storage nodes or locations to enhance data 

availability, fault tolerance, and disaster recovery capabilities. 
- Fast Search: Implementation of indexing, caching, or search optimization techniques to enable 

rapid and efficient data retrieval, querying, and analysis, enhancing user experience and 
productivity. 

 
  
For the realization of the Asimov solution as a prototype and for later production there is a variety of 
storage solutions to the diverse requirements and use cases: 
  

- Local Filesystem: Traditional storage on local disks, suitable for small-scale applications, 
temporary storage, or individual system configurations.  

- Network Fileshares: Network-based file storage systems enabling shared access to files across 
multiple clients or systems, commonly utilized in enterprise environments for centralized data 
management and collaboration. Examples: NFS (network file system), SMB (Server Message 
Block) 

- Distributed Filesystems: Distributed filesystems leverage multiple storage nodes across a 
network to provide scalable, fault-tolerant storage for large volumes of data. These systems 
distribute data across multiple nodes, ensuring redundancy and availability even in the event of 
node failures or network partitions. Distributed filesystems offer horizontal scalability, data 
replication, and seamless integration with cloud-based environments for storing, managing, and 
analyzing big data at scale. Examples: HDFS (Hadoop Distributed File System), Ceph 

- Blob Storage: Scalable, durable, and cost-effective storage services optimized for handling 
unstructured data, commonly deployed in cloud environments for data lakes, backups, content 
delivery, and archival purposes. Examples: MinIO, AWS (Amazon Web Services) S3 

- Indexation of Metadata and Content: Association of metadata with data objects to facilitate 
efficient searching, filtering, and retrieval based on custom attributes, properties, or tags, 
enhancing data discoverability and usability in content management, digital asset management, 
or document repositories. Example: Elasticsearch, Solr 

- SQL (Structured Query Language) and NoSQL Databases: Structured and unstructured 
database solutions offering diverse capabilities and trade-offs in terms of data consistency, 
scalability, performance, and flexibility: 
- SQL Databases: Relational database management systems (RDBMS) providing ACID 

(Atomicity, Consistency, Isolation, Durability) compliance, robust transaction support, and 
SQL-based querying capabilities for structured data with well-defined schemas and 
relationships. Example: Postgres, MSSQL 

- NoSQL Databases: Non-relational database systems offering schema flexibility, horizontal 
scalability, and high throughput for handling semi-structured or unstructured data with varying 
consistency models, including key-value stores, document databases, column-family stores, 
and graph databases, tailored to specific use cases such as real-time analytics, content 
management, or social networking. Examples: MongoDB, Redis 

- Message Brokers: Message brokers provide reliable, asynchronous communication channels 
for exchanging data between distributed systems or microservices. These software platforms 
facilitate message queuing, pub/sub messaging patterns, and event-driven architectures, 
enabling decoupled, scalable, and fault-tolerant communication between heterogeneous 
components. Examples: Kafka, RabbitMQ 
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2.1.2 Computing 

For the Asimov solution, as it concerns simulations and Artificial Intelligence (AI) applications, the demand 
for fast results leads to the necessity of parallelization and distributed computing. 
  
When speed is crucial, relying solely on a single Central Processing Unit (CPU) core becomes 
impractical. Therefore, parallelization becomes essential. The challenge lies in effectively orchestrating 
tasks across multiple cores or machines to minimize communication overhead and maximize efficiency. 
  
A key consideration is how to segment the code to enable seamless parallel or distributed processing. 
This necessitates a thorough understanding of the problem domain and the ability to architect solutions 
that leverage parallel processing without compromising coherence. 
  
Efficient communication between parallel processes or distributed nodes is crucial for optimal 
performance. Techniques such as data compression, batching, and intelligent routing can help mitigate 
the impact of communication delays. 
  
To avoid reinventing solutions for each project, it's crucial to adopt architectural patterns that facilitate 
scalability and deployment across different environments. 
  
Parallel data access is fundamental in many computing scenarios, necessitating architectures that 
support simultaneous access from multiple processing units without sacrificing data integrity or 
performance. 
  
Architectural patterns such as the Queue Worker pattern and microservice architecture offer robust 
solutions to these challenges. The Queue Worker pattern enables asynchronous task processing for 
efficient resource utilization and scalability. Meanwhile, microservice architecture decomposes complex 
systems into smaller, loosely coupled services, enabling independent scaling and deployment. 
  
In addition to parallelization, Graphics Processing Units (GPUs) play a significant role in computing for 
simulations and AI applications. GPUs are highly specialized processors designed to handle parallel tasks 
efficiently, making them ideal for computation-intensive tasks such as matrix operations and neural 
network training. Leveraging GPUs can significantly accelerate tasks, leading to faster results and 
improved performance. 
  
Container platforms have emerged as a crucial component of modern computing infrastructure, providing 
standardized environments for packaging, and deploying applications. Containers offer portability and 
consistency, reducing the effort required to port solutions to different environments. 
  
In conclusion, computing for simulations and AI applications necessitates a focus on parallelization, 
distributed computing, and scalable architectures, alongside strategic utilization of GPUs. By leveraging 
architectural patterns, GPU acceleration, and container platforms, developers can address challenges of 
speed, scalability, and portability effectively, fostering advancements in these domains. 

2.1.3 Deployment 

For implementing the Asimov solution, we recommend using containerization as the underlying 
deployment strategy. 

Containerization offers significant advantages over traditional deployment methods where software and 
configurations were installed imperatively on single hardware machines. By encapsulating software within 
containers, portability and modularity are greatly enhanced. Each containerized application comprises an 
image containing not only the software itself but also the necessary operating system environment and 
dependencies. Unlike full virtual machines (VMs), which require a fully configured environment, 
containerized applications minimize overhead by reusing components of the host system. 

In the containerization process, developers build an image, explicitly defining the desired runtime 
environment for the software. Once an image is constructed, multiple instances, known as containers, 
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can be launched. Each container operates independently, with its own configuration, ensuring no 
interference with others. 

Kubernetes, often abbreviated as K8s, has emerged as a leading orchestration platform for managing 
containerized applications at scale. It automates various aspects of container deployment, scaling, and 
management, providing a robust infrastructure for modern cloud-native architectures. By abstracting 
underlying infrastructure intricacies, Kubernetes empowers developers to concentrate on application 
development and deployment, alleviating concerns about infrastructure management. Its functionalities, 
including auto-scaling, load balancing, and self-healing capabilities, streamline the handling of 
containerized workloads across various environments, spanning from on-premises data centers to public 
cloud services. 

2.1.4 Monitoring 

Monitoring refers to the continuous measurement and observation of system metrics. It is usually done 
on different levels: 

- Operating system / environment of the solution: System load, system log scanning, … 
- Service level: Availability, performance metrics, … 
- Application level: System resource usage, log scanning, … 
- End-user: Status and metrics of a job/workflow 

 
Making use of monitoring allows to optimize the involved system, services and applications and is 
important for fast issue detection and trouble shooting. 
 
The selection of libraries, frameworks, and applications for implementing a monitoring solution depends 
on the specific use-case, such as the scale of the system, the technology stack employed, and the desired 
metrics to be monitored.  
Two prominent open-source examples are Prometheus and Grafana. While Prometheus is commonly 
used for collecting and querying metrics from distributed systems, Grafana can be used to visualize the 
collected metrics in created dashboards. Grafana offers the possibility to integrate not only Prometheus 
but also other data sources like InfluxDB or Elasticsearch. 
 

2.1.5 Logging 

Logging is the systematic recording of events, actions, and data points that occur at runtime. It serves as 

a critical component for effective monitoring and troubleshooting, enabling the identification of root causes 

for issues detected during monitoring. Well-executed logging allows for the reconstruction of the system's 

state at the time of an incident, aiding in diagnosis and resolution. 

 

Most programming languages offer logging libraries, facilitating the implementation of logging 

functionality. Logs typically incorporate levels such as "INFO," "WARNING," and "ERROR," allowing for 

the filtering of relevant messages based on severity. 

 

In distributed systems, centralizing logs is advantageous for gaining a holistic understanding of system 

behavior. This practice aids in forming a comprehensive view of system performance and troubleshooting 

distributed issues efficiently. 

 

While logging is commonly associated with collecting messages from applications, it serves a broader 

purpose in the context of machine learning. In this domain, logging becomes a valuable tool for 

documenting ML experiments, facilitating reproducibility and experimentation tracking. Notably, 

frameworks like MLflow, discussed in section 2.2, offer robust logging capabilities tailored specifically for 

machine learning workflows. 

 



D4.3 
Architecture and Transfer 

Non-confidential 
 

 
 

    

Version Status Date Page 
1.1 public 2024.05.16 11/36 

 

2.2 Technology and Methods for AI 

2.2.1 Model Logging 

When utilizing a machine learning (ML) model that requires training, it's essential to employ a framework 
for logging and tracking experiments throughout the training process. This is crucial because such a 
framework enables: 

- Reproduction of specific parameter sets used in each experiment, facilitating detailed 
examination of configuration settings. This can help identify parameter ranges that enhance 
model performance. 

- Reproduction of additional experiment details, such as Key Performance Indicators (KPIs) and 
explanations of the models (e.g., through AI Explainability Frameworks like SHAP), aiding in 
building trust in the black-box model. 

- Preservation of historical models from past experiments, providing valuable references for 
understanding the evolution of the environment and/or the Reinforcement Learning (RL)Model, 
even if they're not directly related to the current problem environment. 

- Optimization of hyperparameters through comprehensive tracking, allowing for pinpointing of the 
best-performing hyperparameters across the entire experiment. This facilitates effective 
refinement and enhancement of models. 

- Analysis of learning progress over time by continuously monitoring learning experiments. This 
facilitates comparison of results over time, revealing trends and progressions. 

Having this functionality not only allows for transferring learning results across different timeframes and 
various learning agents but also empowers domain experts to conduct in-depth analysis of learning 
outcomes. Additionally, it enables the reproduction of learning experiments for further analysis or 
validation when needed, contributing to the robustness and transparency of the RL process. A suitable 
framework for such purposes is provided by MLFlow [1]. 
 

2.2.2 Model Serving through Frameworks 

Once a trained model is prepared for application usage, it can be deployed into production by 
encapsulating it within a Docker container. This deployment strategy ensures that the model operates in 
an isolated environment, mitigating potential dependency conflicts. MLFlow, for example, offers 
functionality to facilitate this process. Tasks to be performed by the model can then be requested through 
HTTP requests. 
 

2.2.3 Model-Libraries 

When developing machine learning (ML) models, it's strongly advised to make use of established 

libraries. For example, in the domain of Deep Reinforcement Learning, TensorFlow [2] and PyTorch [3] 

are highly recommended for building neural networks along with specific implementations for the 

reinforcement learning such as MPO-package [4]. 

For other types of ML models, scikit-learn (SKLearn) [5] is an outstanding option, offering a wide array of 

preprocessing and postprocessing functions along with diverse ML models. 

The advantages of employing these frameworks are plentiful. They contribute to fewer errors and faster 

progress. Additionally, by furnishing fundamental architectures, they allow us to focus on optimizing 

performance. These frameworks feature optimized implementations, resulting in quicker execution and 

training times. 

Furthermore, they streamline the model development and deployment process, often providing user-

friendly APIs and interfaces. They also promote collaboration among developers by offering a common 

framework and language. Moreover, they seamlessly integrate with other popular frameworks like 

MLFlow, as mentioned earlier. 
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2.2.4 Further ML-Libraries 

Another valuable aspect to consider in model building is the utilization of hyperparameter tuning 
frameworks. One notable approach is Bayesian optimization [6] [7] which stands as a state-of-the-art 
strategy for optimizing black-box functions without assuming any predetermined form. Given that ML 
models comprise intricate and frequently evolving components, and thus can be likened to black-box 
functions, Bayesian optimization proves particularly suitable for this task. There are specific 
implementations available, such as the HyperOpt package [8] and the Optuna package [9]. These 
frameworks offer efficient tools for tuning hyperparameters, thereby enhancing the performance of ML 
models. 

2.3 Technology and Methods for Digital Twinning 
The general architecture of DTs in the ASIMOV context is explained in D2.3 [10]. It is important to not 
see the DT part of ASIMOV as a standalone component but as a highly integrated subsystem of the whole 
solution architecture. The tools that are used for Twinning therefore need to fulfill certain requirements: 

• Modularization 
o DTs may require cross domain integration of multiple tools. It has to be ensured that the 

complexity of the physical system can be handled by the tool used for digital twinning. 

• Variety in interfaces 

o As DT and PT need to be connected, it has to be ensured, that the respective 
communication protocols of the PT are also supported by the DT. In addition to that, the 
DT also has to be coupled with the RLA, which may support a different subset of 
communication technologies and furthermore has to operate on a different time scale 
than the actual twinning. Timescale, the data size and types therefore need to be 
considered when choosing a technology for digital twinning. 

• Real-Time coupling 

o The PT may provide a continuous stream of data that can be used by the DT to adapt 
itself to the PT. Should DT and PT run in sync, real-time computation capabilities are 
necessary. 

• Simulation interfaces 

o To gain any value from the DT, it has to be ensured that sufficient simulation tools can 
be integrated by the DT toolbox. 

 
In the Unmanned Utility Vehicle (UUV) use case, these requirements were fulfilled by Model.CONNECT 
[11]. 
 
 
2.4 Standards and data formats 
 
Using standards has several advantages: 

• Enables interoperability between components (e.g., DT and RLA components) created by 

different parties. 

• Improves interchangeability, to exchange a component for an updated version or a 

component from a different party. 

• Improves reusability of components. 

• Improves developability, meaning that an ASIMOV solution can be developed faster, as less 

time is spent on customizing and integrating systems. 

This is important especially for complex environments, like those covered by the ASIMOV solution. Thus, 
the use of standards allows an easy adaptation of the ASIMOV solution to upcoming projects and by that 
ensures the usability of the project results. 

 

2.4.1 ASAM Standards 

Within the automotive industry several standards around measurement and diagnostics are hosted by 
the Association for Standardization of Automation and Measurement Systems (ASAM) [12].With the 
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development of the autonomous driving functions, a full set of new standards are now hosted and 
maintained by the ASAM. These standards aim to support the development and validation of autonomous 
driving functions. These descriptions can be used with real driving scenarios, but also to run simulations 
as e.g. done within the ASIMOV UUV demonstrator. Due to their free accessibility the standards are 
named OpenXXX-standards: 

- OpenSCEANRIO 
- OpenDRIVE 
- OpenCRG 
- OpenLABEL 
- OpenSimulationInterface 
- OpenODD 

 
In the following those standards are mentioned that were used by the ASIMOV solution or could be 
relevant for derived work. Besides the relevant OpenXXX-standards also classical standards are 
mentioned. 
 

2.4.1.1 OpenSCENARIO 

The ASAM OpenSCENARIO standard [13] [14] specifies a file format for describing the dynamic content 
of driving and traffic simulators. Due to the huge number of use-cases for this standard, it is developed 
in two flavors: The ASAM OpenSCENARIO XML specifies an XML-based file format for the description 
of traffic scenarios, while the ASAM OpenSCENARIO DSL focuses on the utilization of a domain specific 
language (DSL) for the scenario description.  
 
Within ASIMOV, the XML variant of the OpenSCENARIO standard has been used with the UUV 
demonstrator in WP4. It is used by the scenario generation process to hand over the scenario to the 
simulation environment, see Figure 18 in D1.3 [15]. 
 
The two variants of OpenSCENARIO are focused on different use-cases as depicted in Figure 1 [14]: 
 

• ASAM OpenSCENARIO XML: Predictable highly precise scenarios that may be used with an 
external test specification for V&V 

• ASAM OpenSCENARIO DSL: Large-scale V&V of the safety and functionality of autonomous 
vehicles (AV) and advanced driver-assistance systems (ADAS) 

 
Figure 1: Comparison of ASAM OpenSCENARIO XML [14] vs. OpenSCENARIO DSL [13] 
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Describing coordinated operations involving numerous entities, such as vehicles, pedestrians, and other 
traffic participants, is the main use-case for ASAM OpenSCENARIO. A maneuver can be described using 
trajectories (e.g., derived from a recorded driving move) or driver actions (e.g., conducting a lane shift). 
The standard also includes other details, such as the ego vehicle's description, the driver's appearance, 
pedestrians, traffic, and environmental circumstances. 
 
The maneuver description data in ASAM OpenSCENARIO XML is serialized in an XML file format and 
arranged in a hierarchical structure. The standard is supplied with the schema. Simulation tools and 
content editors can simply validate, edit, import, and export the XML file. The format is independent of 
vendors and technologies. 
 
The OpenSCENARIO standard is capable of being utilized with road surface profiles from ASAM 
OpenCRG (section 2.4.1.3) and is used in conjunction with road network specifications from ASAM 
OpenDRIVE (section 2.4.1.2). The full description of the static and dynamic content of in-the-loop vehicle 
simulation applications are addressed by all the three standards in combination. 
 

2.4.1.2 OpenDRIVE 

ASAM OpenDRIVE [16] allows to define a road network, where the scenarios encoded in 
OpenSCENARIO can take place. The road network consists of road-segments, that can be concatenated 
and crossings to connect the different roads. Each road segment specifies also the different lanes 
available in both directions.  
Each road segment can be fully described to form a 3D curvature so that also curves and hills can be 
modeled. 
With the OpenDRIVE information, the traffic participants, defined in OpenSCENARIO can be placed and 
dynamically simulated. Thus, the OpenDRIVE content is referenced by an OpenSCENARIO description. 
Several scenario-descriptions might reference the same OpenDRIVE file. 
OpenDRIVE is also used within the UUV use case in ASIMOV as an output of the scenario generator. 
As the time of writing, the version 1.8.0 is the most current version of the standard, released in October 
2023. 
 

2.4.1.3 OpenCRG  

The ASAM OpenCRG [17] standard is also used in combination with the OpenDRIVE/OpenSCENARIO 
standards. As an addition to the roads and lanes specified in OpenDRIVE, OpenCRG allows to specify 
the road surface as a curved regular grid (CRG). The roads surface is described as the elevation along 
the road reference line organized as a grid to both sides of that line. 
 
With the elevation information, the dynamic simulation can be far more detailed, according to e.g. the 
torque between road and tyre. OpenCRG is not used within the ASIMOV UUV simulation. 
 

2.4.1.4 Measurement Data Format (ASAM MDF) 

The Measurement Data Format, or MDF for short [18], is a binary file format used to hold measured or 
recorded data for offline analysis, long-term storage, or post-measurement processing. Although it is 
utilized in many other application areas, the format for measurement and calibration systems (MC-
systems) has come to be considered the de facto standard. 
  
The MDF format allows to store large volumes of measurement data efficiently and with highly 
performance. MDF is designed as a compact binary format for flexible and high-performance writing and 
reading. It is divided into loosely connected binary blocks. Sorting the data in a loss-free manner allows 
for quick index-based access to every sample. Direct writing of sorted MDF files is even possible with 
distributed data blocks. 
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The distributed data blocks enable also the direct writing of sorted MDF files. This file format can store 
both raw measurement values and their conversion formulas, ensuring that the raw data can be properly 
interpreted and analyzed using post-processing tools. To allow the separation of the different types of 
information, MDF is based on a linked block structure (s. [Figure 2]), where future extensions of the data 
format might introduce new types of blocks. With this separation of meta information and measured raw 
data the recording can directly write down the received data frames and thus delegate the interpretation 
of the data to the post-processing tools. 

 
Figure 2: Example of a simple MDF-block structure [19] 

 
As the time of writing the current standard version of MDF is version 4.2, released on 2019-09-30. 
 
With the upcoming new technologies around the ADAS systems, also additional use-cases require to 
record more complex data than just signal values. Thus, currently the standard is extended to allow also 
the recording of image or video data, radar and lidar information, such as e.g. point cloud data or even 
object lists. With this extension it covers similar functionality as the ROSBAG format used with the ROS 
framework (section 2.4.2.1).  
 
The release of the next version of MDF is planned for July 2024. 

2.4.1.5 Open Simulation Interface 

The ASAM Open Simulation Interface (OSI) [20] [21] has started as a project defining standards for the 
integration of sensor models into simulation systems. With the upcoming OpenXXX-Standards it was 
extended, so that also other entities could be described needed for the simulation of a scenario driven 
environment. 
Thus, the project now also defines several data sets, clustered into interfaces: 

• Ground Truth  

• SensorData 

• SensorView 

• FeatureData 

• Traffic participants (TrafficUpdate) 

• TrafficCommand 
To allow the utilization of the data format specifications, these specifications are realized as Protobuf [22] 
models. As the standard is open, the data specification is hosted on a public github-repository [21]. 
Some of the OSI data models are also used within the simulation environment of the UUV demonstrator. 



D4.3 
Architecture and Transfer 

Non-confidential 
 

 
 

    

Version Status Date Page 
1.1 public 2024.05.16 16/36 

 

2.4.1.6 OpenODD 

An Operational Design Domain (ODD) [23] specifies the context boundaries for which a technical system 
is designed and developed. This gets important when the system is finally validated to be fit for purpose, 
i.e. it runs without problems inside its ODD.  
 
To enable an automated validation, the specification should specify this ODD to be  

• Searchable 

• Exchangeable 

• Extensible 

• Machine readable 

• Measurable and verifiable 

• Human readable (by utilization of ISO 34503 [24]) 
 
 
Parallel to the developments on OpenODD, on the ISO side there’s a preparation activity within the 
Standard ISO 34503: ISO/AWI 34503 – Road vehicles – Taxonomy for Operational Design Domain for 
Automated Driving Systems. [24] 
 
ASAM made a concept paper (the link is given here: [23]) for specifying a standard for such an ODD 
description. On base of this concept result, currently a project is developing the first version of the 
OpenODD Standard within ASAM is expected to the end of March 2024 [25]. 

2.4.1.7 OpenLABEL 

OpenLABEL is another standard for describing recognized objects from ADAS (Advanced Driver 
Assistance Systems) data, such as the ROSBAG format (see section 2.4.2.2). OpenLABEL defines the 
annotation format and the labeling methods for objects and scenarios. 
 
The annotation format and labeling techniques for objects and scenarios are defined by the ASAM 
OpenLABEL standard. It also includes guidelines for using labeling techniques and the respective 
terminology. 
  
Working with many clients led to a significant fragmentation in the way different organizations classify 
and characterize the elements that make up the driving environment. These classifications and 
descriptions serve as the core building blocks of an autonomous driving (assistant) system's (ADAS) 
perceptual stack, as they allow an ADAS to gain both a basic and in-depth awareness of the environment 
in which it operates.  
  
It is intended with OpenLABEL to provide guidelines on how to use the annotation methods and 
definitions. This means that OpenLABEL should be used to store the results of AI algorithms for object 
recognition. Therefore OpenLABEL provides predefined object types and classes in a JSON format to be 
used within the labelling of respective ADAS data.  
OpenLABEL is available as a standard in version 1.0.0 since 2021-11-12 [26] 
 

2.4.1.8 ASAM-ODS Big Data Format 

As the volume of data continues to grow, it becomes useful to adopt a specific data format conducive to 
efficient data management, especially when leveraging resource management technologies like Spark 
that rely on parallelization frameworks to enhance analysis performance. 

One such standard format is the ASAM-ODS format [27] proposed by the ASAM Organization. The 
ASAM-ODS Mass Data Format employs a Parquet packed scheme with compression, allowing for 
possible distribution across multiple files. This format is well-suited for storage in systems like Hadoop. 

For analysis purposes, NorCom has developed several libraries tailored to work with ASAM-ODS data: 
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- ASAM ODS Analytics INGEST: Facilitates the ingestion of data from MDF / ATFX files into the 
ASAM-ODS format. 

- ASAM ODS Analytics ANALYZE: Provides tools for analyzing time series, objects, and 
conducting various analyses on the data. 

- ASAM ODS Analytics EGRESS: Enables the export of data from ASAM-ODS format to MDF files. 

The adoption of this data format and the associated products is particularly beneficial in handling the 
increasing amount of data generated by solutions like ASIMOV. These tools are instrumental in providing 
analysis, such as validation and model review, essential for leveraging the insights derived from the data. 

 

2.4.2 Practical Quasi-Standards 

Sometimes technical developments gain importance because they represent a solution to current 
development problems. If this is the case, the utilization of those developments increases and further 
developments attach around. Then those developments become a quasi-standard, as their usage 
supports to solve comparable problems. 
 
One such development is the following system, heavily used e.g. in the area of prototyping of autonomous 
driving functions. 

2.4.2.1 Robot Operating System (ROS) 

The Robot Operating System (ROS) [28] is a framework to easily build up distributed systems, as e.g. in 
vehicle networks. Many prototyping systems are developed on the base of ROS as it allows to combine 
functionalities as sensors, actuators and computing nodes via network. 

 
Figure 3: DDS - Structure of the DDS-System. Source: DDS-Foundation [29] 

 
As of version 2 ROS also provides real-time capabilities and by utilizing the OMG Data Distribution 
Service (DDS - see Figure 3) Standard it is even compatible to the Adaptive AUTOSAR standard. 
The ROS-system is extensible with custom message types which describe the format of the topics 
exchanged. To provide access to all message types used within a system, ROS is designed as a white 
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box system, i.e. for the development of a node, it needs access to all referenced message type 
specifications, which are normally part of the sources of the respective node implementations. 
The ROS framework does not only provide the technology necessary to implement the functional nodes, 
but it also provides a set of tools supporting the development process. There are also tools to be used to 
inspect, measure and control a ROS based system. 
 

2.4.2.2 ROSBAG 

Tied to ROS is the natively supported file format for recording and playback, the ROSBAG file format [30].  
As ROS supports a lot of different data types by default, and it is extensible towards custom datatypes, 
the measurement needs the flexibility to record all these different datatypes into a ROSBAG file. 
By design a ROSBAG file is a potentially filtered message trace of the exchanged topics including the 
timing information. Thus, a ROSBAG file can be used to trace a system, but also to replay the topics into 
another system. This is especially interesting for the development of a new node or subsystem. 
ROSBAG files can keep data of Signals, Point clouds, Trajectories, Positions, Directions and even 
images, video data or map information. 

 
 

3 Architectural Views of the ASIMOV solution 

In this section, we introduce the elements to think about in an ASIMOV solution architecture. The 
architecture is described using four views: the requirements, functional, logical, and technical view. Each 
view represents the system from the perspective of a related set of concerns [31]. The architecture 
adheres to the ASIMOV reference architecture described in [32]. Compared to the reference architecture, 
we illustrate the concrete architectures for the TEM use case and UUV use case of the ASIMOV project 
 
3.1 Requirements View 
When it comes to the requirements for the entire architecture of the ASIMOV solution, the requirements 
of the DT itself must be kept in mind. They have been identified in ASIMOV deliverable D2.3 [10]. The 
following requirements for the overall architecture complement the DT. 
 
When building a system, where DTs are used to train an AI and where there additionally, is a connection 
to the PT required, the system will most probably end up being relatively complex. Such a complex system 
can involve multiple parties and tools for development. To aid such a development process, it can be 
beneficial to aim for a modular structure, defining clear interfaces between tools of different partners or 
subdivisions as well as different functional components. The clear separation provokes extensive 
interface description work, which – depending on the number of involved parties – can be significant work 
upfront, which pays dividends later in the development process. The benefits of such a modular 
architectural and development approach are: 

- Responsibilities 

o By separating the entire architecture into an ensemble of functional components, that 

can be tested standalone, it becomes easier to assign teams and responsibilities to 

specific components. 

- Well-thought-out Interfaces 

o As the interfaces become the start and end point for every functional component, it 

becomes very important to think sufficiently about these aspects. Ideally, those interfaces 

should cover standards. 

- Modularity 

o If components are clearly separated by their Interfaces to other components, it becomes 

easy to swap them out or work on them in parallel during the development phase or even 

later. This can make a solution grow without having to think about significant side effects 

on the remaining architecture. 

- Scalability 

o A scalable solution including more than one DT and/or AI training instance, also benefits 

from the possibility to have clear-cut components, that can be instantiated multiple times. 
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- Explainability 

o Interfaces between the components can easily be tracked, which makes explainability of 

the toolchain easier compared to a more integrated system design. 

- Generalization 

o One of the goals of the architecture is its applicability to a wide variety of use-cases. 

Clear separation of modular components makes it also easy to transfer the architecture 

to a different domain. 

 
3.2 Functional View 
 
The functional view of the system describes the system’s functionality, i.e., what the system should do. It 
defines the system functions in the system’s design with their responsibilities. It also defines the 
interfaces between internal system functions and functions of external systems. The key functional 
elements together deliver the required system functions, based on the requirements described in the 
requirements view. The high-level functional view considering DT and AI has been defined in ASIMOV 
deliverable D2.3 [10]. 
 

3.2.1 Functional model for the TEM use-case 

 
Figure 4: Functional model of the TEM use case. 

 
Since the main focus of the TEM use case is method development and usage of domain knowledge, we 
took a lightweight and flexible approach to architectural design. The architecture is split into components 
running on the microscope (below the dashed line in Figure 4) vs. components running on a workstation 
or cluster.  
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• The microscope PC is in the lead. It hosts a Python environment with packages for controlling 
the microscope hardware, acquiring images, and communicating with the workstation.  

• The workstation hosts a Flask server that encapsulates the estimation and control logic. In Figure 
4 these components are divided into a pretrained network (blue box) and a Bayesian Optimization 
method. Alternatively, estimation and control can be combined in a single RL agent (not 
depicted). 

• The Flask server on the workstation receives images from the microscope, processes them, and 
returns control actions to the microscope. The microscope PC applies these actions. 

 

3.2.2 Functional model for the UUV use-case 

The UUV use case leverages a container architecture, where many different components are managed 
in separated instances, that can talk to each other via a virtual network. Through functional modularization 
and organizational requirements, the UUV architecture consists of the following components: 
 

• Reinforcement Learning 
This container contains the reinforcement learning agent itself. It communicates with its 
environment via the conventional RL interfaces, i.e. it outputs actions in the form of a Json file, 
which comprises information about the scenario that needs to be created in the next step. Its 
inputs are the state and reward, stored in a *.pkl file. 

• Scenario Generator 
The Scenario Generator can be seen as a front desk for actually creating the 3D environment. It 
receives the Json file and forwards it to the TrianBuilder. As soon as the TrianBuilder is ready 
building the Scenario in a proprietary format, the Scenario Generator forwards this information to 
the Carla Exporter, which creates the Carla files. 

• TrianBuilder 
The TrianBuilder takes the Json scenario variation description as input and creates a 3D 
environment based on that information. Details are described in D2.2 [33]. 

• Carla Exporter 
The Carla Exporter takes the 3D environment built by the TrianBuilder as input and exports it to 
a different format, making it compatible with the Carla environment simulator, which is used as 
Sensor Engine in this project. 

• Simulation Handler 
The simulation handler is the front desk of the simulation. It takes the request for running a 
simulation and loads the newly generated 3D environment in the Carla Runtime. After this, it 
initiates the execution of the simulation through the Vehicle Dynamics and Scenario Engine. 

• Vehicle Dynamics and Scenario Engine 
This is the co-simulation running Model.CONNECT, which includes the vehicle dynamics model, 
as well as the driving function and the scenario engine, which effectively executes the movements 
of all traffic participants, defined in an ASAM OpenSCENARIO file. Hereby it closely interacts 
with the Carla runtime, where all these movements are projected into the 3D environment, where 
the sensor models are executed. This communication happens through an OSI Sensorview, as 
defined in the ASAM OpenX Standards. The output of this block is an *.osi log file, that contains 
traces of the movements of all traffic participants for all timesteps in the scenario. 

• Carla Runtime 
The Carla runtime is the 3D environment execution. It closely interacts with the Scenario Engine. 
All 3D-geometry-based sensors are rendered in this environment. The environment itself is the 
one exported from the Carla Exporter. 

• Feature Engineering 
The Feature Engineering takes the *.osi simulation results and analyzes them to calculate 
criticality KPIs. These KPIs are then exported as *.pkl file and used by the Reinforcement 
Learning as state and reward. 
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Figure 5: Overall Architecture UUV Use Case 

The architecture created can be seen in Figure 5, with the numbers in the connections representing the 
execution order. It reflects the before mentioned functional dependencies. This version of the architecture 
was very much focused around the core idea of the RLA interacting with an environment. The Scenario 
Generator represented this environment and therefore handled the organization of all other containers 
centrally. This proved to be suitable for an easy implementation, but has its limitations in terms of 
scalability, as the whole process is very much sequential and individual components cannot easily be 
multiplied for faster execution. 
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Figure 6: New Overall Architecture UUV Use Case 

 
To solve the disadvantages of this architecture, a second version of the architecture was planned. This 
can be seen in Figure 6. Although this architecture contains the same elements, it has several benefits. 
As its workflow is better structured, following a loop configuration, no central component exists. Instead, 
the elements follow a clear sequential order. This has the clear benefit that the loop cannot only be a loop 
of containers, but a loop of queues, with containers attached to them as workers. That way, performance 
bottlenecks can be identified and fixed by multiple workers. This functionality of course requires an RLA 
that can handle parallel streams. If the RLA supports this, scalability can be massively increased by 
simply adding new workers to queues. This architecture therefore also benefits heavily from the 
modularity of the container architecture. 
 
 
3.3 Logical View 
The logical view describes the structure of the system in an implementation-agnostic way. It focuses on 
the system decomposition into logical components and their communication. A logical component 
provides one or multiple functions specified in the functional view. 
 
The set of logical components of the ASIMOV solution adheres to the reference architecture, as specified 
in [32] and aligns with the components identified in [10]. The composition of elements in the logical view 
depends on the specific ASIMOV development phase. There are specific logical views for the training 
phase, operational phase, and fine-tuning phase. 
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3.3.1 Logical view in the training phase 

In the training phase, the system architecture contains the following logical components as shown in 
Figure 7: 

• Simulation environment: contains everything required to generate data for the RLA training, 

including data management, pre- and postprocessing, and twinning capabilities. 

• Controller: orchestrates the training process and provides an interface to the human users. 

• Reinforcement Learning Agent: responsible for learning from the behavior provided to it, and 

for suggesting new settings in order to learn an optimal strategy. 

 
Figure 7: Block definition diagram of the ASIMOV solution during the training phase 

3.3.2 Logical view in the operational phase 

In the operational phase, the simulation environment is connected to the cyber-physical system (or also 
called physical twin) that needs to be optimized. Depending on the implementation, either the CPS 
requests its optimization, or the optimization is managed by a higher-order management system that 
controls the state of multiple systems. Therefore, the cardinality between the Simulation environment and 
Controller is left open compared to the training phase. A Block definition diagram of it can be seen in 
Figure 8. 
 

 
Figure 8: Block definition diagram of the ASIMOV solution during the operational phase. 

3.3.3 Logical view in the fine-tuning phase 

In the fine-tuning phase, the focus is on tuning the DT as well as the optimization AI. The tuning is done 
based on the data that is collected during the operational phase. The high-level logical view in the fine-
tuning phase is the same as in the operational phase. Special emphasis is put on the adaptation model 
(as introduced in [34]), that is part of the digital twin. This adaptation model compares the DT and the PT 
behavior, and adapts the DT if needed. 
 
 
3.4 Technical View  
 
The technical view describes possible technical implementation of the elements described in the logical 
view. It focusses on the interfaces, data formats, and standards to exchange data between components, 
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as well as the deployment of components in terms of software and hardware. Regarding deployment, it 
is important to also consider performance-related aspects. 

3.4.1 Architecture 

The proposed architecture for an ASIMOV solution is a microservice architecture where each logical 
component is realized as a mostly independent unit (compare to section 3.3). This approach offers 
several advantages in software development. According to Fowler et al. [35], microservice architecture 
enhances scalability, maintainability, and deployability by breaking down complex systems into smaller, 
loosely coupled services. 

Each microservice is realized via one or more containers, with one container serving as an interface 
accessible by other components, where responsibilities, expected input and expected output are well-
documented (compare to Figure 9). The interface container encapsulates the functionality of the 
microservice, ensuring that only the interface is exposed to other components. This design principle, as 
advocated by Newman [36], promotes encapsulation and modularity, facilitating easier maintenance and 
evolution of the system. 

The dependencies of each component are minimized, with the interface serving as the primary point of 
interaction. This design strategy aligns with the principles of high cohesion and low coupling, as outlined 
by Martin [37] fostering flexibility and resilience within the system. 

Moreover, this approach facilitates code reuse. By standardizing interfaces and decoupling 
implementation details, microservices and containers can be developed independently, allowing for the 
reuse of functionality across different projects and teams. This promotes collaboration and accelerates 
development efforts, particularly in large-scale software projects. 

To implement the prototype effectively, REST interfaces have been adopted due to their simplicity and 
widespread adoption. RESTful APIs enable easy testing of individual components, as emphasized by 
Richardson and Ruby [38]. 

In cases where long-running tasks are involved, asynchronous jobs can be initiated, with the option to 
specify a callback endpoint or a function. This design choice enhances system responsiveness and 
enables efficient resource utilization, in line with the principles of event-driven architecture [36]. 

 

Figure 9: Structure for the implementation of logical components with the interface sub-component that adapts to 
components within and outside of the logical component. 
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3.4.2 Communication 

 
Communication between the components of the system is crucial for its functionality and efficiency. In 
the initial stages of testing and prototype development, HTTP is employed for calling the REST interfaces 
directly. This choice enables quick iteration and validation of individual components. 

For future scalability, robustness and efficiency, we recommend adopting a queuing mechanism for 
messages, such as it is provided by RabbitMQ. Queuing systems offer asynchronous communication, 
decoupling producers and consumers, and providing fault tolerance and load balancing capabilities. 

We propose JSON [39] messages for communication due to their low syntactical overhead, human 
readability, and support for schema validation. JSON schemas provide a means to validate message 
structures and helping to ensure integrity and consistency in an evolving system. However, for use-cases 
requiring advanced schema validation, consideration of XML [40] and XML Schema Definition (XSD) [41] 
files may be warranted, as XSD provides more extensive validation capabilities. 

When larger data must be transferred, we propose to minimize the message size and transmit only the 
data location. This ensures that data access happens via the original data sources and keeps the load 
on the queuing software low (see example in Figure 11: Example of a communication payload with a run-
id and a pointer to Figure 11). Larger messages may also make it difficult to log the communication for 
debug purposes. The choice of protocol depends on the specific use case, the already existing data 
sources and the nature of the data that has to be transferred. Examples of data sources may be a network 
filesystem like nfs, a blobstore like Amazon S3 or the Data Management Platform DaSense of NorCom 
[42]. 

 

 
Figure 10: Example of python-code for chaining functions from different components in the UUV use-case with the 
celery library and RabbitMQ. The pipe-symbol “|” indicates that the result of the respective function call is given as 
input for the next function. Note, that only the signatures of the functions are used for the code and execution of the 
respective functions happens on the workers that fetch messages from their queue. 
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Figure 11: Example of a communication payload with a run-id and a pointer to additional files needed as inputs. 

3.4.3 Performance aspects 

The performance of the ASIMOV solution's architecture is crucial for its successful implementation, 
particularly in handling numerous iterations of the reinforcement learning (RL) agent within short 
timeframes. Achieving such performance requires a strategic approach, including the possibility of scaling 
the application both vertically and horizontally. 
  
Vertical scaling entails optimizing the container application itself to enhance its performance. This can 
involve employing performance analyzers and profilers to identify areas within the codebase that offer 
the greatest potential for optimization. Additionally, upgrading hardware components to faster alternatives 
can help reduce compute and I/O times, thereby accelerating processing. 
  
This includes in particular Graphics Processing Units (GPUs) as their utilization can significantly enhance 
processing speed. GPUs are specifically designed to handle parallel computations efficiently, making 
them well-suited for tasks involving matrix operations and neural network training. 
  
For interpreted languages like Python, maximizing efficiency often involves leveraging optimized libraries 
and minimizing reliance on pure Python code. Utilizing libraries such as NumPy or Pytorch accelerates 
for example the execution of vector and matrix operations that can also make use of optimized system 
libraries like BLAS, enabling parallel computation across multiple CPUs [43]. 
  
Horizontal scaling, on the other hand, involves deploying multiple containers of the same type to distribute 
workload and increase throughput. However, this approach necessitates careful consideration during the 
development phase of the ASIMOV solution. The RL agent must either inherently support parallel 
execution or be structured in a manner that allows concurrent optimization processes. 
  
In scenarios where experiments are independent, a simple parallel deployment of separate setups can 
be done to save time. However, for setups where RL algorithms themselves allow parallelism it is desired 
to scale only bottleneck containers for efficient resource usage. 
  
In the UUV use case, parallel utilization is anticipated within the architecture. A queue worker pattern has 
been implemented, wherein one or more workers are instantiated for each logical component [44]. These 
components, besides being accessible via their REST interfaces, can also be interacted with through 
messaging queues. Upon receiving a message, an available worker processes it and forwards the result 
to the designated queue, ensuring high utilization rates and minimizing overhead associated with the 
HTTP protocol [45]. 
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The technical implementation of this architecture was realized using Flask [46] and Celery 
[47]frameworks, along with RabbitMQ [48] for messaging capabilities. This setup allows for efficient 
parallelization of tasks within the ASIMOV solution, optimizing its performance and scalability. 

 

3.4.4 Information and system management 

The ASIMOV Solution can benefit from information and system management through logging systems 

and data management platforms. These instances enable quick identification of potential issues and 

facilitate historical analysis, crucial for pinpointing areas for improvement. Additionally, they streamline 

communication between teams and instances, while improving the auditability of results for the actual 

system by organizing data in a structured manner. 

 

3.4.4.1 Experiment Logging 

 
Figure 12: Architecture for ML experiment logging.  

 
 

To log machine learning experiments, we can employ the MLFlow framework. A crucial prerequisite is 
having an instance hosting the corresponding tracking server. This server is responsible for receiving and 
managing data sent from the learning instance and provides an ergonomic MLFlow UI for users to 
visualize learning results. Setting up this server can be done within a Docker container, functioning as a 
service for storing tracked data.  

Typically, this data is structured in tabular format for parameters and metrics, while other data formats 
like models and images are categorized as artifacts (see also Figure 12). Parameter and metric data are 
commonly managed in a SQL database, whereas artifacts are stored either in a local file system or a 
cloud storage solution. Implementing the interface for storing artifacts (Artifact Store) to support both local 
file systems and cloud storage systems (e.g., S3) can be achieved using MinIO [49] supported by MLFlow. 
To implement the MLFlow architecture, there are various approaches available, as illustrated in Figure 
13. The third setup depicted in the figure aligns with the architecture described earlier. This architecture 
is in accordance with the containerization requirement outlined in the ASIMOV solution.   
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Figure 13: Common MLFlow Setups. Source: [50] 

 
For logging the learning process, one can simply add the MLFlow-API to the code of the ML-Component. 

Clearly after connecting the MLFlow Component to the tracing server by inserting the URL of the tracking 

server into the API-Configuration. Information to be logged are e.g. Model, Model Hyperparameter, 

Specific Information about the environments, Performance Measure, Explainability. MLFlow provides 

support for standard ML libraries such as SKLearn, TensorFlow, and PyTorch. When utilizing these 

libraries, it's advisable to utilize the corresponding MLFlow class instance. For example, when using the 

SKLearn package, commands with the prefix "mlflow.sklearn" can be employed. Additionally, MLFlow 

offers automatic logging of parameters with predefined configurations through the "autolog" command. 

However, utilizing this functionality might lead to excessive overhead data, especially if the logged 

quantities are not utilized in the ASIMOV solution. In practical scenarios, custom quantities and plots may 

need to be logged into MLFlow. Therefore, transitioning from the autologging option to customized logging 

is recommended. 

The organization of ML training tracking is structured around the concept of a "run," which represents the 

execution of ML training code with fixed hyperparameters. Each run stores metadata (various information 

about the run like metrics, parameters, start and end times) and artifacts (output files from the run such 

as model hyperparameters, plots, etc.). At a higher level in the MLFlow process is the "experiment," which 

groups runs together for a specific task, such as optimizing hyperparameters within a certain range. 

When optimizing the ML model, one can utilize the user interface hosted on the tracking server to visualize 

the logged data. For example, users may compare the performance of hyperparameters across different 

runs to gauge the potential direction of improvement. Furthermore, within a specific run, users can use 

the UI to examine additional information about the trained model, such as its explainability, in order to 

gain insights into the optimal model or to audit a model, provided that the corresponding plots of 

explainability metrics are logged. 

Finally, once a "good" model is achieved, it can be deployed within a Docker container to serve inference 

requests. MLFlow supports this functionality. During the operational phase of the ASIMOV solution, the 

corresponding inference instance can obtain model responses by making HTTP requests to this 

container. 
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Figure 14: Data Management Platform 

 
 

3.4.4.2 Data Management Platform 

 Furthermore, to optimize the utility of ASIMOV's solution, it proves advantageous to establish a 
comprehensive management and documentation framework that extends beyond the training phase and 
encompasses the data management aspect as well. This holistic approach ensures that the RL solution 
is seamlessly integrated into the entire data lifecycle, covering further critical stages such as data 
preprocessing, ingestion, curation, discovery, and subsequent utilization across a spectrum of analytical 
applications. 
When the RL solution is intricately woven into the data management system, it stands to benefit from 
additional possibilities for data organization, access control and data validation applications. Moreover, 
as the foundational data platforms evolve to better support emerging initiatives, such as providing direct 
compatibility with tools like Jupyter notebooks, it becomes feasible to facilitate the development of AI-
driven applications and the creation of further intricate data models. 
For example, integrating the ASIMOV solution into NorCom’s data management platform DaSense [42] 
offers the following advantages: 

• Rapid Application Development: Often there's a need for expeditious application creation 
based on the available data, with the added capability to design user interfaces for the 
deployment of ASIMOV's solution. This streamlines the process of building and deploying 
applications for data analysis. 

• Hierarchical Data Labeling (Facets): The ability to assign hierarchical labels to the data 
facilitates structured organization and categorization of data, making it easier to access and 
utilize effectively. Such labels can be seen as facets of the data. Furthermore, this label can be 
also used for realizing the component data interface replacing folders allowing flexibility in 
handling. 

• Integration with Applications: Integrating with various applications, allows for a cohesive 
connection between data and applications, i.e., based on the assigned labels. This integration 
enhances the accessibility and utility of ASIMOV's solution within the broader ecosystem. 
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A schematic overview is depicted in Figure 14. By fulfilling these data management requirements, 
ASIMOV's solution can unlock its full potential, enabling efficient application development, structured data 
organization, and seamless integration with analytical tools and models. 

3.4.5 Standards, data formats 

Within the ASIMOV solution, the use of standards is considered to be of great importance. Standardized 
interfaces and common data interchange formats are two important aspects to standards in the ASIMOV 
solution. Making use of standards ensures applicability of the ASIMOV solution to coming projects. 
 
The ASIMOV solution is realized with the UUV-demonstrator, a fully simulated environment to train an 
AI-based system. Therefore, the environment needs to be specified in a portable way, so that different 
software systems can participate in this multi-modal simulation. In ASIMOV this is achieved by utilizing 
the according standards to describe a traffic scenario. The scenario description is realized as an 
OpenSCENARIO (see section 2.4.1.1) specification. The OpenSCENARIO specifications describes all 
dynamic aspects of a scenario and is based on a Road-Network specified within a referenced 
OpenDRIVE specification (see section 2.4.1.2). 
 
As parts of the UUV-System and also parts of other demonstrators are realized with ROS, also ROS-
specific interfaces are used (section 2.4.2.1). This also includes the ROS-specific recording format 
ROSBAG (section 2.4.2.2).  
 
A generic measurement data format, which could be used to initially record generic system information 
is the ASAM MDF format (section 2.4.1.4). This is utilized to handle the initial recordings to parametrize 
the first system instances, but also to support KPI-based validation measurements. Especially when 
recording information from real vehicles, MDF becomes important. Therefore, this format is also 
supported by the embedded components to allow comparison of real vehicle-data to simulated values. 

3.4.6 Deployment, software aspects 

When deploying the ASIMOV solution, there aren't any ASIMOV-specific considerations to bear in mind. 
Our recommendation is to adhere to the prevailing best practices for deploying multi-container solutions. 
This entails employing source code control systems such as Git, implementing continuous 
integration/continuous deployment (CI/CD) strategies, and establishing reproducible, well-documented 
build processes. Given the likelihood of distributed deployments in many scenarios, leveraging tools like 
docker-compose in combination with Docker Swarm, or Kubernetes can significantly streamline the 
deployment process. 

4 Realizing an ASIMOV solution for other use-cases 

 
4.1 Starting an ASIMOV implementation 
 
In order to start with an implementation of the ASIMOV solution for another domain, the following steps 
may help with the process: 
 
Identification of the system to optimize 
Develop a clear picture of what parameters of the system should be optimized, both in the digital twin and 
the physical system. Think about the cost function that can be evaluated after running the system with a 
given set of parameters. The documents [] and [] may help to identify them. 
 
If possible, create the interface for evaluating a set of parameters early. The interface doesn’t have to be 
final yet – just enough to get the system running. 
 
Grouping existing components to logical components 
Identify all existing code, programs, databases, etc. that will be needed for running the optimization 
process. 
Go through them, create containers for them and map them to the logical components as described in 
section 3.4. Note, that communication between logical components should only happen between their 
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interfaces to decouple them as much as possible. If, for example, a certain database is needed in two of 
the logical components think of including it in both components. Or implement an internal interface 
endpoint that returns the needed data. This ensures that only interface components have to be changed 
if external components change. 
 
Writing mock components 
For each logical component write a mock container, that is accessible via the defined interfaces but does 
not do any real work but accepts and produces valid in- and output. The resulting containers are very 
lightweight and should allow local deployment. Build up the architecture that was proposed in section 
3.4.1 consisting of a microservice architecture with a worker / queue pattern. Having mock components 
allows to develop and test in parallel to the other components from very early on. This allows to detect 
problems early and facilitates the integration of all containers at a later point in time. 
 
Integration and improving 
Aim to get a solution without mock containers running as soon as possible. Having a first version running 
with a minimal control component facilitates the integration of more complex features step by step. 
Apart from continuously improving the optimization process, possible next steps could be: Using existing 
standards where possible, integrating monitoring and logging, providing a user interface for the control 
component, moving to distributed storage for higher data volumes, running the setup in Kubernetes, 
implement user management and access control, etc. 
 
4.2 Applicability in other domains - possible generalizations 
The proposed reference architecture already proved its applicability on the two ASIMOV use cases in the 
form of the electron microscope and the unmanned utility vehicle testing. To further expand the view on 
its possible applications in different domains, we can also look at other domains such as maritime, rail 
and agriculture. Those domains can easily be adopted by the same architecture also used in the UUV 
use case. The modularity of the architecture itself, as well as the use of standard, wherever possible, 
reduces the complexity of such an adaptation. 

• Maritime: Ships and vessels operate in a very different environment and with different timescales 

in their control functions. The step from human operated ships to autonomous ships requires a 

similar kind of testing, however. Even though ships are not directly tied to roads in the water, their 

allowed routes are typically defined by buoys, rivers and canals. This can be abstracted to 

effectively very wide roads, on which a set of rules apply. Combined with the fact that multiple, 

smaller and larger ships are using these roads combined, like vehicles, pedestrian and cyclists 

sharing the same road network, critical maneuvers in the maritime domain could be described 

using similar ASAM OpenX Standards. The usage of an ego ship, with more detailed dynamics 

can also be represented using a high-fidelity hydrodynamics model, instead of a vehicle dynamics 

model. The creation of a 3D environment has of course a different focus but can be achieved 

with the same 3D engines. This also allows for usage of the same sensor models. 

 

Overall, an adaptation of the ASIMOV approach to the maritime domain can be done with 

relatively low effort. Early implementations are also already available, as shown in Figure 15. 
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Figure 15: Using the same Simulation structure in Förde5G [51] 

• Agriculture: The agricultural domain is quite like the UUV domain. Main differentiation are different 

vehicle types, with trailers, more wheels, possibly chains and interaction of tools with the 

environment. These require higher fidelity ground models, as well as completely different vehicle 

dynamics models, that are less focused on suspension accuracy, but instead offer the possibility to 

realized complex vehicle architectures with extension arms and tools being operated by hydraulics. 

There also have been early demonstrators in this domain, using multi body simulation instead of 

conventional vehicle dynamics. An example can be seen in Figure 16. 

 

Figure 16: Multi Body Simulation for Agriculture [52] 

 

• Rail: This domain limits the number of critical scenarios by eliminating the lateral control of the 

vehicle. The domain is however much more restricted in terms of real vehicle testing than the other 

domains, as the vehicle is very reliant on a track network as its infrastructure. But also here, the 

same abstractions would apply. A track network could be defined, with events happening in a 

scenario-based manner. It must be kept in mind that the variety of external scenarios that a train 

must and can react to is very limited. Trams could have more similarities in that regard. 
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5 Conclusion 

 
This document provided an exploration of the technical aspects for implementing an ASIMOV solution 
and proposed strategies for establishing a scalable architecture. By addressing relevant technologies, 
standards, and methodologies, this deliverable aimed to facilitate the transferability of the solution across 
diverse industries and use-cases. As a desired effect, it accelerates the integration of digital twinning with 
artificial intelligence in various contexts and propels through collaborative efforts the advancements in 
digital twinning towards transformative impacts across sectors. 
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6 Terms, Abbreviations and Definitions 

 
Table 1 - Terms, Abbreviations and Definitions 

AI Artificial Intelligence 

ADAS Advanced Driver Assistance Systems 

ASAM Association for Standardization of Automation and Measurement Systems 

AWS Amazon Web Services 

CRG Curved Regular Grid 

DSL Domain Specific Language 

DT Digital twin 

TEM Transmission Electron Microscopy 

HDFS Hadoop Distributed File System 

K8 Kubernetes 

KPI Key Performance Indicator 

MDF Measurement Data Format 

ML Machine Learning 

NFS Network File System 

OSI Open Simulation Interface 

PT Physical twin 

RL Reinforcement Learning 

RLA Reinforcement learning agent 

SMB Server Message Block 

SQL Structured Query Language 

UUV Unmanned Utility Vehicle 

VM Virtual Machine 

XML Extensible Markup Language 
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