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Abstract 
 
The ASIMOV project investigates the combination of Digital Twins (DTs) and Artificial Intelligence (AI) to 
find the opportunities and challenges for automated optimization and calibration of complex high-tech 
systems in complex environments. In many cases the actual system is not available for training AI 
components, therefore a dedicated digital twin or digital model is set up for providing that training data. 
The AI component is set up to capture the complexity of the real system and control and optimize the 
system in its operation.  
 
This report focusses on the DT part and starts by describing the main challenges in creating a model 
mimicking the behavior of a real system. In the state-of-the-art section, the high-level architectural 
descriptions currently published are discussed. 
 
This report describes next the reference architecture for a digital twin specifically for training AI systems. 
This reference architecture considers from various viewpoints how such a digital twin / digital model can 
be designed and developed. It should be used as a guideline for creating the specific architecture for a 
concrete digital twin / digital model. It contains generic elements, aspects, and best practices. This 
reference architecture description also provides challenges, concerns, and questions to be answered by 
the systems architects and system designers. 
 
This architectural part is followed by extensive elaboration on modeling system behavior. It provides 
insights on which types of modeling exist, how to model behavior, and the consequences for use in AI 
training. 
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1 Introduction 

 
The Asimov project investigates the combination of Digital Twins (DTs) and Artificial Intelligence (AI) to 
find the opportunities and challenges for automated optimization and calibration of complex high-tech 
systems in complex environments. This document describes specifically for these purposes the reference 
architecture for the digital twin. It should be used as a guideline for creating the architecture of a specific 
digital twin. It describes generic elements, discusses various aspects, and best practices. It also provides 
challenges, concerns, and questions which need to be answered by the systems architects. Furthermore, 
the last part is dedicated to DT behavior focusing on modeling, describing which types of modeling exist, 
and discussing the consequences for use in AI training. 
 
The general role of a reference architecture in a company is shown in Figure 1. This simplified picture 

shows that a reference architecture guides the development of several product architectures and captures 

the commonalities of various (existing) products. It ensures that the company vision and strategy are 

executed and embedded in the architectures of the product portfolio. Other applications of reference 

architectures may have different purposes and different scopes: from sub-system level (e.g., system-

internal communication infrastructure), to inter-company (e.g., Google’s cloud architecture framework), 

or even domain reference architectures (e.g., the German Reference Architecture Model Automotive). 

  

 
Figure 1 The role and creation of a reference architecture (in the context of a company). 

To create a reference architecture, we attempt to extract the commonalities (and detect differences) in 
existing products and future systems. In the ASIMOV project, we consider the use cases (which are real 
implementations of the DT+AI solution) as ‘products’ for the distilling purposes. The vision and strategy 
will play a lesser role; however, this may be replaced by other driving forces. 
 
 
1.1 Definitions 
 
In this section some important concepts necessary for further reading and essential for understanding are 
introduced. 
 
A digital twin (abbreviated to DT) is a digital replica of a physical entity with the two-way dynamic mapping 
between a physical object and its digital model [1]. Another definition is: a realistic digital representation 
of assets, processes, or systems in the built or natural environment [2]. The variation in definitions of the 
term digital twin is as large as the variation in digital twins themselves. Therefore, we will not dwell on the 
discussion about definitions and focus on digital twin characteristics, purposes, and structures for the 
Asimov context [3-7]. 
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For simplicity, we adopt the definitions suggested by Aheleroff [3]  that distinguish the types based on the 
synchronization of the digital twin (‘Digital Replica’) with the actual system (‘Physical Thing’); see Figure 
2.  

  

  
Figure 2 Definitions of digital twins (reproduced from [3]).  

 
Digital twins have a set of core characteristics. Erikstad [4] identified five core characteristics: identity 
(connecting to a single, real and unique physical asset), representation (capturing of essential physical 
manifestation), state (rendering quantifiable measures of the asset´s state), behavior (reflecting basic 
responses to external stimuli), and context (external operating context in which the asset exists). These 
characteristics will be explored for the ASIMOV use cases and subsequently generalized for the digital 
twin in the role for training artificial intelligence components. 
 
The benefits of a digital twin may be exploited especially in the case of training AI components: improved 
availability and control, high speed training, reduced cost of operation, possibility of investigating extreme 
or dangerous scenarios, etc. 
 
The downside is that the digital twin requires substantial development investment and must be validated 
thoroughly and continuously to trust the results. The impact of incorrect behavior on the AI during training 
may be profound and only discovered late, even only in the operational phase. Note that this trade-off 
occurs in many places in R&D: an early investment is required to prevent later problems. The difficulty is 
to prove the investment is beneficial to convince company management. 
 
Another concept is a phase. These have early on been defined as a stage in the development of the 
ASIMOV solution in the Working Group deliverable [5]. Here a summary of these concepts is reproduced: 
 

Training phase: In this phase, the AI, or more specifically the RL agent (RLA), is trained using 
multiple varying model instances (DTs) of a typical cyber physical system (CPS). This is done to 
prevent the problem of overfitting and increase generalization to enable policy transfer.  
Operational phase: Once the RLA has matured enough, it is deployed on an actual CPS (the 
physical twin) and performs system optimizations. In this phase, the RLA is assumed to interact 
directly with the CPS or is part of it. During this period data from the CPS is gathered for the next 
phase.  
Fine-tuning phase: the RLA is Iteratively fine-tuned using its CPS’s data from the operational 
phase and/or its DT to improve the RLA’s accuracy of fit to the CPS instance, but also to further 
train the variant agnostic RLA (see result of the training phase), e.g., using federated learning. 
The frequency of this fine-tuning depends on the use case. A sequential but iterative cycle 
between operational and fine-tuning phase is recommended since adjustments to the RLA should 
be extensively tested before release, but - if online learning is implemented – the operational and 
fine-tuning phase may become one. 
 

Another notion is the Conceptual System Level, which is important for an architect to understand the 
scope of stakeholder needs. In Figure 3, a useful structure of scopes is depicted by explicitly showing the 
‘nesting’ of systems that are identified for the ASIMOV solution. These conceptual system levels help to 
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pinpoint at which level particular concerns play a role. These concerns must all be addressed in the 
overall system architecture. 
 

 
 

Figure 3 Conceptual system levels. 

 
We distinguish five conceptual levels: 

• Product domain: the context (systems or people) that interact with the product. This is the level 

for describing usage scenarios, customer concerns, business concerns, etc. 

• Product: the system that will contain the AI-based optimization system. 

• ASIMOV solution: the system-of-interest, shown here as a part of the product. The qualities of 

this solution (performance, scalability, etc.) are determined by its context (Product) and its 

constituents (Sub-systems). 

• Sub-system: the main parts of the solution, primarily the DT and the AI. 

• Component: the functional parts of a sub-system (e.g., controller, interface, storage). 

 
One should be aware of the various phases in the development of systems. This holds for green-field 
development (starting from scratch), as well as for brownfield (continued development of an existing 
system or product). We can generally distinguish the following phases, each typically requiring 3 to 5 
times more effort: 

1) Proof-of-concept 
Focus is on the feasibility of technologies: can it work? How to make it work? 

2) Prototype 
Focus is on the feasibility in the product context: will it work in our product? Can it work in the customer’s 
environment? 

3) Product 
Focus is on the productization: how to professionalize the prototype solution? How to ensure business 
benefits?  
 
In the various phases of development, different purposes lead to different concerns and requirements. 
We need to understand that in this document about the DT architectures the discussions apply to this 
variety in the development phases.  
 
 
1.2 Challenges 
 
Developing a DT for training an AI has many challenges. They reside at and across(!) various levels (see 
Figure 3), and occur in different phases of the development.  
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In this document we focus on the ‘DT for AI’ topic. What are the challenges that go beyond the ‘normal’ 
challenges [6] due to tensions in requirements and designs of systems and architecture solutions? What 
is typically more difficult in the DT-AI combination? 
 
In the first section we distinguish the challenges in the development and integration of a DT into a bigger 
(AI) system. The second section describes the challenges arising in modelling the behavior of the physical 
system and its environment. 

1.2.1 Architectural challenges 

In Proof-of-concept development the typical questions and tensions arise: how feasible is the basic DT 
solution? Can we achieve the required qualities (e.g., speed and accuracy)? What is now specific due to 
the ‘AI-as-client’ of the DT? 
 
An architect should consider the following challenging aspects in particular: 

• The DT architecture development also involves the integration of many models from many 
different disciplines, which is a challenge on its own.  

• The training data generated by the DT should be ‘rich’ in such a way that the training of the AI 

component is fast. Finding this richness is a formidable challenge, and very case specific.  

 
In Prototype development the focus is on the integration in the AI (and possibly product) context. The 
challenges are in finding out how to control/manage the DT qualities (e.g., data reproducibility, data 
generation speed, response time), and in flexibility (changing the purpose of the DT: including different 
behaviors over time, ease of evolution of the future product). What are the architectural tensions in the 
chosen DT design? 
 
An architect should consider the following challenging aspects in particular: 

• The controllability (or tunability) of the digital twin output is a challenge on its own: especially the 

accuracy of the result. E.g., when far from the optimum, the accuracy does not have to be high, 

when being close to the optimum the accuracy becomes very important. The calculation time is 

coupled to the accuracy, so there is a trade-off between speed and accuracy. 

• Flexibility: how to quickly adapt the DT for a different objective? In principle, the overall objective 

or purpose of the DT-AI combination determines the construction of both the DT (type of models, 

what is being modelled) and the AI (target, type of algorithms). This flow down of architectural 

drivers should be made explicit for each case. Also, the variability in product behaviors and 

configurations should be handled in this phase. 

 
Product development has a different type of challenge, rooted in the final goal of creating business (i.e., 
generating money), compared to the previous phases. Topics such as productization, maintainability, 
deployment, and footprint come to the foreground.  
 
An architect should consider the following challenging engineering aspects in particular: 
 

• The DT is a company-internal product, and so in principle it should be developed, produced and 
maintained in a professional way, as if it were a real product. In practice, the status of the DT 
depends on the mindset, professionalism, and maturity of the company. 

• DT is new technology for many people in a company. It may not be a part of the culture to do 
modeling of the entire system in its context and use a DT as the Digital Thread as a single source 
of truth.  

• The field of digital twinning is fast developing. A high-tech equipment company has typically 
difficulty in keeping up, so special effort should be invested in this challenge. Reusability of DT 
(components) may be a real problem that requires attention. 

 
More discussion on qualities and tensions can be found in Chapter 3.1. 
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1.2.2 Modelling challenges - a selection 

 
Within the wider activities of developing a DT, twins or models of smaller components can be developed 
that are modelled with a more limited view. Such models may be entirely built from first principles or may 
in part rely on example data from a system. Generally, formulating a model or DT from first principles and 
domain knowledge without having to rely on data at all is in principle preferred over data-driven modelling. 
If data is involved, different challenges can arise as explained in this section. 
Models are developed in a wide range of disciplines, with wide varieties of challenges. Writing down an 
equation from first principles or physics can be seen as an ideal situation. Also, a model can take on the 
form of a simulation model in software (e.g., a FEM, finite element method, with a detailed 3D 
representation of an object and laws of physics). A pure physics-based simulation might be deterministic. 
However, randomness can be an important element of simulations, for instance in the simulation of the 
electron microscope has inherently random physics behaviour, or a logistic case may have inherently 
random demand. The model can also be based on data, e.g., calibration of unknown model parameters, 
a.k.a. configuration parameters, unknown constants, or weights. Machine learning and statistics can be 
used to make a model based on example data. The way that data is collected may be observational, 
where some system runs its course, and the resulting quantities are recorded. In contrast, an experiment 
can be carried out, where randomization is applied as in clinical trials or in “Design of Experiments”, a 
branch of statistics often applied in industrial statistics. In the latter, cause-and-effect relations can be 
drawn because of randomization. For observational data, causal relations can also be described if a 
causal model is applied (see Judea Pearl’s work, [7] and [8]).  
 
Data can take on many forms. Complex examples are text, audio, and images. Simpler examples are list 
of properties, e.g., a vector with scalar values for weight, speed, direction, and acceleration. An 
intermediate example could be a time series (force over time, position over time). An important 
consideration is whether to summarize the data. Certain models can take complex data as input 
(convolutional neural nets are specialized to take in images as input). Models in statistics and many in 
machine learning take in a fixed vector of quantities (scalar, categorical, or mixes). See ASIMOV D2.2 on 
post-processing and state shaping. 
 
Challenge: summarizing, aggregation 
In data-driven model building, summarizing data can be a major activity that determines the model quality. 
In summarizing data information may be lost, but modelling becomes easier, and the art is in finding the 
balance. One aspect is the aggregation level (e.g., a 2-D image to a few scalars for contrast, brightness; 
time series into one value; will a set of time series be aggregated in one overall number or one per time 
series). Another is the nature of the aggregation, e.g., mean and median, or their counterpart's median, 
inter quartile range that are robust for outliers. In machine learning, this summarizing is called feature 
engineering. As a side note, deep learning may be an alternative that accepts un-aggregated data; 
downsides are that large amounts of data are needed, and the resulting model is a black box. 
 
Challenge: specifying variation  
In ASIMOV, it is foreseen that variation is added to a DT; see ASIMOV D2.2. This may consist of drawing 
random numbers and applying them to DT inputs or parameters as additional noise. However, in more 
complex structures it can be challenging to describe randomness as the additional variation on a DT. 
E.g., random additions to some aspect may have to be made for multiple points in time and space. 
Suppose a digital twin of some CPS tracks temperature over time on many locations. Two temperature 
values that are close in time and space might need highly correlated random additions as large difference 
in distortions temperature between two nearby related points are typically similar. This needs careful 
mathematical modelling of how to combine independent random building blocks. Simple examples are a 
Brownian motion and autocorrelation in time series. A complex example is if a DT itself has a random 
multivariate component that is in part given by a correlation matrix. Introducing variations on the 
correlations in the matrix is a mathematical challenge, because the required mathematical properties are 
easily broken if noise is naively added to the matrix elements. 
 
Challenge: quantifying effects/understanding model structure 
In optimization and training AI, model predictions are of primary interest. However, in many situations it 
is desirable to understand the form (or shape) of a model 𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑓(𝑖𝑛𝑝𝑢𝑡, 𝑡𝑖𝑚𝑒) beyond using it as a 
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black box. It can be very useful to investigate the influence of the inputs, as some inputs might have little 
influence, or one input has more influence as soon as a second input takes on a certain value, etc. 
Navigating this structure with few inputs can be done graphically, but gets difficult from dimension say 5 
and higher: in typical 2-D static plots, each dimension needs a plot element such as horizontal axis, panel 
rows, panel columns, symbol/line colours, and symbols; 3-D or interactive plots may not bring much more; 
see e.g. [9] and [10]. 
 
Challenge: prediction performance 
Prediction performance (mean squared error, sensitivity/recall, etc.) is sometimes based on a small test 
set. There are also different schemes of forming test sets, such as (k-fold) cross validation. It can be 
challenging to pick a scheme. Small test sets result in statistical uncertainty of the prediction performance 
metric which is not always recognized. See [11]. 
 

1.2.3 Model adaptation in twinning 

A basic view of the DT is that it mimics the input-output relation of a system or system’s component. 
However, ideally the ASIMOV solution has the capability to adapt the DT to varying circumstances of its 
environment or changes in the system over time (e.g., wear, degradation, different environment, 
swapping parts, …). There are several possible views of model adaptation, e.g., from control theory, 
software architectural (section 3.3.3.3), and from data-based modelling (section 4.4.4 gives some 
strategies), where each view may give some challenges. 
 
An illustration that model adaptation can be a challenge is as follows. Suppose a CPS with a DT is being 
controlled using the ASIMOV solution. An RL agent gives actions to the CPS to keep it on the desirable 
set point. Suppose that the input-output relation changes as in Figure 4. If the agent does a good job of 
keeping things steady, over time the input/output coordinates stay in the same region (the blue oval). In 
this case, a change in relation cannot be noticed. 

 
Figure 4 changing relation but with input/output staying in the same region over time 

Some challenges 
- How to set up an adaptation model in the architecture? 
- How to deal with structure such as changes over time, or changes between variants in the 

system? 
- How to detect changes in the relation; in a passive way, or even active (exploration/exploitation)? 
- How to integrate an adaptation model in the basic DT approach? 

 

2 State of the art on DT architectures and views 

2.1 Existing architectural view frameworks 
Like how problems can be seen by stakeholders, architectures can be seen from different viewpoints 

which highlight different aspects of the system. Being clear about what view is talked about eases the 

development of insight. In the following, a selection of literature on architectural views and viewpoints is 

shown to create a basic understanding. 
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2.1.1 Early architecture view model 

One of the early works on architecture views is Kruchten’s view model “4+1” [8]. It is “a model for 
describing the architecture of software-intensive systems, based on the use of multiple, concurrent views” 
[8]. Five views are proposed: 

- Logical view: The author defines the logical architecture to “primarily support[s] the functional 
requirements – what the system should provide in terms of services to its users” by decomposing 
the system into objects or object classes [8]. Kruchten proposes to use class diagrams for this 
matter to show “a set of classes and their logical relationships: association, usage, composition, 
inheritance, and so forth”.   

- Process view: The process architecture is concerned with non-functional requirements 
(performance, availability, etc.). It also shows the distribution of the system and aspects such as 
“system’s integrity, fault-tolerance, and how the main abstractions from the logical view fit within 
the process architecture” by [8]. The author also states that this view can be seen in different 
levels of abstraction. With the process architecture, tasks and processes (groups of tasks) can 
be defined which is its main goal.   

- Development view: The development view has the task of organizing the actual software 
modules into smaller chunks. “The development architecture of the system is represented by 
module and subsystem diagrams, showing the `export´ and `import´ relationships” [8].  It may be 
organized in layers with detailed interfaces in between them. 

- Physical view: The physical architecture maps the software to the hardware. The previously 
identified elements such as objects, tasks and processes are mapped onto nodes which then 
represent hardware (module, computer, cluster of computers, etc.). Kruchten points out that “The 
mapping of the software to the nodes therefore needs to be highly flexible and have a minimal 
impact on the source code itself” [8]. 

- Scenario view: The scenario view is generally a use case or scenario related walkthrough 
through the system “describing the corresponding scripts (sequences of interactions between 
objects, and between processes)” [8]. The author points out that this view is the “+1” in the 
model’s name “4+1 View Model” as it might not be necessary for sufficiently describing the 
system. 

2.1.2 Reference architecture model of “Industrie 4.0” 

A more modern standard for a reference architecture is the Reference Architectural Model Industrie 4.0, 
(RAMI 4.0) which describes all elements of industry 4.0 in a structured manner as presented in [3]. Digital 
Twins are a core component of the Industry 4.0 and can be described by RAMI 4.0. As shown in Figure 
5, it consists of three axes: 

 
Figure 5  Visualization of the RAMI 4.0 reference architecture [3] 
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- Hierarchy Levels: On the right horizontal axis are the hierarchical levels from IEC 62264, the 
international series of norms on the integration of company IT and control systems. These 
hierarchy levels represent the different functionalities within the factory or plant. [3] 

- Life Cycle & Value Stream: The left horizontal axis represents the life cycle of plants and products. 
The basis for this is IEC 62890 on life cycle management. A distinction is also made between type 
and instance. A "type" becomes an "instance" when the development and prototype production is 
completed, and the actual product is manufactured in the production department. [3] 

- Layers: While the previous axis defines the level of detail and the point of time in the life cycle, 
the “layer” axis represents actual architectural viewpoints. With the help of the six layers on the 
vertical axis of the model, the IT representation, i.e., the digital image of a machine, for example, 
is described in a structured way layer by layer. The representation in layers comes from 
information and communication technology. In this field it is common practice to structure 
complex products in layers. [3] 

o Business layer: Orchestrating functions to form business processing and linking 
between different business processes. Includes high level requirements 

o Functional layer: Describes (logical) functions of an asset (technical functionality) 
o Information layer: Describes the data that is offered, used, generated or modified by 

the functions 
o Communication layer: Provides standard communication for service and event/data to 

the information layer, and services and control commands to the integration layer. 
o Integration layer: Describes the interface between physical components and the digital 

world 
o Asset layer: Represents the physical world such as physical components, software, 

documents and human actors. 

2.1.3 Comparison of other architecture view models 

The work of Brankovic et. al [9] is interesting and highly relevant as it combines several view model and 
reference architectures together and compares the proposed views as it can be seen Figure 6. These 
frameworks are namely Smart Grid Architecture Model (SGAM), Automotive Reference Architecture 
Model (ARAM) and the RAMI 4.0. They are compared to the more generalized Software Platform 
Embedded System (SPES) Framework, an approach designed for System of Systems-architectures.   
The SPES defining document [12] explains the four viewpoints (VP):  

- Requirements VP: This VP supports the engineering of requirements. It contains documentation 
of context, goals, specifications, and scenarios.  

- Function VP: This VP provides the functional system specification based on the requirements 
which are determined in the previous VP. In other words, it defines the functionality the system 
is intended to provide. 

- Logical VP: This VP supports the solution design, providing functional building blocks by 
communicating components arranged in a component architecture. It is a description of the 
platform-independent solution by subsystem decomposition  

- Technical VP: This VP supports the technical implementation of the logical VP. It contains the 
description of the Hardware, Software tasks, scheduler, communication, Platform specific, etc., 
required to implement the system’s specification from the above VPs. 
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Figure 6  Mapping of different viewpoints and layers to SPES [9] 

2.1.4 Summary and impact on DT architecture in ASIMOV 

The work of Brankovic, et al. [9] shows that while there is a multitude of approaches to architectural VP, 

each focusing on different aspects in more detail, they all look at the system from similar angles. Most 

frameworks provide a VP for requirements on the system’s components, their function and 

interconnectivity, and some technical specifications. 

In general. SPES provides four general purpose VPs which seem to be a good trade-off between level of 

detail and adequacy for describing a reference architecture which shall be use-case/implementation 

agnostic. All other frameworks provide multiple additional VPs which are highly dependent on the 

platform; something we do not pursue to concretize in this work such as low-level technical specifications 

(APIs, ports,...). Thus, the aggregation to a technical VP provides the flexibility to point out solution 

independent specifications without being technology restrictive. 

 

Thus, in the following section 3 “Architectural views on the DT for AI-training", we will look at the reference 

architecture from four VPs according to the SPES framework: Requirements, Function, Logical and 

Technical VP. 

 
2.2 State of the art on Digital Twin architecture 
A literature review on architectures of DTs of [13] identified 140 primary studies on this topic. Starting 
from 2016, the number of publications is growing exponentially. Most of these papers in [13] (86%) are 
solution oriented i.e., provide an architecture for specific purpose in a determined context. Even though 
the concept of Digital Twins is not new, having a common architectural understanding is still work in 
progress as the high percentage of solution-oriented architectures show that every application context 
requires their own interpretation. These applications can range from the energy sector [14], health [15], 
logistics [16]  to shop-floor industrial use cases [17] [18] [19]. Most solutions (79) are given by a reference 
model while 42 define a reference architecture. They differ between these as “a reference architecture 
extends a reference model by mapping its functionalities onto software elements and the data flows 
between them”. In the following, some selected publications are provided to show the range of 
approaches and solutions.  
 



D2.3 
Architecture of optimized digital twins for AI-based 

training 
Public 

 

 
 

    

Version Status Date Page 
Version 2.0 public 2024.05.08 18/69 

 

When talking about frameworks for the design of DTs multiple scholars (e.g. [18]) and [19]) primarily 
concentrate on capabilities of a DT rather than proposing concrete solution framework, thus being limited 
to a requirements viewpoint. The primary capability stated is the ability of retrieving data from physical 
space, analyzing and processing it in some meaningful way, giving control advice to a human, and apply 
this control to physical space. 
 
Attempts have been made to create reference architectures of DTs from a functional viewpoint which are 
left in high levels of abstraction mostly containing building blocks. Work such as Talkhestiani et al. [20] 
(see Figure 7) and Steindl et al. [21] give a good overview of the building blocks a DT may be composed 
by, but they fail to be more specific about the interlinks. Thus, they only present an unfinished block 
definition diagram (bdd) and listing functionalities of DTs (requirements) from their point of view. 
 

 
 
 

Figure 7 Digital Twin Architecture according to Talkhestiani et al. [20]. 

Aburru et al. [22] present the most detailed architecture in form of a logical view combined with functional 

aspects supplying a view of services that are needed in the DT they propose including data flows. This 

architecture can be seen in Figure 8. 

 
 

Figure 8 Architecture for a “Cognitive Twin” according to Aburru et al. [22]. 
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A limitation which can be found in all of the above-mentioned architectures is the limitation to describing 

the architecture from one single VP. Mostly from a requirements/capability perspective or from logical 

view. However, all-encompassing description combining all stages of the development for a general-

purpose DT cannot be found. This makes the applicability of the proposed architecture to other domains 

difficult since crucial detailed information might be omitted. An exception to this poses Steindl et al. [21] 

which adopted the IT layer dimensions of RAMI4.0 which can be mapped to VPs as shown in section 

2.1.3. However, as already described, the layers/viewpoints in this work are not explained in detail and 

are described on a high-level. None of the found works apply some common and well-established 

modeling language hence leaving ambiguity in the interpretation. 

 

In general, the usage of DTs is well established in almost every area related to engineering and a common 

way to represents these in a generic manner, Therefore, there is an abundance for Digital Twin 

architectural views which are specific for their application and only a small selection can be showcased 

in this section. In the following sub-section, a literature review specific on the combination of architectural 

views for DTs and RL is outlined. 

 

2.3 Literature on DT-based RL 
Recent research has delved into the combination of RL and DTs across diverse domains. Osinski 23] 
introduces an RL training approach through simulations. The domain of application in this case is driving 
functions for automated vehicles. Nevertheless, it lacks an architectural view and continuous RLA 
refining. [8] emphasizes training RLA for fusion reactor control with architectural aspects taking a 
backseat in training consideration. Alexopoulos [24] adopts a DT strategy for robot arm control including 
architectural specifications, akin to our proposal, but overlooks the post-initial learning. Ju [25] and Gan 
[26] provide insights into real-world transfer of RL policies and DT-based RL scheduling strategy training, 
respectively. However, architectural and, yet again, post-deployment learning aspects are under-
explored. Similarly, Shen [27] advocates DT and RL fusion for unmanned aerial vehicle control and 
proposes a DT-based "continuous evolution" in this context [28]. However, the work is domain-specific 
and generalizable architecture considerations are not present in this work. 
 
In the field of "life-long" RL [29], scholars deal with continuous learning and policy transfer (e.g., from 
simulation to real world or adjustments from one system to the next). To the authors’ best knowledge, 
availability of training data is assumed in most of the relevant studies. In context of continuous learning, 
Federated Learning (FL) [30] is a common practice for pre-training and consequent fine-tuning of AI. [30] 
showcases the combination of DT and FL but leaves the design of these DTs open for interpretation. In 
general, application independent DT architectures are rare as a high percentage of solution-oriented 
architectures [31] show that every application context requires their own interpretation. 
 

From the cited research, it is evident that the comprehensive exploitation of the DT paradigm’s capabilities 

has not yet been fully realized in RL training. In all the above-mentioned literature, RL is utilized for system 

control, wherein we see system optimization as a sub-field. As already stated, the objective of this 

deliverable is to delineate the essential considerations required on the DT side for RL training across the 

various stages of its life cycle. We aim to provide an architectural recommendation that goes beyond 

mere building block descriptions. 

 

3 Architectural Views of Digital Twins for AI training 

 
There are many aspects to consider when describing the architecture of digital twins. It is therefore 
important that we distinguish the various perspectives we take when analyzing and describing the 
reference architecture. Architects need to exercise viewpoint hopping to understand the impact of choices 
from one perspective to another. In Figure 9 an example is given to clarify this viewpoint hopping: we 
may step from world to world, and viewpoint to viewpoint. Models from the middle box, the Data and 
models world, determine what happens in the Simulated world, where we want to mimic the reality of the 
CPS. At the same time this simulation has impact in the Real world as it is being executed on servers 
with certain performance and constraints. Changing the type of models has an impact in both worlds. 
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This type of perspective change can also be seen between the four selected main viewpoints in the 
remainder of this chapter: requirements, functional, logical, and technical. We have adopted these views 
from the viewpoints in SPES [12] (see section 2.1.3 for further details). Despite minimizing the number of 
viewpoints, they can cover all layers and aspects relevant to our approach. 
 

 
 

Figure 9 The digital twin can be described using various 'worlds'. 

3.1 Requirements View 
 

3.1.1 High-level requirements 

The main goal of the ASIMOV approach is finding a self-optimizing solution for a complex CPS. A second 
goal is the successful application of that solution to similar systems (comparable products or members of 
a product family), without extensive further development (e.g., re-training the AI from scratch). These two 
goals are achieved by the cooperation of two main sub-systems: the DT and the AI sub-systems. The DT 
requirements are derived by looking at the needed behavior and properties in the appropriate phases of 
use. The DT is mainly operational in the training phase, therefore the requirements on the DT stem from 
this type of use. We do not consider here the option of using the DT for testing out new settings before 
applying them to the actual system [5]. 

 

We can derive and decompose the requirements from the list shown in the initial ASIMOV reference 
architecture [5]. The main system qualities mentioned are focusing on the operational phase, so in the 
case that the AI components have been trained. Here we must reason back from the qualities mentioned 
at DT-AI-system level in the operational phase, to the requirements for the DT sub-system in the training 
phase. This influence of the DT on the final set of qualities is rather indirect. 

 

• Accuracy of result (i.e., the state of the system after applying the optimization)  
To which extent does the accuracy of the DT influence the accuracy of the total system, 
mainly the trained AI sub-system? This is a difficult question to answer, as the influence on 
accuracy is rather indirect. The fact that AI models perform more poorly when using low 
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accuracy input is not new, e.g., in computer vision as studied by Wang et al. [32]. The fidelity 
of the DT models does influence the accuracy, but it is hard to determine to which extent 
since it is linked to the purpose which is very use case, or application dependent. In addition, 
machine learning algorithms are capable of performing domain transfer where one domain 
would be the task of optimizing a less accurate model of the system and the other being the 
actual CPS (see [33]). A common example is simulation-trained autonomous driving 
functions being capable in the real-world of Zhao et al. [34]. If the AI model can bridge the 
gap, the accuracy of the DT is sufficient. Therefore, the required fidelity must be established 
in practice, e.g., using experiments, in an iterative development process including the AI sub-
system which embeds its validation. 
 

• Robustness  
We understand robustness as the ability to manage unforeseen states of the system. 
Currently we attribute this quality entirely to the behavior of the AI sub-system. 
 

• Reliability  
This is the ability to always obtain a good result. Currently we attribute this quality entirely 
to the behavior of the AI sub-system. 
 

• Reproducibility 
We define this as the ability to always obtain the same result. Currently we attribute this 
quality entirely to the behavior of the AI sub-system. 
  
• Time to result  
The calculation time needed by the AI sub-system in the operational phase is independent 
from the DT. In the training phase, the DT calculation time is obviously very important for the 
total training time. The faster the better. 

 
• Scalability  
This can be defined as the ability to be usable in a product family, and for a variety of 
usage scenarios. Currently we attribute this quality entirely to the behavior of the AI sub-
system. 
 

• Explainability  
In short, this is the ability to give insight into how the solution works, and into the plausibility 
of the result. Currently we attribute this quality entirely to the behavior of the AI sub-system. 

 

 

The ASIMOV solution has also other practical, realization-related challenges, i.e., non-functional 
requirements such as [5]:  

 

• Footprint  
Extensive DT models and computations require significant resources. These determine also 
the development costs. 

 
• Integrability 
The interaction of the DT with the rest of the CPS has many dimensions: needed resources 
with possible performance impact, interface definitions, deployment approach (depending on 
the location of training), etc. Another aspect comes into play when DT sub-components are 
supplied by different companies. In that case IP protection might be needed, therefore the 
architecture should be capable of integrating components as black boxes to maintain IP 
protection. 

 
• Maintainability 
Understandability of the DT models is crucial for maintaining and upgrading products in the 
field. The architecture should be able to plug-and-play new versions of DT sub-components 
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by standardized, e.g., by broadly available connectors. One can also think of this as 
containerization. 

 
• Development cost 
This is important for business reasons. The cost can be decomposed into its parts:  

• capital investments (expensive computation tools) 

• operational costs (during development) 

• development effort (time to develop the DT) 
 

Obviously, complex or accurate DT models require much more effort. Therefore, one should 
take care not to overdo it. Also, extensions of the DT model, e.g., an extra feature or 
parameter, should scale linearly (at most). This prevents that with increasing complexity, the 
models do not require unreasonably amounts of effort (quadratic or even exponentially). This 
is linked to the problem to be solved. 

 
In the training phase the AI sub-system requires data that has certain properties. This is discussed in 
[35]; it considers the properties of the data generated by the DT, and states that several iterations are 
needed to understand the data requirements for a given problem. Two main requirements must be 
considered: 

• Representativeness, which indicates to what extent the data represents the problem to be solved. 
This may involve the diversity of parameters, frequencies, or diversity of errors. This must be 
determined by domain experts. In [36] an attempt is made to systematically determine the DT 
parameters that are relevant for data generation. This is, however, a theoretical exercise, yet to 
be tested on real cases. Some data aspects that fall in the category of representativeness must 
be mentioned separately, because they are important for achieving good results:  

o Bias, over- or underrepresentation of features in the data. 
o Completeness, getting all aspects and features represented in the data.  

 

• Volume, the amount of data and the time it takes to generate. This challenge, along with the AI 
algorithms, determines the required amount of data and the training time. 

3.1.2 Functional requirements  

The functional requirements for the DT were expressed already in an early ASIMOV deliverable [37] using 
textual descriptions for the two use cases (reproduced here for completeness): 
 
In the TEM case, the DT must:  

• model all components and sub-components that contribute to the Ronchigram image formation 
and the condensor astigmatism. 

• have tunable input parameters which are like the tunable settings of the physical electron 
microscope. In this way, the digital twin can mimic microscope operation when for instance 
correcting astigmatism. (e.g., source energy, source spot size, aperture diameter, lens current, 
sample thickness)  

• simulate the electron-sample interaction 

• model the components that are relevant to the condenser system aberrations and target TEM 
mode 

In the UUV case, the digital twin must: 

• have a driving function, represented as if it was in the real system 

• reflect the vehicle dynamics 

• have LiDAR, radar and camera sensor models 

• provide a digital campus environment that the vehicle can drive in 
 
 
To create a set of generic functional requirements we abstract from the particulars. Therefore, we express 
the generic functional requirements as follows; the DT must:  

• model the components that contribute to the observable output / behavior. 

• model the imperfections of the components. 
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• model the influences of the environment of the physical twin. 

• have input parameters that influence its behavior, like the physical twin (so the DT can be 
exchanged with the PT). 

 
So far, we considered the DT to be a digital model, however if we want to extend the DT behavior to a 
digital shadow, or even a digital twin [3], we need to add the functionality to synchronize states. Therefore, 
we add the list of functional requirements:  

• synchronize with the PT (the DT follows the state of the physical system). 

• optionally, enable the PT to synchronize with the DT (the PT is following in that case). 
 
 
From this list it is evident that the designers really want to mimic the actual behavior of the physical twin 
as it is constructed (using the components), and not some idealized system in a perfect environment. 
This is essential as the ASIMOV solution should work also in the worst cases that occur in industrial 
reality.  

3.1.3 Unobservable parameters 

It might be beneficial to exploit an additional value of a DT: export the ‘unobservable’ parameters! These 
parameters or data are not available in the physical twin (a real CPS), but the simulated model has access 
to all variables. The AI may use them to its advantage, because effects can be observed in the data 
effects earlier in time, or more clearly.  
In various modelling paradigms, the unobservable parameters or counterparts can be found. To start 
with, note that reinforcement learning is often stated in the context of a Markov Decision Process, where 
the Markov property means that the most recent (observed) state is informative enough so that it contains 
the information from the full history; Decision is where an agent can take action, and the process is about 
having discrete time steps.  
  
In Markov Decision Processes, the state can be partially observable or inexact. Partially observable 
means that the state is e.g., given by the temperature distribution of the TEM, but only temperature on 
one position (e.g., somewhere inside the room the TEM stands in) is observed; inexact means that there 
is e.g., considerable measurement noise. Control theory deals with estimating the true, unknown state of 
a system whereas in a DT this true state is available. Another example where decisions are taken daily 
is in greenhouses, based on weather forecasts for the next day. During development, the forecasts can 
be replaced by realizations, so that forecast errors are temporarily eliminated. Unobservable variables 
are quite common among statistical models which may be useful if a statistical model is used in the DT. 

3.1.4 Variation and variability requirements 

The second goal mentioned in 3.1.1, i.e., robustness, requires the DT to change its behavior according 
to the expected distribution in a product family, or when synchronizing with the PT. Another type of 
variations in systems may be expressed as a continuous change (properties change slowly over time) or 
a discrete change (abrupt change in system settings, e.g., by a system mode switch). Both changes can 
be modeled using the configuration parameters, in section 3.3.1.2 indicated by ‘c’.  

In the reference architecture, there is a dedicated component assigned to inserting variation, see 
sections 3.3.3.3 and 4.4.3. 

 
 
3.2 Functional view 
 
The functional view is probably the most fundamental view for understanding what a system does. It 
should describe and explain the transformation of the inputs into the outputs. We start - for simplicity - at 
the very top of the functional decomposition tree: the main function of the product. Next, we decompose 
the main function into sub-functions, as we want to show the functions of the Digital Twin. 
 
We use the easy-to-understand IDEF0 standard [38] to express the functional diagrams.   
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3.2.1 Functional model for the TEM case 

A high-level view on the main function of a TEM is shown in Figure 10. The function F1 is expressed as 
a verb-phrase capturing the global function of the system.  
 

 
Figure 10 Functional model of a TEM. 

 
A functional diagram of the larger context of a digital twin and AI combination for the TEM case is shown 
in Figure 11. In the operational phase, an outside agency (e.g., a microscope operator) indicates the need 
for an optimization of a certain system setting. This information is applied as an ‘optimization goal’, shown 
at the top of the figure. This will start the optimization procedure in F3, by giving out the appropriate 
commands and settings to the DT and the AI functions. When the optimization goal is reached to a 
sufficient level (as specified in the optimization settings), F2 will stop the optimization procedure and 
signal its completion. 
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Figure 11 Functional diagram for the operational mode in the TEM case. 

3.2.2 Functional model for the UUV case 

 
The functional diagram for the UUV case is shown in Figure 12. Nearly all information flows are analogous 
and can be translated, except for the Specimen settings. The environment plays a much more important 
role in the UUV case. One might say that the specimen is part of the ‘environment’ in the TEM case. 
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Figure 12 Functional diagram for the operational mode in the UUV case. 

 
The difference can be found in the collection of data function (F4). This function is needed to deliver the 
historic data for the analysis in function F2.  
 
In the Execute Scenario block, the co-simulation platform Model.CONNECT is triggered via Flask to 
execute the simulation, which integrates many related components, in ASIMOV including mainly driving 
functions, driving dynamics and the Carla interface [39]. When executing the simulation, Carla will be 
launched, which will not only create a realistic 3D environment, but also implement some sensor models 
on the ego car. The simulation results will be analyzed in post-processing and then used for 
Reinforcement Learning. Below are descriptions of the mainly used modules of Model.CONNECT and 
Carla: 

• Driving Function provides basic Adaptive Cruise Control (ACC), as well as Autonomous 
Emergency Braking (AEB) and Lane Keep Assist (LKA), which provide enough functionality to 
test the desired scenario variation effects. 

• Driving Dynamics is provided by VSM, a comprehensive, flexible and real-time simulation tool. It 
employs a non-linear multi-body approach that accurately reproduces physical driving behavior, 
including longitudinal, lateral and vertical dynamic effects. 

• Carla Interface relies on Python script, which can create 3D environment and implement sensor 
models to capture the simulation environment Information around the ego vehicle. 

• Sensor models like Camera, Lidar and Radar are integrated in Carla. Camera is used for lane 
detection, while the other two are responsible for ACC and AEB. 
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3.2.3 Generalized functional model 

 
We derive the generic functional diagram from Figure 11 and Figure 12 to be part of the reference 
architecture. Although there are some differences, e.g., not all inputs and outputs are similar, we still think 
the overall structure is the same, see Figure 13.  
 
 

Physical Twin, 
or Digital Twin 
and  
Environment 
Simulation

AI system
Operation
Control 
System

F1

Execute scenario

F2

Analyze and 

determine next 

parameter set
Results

F3

Control 

optimization

CPS settings, 
Environment settings,

Scenario settings

- Operation goals, 
- Environment and CPS settings

Request for scenario with specific parameters

Operation goal, AI settings

Status information

Report of status

Operation control commands (start, stop, pause)

Data storage 
platform

F4

Collect data

Overall 
results

 
 

Figure 13 Generic functional model of a CPS with a DT+AI optimization functionality. 

3.2.4 Generalized functional model of the DT 

 
Decomposing the generic model of function F1 requires a split of the control functionality and the ‘payload’ 
functionality. The latter is the actual functionality to be calculated or simulated. Figure 14 shows a typical 
example in which the functionality could be split into two features that can be simulated separately in 
sequence. Note that feature 2 uses the results of feature 1.  
 
At this point we see the effect of modeling physical reality. Is it possible to use separate models that 
describe the physical processes, for instance along a sequence or pipe-line architecture, or as a fully 
parallel set of processes? The functionality that needs to be simulated by the DT determines entirely how 
the functional structure looks like. E.g., in the TEM case the flow of electrons determines the DT functional 
structure (see [37]). 
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Operation control commands

Simulation 
Control

Feature 2 
results

Final results

 
 

Figure 14 Example of the generic functional model of the DT for two separate features. Note that the second 
function, F13, uses output of F12, and vice versa. 

Note that we left out (for simplicity) the ‘diagnostic information’ output, as mentioned in the WG reference 
architecture [5].  
 

3.2.5 Workflows and states 

The following activities for the DT can be foreseen:  

• DT being used for training the AI 

• DT being used for checking the impact of a parameter change before applying to the physical 
twin 

• DT being used for synchronizing with the physical twin 

• Updating the DT models 
 
These purposes can be executed using only three states, as shown in the state diagram in Figure 15. 
The behavior in these states is straightforward:  

• In the Idle state the DT waits for instructions 

• In the Calculating state the DT is calculating/simulating (upon input of settings and providing 
output after finishing the calculations) 

• In the Updating state the DT receives new calculation models, or settings (e.g. twinning). 
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Figure 15 State diagram for the DT. 

 
3.3 Logical View 
 
As described by [12], the logical viewpoint supports the design of a solution to the functional view in terms 

of communicating components in a component architecture. In this section, the component architecture 

developed over the project will be explained first as a basis for the following description of the components 

and their composition. 

3.3.1 Current work in ASIMOV 

Until now, during the project, multiple views containing componentized architectures have been 
developed. Primarily, in the work of the ASIMOV workgroup, as well as in T2.2: “Methods and Tools for 
Training AI with Digital Twin”. In the following three main concepts that need to be integrated in the 
architecture are mentioned. 

3.3.1.1 Inside of DT 

Figure 16 shows the Reference Architecture developed in the ASIMOV Working Group. To examine what 
the inside of a DT could look like, we first have to look at the DT in context with the remaining architecture 
components. 



D2.3 
Architecture of optimized digital twins for AI-based 

training 
Public 

 

 
 

    

Version Status Date Page 
Version 2.0 public 2024.05.08 30/69 

 

 
 

Figure 16 ASIMOV Reference Architecture developed by the Working Group. 

The main interfaces to DT surroundings are control inputs, which are connected to some orchestration, 
an interface for introducing variations, which are further described in Deliverable D2.2.1, as well as pre- 
and post-processing of data from/to the interface with the Reinforcement Learning Agent (RLA). The final 
interface is a connection to the Cyber Physical System i.e., the Physical Twin (PT) via a 
Synchronization/Validation block. 
 
The DT itself can be subdivided into multiple components. First, depending on the complexity of the 
system, it is very likely that multiple simulation tools or models are used to replicate accurate behavior of 
the whole system, each detailing another aspect of the system. We call these DT Components. There 
are multiple ways that these subcomponents can work together. A hierarchical connection between DT 
components can be beneficial for one use case, while a non-hierarchical connection might be better for 
other use cases. The division into different DT Components can follow a pattern that resembles the 
components of the physical system, should the alignment and explainability of the individual components 
behavior be of interest. It can also follow a more performance-oriented division, based on the used 
simulation tools, trading analogy to the real system for computational efficiency. 
 
Independent of the DT Component structure, the combination of multiple DT Components requires a 
simulation control for managing the interaction between the components. This can be represented by a 
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Co-Simulation-Platform that manages interfacing between several simulation tools, or simply the 
connection of multiple functionally encapsulated Sub-Models inside an overall model in program code. 
 
The division of the entire DT into DT Components is essentially highly dependent on the use case, but 
there are some benefits to a well-chosen structure. This is especially important, when the connection and 
comparison to a real system comes into play. If the DT Components resemble actual subcomponents in 
the PT, component-wise data comparison is possible. This enables tracking down misalignments and 
fine-tuning opportunities to component level, which can bring component expert knowledge into play and 
lead to better explainability. This is further elaborated in Deliverable D4.1 [40]. 
 
 

3.3.1.2 Adaptation of DT 

The DT has, in contrast to a conventional model, the ability to adapt its behavior over time to stay aligned 
to its Physical Twin (PT) counterpart. We call this specific type of DT operation Digital Shadow. The ability 
to adapt its behavior can be achieved by a connection to the PT in combination with an additional module 
that compares DT and PT behavior and fine-tunes the behavior of the DT to match that of the PT. The 
following section will explain Figure 17 and give an overview of how such an adaptive DT architecture 
can be achieved. 

 
 

Figure 17 Adaptive Digital Twin component overview. 
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The DT as well as the PT both receive 𝑢(𝑡) and 𝑑(𝑡) as inputs. In this case, 𝑢(𝑡) are all the controllable 

inputs into a system and 𝑑(𝑡) are all additional inputs that are not controllable, but still influence the 
system. These will be called disturbances in the following sections, even if the exact definition of 
disturbances might differ from that. The output of both systems is 𝑦(𝑡) and 𝑦𝑃𝑇(𝑡) respectively. 

 
The PT can be seen as a system that receives a defined number of inputs, combined with a possibly 
infinitely large number of disturbances. These disturbances contain every environmental input into the 
system, which influences the output of the system. The configuration of the PT 𝑐𝑃𝑇(𝑡) can be seen as a 

potentially infinitely large set of parameters that define the correlation between input and output. That’s 
where the “logic” of the system is located. This logic can be expressed in differential equations combined 
with parameter values. In general, all the inputs, as well as the configuration of the PT are time dependent. 
 
As the PT is dependent on a potentially infinitely large set of parameters and inputs, it is not possible to 
create an identical copy of it as a DT. Only a subset of all disturbances, I.e., the ones that appear in the 
chosen abstraction of the system during model creation and have been measured, can enter the DT. 
 
The DT comprises two sub-modules, the Adaptive Model and the Adaptation Model. The Adaptive Model 
can be seen as the part of the DT, which is quite like a conventional model. It receives 𝑢(𝑡), as well as 

the subset of 𝑑(𝑡) that it is receptive for, and a fixed parameter set 𝑐𝑓𝑖𝑥𝑒𝑑  to calculate its output 𝑦(𝑡). Note, 

that 𝑐𝑓𝑖𝑥𝑒𝑑  is not time-dependent, but initially configured during setup of the adaptive model. The model's 

behavior therefore does not change over time but is only dependent on 𝑢(𝑡) and 𝑑(𝑡) once the simulation 
is running. 
 
The Adaptation Model is what transforms the conventional Model into a DT. It can be seen as a module, 
which analyzes the inputs and outputs of the PT and the DT and counteracts misaligned behavior through 
parameter fine-tuning in the DT. The parameters that can change for that realignment are 𝑐𝑡𝑢𝑛𝑒(𝑡). This is 

a subset of all configuration parameters of the Adaptive Model, which have been chosen to be adaptive 
during conception of the DT. Parts of the Adaptive Model that shall not change, can still be defined in 
𝑐𝑓𝑖𝑥𝑒𝑑 . 

 
The behavior of the Adaptation Model and therefore its logic on how misalignments between DT and PT 
shall be fixed, as well as certain thresholds, can be configured via the 𝑐𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 parameters, which are 

also time-independent. 
 
An example of such an Adaptation Model could be a wear model, which describes how mechanical parts 
deteriorate over time. It analyzes the behavior of the PT to find a fitting set of parameters to use in the 
wear model which influences the DT. 
 
It must be noted, that as the Adaptation Model is configured before running the DT, which limits the scope 

of how the DT can adapt to what is measured. Unexpected effects could still be covered by a data-driven 

model inside the adaptation model at the expense of explainability. 

 

The interface of the Adaptation Model to the Adaptive Model can also be used in the process of creating 

variations as introduced in T2.2. Variations can be seen as instances of DTs that are not connected to a 

specific PT, but have their parameters set instantiated, based on parameter distributions. That way a 

virtual fleet of diverse DTs can be used for training the Reinforcement Learning Agent and improving 

generalization. 

 

3.3.1.3 System configuration variation 

In the deliverable D2.2.1, a special view on the interaction and development of the RLA from the training 
phase to the operational phase has been established (see Figure 18). The primary idea is the existence 
of a reference RLA with a Digital Twin prototype which are instantiated in the training phase with variance 
in configurations to improve generalization of the reference RLA’s policy. It also expands to the 
operational phase where the RLA instances train on a Digital Twin of a Real system in order to provide 
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optimization suggestions and to fine-tune to the given instance of the real system. For a more detailed 
explanation, consult D2.2. 

 
 

Figure 18 Training process using system configuration variations and Digital Twins. 

 
This view indicates that the Digital Twin needs to be capable of interacting with the RLA in the form of 
action, state and rewards which is in line with reference architecture from the ASIMOV workgroup. It is 
indicated that storage and simulation is part of the Digital Twin (Prototype) and a possibility of interaction 
with the real system (RS) is needed (also found in the reference architecture) but also that the during the 
DT training phase, the DTs can be turned into System Configuration Variations: a model which represents 
a fictitious instance of a real system. 
 

3.3.2 ASIMOV phases 

The adaptation of the DT and its composition out of multiple small sub systems must be reflected in an 
overall System Composition. Furthermore, this System Composition shall align with the previous work 
done and captured by the working group in the reference architecture. To accomplish that, the ideas of 
the previous sections have been captured in SysML-conform diagrams.  
  
SysML1 is a language for model-based system development which is based on UML but has been 
expanded to be fit for purpose. The benefit for using such a language is clear: a standardized language 
avoids ambiguity in interpretation and is easily readable by many people. SysML is a language specifically 
designed to develop any system, however, it is especially recommended for DT creation (see [41]). 
 
For now, we distinguish between the training and operational phase. In the training phase, the ASIMOV 
solution consists of three types of components as it can be seen in Figure 19: a controller, a simulation 
environment and a reinforcement learning agent. While there is just one controller which has the task of 
the orchestration of the training and providing an interface for humans, there is no restriction whether 
there is one or multiple simulation environments present in the ASIMOV solution during that phase. This 

 
1 https://sysml.org/ 
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is for enabling parallelization of the training with their corresponding instance of a RLA as shown in 
Configuration Variation Process. 

 
 

Figure 19 Block definition diagram of the ASIMOV solution during the training phase. 

In the operational phase, the arrangement does initially not change, but a cyber-physical system (CPS) 
or also called Physical Twin is associated to each simulation environment where an instance of its Digital 
Twin resides (see Figure 20). Also, it is a question of implementation and requirements from the 
stakeholder whether one CPS requests its optimization, or it is management by a higher-order 
management system which may control the state of multiple systems. Thus, a relation between a CPS, 
Simulation environment and RLA tuple is denoted but no numbering. 
 

 
 

Figure 20  Block definition diagram of the ASIMOV solution during the operational phase. 

While it can be specified which components are needed for the ASIMOV solution, the composition and 
interlinks depend greatly on the type of RL algorithm used. While simpler algorithms like methods of 
Temporal-Difference Learning update their policy after each step, actor-critic approaches use a 2-step 
process. In the first step, the actor samples several episodes using a simulation environment (also in 
parallel) which are stored in a “experience storage” and in a second step the updating of the critic and 
actor is performed using the sampled episodes. For this reason, an internal block diagram of the ASIMOV 
solution is not shown in this document as it is also out of this document’s scope. 
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3.3.3 System composition 

3.3.3.1 Simulation Environment 

The Simulation Environment is the main container for everything needed to generate data for the RL 
training. It first consists of a single Control block, which serves as a communication interface with the 
remaining components of the ASIMOV solution. It must be able to start, stop and reset the Digital Twin, 
control when and where simulation data is stored and control the Simulation. It could be realized via 
simulation program or a co-simulation platform. It is subordinated and takes commands from the controller 
of the training but also provides feedback. 
  
It furthermore comprises the DT itself, being the digital representation of the system of interest. On this 
level, we can additionally state that a single DT is part of a simulation environment. More complex 
representations of DTs can be realized via a hierarchical conjunction of multiple DTs. This will be further 
explained in the next section. 
  
An arbitrary number of databases is also part of the simulation environment. Depending on the type of 
data and the data necessary to either train the RLA or adapt the DT, multiple different databases can be 
used here. 
  
As the DT supplies some insightful output in any form, it might not be adequate to supply good training 
data in the format of a reward and state signal. Thus, post-processing needs to be part of the environment 
and is already established in the ASIMOV reference architecture. The same holds for the input where the 
action of the RLA needs to be preprocessed before being able to be used by the Digital Twin as an input. 
  
As already stated, the simulation environment needs to be capable of twinning the cyber-physical system. 
Thus, a component of this task needs to be part of the environment which can interact with the physical 
system and retrieve information. 

 
 
 

Figure 21 Block definition diagram of the simulation environment. 

 

Based on the reference architecture from the work group and the capabilities and duties of the system 

outlines in the functional view, an internal block diagram can be created showing the connections between 

the building blocks described above. The result is shown in Figure 21. 
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The simulation environment, as illustrated in Figure 22, interacts through five ports: (i) control input from 

the controller that manages the RL training, (ii) connection to the CPS and (iii) action, (iv) reward and (v) 

status ports for communication with RLA. The flow of data is from the action port via a pre-processing 

component into the DT as simulation input and after computing, from the output of the DT via a post-

processing component into the state and reward output of the simulation environment. The pre- and post-

processing components convert the RLA/DT output into a suitable format. A controller manages the 

processing and optional databases that provide additional information. In the case of the operational and 

fine-tuning phase, a twinning block is implemented to orchestrate the retrieval of CPS data according to 

the requirements. Since no physical counterpart exists during the training phase, it is replaced by a 

variation generator within the DT that mimics the existence of multiple, slightly different CPS instances.  

 
 

Figure 22 Internal block diagram of components and connections that compose the simulation environment .  

Notable is the fact that the simulation environment consists of one DT. We see DTs capable of being 

hierarchical: one DT can consist of multiple DT analogous of a system which can consist of multiple 

components which in fact are also systems. 

 

In contrast to the operational phase, in the training phase no CPS exists from which to retrieve output 

data for twinning, the updating of the DT. Thus, the component “Twinning” and the physical twin port is 

only active or implemented during the operational phase. 

3.3.3.2 Digital Twin 

The DT Block, used in Figure 22 can be further split-up as shown in Figure 23. 

 
 

Figure 23  Block definition diagram of a DT. 
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A Digital Twin is an aggregation of at least one Logic Block and composed by one Control Block. The 
Logic Block is where calculations happen. An arbitrary number of inputs is translated into an arbitrary 
number of outputs. The block represents what a conventional model would do. 
 
Like the control block in the simulation environment, the control block inside the Digital Twin manages its 
underlying components. This mainly involves a correct control of when a component shall be updated in 
terms of realigning it to the PT and transmitting this information to the respective components of the DT. 
Other tasks might involve the synchronization and managing start, stop and reset of blocks. The controller 
is subordinated and takes commands from the controller of the simulation environment but also provides 
feedback. 
 
The Adaptation Model serves two purposes in this DT. If the Logic(s) of this specific DT shall be adapted 
to its physical counterpart, it outputs the new configuration parameters, as shown in [Figure 12]. If the DT 
itself contains other DTs, the adaptation model can provide the correct PT data for the adaptation models 
of sub-DTs. How this is done is a matter of research. 
 
This enables the possibility to link multiple different DTs together as shown by the self-reference of the 

DT Block in Figure 23. This possibility is crucial for the usage of DT of system components that might 

have originated outside, e.g., supplied by the manufacturer of the component. This enables possibilities 

such as IP protection or decentralized simulation. 

 

The design of an internal block diagram of a DTs is more challenging since multiple logic blocks can be 

linked to "sub"-DTs and vice-versa. The result can be seen in Figure 24. As already described in the 

specification of the environment simulation, a DT possesses five ports to interact with other components 

within the simulation environment: Twinning port, Control port, Simulation data port, Database port and 

Simulation result port. Via the Twinning port output data of the physical twin (CPS) is passed to the 

adaptation model whose function is to update the model’s configuration accordingly. Its functionality will 

be explained in more detail in section 3.3.3.3. Its output is two-fold: on one hand, it passes the data from 

the physical system through to DTs it is responsible for. On the other hand, it computes adequate 

configuration parameters for the Logic blocks based on the comparison of PT data and simulation results. 

This adaptation is controlled/triggered by the DT Controller who also interacts with super- and 

subordinated controllers. 

 

  
 

Figure 24  Logical components and communication of the DT 
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Simulation data from outside the DT is passed to the Logic blocks and DTs, as shown in Figure 24. The 
logic blocks can send and receive data from databases. Simulation/Computing results from both DTs and 
Logic blocks can be the input to other Logic and DT blocks, as a feedback form the processing output 
port and simulation result port to the processing input port and simulation data port of the Logic blocks 
and DTs, respectively. The logic blocks can calculate the behavioral output of the DT by using simulation 
data input to the DT itself, simulation data output of hierarchically nested sub-DTs, static configuration 
parameters sourced from persistent databases, and dynamic configuration parameters obtained through 
the adaptation model. 

3.3.3.3 Figure 24 Adaptation model 

 

The adaptation model’s purpose is to set up the “model” (composed by Logic(s) and DT(s)) in such a way 

that it mimics the behavior of a/the physical counterpart good enough for training, fine-tuning or 

verification of the optimization suggestion. The adaptation model is the component whose nature changes 

the most depending on the phase of the ASIMOV solution is in. During the training phase it possesses 

the capability to generate a “imaginary” variant of the system (sometimes referred to as “System 

Configuration Variation”) by randomizing configuration parameters or setting them based on some rule 

(e.g., for improving generalization/coverage of sample data). This is done without having an actual 

physical system as a counterpart, thus without a connection or data from one. During the operational and 

fine-tuning phase, the DT shall represent an actual system. To provide this capability it takes the output 

of the physical twin given a reference input and calculates the necessary configuration parameters to fit 

this behavior. Since a DT can be composed of other DTs it shall pass the relevant information on physical 

twin data to its subsidiary DTs. These requirements in capability give place to the following block definition 

diagram of the Adaptation Model as seen in Figure 25. 

 

 
 

Figure 25 Block definition diagram of the Adaption model showing its composition. 

 

An adaptation model can be composed by one “configuration parameter generator” during the training-
phase or Configuration Parameter Calculator and Data Distributor for the operational and fine-tuning 
phase. If either of the latter exists, then the other is present as well. 
 

With respect to the internal connection of blocks, the adaptation model must be capable of receiving the 

relevant data from the Physical Twin 𝑦𝑃𝑇). It also obtains control inputs which trigger the updating of 

configuration parameter and feedback is supplied. As output the adaptation model, of course, needs to 

be able to pass configuration parameter to the logics and twinning data to subsidiary digital twins. 

Combined with the blocks as defined above, an internal block diagram as in Figure 25 can be designed. 
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Figure 26 Internal block diagram with connectors and blocks composing the Adaptation model. 

When compared to the origin of the adaptation model in Figure 17, one can notice that not the input u 

and the DT output y are missing as inputs to the adaptation model as presented in Figure 26. The reason 

for the previous is that either it is part of the data from the Physical Twin, or a reference input is applied 

which can enable the omission of measurements of the input to which the data from the Physical Twin 

𝑦𝑃𝑇 is the output. Thus, it does not need to be given as an input to the adaptation model. An example in 

the UUV UC would be a sequence of standardized tests with high explanatory power. 

For the omission of the output y, there are multiple ways to calculate the configuration parameters such 

as physics-based, prior knowledge (like look-up tables) or data-driven approaches the configuration 

parameter calculator is simplified to just using the output data from the physical twin 𝑦𝑃𝑇 and outputting 

the configuration parameters. It is possible, especially in the data-driven approach that the Configuration 

parameter calculator triggers a simulation using the logics and sub-DTs w.r.t. the reference input and 

calibrates an error model compensating for misalignments between the simulation result and the physical 

twin data. This is assumed to be part of the Configuration parameter calculator and thus is not explicitly 

modelled. 

 

In the training phase, the adaptation model can be simplified internally to a configuration parameter 

generator which is triggered by the DT controller as seen in Figure 27. 

 

 



D2.3 
Architecture of optimized digital twins for AI-based 

training 
Public 

 

 
 

    

Version Status Date Page 
Version 2.0 public 2024.05.08 40/69 

 

 
 

Figure 27 Internal block diagram of the adaptation model during the training phase. 

3.3.4 Exemplary application 

 
The architecture is developed with a use case from the highly automated vehicle testing domain that aims 
for automatic creation of a 3D-environment for vehicle tests. The system to be optimized is the testbed, 
including a virtual environment with a vehicle. For development of automated vehicle driving functions, 
critical scenarios are to be optimized to ensure testing time is used for the most insightful tests to find 
e.g., weaknesses in the functions. Also, this approach could be used as open exploration to build a 
database of scenarios. A scenario is usually characterized by specific criticality metrics that indicate its 
significance and potential impacts. The RLA proposes concrete scenarios with concrete 
parametrization/state values from logical scenarios with parameter ranges of state values which are 
executed on the virtual or real testbed, and the results are then computed to evaluate the scenarios. 
Figure 28 showcases the logical view on the optimization system during the finetuning phase. Thanks to 
the reference architecture enabling hierarchical DTs, the DT of the vehicle test setup contains a virtual 
environment simulating e.g., the street as a logic block, and the DT of a vehicle enables a black-box 
integration of this sub-module. The vehicle DT can also contain other DTs as submodules e.g., sensors 
or chassis. A database is integrated to hold libraries of the virtual environment’s assets. The simulation 
environment is connected to a vehicle its behavior it shall mimic. While in Figure 28 the fine-tuning phase 
is depicted, the only difference to the training phase is the substitution of the adaptation model by a 
parameter generator as seen in Figure 26 and Figure 27. This results in the minimization of necessary 
adjustments to the system including data formats as the variation generator and the twinning function 
output data in identical format.  
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Figure 28 Exemplary application of the architecture to a vehicle-in-the-loop test setup during the operational and 
fine-tuning phase wherein scenarios are optimized, and additional data are gathered for further improvement of 

RLA. 
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3.4 Technical View 
 

3.4.1 Introduction 

 
Figure 16 shows how the various components and systems are connected. Through these connections, 
control signals and data can be exchanged, among other data. Interfaces, data flow specifications, data 
and metadata properties are particularly important in this context to ensure reliable communication.   
  
Interfaces are of great importance because they enable access to the components and systems. They 
provide access to the outside world through which communication and data exchange between the 
components involved takes place. A well-designed interface facilitates the integration and interoperability 
of the components involved. 
  
Data flow specifications describe how data is transferred between components. They ensure that data is 
processed in the right order, in the right form and at the right time. It is the foundation for reliable and 
efficient data processing. A well-designed data flow specification is a prerequisite for a correctly 
functioning and efficient process.  
  
The properties of data and metadata are used to identify, classify and describe data. This information is 
essential for their use. In addition, they help to create an accurate replica of the physical object or system, 
and thus enable decisions regarding training and optimization.  
  
Interfaces, data flow specifications, and data and metadata properties are critical to creating an 
architecture for a DT. 

3.4.2 Interfaces between DTs for co-simulation 

 
A DT is a virtual duplicate of a real object or system that makes it possible to optimize and analyze the 
behavior of the system in a simulated environment. Multiple DTs can interact in a co-simulation to 
replicate a complex system in a virtual environment. The interaction of DTs can take place in different 
ways. On the one hand, DTs can be coupled to each other, which means that they can influence each 
other. On the other hand, they can also coexist, so that several DTs perform their work simultaneously in 
a system. Furthermore, DTs can be organized hierarchically, with higher-level DTs containing lower-level 
DTs. An overview of the relationships between DTs can be found in the chapter Logical View. The 
communication of DTs used for co-simulation is done through interfaces. These interfaces specify which 
data, protocols and methods can be used for an interaction. With these specified interfaces it is possible 
to exchange data between different DTs. 
 
Standardized communication is essential for an efficient and reliable process. Among other aspects, it 
enables a modular structure and thus facilitates the changeability of individual components. Depending 
on the requirements for transmission speed or reliability, different communication protocols can be used. 
For example, UDP is preferable to TCP if it is not necessary to ensure that a packet has arrived. This can 
increase the transfer speed. 
 
Another aspect is the efficiency of data transmission. It is therefore important to know which data is 
transmitted, when and how between the components. Furthermore, it must be ensured that the data are 
not sent unnecessarily often and that only what is necessary is sent. In addition, there are the following 
methods with which the efficiency can be further increased: Data compression, caching, 
Publish/Subscribe models. 
 
Due to the large number of components communicating with each other, errors and instabilities can occur. 
For example, incorrect settings can cause data to be generated incorrectly or corruptly. For this reason, 
it is important to implement techniques for analysis and error handling. The objective should be to quickly 
identify the source of the error. 
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The architecture of DTs can be very complex. One way to reduce this complexity is to divide the entire 
system into smaller units, as shown in Figure 16. This principle, which is called modularity, can help to 
make the system more understandable and maintainable. A further advantage of modularity is that the 
interfaces become smaller and thus more understandable.  
  
Another way to further simplify interfaces is to divide them according to their responsibilities. This principle 
is also known as interface segregation (see [42]). In this case, an interface contains only the functionality 
that a user needs for his task. This avoids dependencies on something that is not needed and can help 
to reduce the compilation time of components when interfaces are changed. 
 
When developing the interfaces, the above aspects should be considered to ensure reliable 
communication between the components. In addition, they facilitate the modification of the system when 
requirements change. 
 
Over the past few years, different solutions for co-simulation have emerged in simulation and modeling, 
such as the Functional Mock-up Interface (FMI)2 , the High-Level Architecture (HLA) standard3  and 
Model.CONNECT4. FMI is an open standard that can be used to exchange dynamic models. HLA 
provides an architecture for complex simulations and is a standard for distributed simulations. 
Model.CONNECT supports, among other things, simulations with multiple coupled models and enables 
the integration of real-time systems. These frameworks allow an easy connection between the co-
simulation and the DTs. The use of these frameworks can reduce development time and thus lower 
development costs. 

3.4.3 Performance view 

In this section, the performance view of DTs in the context of AI-based training is discussed. The system's 
performance highly impacts the duration of the training process and thus directly impacts the development 
time and costs for the implementation. The focus in this section is on why performance is so important, 
what challenges and trade-offs exist that affect performance, and what methods can be used to improve 
performance. 
 
As mentioned, the runtime speed of the DT has a great impact on AI-based training. In reinforcement 
learning, for example, an agent often requires a high number of iterations to learn a behavior. An iteration 
involves an action that is triggered by the RL agent. The action is then executed by the DT in a simulation 
environment. As a result of this action, the RL agent receives feedback in a form of reward or punishment, 
which it can use to adjust its behavior to make learning progress. The faster an iteration is, the faster the 
result is obtained. 
 
From a technical perspective, various trade-offs can affect performance. For example, there may be a 
conflict between accuracy and execution efficiency. On the one hand, the high accuracy of models of a 
DT can lead to slow execution due to complex calculations. On the other hand, a DT's models may lose 
accuracy if optimization is focused only on execution speed. Another conflict exists between real-time 
capability and data processing. A DT's real-time capability depends largely on the processing speed. To 
generate output fast from input data, large data sets often need to be processed, which can affect 
execution speed, especially when hardware resources are limited. 
 
Performance optimization must consider processing speed and data exchange and optimal use of 
hardware and software resources. The processing speed of DTs is crucial for fast and efficient 
simulations. The complexity of the models plays a central role here. Reducing model complexity can help 
to reduce computational effort and thus increase processing speed. However, this can also lead to a 
lower accuracy of the simulation results, which is why a compromise between model accuracy and 
execution efficiency must be found. This topic is addressed in more detail in Task 2.1. Another approach 
may be to develop surrogate models for a complex DT that can be evaluated quickly for training AI. 
 

 
2 https://fmi-standard.org/ 
3 https://standards.ieee.org/ieee/1516/3744/ 
4 https://www.avl.com/en/simulation-solutions/software-offering/simulation-tools-z/modelconnect 

https://fmi-standard.org/
https://standards.ieee.org/ieee/1516/3744/
https://www.avl.com/en/simulation-solutions/software-offering/simulation-tools-z/modelconnect
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In a modular architecture, the DT consists of several components that communicate and exchange data. 
Efficient data exchange is important to achieve low response times and latency. This is especially 
important for time-critical applications. There are different approaches to optimize the data exchange. 
One approach is to reduce the amount of data that is transferred. In the simplest case, this can be 
achieved by transferring only the data that is required. In addition, the data can be compressed before it 
is sent to reduce the amount of data to be transmitted. Communication protocols such as MQTT (see 
[43]) can also help to transfer data more efficiently. In addition, the network over which a DT 
communicates can be designed in a way that bottlenecks can be avoided. Another approach is to prioritize 
the data to improve latency and response times. 
 
The performance of a DT can also be improved on the software side by optimally utilizing the software 
resources. For example, threads can run on several CPU cores or on GPUs. This helps to distribute the 
computing load more efficiently. Especially with algorithms that can be parallelized easily, performance 
can be increased substantially with this method. For more information on the design of parallelized 
software, see [44] and [45]. Efficient data structures or caching techniques can also help to increase 
performance. Another alternative to increase performance could be the use of surrogate models which 
could be a faster alternative for slow DT (see section 4.3 on data-based modelling). 
 
On the hardware side, the performance of a DT can also be accelerated by various measures. 
For example, better load distribution can be achieved by additional hardware resources such as CPUs, 
GPUs or memory. However, it depends here on whether the corresponding software also uses these 
additional hardware resources. It is also conceivable to use faster hardware to increase performance. 
Another way to increase performance is to use the computing capacity of cloud services. Here, resources 
such as CPU and memory can be quickly adapted to the requirements. Cloud services like AWS and 
Azure offer different solutions and frameworks that can be used for a DT. For example, Azure offers a 
Digital Twin Definition Language (DTDL, [46]) that can be used to define models and DT. For certain 
tasks, it can make sense to use specialized hardware that has been developed for a specific purpose and 
can therefore be more efficient. This can be hardware for machine learning, for example. 
 
In general, the modular component aggregation of the ASIMOV solution aids component-specific 
hardware allocation. Components can be distributed across different machines, leveraging components 
specific hardware specifications. 

3.4.4 Information systems; internal and context and environment 

Information systems (IS) can be important in the development and usage of DTs. Usually, IS consist of a 
software-based solution, such as application software and databases. 
The main task of an IS is to collect, store, process, analyze, provide and link data. In the context of DTs, 
an IS can be used to collect data about a real-world object and create a DT from it. The structure of such 
an information system in the context of ASIMOV is discussed in the logical view chapter. An IS can also 
help facilitate interaction between the real object and its DT. 
 
For a DT, the following data are relevant and can be managed by an IS: 
 

• Internal data are information that can be determined directly from the real object, system, or 
process from which a DT can then be generated. This data can be obtained from various sources 
such as sensors, actuators, control devices, and integrated systems. For example, sensors can 
collect data such as depth information with Lidars or image information through cameras, while 
actuators and control devices provide information about movements, positions, and control 
commands. Internal data are important to accurately and completely map the behavior and 
performance of the real object to the DT. 

• Context data refers to the information that defines the DT in terms of its circumstances, conditions 
or relationships to other objects or systems. Context can be determined by various factors, such 
as the location, the time, the intention of an experiment. The context is an important factor to be 
able to map the reality accurately. 

• Environmental data refers to information about the physical environment and conditions that 
affect the real object that the DT represents. Environmental data allows the DT to better replicate 
the environment's effects on the behavior of the real object. Examples include temperature, 
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humidity, lighting conditions and weather conditions. It is difficult to draw a clear line between 
context and environment data, as they are closely linked. For example, environmental data 
depends on the context. 

 
The consideration of internal, context, and environment data and the use of information systems makes 
it possible to create a DT that accurately represents the behavior of its physical counterpart and can 
enable realistic simulations, analyses and decisions. 
 
In the context of DTs, the term digital thread is often used, which also has relevance for IS. DTs are based 
on data that comes from the digital thread. The Digital Thread evolved from product life cycle 
management (PLM), which captured the process from design to manufacture for physical products [47]. 
Unlike PLM, the digital thread extends the lifecycle record by integrating operations, maintenance and 
disposal. This extension makes it possible to gain a more comprehensive understanding of the entire 
product life cycle and further optimize product development. 
 
One of the most important features of Digital Thread is a traceable, unique creation entry. This entry 
records data for each product, product group and all its components. In addition, the Digital Thread 
provides the ability to document interactions and transactions throughout the lifecycle. This is done 
throughout the entire lifecycle and extends to the final disposal of the product. A central aspect of the 
digital thread is the traceability of components, which relates to various elements. These include design 
iterations, manufacturing processes, tests, and quality measures. 
 
Due to the comprehensiveness of the data, the Digital Thread can be a central element in the creation 
and updating of DTs. By providing a comprehensive and consistent set of data throughout the product's 
lifecycle, the Digital Thread enables the creation of an accurate and reliable DT. For more information on 
the topic, see [47]. 

3.4.5 Standards, data formats 

In DTs, standards and data formats are of great importance. They ensure that different applications, 
systems and organizations can work together effectively by providing a set of rules and uniform data 
structures. Compliance with standards and the use of established data formats enables interoperability, 
reduces development effort and reduces the complexity of integrating different technologies. An 
organization that is committed to the development and promotion of standards and best practices is the 
Digital Twin Consortium [48]. 
 
The introduction of standards and data formats has several advantages: 

• Maintainability: Facilitates the maintenance and updating of DTs, systems, and applications 
over time. 

• Interchangeability: Individual components, systems or applications can be exchanged more 
easily. 

• Simplicity: Reduces the complexity and effort of integrating different technologies and data 
sources. 

• Developability: The use of standards and data formats leads to reduced development time for 
DTs, due to less time spent on customizing and integrating systems. 

• Interoperability: Standards and data formats enable reliable communication between DTs, 
systems and applications and ensure reliable data exchange even between models that originate 
from different sources. 

• Reusability: Standards enable the reusability of components, such as models. 
 
Standards and data formats can therefore help to manage the complexity of the various technologies. 
However, several challenges can arise when selecting standards and data formats. Some of the most 
important challenges are: 

• Technology stack in the organization: During development, components are often integrated 
into the existing technology stack rather than starting from scratch. This can lead to problems if 
the new technology is not compatible with the existing one. 

• Number of standards and data formats: There are many standards and data formats, which 
have their advantages and disadvantages and are sometimes sector or application specific. 
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Choosing an appropriate standard or data format can be difficult given the number and their 
differences. 

• Interoperability: A standard or data format that enables interoperability with other DTs, systems, 
applications and organizations can be challenging to choose. This requires careful evaluation of 
the compatibility of different technologies. 

• Sector-specific requirements: It can be difficult to find a common standard or data format that 
is suitable for all stakeholders, especially if they come from different sectors and have different 
requirements. 

• Acceptance and dissemination: A standard or data format that is not widely used is difficult to 
establish. Its use therefore depends on its acceptance and dissemination. 

• Technological change: Advances in technology may lead to new standards and data formats, 
while older ones may become obsolete. Choosing a standard or data format that can adapt to 
technological changes while being backward compatible can be a challenge. 

 
Facing these challenges requires careful consideration of which standards and data formats best fit the 
specific requirements of a DT. For challenges and solutions related to standardized software patterns, 
see also [49]. 
 
In this context, it is important to look at standards that have been developed specifically for DTs and those 
that are used by DTs but have not been explicitly designed for them.  
Different organizations and committees are involved in the development of standards for DTs. These 
organizations include the International Organization for Standardization (ISO), which is involved in 
developing standards for a wide range of industries and technologies. ISO standardizes processes, data 
formats and interfaces relevant to DTs. Also relevant is the International Electrotechnical Commission 
(IEC), which develops electronic technology standards. In addition to these organizations, there are other 
initiatives and committees involved in developing standards for DTs. 
 
General standards not explicitly developed for DTs can be an important building block. These standards 
include areas such as communications, security, and data formats. However, there are standards 
developed specifically for DTs to ensure their standardized implementation and compatibility. ISO 23247 
is an important standard that addresses the topics concerning DTs. 
 
The ISO 23247 series provides a framework to support the creation of DTs in manufacturing. It refers to 
various elements such as personnel, equipment, materials, processes, facilities, environment and 
products. The series includes general principles and requirements for the development of DTs, a 
reference architecture with functional views, a representation of manufacturing elements, and 
requirements for information exchange. For more details, refer to [50]. 
 
In addition, ISO and IEC have a Join Technical Committee with the primary objective of developing 
standards for the Internet of Things (IoT) and DTs and related technologies, called ISO/IEC JTC 1/SC 
41. For more information on the topic, see [51]. 
 
The choice of data formats for DTs depends on the task they are intended to accomplish and the area in 
which they are used. The following file formats can be relevant for the creation and use of DTs: 
 

• Data structure formats: These formats are used to organize data in a structured form, which 
can then be used for data exchange, for example. Common formats are for example JSON and 
XML. 

• 3D modeling formats: These formats are often used in areas where a three-dimensional visual 
model needs to be created. Common formats are, for example, FBX and OBJ. Special CAD 
formats can also be used for detailed design information. 

• Other formats: Specific formats may be required depending on various factors such as 
requirements.  For example, GIS formats that represent geographical data can be used for the 
environment in which the DT is embedded. 

 
It is important to note that DTs are often not limited to single data formats, but may use a combination of 
formats to provide, for example, a complete and accurate representation of the physical object or system. 
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3.4.6 Deployment, Software aspects 

  
Deployment generally refers to the process of delivering software to a target environment. It includes the 
compilation and testing of the software and its installation and configuration in the intended target 
environment. Deployment can be a very complex task, with various software and hardware aspects to 
consider. In this section, we will look at these issues in more detail to gain a deeper understanding of the 
deployment process and its importance when using DTs. 
 
Regarding a suitable target environment, several challenges arise that are essential for the deployment. 
For example, the costs caused by a particular deployment strategy must be considered. There are 
immediate costs for hardware, software and personnel and long-term costs for maintenance, upgrades 
and downtime. In addition, the short- and long-term viability must also be analyzed. For example, the 
cloud's use enables significant cost savings, as only the resources requested are charged. This means 
that the infrastructure can be utilized optimally.  
The protection of confidentiality and intellectual property is another important aspect and must also be 
considered when deploying the software. Security measures and data protection practices must ensure 
that the risk of data loss is minimized. This is particularly important for sensitive data or intellectual 
property.  
Another aspect relates to the system to be deployed and whether it is critical to the success of the task. 
A failure of the system could potentially put the company's goals at risk. Therefore, reliability is another 
aspect that needs to be considered. 
 
Various software aspects that must be considered during the development of the DT contribute to its 
successful deployment and operation in the target environment. For example, aspects such as 
modularity, scalability, performance, security, compatibility, and maintainability can improve the 
performance and reliability of the system. For this reason, it should be known in advance in which 
environment the DT is to be deployed. 
 
As mentioned earlier, the choice of a deployment strategy can depend on many factors. There are several 
options on which hardware the deployment can take place. The advantages and disadvantages of some 
of these options are discussed in more detail below. 
 
In local deployment, also known as on-premises deployment, the DT is installed and operated on the 
company's hardware. The advantage of this type of deployment is the high degree of control over the 
hardware and software. Among other benefits, this can lead to higher security, for example when the 
system is operated in an isolated network, and to higher performance, as the system can be tailored to 
the specific requirements. Direct access to the hardware makes it easier to make changes. However, the 
disadvantage is the higher cost of hardware, maintenance and personnel. 
 
Cloud-based deployment, on the other hand, uses the resources of cloud service providers, who make 
their computing capacity and storage space available to their customers. Cloud service providers offer 
various cloud service models, including Infrastructure as a Service (IaaS), Platform as a Service (PaaS) 
and Software as a Service (SaaS). Depending on the model selected, the overhead of system 
maintenance and the degree of control over the system can vary greatly. A key advantage of cloud-based 
deployment is that resources can be added and removed easily. This makes it possible to scale the 
application and use resources on demand more easily, which can significantly reduce costs. On the 
downside, there are risks related to data protection and security, as well as access to the cloud service 
from the Internet if there is no reliable Internet connection. 
 
With edge computing, data is processed close to the data source instead of being sent to a distant data 
center or the cloud for processing. Processing usually takes place on the device itself or nearby, e.g., on 
a local server. This can reduce response time and bandwidth usage since it avoids sending unnecessary 
data to a central location. Transferring only necessary information and avoiding deep system access can 
improve security.  However, there are also disadvantages to consider. The high level of distribution may 
increase security risks. The cost of more complex implementation, management and maintenance 
compared to centralized solution can be higher. 
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The implementation of the “Twinning” block (see figure 22) is concerned with such considerations. In use 
cases with a small number of even just one system to be optimized, the retrieval of data directly from the 
system’s sensor to the adaptation of DTs in the simulation environment may be feasible, but at scale and 
in distributed system, this runs into problems fast. Thus, a framework is required to orchestrate the 
retrieval and pre-processing of data at or close to the CPS. An example for this BaSys 4, a reference 
architecture with its open-source reference implementation BaSyx [52]. The central idea of this framework 
is the enveloping of the real system in an “asset administration shell” (AAS) (see Figure 29) which 
orchestrate the retrieval of system data from the real device and storing and computing it in sub-models 
as well as providing a standardized and simple interface for communication. High-level applications (as 
the DTs’ adaptation models in the ASIMOV solution) can then “control, optimize and monitor the digital 
factory” or any system [53]. This can basically be seen as the interface for physical-digital twinning and 
vice-versa or “Twinning” block. The communication would be over network enabling the RLA being part 
of the CPS or somewhere in the cloud.  
 
While the AAS can govern sub-modules which can also be connected to simulation models (see Figure 
29), the RLA does not interact with these. While their usage fundamentally would be able to reproduce 
the behavior necessary for the training of the optimization RLA, in case they meet the requirement on 
accuracy, there are benefits to the integration of the models into a dedicated environment simulation as 
response times and scalability are easier to manage. A direct connection of the RLA with the submodels 
via an AAS is not replicated in the above shown architecture. Another possibility to combine both 
frameworks is that the Basys sub-modules take over the task of the adaptation model and only model 
configurations are transferred via the AAS to the DTs in the ASIMOV framework. However, this defies 
the self-containedness including its advantages of the DT as proposed in the ASIMOV DT architecture. 
 

 
 

Figure 29 Overview on the high-level architecture of Basyx. The ASIMOV solution would be situated alongside the 
virtual control room, interacting with the system via the AAS. Source: [54]. 

The choice of the right deployment strategy depends on various criteria, such as data protection 
guidelines, specific requirements of the DT, the existing infrastructure and the budget. 
 
For a more detailed discussion and in-depth information on deployment, please refer to [55]. There you 
will find a comprehensive coverage of various aspects of deployment, including detailed descriptions and 
use cases. 
 

3.4.7 Security and trustworthiness 

In today's connected digital world, security and trustworthiness are critical. Security refers to protection 
against unauthorized access, data loss and manipulation and ensures the integrity and availability of 
information. Trustworthiness, on the other hand, refers to a system or information's reliability and 
credibility. 
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Security measures should be built into the development and deployment process of a digital twin from 
the beginning. This section provides a brief overview of the importance and necessity of security 
measures. The findings on security and trustworthiness are based on the work of the Digital Twin 
Consortium, which can be read in detail in [56]. The Consortium recommends considering the following 
key aspects for security and trustworthiness: 
 

• Data Encryption: Data encryption ensures the confidentiality of data before it is stored or 
transmitted. 

• Device Security: Controlling access to device data is necessary to prevent unauthorized access 
and manipulation. This can be achieved by creating suitable privileges and defining a framework 
for enforcement. 

• Security: The security measures protect the digital twins and their data. The measures are 
intended to prevent unwanted or unauthorized access, changes or destruction. This ensures 
confidentiality, integrity and availability. 

• Privacy: Privacy gives users of digital twins control over the collection, storage and sharing of 
their data to protect their rights and privacy. 

• Safety: The purpose of safety measures is to ensure that the digital twins are operated without 
posing significant risks to people, property, or the environment. 

• Reliability: The reliability of a digital twin refers to its consistent performance, quality of service, 
availability and accuracy. This ensures consistent and accurate results. 

• Resilience: The digital twin's resilience ensures acceptable performance levels even during 
disruptions. The goal is to maintain continuous functionality despite interruptions, failures, or 
attacks. 

 
 

4 Digital Twin Behaviour 

The concept of Digital Twin (DT) has emerged here to bridge the virtual and physical worlds, to optimize 
the operation and to enhance decision-making processes. Behavior modeling is a crucial aspect essential 
for the development and effectiveness of DTs. This section looks at the requirements for behavior 
modeling in this context and explains the methodologies. 
 
4.1 System Behavior  
Various definitions of system behavior are delivered in literature, each of them aims at exploring different 

categories of system specifications. The Systems Engineering body of Knowledge (SEBoK) defines 

behavior as “the effect produced when an instance of a complex system or organism is used in its 

operational environment”.  

The behavior of the system is anticipated as event(s) that triggers other event(s) in that system or its 

environment. The event refers to a change in one or more structural properties of the system or its 

environment over time. The predecessors and/or consequences of the events can be used to study the 

system behavior [57]. In the case of systems with higher level complexity, e.g., CPS‘s, these events are 

not fully observable and moreover the changes due to these events are not necessarily deterministic.  

 

State Transition Model. Describing the system behavior using a sequence of states and transitions 
between those states is one of the dominant behavior modeling paradigms [58]. The states comprise the 
system’s parameters and the behavior specify the evolution in values of those parameters. The causal 
explanations for the state transitions include physical laws, mathematical equations, functions of the 
subsystems, structural constraints, or other behaviors. The state space in this paradigm is either 
continuous or discrete. For a continuous representation, we assume that the system state changes 
continuously over time according to a set of differential equations. By discrete state space modelling, the 
behavior of an operating system is represented using a finite set of discrete state variables over discrete 
time steps. Within this paradigm, we assume that between two consecutive time steps, the system 
remains unchanged. At any time, the system's state vector is constituted by valuing state variables. 
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The dynamical system can be modelled by continuous state space as 
𝑑

𝑑𝑡
𝑥 = 𝑓(𝑥, 𝑡, 𝑢; 𝛽) + 𝑑 and 𝑦 =

𝑔(𝑥, 𝑡) + 𝑛 , where 
𝑑

𝑑𝑡
 represents the differential operator, 𝑥 is state of dynamic elements, 𝑓 is state 

function while the dynamics change continuously over time, 𝑡 represents time, 𝑢 input, 𝛽 indicates 

parameters, 𝑑 disturbance, 𝑦 observable outputs, 𝑔 output function and 𝑛 represents noise. In many 
instances we do not have knowledge about the entire set of disturbance and noise elements. This can 
be conquered by feeding the generated output by the CPS of interest into DT.  
Note that in a probabilistic transition modelling, we assess the behavior of the system as a transition 

model 𝑃(𝑥, 𝑎, 𝑥′), i.e., the probability of reaching state 𝑥′ from state 𝑥 applying the action 𝑎 . 

The behavior of a system often goes beyond the aggregation of its individual components that make up 

the system. Consider the example of double pendulums, where the behavior cannot be replicated by 

linearly combining two single pendulum models. Complex systems frequently exhibit emergent behaviors 

where the properties of the system surpass those of its individual parts. The prediction and analysis of 

emergent behaviors, which may lead to undesirable outcomes, is one of the challenges in the 

development and modeling of such complex systems [59]. The uncertainties and non-linearities of the 

actual system that are not (or cannot be) modeled need to be explored at the level of model’s behavior 

and overall performance.  

We can expand the boundaries of integrated component models by modeling the behavior of a unified 

system and extending the horizon of behavioral patterns created by the underlying structure. This 

expansion can be achieved through capturing cause-and-effect relationships. The behavior of a CPS 

depends on its individual components, their interaction and the inputs from the CPS environment. The 

goal is to replicate the behavior of CPS by the DT sufficiently well, regardless of the existing uncertainties 

inherent in CPS and its environment modeling. 

 
4.2 DT Behavior 

A DT is characterized by its ability to interface the actual system and exchange data and control 

information. By tracking the past and current behavior, the DT predicts the future behavior and thus 

provides real-time decision information to optimize the future operations. Like other software models, by 

developing formal DT specifications that capture potential behavior and using model checking techniques, 

we can accurately determine if specific requirements are met. In instances where requirements are not 

met, the counterexample traces allow us to diagnose faulty behaviors. Here, the focus is on investigating 

behavioral requirements within a scenario-based framework, thereby exploring system performance in 

predefined scenarios. 

Figure 30 illustrates a fundamental connection between the CPS and the DT. Both systems receive 

identical inputs, with the DT additionally taking input from the CPS's output. 

 

 
 

Figure 30 Transferring data between CPS and DT. 

To characterize the CPS’s behavior at discrete time steps, denoted as 𝑖 ∈ 𝑁 , we evaluate its transition 

to state 𝑥𝐶𝑃𝑆[𝑖] resulting in output 𝑦𝐶𝑃𝑆[𝑖], after being stimulated by input 𝑢 at the state 𝑥𝐶𝑃𝑆[𝑖 − 1]. This 
can be represented by the conditional probabilities: 
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𝑃(𝑥𝐶𝑃𝑆[𝑖]|𝑥𝐶𝑃𝑆[𝑖 − 1], 𝑢[𝑖]),  

𝑃(𝑦𝐶𝑃𝑆[𝑖]|𝑥𝐶𝑃𝑆[𝑖]). 
 

The development of the DT should aim to replicate a similar behavior, ensuring it generates transitions 
and outputs like the CPS. Thus, the DT's conditional probabilities are expressed as, 
 

𝑃(𝑥𝐷𝑇[𝑖]|𝑥𝐷𝑇[𝑖 − 1], 𝑢[𝑖], 𝑦𝐶𝑃𝑆[𝑖]), 

𝑃(𝑦𝐷𝑇[𝑖]|𝑥𝐷𝑇[𝑖]). 
 
Assuming functional equivalence between the CPS and DT implies that when stimulated with the same 

input from identical initial states, they should exhibit analogous transitions and yield equivalent outputs. 

 

 

Figure 31 Overall architectural view of exchanging data between CPS, DT and RL Agent in ASIMOV for the 
purpose of behavior modeling 

The DT in ASIMOV operates within an environment comprising the RL Agent and the CPS, often referred 

to as the Physical Twin (see Figure 16). 

In Figure 32, the detailed representations include 𝒖 denoting the set of known (controllable) system 

inputs, 𝒚𝑪𝑷𝑺  denoting the observable outputs of CPS, and 𝒚𝑫𝑻 denoting the data generated by the DT. 

Notably, the models of system’s components employ different functions, subfunctions and algorithms. 

The Twinning data originates from the operational CPS, i.e. sourced from its environment, communication 

medium or the CPS itself. This data is usually available as time-series data, primarily scalar data capturing 

the values of sensors and actuators. The effects of DT on its environment can be characterized by its role 

in providing training data for the RL Agent, thereby shaping the learned policy, and consequently 

influencing the CPS optimization. 
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The creation of the DT involves initially crafting digital models by either learning the physics-based models 

of CPS components or utilizing historical data gathered from a representative CPS. The next steps entail 

integrating real-time data generated by the operational CPS to refine the initially trained DT. These 

iterative processes prepare the DT to capture the known behaviors of its evolving CPS counterpart. 

Evaluating the behavior of the DT necessitates investigation across different phases of ASIMOV.  

Various modeling techniques for system behavior can be considered in different phases, including: 

▪ Modeling based on control theory, using laws of physics and mathematical models; 

▪ Data-driven modeling using machine learning techniques; 

▪ Hybrid modeling, which integrates both control and data-based modeling; 

▪ Alternative approaches such as graph-based frameworks and ontology-based models. 

Throughout the DT development phase, the selection of the most appropriate approach depends on the 

availability of conceptual knowledge and/or collected data from the CPS use case. The resulting behavior 

model undergoes further refinement in developmental phases. 

4.2.1 Sequential Behavior 

Along with the definitions of system behavior, the behavioral architecture is “an arrangement of functions 

and their subfunctions and interfaces (internal and external) that defines the execution sequencing, the 

conditions for control or dataflow and the performance requirements to satisfy the requirements baseline” 

[modification of ISO/IEC/IEEE 24748-4 for behavioral aspects by SEBoK]. The behavioral architecture of 

a system describes what is happening inside that system to generate the output, given the inputs and the 

control configurations. Segovia et al. [60] indicate the necessity of evolving architecture in order to 

integrate system changes, such as new components, interfaces or connections to other components, or 

to adapt the system behavior.  

The process interactions arranged in time sequences are summarized and shown in Figure 33 and Figure 

34. Sequence diagrams are generally used to represent the interactions between objects in the sequential 

order that the interactions take place. These diagrams are useful for documenting how the system model 

should behave. We aim to establish the transition from the requirements formulated for the use cases to 

the next formal level of refinement, e.g., the DT behavioral architecture in one or more sequence 

diagrams. Each element in these figures is drawn by bigger rectangles and the attached dashed line to 

represent the lifeline, e.g., CPS, DT or Control and Logic. The vertical axis represents time proceedings 

down the figure. Along the lifelines, the thin rectangles depict the period of activation, and the smaller 

rectangles indicate the self-messages that invoke operation in the corresponding lifeline. The vertical 

dimension of a sequence diagram shows the time sequence of calls as they occur, top to bottom, and the 

horizontal dimension shows the object that sends message or information to the object that receives it, 

left to right. The self-arrows are used to show the processes that occur within the system. 

 



D2.3 
Architecture of optimized digital twins for AI-based 

training 
Public 

 

 
 

    

Version Status Date Page 
Version 2.0 public 2024.05.08 53/69 

 

 

 
Figure 33 Sequence diagram of interaction between CPS, DT and RL Agent. 

 
 

Figure 34 Sequence diagram of DT components. 

Often, the system of interest incorporates several connected components that process sequentially or 
simultaneously to produce the system’s final output. The system is triggered by an external input which 
is fed into a subset of these components while the rest of components receive the generated outputs by 
the first subset as inputs. To differentiate the external inputs from the intermediate ones for DT, [61] 
defined a set of stimuli 𝑆 using the set of inputs of all incorporated components in CPS but excluding the 

ones that are shared with the outputs set. In other words,  𝑆 ≔ {𝑠  ∈  𝑈𝐷𝑇|𝑠  ∈ 𝑈𝐶𝑃𝑆   ∧  𝑠 ∉ 𝑌𝐶𝑃𝑆|}. Feeding 
DT with the identified stimuli, the same states should be reached in DT as in CPS, which the authors call 
“state replication”.  
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Often, the system of interest incorporates interconnected components that operate sequentially or 
concurrently to generate the system’s final output. The system is triggered by an external input which is 
fed into a subset of these components while the rest of components receive the generated outputs by the 
first subset as inputs. To distinguish between the external inputs from the intermediate ones for DT,  [61] 
defined a set of stimuli 𝑆 using the set of inputs of all incorporated components in CPS but excluding the 
ones that are shared with the outputs set. In other words,  𝑆 ≔ {𝑠  ∈  𝑈𝐷𝑇|𝑠  ∈ 𝑈𝐶𝑃𝑆   ∧  𝑠 ∉ 𝑌𝐶𝑃𝑆|}. Feeding 
DT with the identified stimuli, the same states should be reached in DT as in CPS, which the authors call 
“state replication”.  

4.2.2 Adaptive Behavior 

In response to deviations in the established patterns of CPS behavior that lead to deviations from DT 

predictions, the DT should go through adaptation. For instance, the behavior of the test bed of the UUV 

use case can be influenced by changes in temperature or humidity level of the room. They necessitate 

corresponding adjustments in DT behavior to maintain prediction accuracy. The behavioral adaptations 

refer to instantaneous changes and those developed over time to fulfill the DT objectives (including 

training data for the RL Agent in ASIMOV).  

A primary strategy for adapting DT behavior involves modulation of various parameters. This approach 

relies on parameterized models. The adaptation in this case is realized by adjusting the parameter values.  

The data from the CPS, including the sensor data and actuator values collected from physical 

components, serve to update DT, preparing it for further prediction. Figure 34, for example, illustrates a 

sequential behavior of DT when presented with data(u,x,y) collected from CPS. As earlier described ’u’ 

represents input, ’x’ represents state and ‘y‘ represents the observable output. This data undergoes a 

comparison with the known behavioral data within the DT database by the logic component. If the data is 

not listed, it will be incorporated, and the DT will be adapted accordingly to enable it to generate similar 

data(u,x,y) in the future. This adaptation involves parameter adjusting and potential model refinements. 

However, due to multi-scale nature of the integrated components of CPS, it is not always a straightforward 

task to identify the parameters and learn the models to map the changes of CPS into DT. Statistical and 

machine learning techniques by use of data, deliver key insights about the system and subsequently 

enable us to model the system behavior. For instance, [62] proposed a Mixture of Experts using Gaussian 

process (MoE-GP) approach to learn the time-evolution of different system parameters, which are in this 

case selected by the physics-based insight. The identified parameters evolve at different time scales and 

each of the experts within MoE framework learns the evolution of the system parameter at a single scale 

using GP. The observable outputs, 𝑦𝑡 , at discrete time points are assumed to be generated from 

𝑀 independent hidden states, 𝑥𝑡
(𝑚)

with 𝑚 = 1,2, … , 𝑀 which are referred to as experts. The evolution of 

hidden states is assumed to be a Gaussian process, and to obtain the observed data 𝑦𝑡, they couple the 

hidden states in a generative way. Once the hyperparameters and coefficients are estimated, the 

behavior of the evolving system can be predicted. 

The data retrieved from the CPS, including the sensor data and actuators value collected from its physical 

components, serve as the foundation to update the DT preparing it to predict future states. However, due 

to multi-scale dynamics of the integrated CPS components, identifying the parameters and learning to 

map CPS changes is not always straightforward. For instance, the components often operate at different 

scales and exhibit different aging characteristics. The tires in a vehicle experience wear and tear at a 

different rate compared to other components. Several factors can influence their aging, such as road 

conditions and driving habits. On the other hand, the trees in the driving environment have their own 

aging processes impacted by different factors such as weather conditions and seasonal variation. 

Statistical and machine learning techniques, exploiting available data, deliver key insights into the system 

and facilitate the modeling of its behavior. For example,  [62]  proposed a Mixture of Experts using 

Gaussian process (MoE-GP) approach to learn the time-evolution of various system parameters. The 

parameters, e.g. selected based on the physics-based insights, evolve at different time scales. Within the 

MoE framework, each expert learns the evolution of the system parameter at a single scale using GP.  
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The observable outputs, 𝑦𝑡, at discrete time points are assumed to originate from 𝑀 independent hidden 

states, 𝑥𝑡
(𝑚)

with 𝑚 = 1,2, … , 𝑀 , referred to as experts. The evolution of hidden states is assumed to be a 

Gaussian process, and to obtain the observed data 𝑦𝑡, the hidden states are coupled in a generative 

manner. Once the hyperparameters and coefficients are estimated, the prediction about the behavior of 

the evolving system can be made. 

In a broader context, the adaptation can also take the form of structural adaptation and behavioral 

adjustments. The structural adaptation aims to adapt the system behavior by changing its architecture, 

while the behavioral adaptation aims to modify the functionalities of computational entities. 

PobSAM (Policy-based Self-Adaptive Model) offers a policy-based modeling framework for the self-

adaptive systems, supporting behavioral adaptation [63]. This model consists of three layers, namely 

actor, view and manager layers. The functional behavior is implemented by computational components 

in the actor layer. The view layer addresses the actual state of actors. The manager level consists of the 

managers, each equipped with different configurations (policies), with only one active configuration at a 

time. Guided by the active configuration, a manager governs the behavior of its corresponding actors. 

HPobSAM (Hierarchical PobSAM), an extension of PobSAM, supports modeling large-scale adaptive 

systems. The self-adaptive modules have been integrated into PobSAM as a structuring feature  [64].   

4.2.3 Validation of DT Behavior 

One of the ultimate goals of behavior modeling is to provide models that integrate the whole system 
behavior at a level of abstraction that enables its validation during DT development and also supports 
traceability of the behavior and its validation across the operation and fine-tuning processes. We are 
searching to specify the appropriate states, such that the resulting behavior realized by applying those 
states, is qualified to meet requirements. These requirements cover the behavior space, including critical 
behavior, and the capability to be scalable/reusable for different functional specifications.  
 
The state variables are mostly selected in accordance with the system equation-based models and 
following methods of system identification. The state variables evolve over time depending on their 
current values and on the externally imposed values or input variables. If we have the initial state (the 
state vector of system valued at initial time), along with the inputs over time interval from that initial point 
onwards, we will be able to determine the state after that time interval. The other point to consider in 
selecting state variables is balancing controllability (on which parameters the input u has most impacts) 
and observability (which parameters can cause more changes on measurable or observable y).  
 
Regression analysis of observed data is a robust statistical modeling technique for elucidating different 
variables that contribute to the system behavior and estimating the relationships among them. 
Structural Equation Modeling (SEM) and Factor Analysis (FA) represent two convenient instances of 
regression-based techniques to model DT behavior by exploring the measured and latent variables while 
exploring their interdependencies. By definition, a latent variable is the variable that can only be indirectly 
inferred, while an observable variable is directly observed or measured. By definition, a latent variable is 
the variable that can only be inferred indirectly while an observable variable can be directly observed or 
measured. In this way, a factor describes and explains a set of observed variables that have similar 
response patterns. Moreover, a factor is a set of observed variables that have similar response patterns, 
and they are associated with a hidden variable.  
The conceptual knowledge about the system is then beneficial to supervise the learned model by 
including or excluding the dependencies between the variables. 
 
4.3 Qualitative Modeling and Behavior Types 
 
Often in investigating a complex system, we face situations where the detailed (or deep) models of the 

underlying mechanisms, particularly continuous aspects, are not accessible, or where the state variables 

are not directly observable. In such cases, the qualitative modeling of the system begins with description 

of the known structures within that system for reasoning. This often involves drawing a directed graph 

from the initial state to the possible future states, indicating the relation between these states [65]. The 
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possible behaviors of the system are then represented by different paths within the resulting graph, 

starting from the initial (current) space.  

The qualitative models are useful precise knowledge is lacking and allow reasoning at a higher abstract 

level. The goal of creating qualitative simulation models is to capture the essential characteristics of the 

structure and the behavior of the system. For instance, to understand the dynamic behavior of CPS and 

relations between various factors, semi-structures or unstructured approaches can be employed for 

extensive data collection, such as conducting interviews with human experts.  

An exemplary qualitative model, as depicted in Figure 35, represents the influence between three 

parameters, temperature, wearing and sensor error rate, for the UUV use case. The operation of the test 

bed normally leads to wear and tear in some of the machinery components as well as an increase in the 

temperature increasement. These two parameters have mutual influence on the frequency of 

measurements error of the implemented sensors on the test bed. 

Assuming equation-based model or observable data are not available, by following a qualitative 
approach, we can bring the (known) uncontrollable and unobservable elements of CPS, including the 
inputs from the external environment, into the DT and replicate the influence by DT behavior. 
 

 
 

Figure 35 Exemplary influence diagram. 

 
Every system of interest can have behavior traits that define how it responds to various types of inputs. 

Acquiring the knowledge about these traits, or types of behavior, and transferring it into DT will result in 

an effective prediction of the behavior of the CPS over time. Depending on the system specifications, 

various behavior types, e.g., emerging behavior, critical behavior or challenging behavior, are required to 

synthesize the system's triggered collective responses.  

 

4.4 Data-based modelling 
 

4.4.1 Introduction  

 
Introduction 1.2.2 describes modelling challenges which arise in many disciplines and scientific fields. As 
explained in 3.3.3, the DT can consist of components which are DTs or models themselves and arise 
from different development activities. We will use DT, Digital Model and model here interchangeably.  
Possible approaches of model building are 

- Modelling primarly based on domain knowledge, first principles 
- Modeling using field data (e.g., examples of observed input-output) 

 
If much domain knowledge is present, it may be possible to “write down” the model from first principles 
alone. Often, some numerical constants (e.g., mechanical or electrical properties) may still be unknown. 
In previous sections, these are the configuration parameters.  At this point, we focus on the case of 
field data. It is still beneficial to use as much domain knowledge as possible, e.g. a causal interpretation 
can help deal with the different roles of the variables, and physical insight helps in formulating the exact 
form models. Data is processed into the appropriate level of aggregation and summarized in a convenient 
way, a.k.a. feature engineering in machine learning contexts. In this situation, model building is based in 
part on data. In statistics [66], the jargon is that the model parameters or coefficients are estimated; in 
machine learning the model is trained and weights are found, in other domains the model’s numerical 
constants may be “calibrated” to data. Here the model parameters, coefficients, weights, calibrated 



D2.3 
Architecture of optimized digital twins for AI-based 

training 
Public 

 

 
 

    

Version Status Date Page 
Version 2.0 public 2024.05.08 57/69 

 

constants coincide with the configuration parameters. A further link is the output function 𝑦 = 𝑔(𝑥, 𝑡) from 

4.1. We switch to the generic notation 𝑦 = 𝑔(𝑥1, … , 𝑥𝑝) with inputs, or “predictors” in statistics, and time 

variable 𝑡 is then one of the predictors.  
Figure 36 is one possible taxonomy of data-based modelling in this situation. 

4.4.2 Taxonomy of data-based modelling 

 
 

Figure 36 A taxonomy of data-based modelling. Line thickness at the bottom indicates suitability & typical use. 
Acronyms are as follows: DM (digital model), ML (machine learning), CNN (convolutional neural networks), GAN 

(generative adversarial network), VAE (variational auto encoder), R&D (research and development).  

Figure 36 is related to the ideas in [67]. Some remarks on the taxonomy in Figure 36: 
 
Surrogate models of detailed physics models or simulation models. Such models may well be available 
where design parameters as inputs can be identified as a selection of inputs. However, one evaluation 
may require considerable computational effort (e.g., minutes, hours). In this case, a carefully selected list 
(Design of Computer Experiments) can be constructed and fed to the detailed model. Then, the simulation 

Modelling 
Domain knowledge / physics / first principles 
Example pre-processed data is available for model building 
Supervised machine learning, 𝑦 = 𝑔(𝑥1, … , 𝑥𝑝) 

Surrogate modelling 
Starting from a 
detailed DM/simulation 
which may be slow 
 
Errors are 
deterministic rather 
than stochastic 
 
Kriging, Gaussian 
Process… 

 

Use of the models 
Understanding, 
predictions 
Especially optimal 
design, what-if 

Domain knowledge 
/simple relations 
First principles, Close 
to domain knowledge; 
emphasis on model 
assumptions 
 
Link to causal models 
Grouping structures? 
 
Classical statistical 
models 
  

Use of the models 
Understanding, 
predictions.  
 
R&D: give proof of 
good design 
  

Data-oriented 
Methods from ML, 
possibly black box 
 
More complex inputs 
allowed 
Emphasis on 
overfitting, cross 
validation 
machine learning  - 
statistics –methods 
 
  

Use of the models 
Prediction 
 
(Understanding is 
difficult) 
  

Data-oriented & 
complex inputs 
Input=images, free 
text, audio 
 
Area of AI, ML 
CNN 
GAN  
VAE 
… 
 

  

Use of the models 
predictions  
generate more, similar 
data 

Understanding 
Quantifying effects in plots, 
including uncertainty 
Link to cause-and-effect. 
Visualization and values of effects. 
Effects of multiple inputs. 
 
Iterative model building as 
understanding increases 

Prediction 
Daily operation, decision making 
 
Optimization, training AI 
Robustness check (variations on 
inputs) 
Prediction errors & its uncertainty 
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model is run in batch mode (e.g., over the weekend), and the vector of output values observed and 
recorded, and then each output is modelled by a surrogate model that is quick to evaluate. For 
optimization of the model or reinforcement learning quick evaluations are necessary. Some further 
concepts 

- Deterministic deviations or “errors” (i.e., the difference in outcome of the detailed and the 
surrogate model) are typical, i.e., if the detailed model is run again, exactly the same output 
occurs. This makes modelling an evaluation different from the observational (field) data setting 
as statistical uncertainty is not quantified. 

- Model types include Kriging, a.k.a. Gaussian Process; GAM (Generalized Additive Model), neural 
networks. Not all models support categorical inputs and/or outputs. See [66]. 

- Understanding and quantifying effects can be done graphically although this may still be a 
challenge. Surrogate models can be very useful in understanding a black box detailed model; for 
instance, it may guide design decisions and iterations with further model insights. 

- Multiple objective optimizations if each of the outputs is modelled and has some desirable 
direction, a balance can be found in an iterative way. This way of working goes beyond automatic 
optimization or the RL reward setting, where the objective / reward is given by a single number.  

- Design of Computer Experiments. This is about constructing a limited set of “runs” for the detailed 
model that still allows to estimate a model of certain complexity of the mathematical relationship 
between input and output. For instance, the limited set of runs might include only a subset of all 
possible combinations of the 3-vector of (discrete) inputs (x1, x2, x3). An example of a model 
with low complexity is a linear expression in the inputs. Some techniques are space-filling LHD 
(space-filling Latin Hypercube Design; i.e., a set of points in a bounded multi-dimensional space 
with certain desirable properties) and quasi-Monte-Carlo methods. Further considerations are the 
ability to impose constraints, and to supplement existing datasets with new runs. See e.g. [10], 
[68], [69],  and [70]. 

 
Domain knowledge / simple relations and data-oriented methods 

- An often-useful distinction of the purpose of a model is understanding versus prediction. See 
[71], [72],  and especially [73]. In understanding, the goal is to make decisions, gain 
understanding by recognizing the underlying mechanisms, perhaps improve the model. The other 
modelling purpose is prediction, where the practitioner might not care for the underlying 
mechanisms if the predicted values of future cases are close to true outcomes. Many machine 
learning techniques have been developed with large quantities of data and predictions in mind. 
In contrast, many statistical methods have been developed with a limited amount of data and the 
purpose of understanding in mind, and deal with the resulting uncertainty by reporting confidence 
intervals, and/or “statistical significance”. The combination of the two viewpoints can be powerful 
when dealing with limited amounts of data. In Figure 36, the middle columns deal with these 
cases. In extreme, the prediction could be a black box as in some of the machine learning 
methods, although the explainable AI (see [74]) tries to alleviate this. However, a hybrid form 
where the model form is clearly understood and still gives good enough predictions can be 
preferred over a slightly better predicting black box (see [75]). In practice, the way that data is 
collected often results in groups, e.g., many values within one system or one situation. Another 
example is when a major calibration event occurs, all following observations until the next 
calibration share some influence of the calibration action and form one group. In the 
semiconductor industry a lot is a group of 25 wafers in one special container, which often share 
some properties. Often, the model errors of observations within a group are more similar than 
errors between groups because of a shared, unmodelled influence. In statistics, this is often 
explicitly modelled using random effects, and the increased uncertainty from the within-group 
similarities is taken into account. In machine learning texts, this grouping structure is mostly 
ignored. However, this should still be considered as it may severely impact generalization error 
(for new “groups”) and also may increase overfitting. See [76] and [11]. 

- For prediction, classical statistical methods rely on correct model specification; in machine 
learning, the algorithms are designed to be robust for peculiarities in the data, often using hyper 
parameter optimization, cross validation, train/test sets. In situations where test sets are small, 
the prediction performance or generalization error can still have large statistical uncertainty. Often 
this statistical certainty is not considered. Suppose a prototype medical diagnostic method 
detects 90% of the cases correctly, but a decision needs to be made how promising further 
development is. It then matters for the decision making whether the 90% detection has a large 
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uncertainty of e.g. 40%-98%, or a small uncertainty, e.g. 88%-92%. The choice of methods for 
cross validation are not always obvious when data is scarce. See e.g., [77] and [11].  

- Example methods for simple relations are regression, logistic regression, or CART, see e.g. [78]. 
Example methods for data-oriented models are neural nets, random forests, Lasso/Ridge, SVM 
(support vector machines). 

- Empirical data comes in two main types. The first is observational, the second is by performing 
a designed test. The difference between these is whether the circumstances and inputs are 
manipulated by the experimenter (test), or otherwise the system is observed as events unfold 
themselves and observations are merely recorded. The latter is typical in many machine- learning 
applications. 

 
Complex data as the fourth column in Figure 36 shows that there are more data-based model building 
approaches where inputs may be “complex” such as images. Here, “complex” is meant as more complex 
than the first three columns. Without giving a precise definition, in the non-complex cases above, the 
input of a single observation is a vector (𝑥1, … , 𝑥𝑝) of fixed length 𝑝  of say less than 100, although the 

inputs are possibly heavily processed and may encode a mix of discrete and continuous variables. 
Typically, each of those variables is human-interpretable. In contrast, more complex examples are the 
free text as handled by the LLM (Large Language Models), images, audio, and video. For instance, an 
image of 100x100 pixels of grey values could be considered as a vector of length 10000 but is better 
dealt with by dedicated methods such as convolutional neural networks, also known under the term deep 
learning. A basic application is classification to identify objects on an image, and additional applications 
are a heatmap that explains which parts of the images lead to the classification. Another application as a 
generic building block is GAN (generative adversarial network). Given a modestly sized set of images of 
some sort, one model tries to make new images as similar as possible but has no access to the set of 
images. Another model, the adversary of the first model, tries to predict whether a given image is original 
or generated. Together these iteratively learn and improve, resulting in a model that can generate similar-
like images that may be useful in AI training. 
 
When modeling randomness one gets into the area of generative modelling. Generative modeling is the 

counterpart of discriminative modeling, which contains both regression and classification and is the more 

well-known part of machine learning. Generative modelling focusses on 𝑝(𝑥|𝑦) rather than 𝑝(𝑦|𝑥) as in 

discriminative modelling. Where 𝑥 is the data and 𝑦 is the label. For instance, in images of cats and dogs, 

where the images are the x and the labels (cat or dog) are the y, a generative model gives you an image 

of a cat or a dog given the label. In generative modeling, the label y is often not relevant, as the primary 

goal is to obtain the data distribution for a particular case. The simplest form of generative modeling 

involves estimating a distribution from data, while more complex models include Naive Bayes and Hidden 

Markov models. Recently, there has been an increase in the use of Deep Generative Models (DGM), 

such as Generative Adversarial Networks (GAN) [79] and Variational Autoencoders (VAE) [80] [81] . 

These models can handle very complex distributions, such as the distribution of 128x128-pixel images 

containing faces. One can use these models for instance to introduce variation. Suppose there is an input 

that can vary from time-to-time. One can use another instance of some dataset every time. However, 

there is little variation when the dataset is small. One can use a generative model to capture the 

underlying distribution and use a new sample as input every time. For example, a comparison of the use 

of different DGMs in a digital shadow can be found in [82]. 

4.4.3  Modelling the variation block 

As shown in Figure 16, a block with variation on the DT is added during training, so that the RL agent 
encounters a wider variety of situations. Aspects of variation could be:  

• Random changes to structural behavior of a DT within a system, e.g. a randomly chosen rate of 
change over time (ageing, degradation, environmental changes). A new random value would be 
chosen after a while. Instead of gradual changes, also sudden jumps can be simulated (e.g., 
replacing of a module with different properties)  

• Random variation can also be applied between different systems, as a system-specific property. 
For instance, differences in hardware components between systems may mean that the effect of 
a control knob is slightly different between systems.  
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• This could be described using random slopes in an extended regression model, 𝑜𝑢𝑡𝑝𝑢𝑡  =
 (𝐴 + 𝑎𝑖) +  (𝐵 + 𝑏𝑖) ∗ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙  +  𝑒𝑟𝑟𝑜𝑟 with ai a random intercept and bi a random slope, 
both on average 0, and following some probability distribution.  

• The DT itself may also have randomness, e.g., the rate of ageing or degradation may be random 
in the UUV use case if gusts of winds or random positions of the sun or pedestrians are simulated. 
In logistics applications, demand is random. In the TEM use case, random fluctuations of electron 
paths / elements of the Ronchigram may be used. External variations may be interpreted as 
changes to the probability distributions underlying the DT simulation. The variations block could 
for example vary standard deviations for the DT randomness. This can become complicated, 
e.g., if the DT randomness needs a correlation matrix to simulate multiple random variables, the 
variation block should vary the correlation matrix itself. This is not straightforward as slight 
changes to individual entries of the correlation matrix may render the matrix invalid as a 
correlation matrix (technically, this matrix needs to be positive definite). 

• For example, in a DT describing a logistics case, the Poisson rates of demands of containers 
between two locations were varied, for every pair of from/to location. Here, the changes to 
Poisson rate were according to a chosen probability distribution themselves, adding an extra 
layer of randomness to the story. This was interpreted as a robustness check for the interplay 
with agents; if the nature of the random behaviour of the DT changes somewhat, will the 
agent’s policy still give good outcomes? This is described in [83].  

  
 
 

4.4.4 Modelling strategies for adaptation 

In section 3.3.1.2 the notation 𝑐𝑡𝑢𝑛𝑒 is used to refer to configuration parameters of the DT as part of the 
set of numerical parameters of the DT that govern the relation between input and output. This is a situation 
in which a DT or a model is used in operation for predicting 𝑦 as a function of inputs 𝑥. The relation 

between 𝑦 and 𝑥 may change over time. Some strategies of correcting the DT are as follows. 

 
A few examples on how to change a model or DT over time to adjust to changing circumstances. For 
more details on model adaptation, also consider D2.1 [36]. 

1) Basic strategy: Rebuild the model periodically, with a window of most recent data of N periods. 
The window may be chosen so that the period resembles the upcoming period, because of 
machine settings, environmental changes, etc. Here the main structure of the model would stay 
the same, and using observations of input-output pairs, the model would be retrained 
(parameters estimated / calibrated / tuned) using recent data only.  

2) A variant or hybrid of fixed and tunable parameters is found in a class of statistical methods 
with random effects. For instance, consider a simple input-output pair 𝑦𝑝𝑟𝑒𝑑 = 𝑎𝑖 + 𝑏𝑖𝑥. The 

sensitivity 𝑏𝑖 might change between systems or situation 𝑖. This 𝑖 may be a group as described 

in 4.4.2. When developing the DT, it may be established what plausible values are for 𝑏𝑖 by 

using a probability distribution: each new system or situation 𝑖 brings a new, random 𝑏𝑖 that 

follows say a normal distribution with mean 𝜇
𝑏
 and standard deviation 𝜎𝑏. Facing a new 

situation 𝑖  with some examples (𝑥, 𝑦), a basic strategy is to perform linear regression on the 

small dataset to find 𝑎𝑖 and 𝑏𝑖. As an alternative, statistical methods use the earlier information 

𝜇
𝑏
, 𝜎𝑏 alongside the small dataset to estimate 𝑏𝑖 (e.g., using Bayesian estimation or maximum 

likelihood). As 𝑎𝑖 and 𝑏𝑖 are linked, one should consider the pair (𝑎𝑖, 𝑏𝑖) as 2-vector following a 

bivariate normal distribution needing 2 means, 2 standard deviations, and a correlation 

parameter; one may think of a scatterplot of possible (𝑎𝑖, 𝑏𝑖) pairs. For this strategy, a few tens 

of groups 𝑖 are usually enough, where fewer than 10 groups may well result in numerical 
problems. Remarks, 

a. In notation of section 3.3.1.2, this gives a hybrid solution beyond a clear separation of 

model parameters into a fixed and tunable part; 𝑏𝑖 is tunable but the distributional 

information on 𝑏𝑖 is added to the knowledge of the fixed part. 



D2.3 
Architecture of optimized digital twins for AI-based 

training 
Public 

 

 
 

    

Version Status Date Page 
Version 2.0 public 2024.05.08 61/69 

 

b. A common way of dealing with this situation is by taking the data of the latest and all 
previous situations 𝑖 and using the statistical technique of “maximum likelihood 
estimation” to obtain values for all mentioned model parameters. 

c. It is also possible to use statistical estimation where a tuning phase with situations 𝑖 is 
more separate from the operational phase where a new situation 𝑖 is observed, by use 
of Bayesian estimation. In it, the information of the tuning phase on the bivariate 
distribution (𝑎𝑖 , 𝑏𝑖) is estimated during the tuning phase and the distribution parameters 
are stored. This then serves as a Bayesian prior during the operational phase when 
analyzing observations from the latest situation 𝑖, and estimating the latest (𝑎𝑖 , 𝑏𝑖).   

d. An example is described in [84] that considers software reliability: describing the errors 
found in software over time while testing. Specific to the case studied here, software is 
developed in an agile way, adding features every two weeks, so that errors can be 
linked to specific feature. These features constitute the groups. The total (unknown) 
number of errors in feature 𝑖 is a model parameter 𝑎𝑖. There is also a 𝑏𝑖 describing the 
rate at which errors are found during testing. Both parameters are considered random, 
and when a new feature still only has few errors found, data from the earlier groups 
help estimate the new features properties. The model output are quantities such as 
remaining number of errors in the software and expected number of errors to be found 
in 6 weeks of testing. 

3) A small experiment (small in terms of number of input combinations, say a few tens) carried out 
on the system. Suppose you can identify 1-to-10-dimensional subspace of inputs whose effects 
may be different for different systems/situations 𝑖 as in the previous point. It may be possible to 
carry out a small number of settings according to a clever scheme (“Design of Experiments”) to 
derive the system-specific effects; here each of the settings is given as input to the system and 
the output measured. In industry, an example may be mass manufacturing where an electronic 
device (e.g., the old CRT television) was measured using such an experiment. Effects were 
derived from the experiment and from here followed specific “settings” that were put in the 
embedded software with device-specific values. With few inputs (say <=4), all possible 
combinations of low & high settings may be formed. For more, this may become infeasible as it 
grows by 2 to the power of nr of inputs. Fortunately, the subfield of statistics called “design of 
experiments” gives many techniques to greatly reduce the number of required experiments, 
e.g., 32 in case of 10 inputs. One can imagine that sometimes a CPS also carries out a short 
array of experiments in the ASIMOV solution during a dedicated short phase for this 
recalibration. 

4) Monitoring. In case a new system 𝑗 is introduced one could use the developed DT for system 𝑖 
and monitor how well it works. After a certain time-period, this feedback can be used to 
determine the strategy for the development of the DT specific for system 𝑗; this could range 

from “𝐷𝑇𝑖 works fine for 𝑗” to “𝐷𝑇𝑗 requires a complete new fit of 𝑎𝑖 and 𝑏𝑖”. Another direction for 

monitoring is as follows. Within the world of system 𝑖, one could monitor also when 𝐷𝑇𝑖 requires 
a new fit of model parameters, based on some quality metric (e.g., the reward function). For 
instance, the field of SPC (statistical process control) gives techniques for monitoring a noisy 
signal; these techniques have been applied in manufacturing settings for many decades (see 
e.g., the classic book [85]).  

 
It may occur that smaller DT modules form the DT, but only data is observed on the final output (the DT 
as a whole). At the same time, some model constants/parameters of the DT modules may still be unknown 
and need to be estimated from data. This is an example where the forward problem is simple, given 
numeric values of the model parameters, outcomes are concrete). The backward problem is: given data, 
derive numeric estimates of the model parameters. In well-posed situations this may be solved using 
mathematical optimization. There is also the interesting approach of Bayesian estimation that may tackle 
several issues at once.  

• For some numeric parameters one probably has knowledge of the range of plausible values (e.g., 
material properties). In Bayesian estimation, priors are formulated using a probability distribution 
that corresponds to these plausible ranges and this knowledge is then naturally incorporated.  

• If there is a limited amount of data, the uncertainty of the numeric model parameters will be large. 
Bayesian estimation results in posterior distributions of these, that describe the uncertainty 
exactly based on prior knowledge and updated with the data.  
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• The numeric parameters may be difficult to separate, e.g., if for the first module y1=a1+b1*x and 
for the second module y2 = a2+b2*y1, then based on data consisting of pairs (x, y2) (so excluding 
the intermediate y1), the four parameters (a1, b1, a2, b2) cannot be uniquely determined. In less 
obvious cases, certain combinations may be difficult to determine. The posterior distribution is 
multivariate on all model parameters and makes it easy to describe this problem. In this example, 
the posterior distribution describes which subset of values (a1, b1, a2, b2) are plausible given 
the data. 

• One example is a Nature publication  [86] in the beginning of the Covid pandemic. They collected 
data of multiple countries on different non-pharmaceutical interventions (lockdowns, closing 
schools, shops, offices) which the countries did in different orders and time frames. These timings 
were the predictors. The outcome was covid mortalities on national level, so that only the total 
effect of the country’s interventions was observed. Using these Bayesian methods, they tried to 
disentangle the various effects. 

 
4.5 Challenging behavior 
  
In the very general context of constructing digital twins (shadows, models), the challenging behavior might 
follow from a detailed description from first principles. A bottom-up approach from DT from modules may 
be helpful here. In addition, the presence of chaos or disturbances call for stochastic elements of the DT: 
randomness added to results according to carefully specified probability distributions (e.g., raindrops, 
gusts of wind; randomness in the EM use case, random demand in logistics).   
  
In case of smaller DT modules or sub-DTs and when data is available to build or calibrate the model: the 
problem may be simple enough that the predictor form is not too complex (e.g., vector of dimension of 
max few 10s) and that in principle the relation is known. Then some of the above challenges can be 
addressed using “tricks” from statistics and machine learning.  

• Disturbing events, if with a small chance a rare event occurs so that the outcome is very 
different, the model may be a composite one; a component describing whether the rare event 
occurred and a component with a usual outcome. If the event is not too rare and present in the 
data, statistical methods may be possible to use. For example, suppose in a US holiday 
destination, one is interested in the number of fish caught in a day by each visitor is of interest. 
The number of fish may be modelled using a Poisson distribution, with predictors on the details 
of the fishing rods, location, weather, depth of the water, etc. The unexpected event could be that 
the person did not even start to fish, which may be predicted by a different set of predictors (e.g. 
type of visitor, activities of interest, bad weather, distance to suitable fishing location). This non-
fishing event necessarily results in a zero count of caught fish. A ZIP (Zero-inflated Poisson) 
model describes this situation, where one model component describes the probability of the non-
fishing event as function of predictors, and another the number of fish caught given that the visitor 
tried to catch one, also related to a set of predictors. The ZIP model is an example of a model 
consisting of smaller model blocks where different random “regimes” are disentangled and made 
explicit if data is available. 

• Delayed response. In the case where predictors and response are time series with unknown 
delays, this can in principle be investigated by taking a predictor and add “lagged copies” of it: a 
copy of the predictor as it was k timesteps ago, for a properly chosen set of k. If the set of lags is 
large, the predictor set gets large and a selection method may be appropriate (e.g., Lasso 
regression).  

• Stability. If the CPS is not disturbed by inputs or control actions, and left to run, relevant outputs 
may show stable behavior, or drift, or jumps. If this occurs, it is difficult to predict future values, 
even in the case when no control actions are taken. 

• Hysteresis. This is the phenomenon that the output depends on not just the most recent input, 
but also inputs of previous points in time: the whole history. An example is how magnetic lenses 
react on applied electric currents and magnetic fields. The material’s magnetic properties react 
to changing currents, but in a delayed way with left overs from earlier situations. 
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5 Conclusion 

This deliverable presents the ASIMOV work regarding a DT reference architecture for DT-based AI-
training for CPS optimization. The report describes the challenges in creating a model mimicking the 
behavior of a real system. In the state-of-the-art section only a few, high-level architectural descriptions 
are described, due to the novelty of this field. In four viewpoints we highlight the necessary considerations 
and requirements for the system, a model view on functionality, a logical design solution, and technical 
considerations for the implementation. This architectural part is followed by an extensive elaboration on 
the actual considerations of mimicking system behavior. The various types of behavioral modeling are 
described in detail.  
 
To conclude, this report is an extensive source of information, considerations, and guidelines for system 
architects, system engineers and other developers responsible for the development of digital twins or 
digital models intended for training AI systems.  
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6 Terms, Abbreviations and Definitions 

 
Table 1 - Terms, Abbreviations and Definitions 

CPS Cyber Physical System, a type of system 

DT Digital Twin 

PT Physical Twin. Is a ‘role’ in digital twinning.  

RLA Reinforcement Learning Agent 

VP Viewpoint 
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