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1. Introduction 

In the ever-evolving landscape of engineering and design, the quest for optimal solutions often 

traverses complex and multi-faceted design spaces. Design Space Exploration (DSE) stands at the 

forefront of this endeavour, serving as a pivotal process in navigating the myriad of possibilities to 

unearth optimal solutions. However, with the advent of increasingly complex problems 

characterized by constraints and high-dimensionality, conventional approaches fall short in 

providing efficient and effective solutions. 

 

This report delves into Design Space Exploration and Artificial Intelligence and the synergy between 

them, discussing methods and strategies that bolster the exploration of constrained and high-

dimensional design spaces. Throughout this report, methodologies and strategies, aimed at 

enhancing DSE capabilities and employed within the DEFAINE project, are presented, An overview 

of the industrial applications of these methodologies is included, elucidating their impact on real-

world scenarios. 
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2. Multi-architecture design exploration using dynamic workflows 

This section of the report summarizes an approach for the exploration and optimization of the 

architectural design space. The approach leverages dynamic reformulating workflows to enable 

the multiple architectures to be evaluated in a single MDAO workflow. The methodology and use-

case application are described in detail in [1] and deliverable D4.1.3 [2]. 

2.1. Background 

Consolidated strategies and algorithms can be used to perform multidisciplinary and multi -

objective optimization of engineering products, as far as the architecture of the system to be 

explored is fixed. Accounting for the complete system architecture design space in an optimization 

process is very challenging because of the presence of integer and categorical design variables 

which lead to a combinatorial explosion of designs to be evaluated. An extra challenge arises 

because of the hierarchical relationships that may exist between design variables, i.e., the number 

and/or existence of certain design variables may depend on the value assumed by other design 

variables. In fact, the hierarchical nature is generally a consequence of the aforementioned 

categorical variables, as the presence of certain components in the system architecture comes 

with the necessary design variables to define said components. This makes the design vector of 

the optimization problem dynamic and unknown a priori. 

2.2. Methodology 

Within DEFAINE the challenge of dealing with hierarchical variables in multi-architecture design 

exploration and optimization has been addressed. The methodology is based on the concept of 

dynamically reformulating sub-workflows. The problem is split up by putting high-level architecture 

variables in a main workflow and their dependent variables in a dynamically reformulating sub 

workflow. The methodology consists of 3 main steps, listed below. 

• Design study configuration: As a means to configure a hierarchical design study, the 

eXtensible Markup Language (XML)-based Design Study Configuration (DSC) schema was 

developed. In a DSC file, the hierarchical variable structure of a product can be configured, 

allowing for unknown variable quantities and types. 

• Nested workflow formulation: Once a design study is configured by constructing a DSC file, 

for each configured design step an MDAO workflow can be formulated capable of evaluating 

all the specified variables. The result is a nested workflow, each level representing a design 

step. The workflows follow a standard format, an example is given in Figure 1 for a 2-step 

design study. 

• Dynamic workflow reformulation: during execution, in each iteration of the main workflow, a 

dynamic reformulation of the sub workflow takes place. Based on the information that 

becomes available during the execution of the main workflow, the sub workflow formulation 

can be completed and executed. 



8 

 

Document: D5.3 Design Space Exploration & AI methods 

Version: 1.4 
Date: February 5, 2024 

 

 

DEFAINE - Design Exploration Framework based on AI for froNt-loaded Engineering 

 

 

Figure 1: nested workflow featuring a dynamically reformulating sub-workflow 

2.3. Industrial application 

The methodology has been implemented for a GKN-Fokker Aerostructures’ use-case. In this use-

case GKN Fokker’s modelling and analysis tool MDM was used to explore the architecture design 

space of a moveable. In Figure 2, an MDM aircraft moveable model instance is shown. In the next 

sections, the implementation and results are summarized. 

 
Figure 2: MDM moveable model instance 

2.3.1. Implementation 

In Figure 3 an overview of the implemented multi-architecture design exploration approach is 

shown. All the enabling technologies are quickly summarized below.  
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Figure 3: Overview of collaborative architecture optimization design study setup and execution process  

1. KE-chain: a web-based collaborative environment enabling multiple partners to 

collaborate on a single design study. 

2. DSC file: a XML-based file format for specifying multi-level architecture design studies 

(see D4.3.2 [3]).  

3. KADMOS based scripts are used to convert the DSC file into a fully formulated main 

workflow and, depending on the amount of specified design steps, several incomplete 

sub-workflow formulations (example in Figure 1), all saved in a single CMDOWS file. (see 

D4.1.x [4] [3] [2]) 

4. CMDOWS, exchange standard for MDAO workflow formulations (see D4.2.1 [5]) 

5. CMDOWS-Optimus plugin A conversion tool that has been developed to convert 

CMDOWS files into executable Optimus workflows. (see D4.2.1 [5]) 

6. Optimus, a commercial process integration and design optimization (PIDO) tool by 

NOESIS Solutions1.  

7. KADMOS dynamic reformulation scripts that take care of completing the formulation of the 

sub-workflow based on information that has become available during the execution of the 

main workflow. 

8. Server interaction scripts, Python-based scripts that enable communication with a 

server-based KBE tool using set and get commands to impose inputs and extract outputs 

9. KBE tool, an instance of a knowledge-based engineering tool living on a server, in this 

case GKN Fokker’s MDM tool based on ParaPy.  

2.3.2. Results 

A first implementation of the proposed methodology was tested on a GKN-Fokker aileron 

architecture optimization use-case. After an initial design study setup, the workflows could be 

automatically generated and executed in Optimus, see Figure 4. The approach proved effective in 

dealing with the hierarchical mixed-integer design space and enabled a flexible set-up of a nested 

workflow, consisting of an outer DOE loop and an inner, dynamically formulated, loop for 

structural optimization. Collaborative trade off studies of various aileron architectures could be set 

in a time efficient manner due to the high level of achieved process automation . A 72% reduction 

 

1 https://www.noesissolutions.com/ accessed: 19/01/2024 

https://www.noesissolutions.com/
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in simulation workflow setup time and a 96% reduction in simulation workflow update time was 

observed.

 
Figure 4 Automatically generated executable Optimus workflow featuring a dynamically reformulating sub -
workflow. 
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3. Functional and physical modelling connection via Enhanced 

Function-Means and KBE. 

This section of the report presents a methodology developed by Chalmers University of 

Technology on Design Space Exploration. The methodology focuses on combining the functional 

models (Enhanced Function-Means trees) with physical Models (KBE Applications). A complete 

description of the methodology will be presented in a journal article at the Aerospace Journal 

during 2024.  

3.1. Background 

3.1.1. Functional Modelling and Enhanced Function-Means (EF-M) 

Functional Modelling represents the functionality or behaviour of a system of products, providing 

insights into how it operates. Enhanced Function-Means (EF-M) [1] is one of the methods that 

focuses on how each functional requirement of the product can be fulfilled by different design 

solutions. Each design solution alternative represents a variant of the design, and therefore 

represents a generation of different architectures in the Design Space Exploration.  The model is 

architected in a tree format with Functional Requirements having Design Solution child objects, 

which in turn can contain further Functional Requirements objects. For more information about the 

history and main functionalities on these models, See DEFAINE deliverable D5.4.2. 

EF-Ms allows for top level design space exploration and evaluation of metrics that do not require 

the physical embodiment of the product for its evaluation, such as risk management, development 

process efficiency or integrability [2]. However, this methodology lacks the ability to physically 

embody the design concept [3]. Some authors have been able to map EF-Ms to physical models 

via custom User Defined Features in CAD [4], but a mapping to an analysis model needs to be 

done outside the method. The main advantage of EF-M models with respect to design space 

exploration is that they can contain many different variants, and with specific software, instantiate 

all those variants easily. 

3.1.2. Knowledge Based Engineering (KBE) Systems  

Knowledge based engineering (KBE) stands at the cross point of diverse fundamental disciplines, 

such as artificial intelligence (AI), computer aided design (CAD) and computer programming , [5]. 

As such, KBE primitives have direct access to geometrical variables and derived properties. KBE 

applications therefore are ideal for design space explorations where geometrical and architectural 

changes are required. In addition, its programmatic and multidisciplinary nature allows for the 

generation or connection to analysis models tools. Therefore, they are used in industry for the 

design space exploration of products that heavily rely on geometrical characteristics, such as 

aerospace.  

3.1.3. Combining Functional Models (E-FMs) and KBE Models 

During the early stages of the product development process for aerospace components, many 

alternatives are being considered. Traditionally, the aerospace industry has followed a low-risk 

approach, favouring incremental architectures changes. However, the increasing global concern 

regarding climate change has shifted the mindset and increased the interest in innovative and 

unconventional solutions. To evaluate all design alternatives, the mechanical performance of such 

structural configurations shall be evaluated, requiring a physical model.  
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By combining EF-M and KBE models, the design space exploration can be widened. EF-M models 

can be used to control the architecture, variants, alternatives, and incompatibilities of all design 

solution options, while KBE models can provide the physical performance metrics. 

3.2. Methodology 

The Design Space Exploration in this methodology is performed via a design of experiments 

(DoE). The methodology follows a 3 step process.  

 

 

 
Figure 5: Overview of the EF-M to KBE Methodology steps 

 

The purpose of the first step is to define the architecture and parameters to consider. For that, a 

traditional EF-M tree is generated containing all design solution relationships. In addition, the 

ranges or options of the DoE parameters are added as properties of the relevant design solution. 

Once the tree has been completed, the combinatorial alternatives or design solutions are 

generated. This step is demonstrated using the CCM tool developed by PE Geometry.  

 

The second step is to generate the DoE table with the desired number of experiments. It 

considers both the architectural changes as well as the parametric changes within those 

architectures. This step has been implemented in DEFAINE by developing a python module. 

 

The third step is to execute the DoE cases, for which a KBE application is generated and updated 

with the specific case. The application iterates though every case in the DoE, that generates the 

geometrical configurations and evaluates some of the performance metrics. Other performance 

metrics are sent to external programs. It has been implemented using the KBE System developed 

by ParaPy. 

3.3. Industrial Applications 

The methodology is applied to the GKN Aircraft Engine Component use case. A Turbine Rear 

Structure component has been evaluated using this methodology, see Figure 6. 
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Figure 6: Location of a Turbine Rear Structure (TRS) on a conventional engine. The figure also shows the 
geometrical model of one of the design use cases generated by the ParaPy KBE application 

 

The architectural variants included in the design space exploration are a wall-integrated 

containment ring or an independent containment ring. Parametric variables are described in Table 

1. 

 

Table 1: Configuration of parametric variables 

Variable Name  Feature Variable type More information 

Lug thickness Lugs continuous Bounds = (10, 20) [mm] 

Wall thickness Outer Case continuous Bounds = (1, 15) [mm] 

Strut thickness Vane Assembly continuous Bounds = (2, 8) [mm] 

Number of Struts Vane Assembly discrete Options = (8,9,10,11,12) [adim] 

 

There are four quantities of interest for this design: 

1. Weight: It is the default driver for all aerospace components. Calculated using the CAD 

volume and the material density. 
2. Stiffness: The component stiffness is important for the system as the mechanical  Whole 

Engine Model (WEM) uses the stiffness of each component to distribute the  external load 

accurately. The calculation method is a 3D element FEM that is run with  unitary loads at 

the interface locations and the displacement measured at the other  interface locations. 

Ten different measurements of stiffness are provided, depending of the loading 

application and displacement direction. For Example, FX_UX measures the displacement 

in the X direction when a force in the X direction has been applied.  
3. Lug stress and failure modes: Lugs on the TRS are considered part of the aircraft  

system and therefore subject to the Certification Specification for Large Airplanes  CS-25 

in Europe (14 CFR Part 25 in the United States). In particular CS 25.301 Limit  and 

ultimate analyses. The well established hand calculation method [7] that has been 

implemented in Python and is part of the KBE primitive lug. 
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4. Containment capacity: Ability of the outer case of the TRS to contain a rotating turbine 

blade (and disk) that breaks and impacts the TRS, as per CS-E 810 (CFR §33.94). A 

simple energy-strain model is used and compared to a reference model. 

 

The EF-M tree created for this industrial application is shown in Figure 7. 

 

 
Figure 7: EF-M tree for the TRS industrial application. Screenshot of the CCM tool. 

 

A new library of KBE primitives has been developed to model the geometrical features of the DoE. 

An example of a TRS use case is shown in Figure 6 and corresponding Finite Element Model 

(FEM) generated in Figure 8. 

 



15 

 

Document: D5.3 Design Space Exploration & AI methods 

Version: 1.4 
Date: February 5, 2024 

 

 

DEFAINE - Design Exploration Framework based on AI for froNt-loaded Engineering 

 

 
Figure 8: FEM model with loading and boundary condition for a design use case.(view from other side of 
Figure 6). Screenshot of ANSYS software. 

3.4. Results 

The methodology has been verified in this industrial use case, ensuring that the Design of 

Experiments generated is consistent with the configuration stored in the EF-M. In addition, the 

connection with the Physical KBE model is manually inspected in key design cases to ensure the 

architectural configurations are updated as expected. Finally, the output results are explored to 

ensure the design space exploration captures the expected behaviour of the product, like, for 

example, the stiffness increases with the number of vanes. 

 

-

 
Figure 9: Results of the complete DoE (400 runs) in a Parallel Coordinates Plot.  

 

However, it could benefit from further validation on other applications.  
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4. Machine learning plug-in based on value impact assessment 

This section reports about the software plug-in based on Artificial Intelligence for exploration of 

the value and cost of different design concepts (part of the software deliverable D5.7 “Machine 

learning plug-in based on value impact assessment”).  

4.1. Background 

The software Club Design (reported in the deliverable D5.6 “Set of models for requirements, value 

and cost”) has shown how different Design alternatives can be evaluated using a monetary model 

(Surplus Value, Panarotto et al., 2020).  

Club Design consists of a four major functions:  

• Capture and define of a specific context for the system in which requirements are 

generated. It includes initially a set of rank-weighted Needs that have to be satisfied. The 

VCS is used to define value driven scenarios that is given as input to design studies.  this 

is done in the “VCS tab” of Club Design) 

• Define Key Engineering Characteristics given a specific Value Creation Strategy (called 

Value Drivers). They represent proposed directions of investigation since they seem to 

have a significant influence on the perceived value in a given context. Value Drivers 

themselves are not attached to a target value or function, but they tend to result in 

measurable objectives and later, based on these, requirements. Examples of Value 

Dr  ers are “M    u  ex ecte  l  e” that    act  er or a ce    ser  ce, “ ass” that 

   act “take-o   we  ht” or “ u  er o    ter aces” that    act how eas  a 

technology/component is to integrated into a system. this is done in the “VCS” of Club 

Design) 

• Generate (or import) design alternatives having an impact of the different value drivers 

(and therefore the value creation strategy). (this is done in the “design tab” of Club 

Design) 

• Calculate the quantitative (financial) impact of the design alternatives on the different 

“ alue  reat o  Strate  es”  this is done in the “Surplus Value Simulation” of Club 

Design) The assessment is performed using a financial metric called Surplus Value. The 

Surplus Value Theory provides a simplified equation that is a subset of Net Present Value 

(NPV) based on several assumptions. NPV is used by economists to describe profit and is 

a basis for business investment decisions. In accordance with the Surplus  Value Theory, 

the model optimizes the combined profit of the customer, the manufacturer and eventual 

suppliers. The theory hence strives for the optimization of the combined profit of an 

imaginary corporation that performs all three roles. The combined Surplus Value is 

simpler to compute because it is not affected by the actions of competing manufacturers.  

The Surplus Value model described has been programmed using a Discrete Event 

Simulation (DES) technique. DES models the operation of a system as a (discrete) 

sequence of events in time. This means that the whole lifecycle of the system under 

consideration has been divided into discrete events. This is made possible by the 

assoc at o  o  the stakehol ers  ee s a   ex ectat o  to l  ec cle “ rocesses”  a e  in 

the Value Creation Strategy view.  

 

 he  es   s are o te  create     “ ra  stor    ”  ote t al solut o s a    ase  o  ex ert 

judgements or using simulation tools driven by KBE methodologies. The objective is to find the 
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 est  es    that   creases the Sur lus  alue (calculate   or exa  le    k€)  However, there may 

be situations in which the design team wants to extend the dataset created in Club Design:  

 

1. When running the Surplus Value simulation takes considerable time 

2. When the design team wants to receive a suggestion about what are the driving factors 

that make the SV to increase (i.e. suggest a new design)  

 

Therefore, there is the potential to use Machine Learning and Artificial Intelligence to  

4.2. Methodology  

The plug-in is based on a Kriging-based Surrogate model (using the SMT toolbox) on a Club 

Design exported dataset, It features designs on the rows, and design objectives and SV on the 

columns which generates new data points via interpolation. The results are visualized in an 

Interactive enabled interface for Parallel Coordinates plots. 

4.3. Industrial application  

 
 

Figure 8: 12 Design alternatives defined in the software tool Club Design.  

Figure 8 shows 12 design alternatives for a Fan Outlet Guide Vane (coming from the GKN Aero 

Engines use case). The designs are characterized by very different objectives, representing both 

functional (e.g. weight, pressure drop) as well as non-functional requirements (e.g., weld 

accessibility, Number of fittings/interfaces for easier maintenance, material criticality score).  

 

The Surplus Value model implemented in Club Design allows to aggregate these different 

objectives into a single monetary function, representing the cost and revenue profile over time.  

Figure 9 shows the SV profiles for the 12 alternatives, showing how Des ign Case # 35 is the one 

that has the h  hest S  (   k€)   
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Figure 9: Alternatives evaluated in Club Design using the Surplus Value model. Design Case #35 is the one 

with highest Surplus Value (in k€). The simulation with only 12 designs took 34 seconds.    

The Surplus Value Simulation with only 12 designs took 34 seconds. Therefore, it is appealing to 

use a Machine Learning algorithm to reduce the computational time. At the same time, the ML 

algorithm would inform designers about the best design to further increase the SV. This is 

particularly relevant for objectives that are very different in nature, and for a decision making team 

that is composed by experts coming from different disciplines  

 

Us    the “ex ort  utto ” o  the Sur lus  alue S  ulat o  ta , a  ew ta le  s create , where  the 

design objectives and the SV for each of the designs can be exported. This is the input for the 

Kriging based Surrogate model. Figure 10 shows a simplified example of a Kriging-based 

surrogate model from 5 design alternatives. The model is used to generate a new design  and to 

predict the resulting  SV.  

.

 
 Figure 10: Kriging-based surrogate model of 5 design alternatives. The model is used to generate a new 

design and to predict its SV.   

The result shows how new design points can be generated without the SV simulation, reducing 

the amount of time taken (0.81 seconds compared to 34 seconds). Also, the prediction can be 

based on an accurate prediction. In this simple example, with only 5 designs, the R-square is 

almost 0.93 which is considered very accurate for this case.  
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The results can be visualized using an interactive parallel coordinate plot, where the exploration 

a o   the M  “su  este ”  es   . Figure 11 shows the parallel plot comparing the ML predicted 

design against the other 5 designs contained in the dataset.  

 

 
 Figure 11: Parallel plot comparing the predicted design against the other 5 designs. The dashed line is the 

predicted dataset.  

Each line in the parallel plot is a different design. The dashed line is the predicted design. All the 

scales have been normalized.  

From the predicted design (dashed line in Figure 11), some considerations can be drawn:  

 

- The predicted design does not feature the lowest possible cost. This means that some 

investment in the product is justified, and an aggressive cost reduction strategy is not 

favourable.  

- The predicted design features the lowest mass. This confirms mass being one of the main 

value drivers for the product.  

- The predicted design features a high number of fittings (although not the highest). This is 

where the investment made (reflected in the unit cost) is going to be dedicated to. A 

higher number of fittings means a higher cost of manufacturing (higher cost of 

manufacturing the fittings). However, the fittings allow the product to be easily maintained 

and upgraded over time, which increases the value over time for the product, and hence 

the Surplus Value. This conclusion can support an expert coming from the organizational 

function of “maintenance & upgrading” to discuss with the other members of the multi-

disciplinary team about the need to have a relatively high number of fittings. This points at 

the benefit of this type of models to act as boundary objects within a multi-disciplinary 

design team (Panarotto et al., 2019).  

4.4. Discussion and Conclusion  

While machine learning has been applied in the context of Engineering Design and Value 

Assessment (e.g., Piotrowski, 2019), so far it has not been applied on a heterogenous set of 

design objectives (combining functional and non-functional requirements) aggregated using a 
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single monetary value function. The plug-in made available in Club Design allows to predict new 

design points, and this can be particularly benefits in cases which: 

 

• When running the Surplus Value simulation takes considerable time (in this case study, 

the time taken for simulating 12 designs was 34 seconds, the time to generate a new 

design with ML was 0.86 seconds).  

• When the design team wants to receive a suggestion about what are the driving factors 

that make the SV to increase (i.e. suggest a new design)   
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5. SVD Modelling and Correction Neural Networks 

This section is about the using Principal Component Analysis (or SVD) to create prediction 

models based on statistical data, such as data sets of a range existing similar products in such a 

way that the properties of new products can be estimated from a set of requirements on the 

product attributes. 

 

Multiple regression analysis can be used to create models that often show good agreement 

around the data sets, used to establish the model. However, when the product attributes are 

highly correlated, it is an advantage to use Principal Component Analysis (PCA). This is mostly 

done using the Singular Value Decomposition (SVD) hence these two acronyms are used more or 

less interchangeably. Using PCA the coordinate system is rotated in such a way that two new 

parameters, the principal components, become uncorrelated. First, the statistical properties 

become more sound, and secondly and perhaps more important, the explicit constraint can be set 

on the parameters that now provide a better fit around the statistical data set, such that the design 

space gets a shape more consistent with the space spanned by the data set. This is especially 

useful when used for system optimisation. 

 
Rotating the coordinate system means that the explicit limitation of the variables can have a much 

tighter fit towards the measurement data. Using \gls{PCA} it is possible also to include the 

distribution of data in the design space, into the model.  

  

Using Singular Value Decomposition, SVD, introduced in [11], it is possible to do the PCA and 

create a model that has a few synthetic parameters as inputs and all the attribute of the design as 

outputs. The output of the model can include both design parameters and functional 

characteristics. It is then possible to quickly estimate a design from given requirements, by solving 

the resulting system of equations. Interestingly, it can also be used to estimate performance and 

other characteristics from limited data. In [12], SVD was used to reduce the number of variables 

for optimization of an industrial robot. 
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Another very useful application is for modelling of components and subsystems. In [13] and [14] 

this was used for models based on statistical data of components and systems, such as aircraft 

and aero engines. In this way models with high accuracy can be produced that can relate e.g., 

engine dimensions (such as diameter, length, etc.), to attributes such as weight, bypass ratio, 

trust and specific fuel consumption. It is also possible to include year of introduction as one 

variable and in this way also have a mechanism for technology evolution over time, although 

looking at times beyond the present will take us outside the dataset that the model is based on.  

  

In a design situation the SVD model can be used in the role of a surrogate model. Instead of 

making a parametric design, of a higher fidelity, which is optimized for each situation, It is 

possible to optimize for a few situations and then build an SVD-model based on these. In this way 

a meta model with high accuracy can be obtained. Ones an optimal solution has been reached it 

can be recalculated and be added to the set of data points the SVD model is based on.  

  

Finally, SVD analysis can be used to evaluate a given parametrization by studying the correlation 

with the ideal SVD parameter set. This is useful since it sometimes is an advantage to have a 

parametrization that have a clearer interpretation than the synthetic SVD parameter set can 

provide. This was shown in [14]. Interestingly, it is also possible to derive the number of driving 

requirement in a design by studying a number of instances of a particular kind of product.  

 

5.1. Singular Value Decomposition 

 

Singular Value decomposition, SVD, is a technique that is related to PCA. The result is essentially 

the same, but it involves an elegant mathematical method to obtain a model that is aligned with 

the main axis of the data set. Consider the data set X which is a matrix. Then there exists a 

decomposition of the form: 

 
where W is diagonal. This is the Singular Value Decomposition matrix. This can look like this: 

 

 
 

The consequence of this operation is that if each row in the X and U- matrix represents a data set 

of the entity that should be modelled. Any point in U is mapped onto X  trough the matrix product. 

Usually, the resulting matrices are arranged in such a way the diagonal elements of the W-matrix 

are in descending order. Hence the influence of the U variables is in descending order in each 

row, which means that the last ones can be omitted in order to get a simpler model without too 



23 

 

Document: D5.3 Design Space Exploration & AI methods 

Version: 1.4 
Date: February 5, 2024 

 

 

DEFAINE - Design Exploration Framework based on AI for froNt-loaded Engineering 

 

much loss in accuracy. However, for this to be valid the dataset should first be centred around the 

mean value. This can be done by subtracting the average of each column in the X-vector from the 

values of each column. An interesting property of the U-matrix is then that the sum of the variance 

of each column is one. That is: 

 
 

This means that all columns (that is parameters) have the same deviation. The W matrix is then a 

weight matrix with only diagonal elements, and VT is a matrix that rotates the coordinate system 

from the main axis into X. 

The meaning of the matrices is the following. If the U -matrix is a dataset that is uniform in all 

directions, W -matrix stretches this in the different dimensions as indicated by the diagonal 

elements. Finally, the VT-matrix rotates the dataset to produce the final mapping into the original 

coordinates as depicted below  

 

 
Fig.6.1. The meaning of the matrix operations in SVD. 

 

Using a model based on SVD to estimate parameters and properties, the following equation is 

used: 

 
Here, the x and s are vectors. s is the input vector with SVD-parameters that are orthogonal, and 

x is the estimated values of parameters and properties. Introducing K is the loading matrix defined 

as: 

 
we can now write  

 

  
We have now an expression with a reduced vector s as input and all the product attributes in x, 

both design parameters xD and functional characteristics (or quantities of interests) y. Note that 

since s have no physical meaning it has to be found through some equation solving or 

optimization process. The advantage is, however, that any variables in design parameters and y 

can be set and the model will then give the other variables.  
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Example: Transport Aircraft 

 

 
Fig 6.2. Generation of SVD parameter set and model, from sets of data. 

 

 
Fig 6.3.. Using a SVD model to predict data from a a reduced set of SVD parameters. This requires finding 
the SVD variables that are fulfilling the functional requirements. This will then also give the design 

parameter 

5.2. Correction Neural Network 

The SVD model is always a linear approximation based on the underlying data set, even though it 

can be pre- and processed to introduce some non-linearity. Typically, the log transformation 

where the data is transformed so that the SVD operates ton the lo of the values rather than the 

values themselves. However, using a Correction Neural Network, different kind of shapes can 

automatically be adjusted to the dataset. An advantage with combining the NN with the SVD is 

that it be used on correct already rather well fitted model, so the problem is well conditioned.  

 
Figure 10 Neural Network with one input layer, three hidden layers and one output layer.  
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Fig 6.4.. Training of a correction network. The correction network can be trained to remove the error for the 
predictions of the training data. 

 

 
Fig 6.5. The SVD model with the correction model, making it possible to have accurate predictions with few 
SVD variables. 

 

5.3. Example: Modelling a dataset of Aero engines 

As an example a dataset of 158 civil aero engines was used. It includes ten key data for each 

engine. 

It is a very wide range of engines from the smallest with a thrust of 267 N up to 435kN, i.e. three 

orders of magnitude.  
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Fig 6.6. Singular values and explained variance. Showing the tapering of the importance of the SVD-
components. 

 

 
Fig 6.7. The loading matrix showing the dominance of the PC variables (SVD) with low numbers. 
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Fig 6.8. The distribution of data as function of the first two principal components (SVD variables). 
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Fig6.9. The top graphs show the errors between the original and the reconstructed data set using two SVD 
variables. The error is in the data before retransforming from log data and cantering. The bottom shows the 
error after correction network has been added. The data set shows both the training set and the validation 
set. 

 

This means that a model with only two parameters that can predict 10 attributes, can be used to 

represent all 158 aero engines in the data set with an accuracy that is likely more than enough in 

a conceptual design. 

5.4. Summary 

The process to establish a prediction model based on SVD and NN can be summarized in the 

figure below. The SVD model can be used as it is but there is also the possibility to combine it 

with a NN correction network. Ones established the use of the models is similar. With a minimum 

of input variables, the whole set of product attributes can be predicted. 
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Fig. Process to establish prediction model based on SVD and/or neural network. 
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6. Generative AI for design space exploration activities 

An early exploration of the capabilities of Large Language Models was performed by Chalmers 

University of technology and Linköping University. A summary of those explorations will be 

presented on the 18th International Design Conference, May 20 th-23rd 2024 in Dubrovnik, Croatia. 

The Paper: LARGE LANGUAGE MODELS IN COMPLEX SYSTEM DESIGN will be part of the 

conference proceedings. The paper explores the reported applications of Large Language Models 

LLMs on Engineering Design tasks. The paper provides two examples where they can support the 

design process and finally the opportunities and challenges of this technology are highlighted.  

6.1. Exploration result summary 

Two use cases were explored, one at the system level and one at the component level.  

On the system architecture use case, a hydraulic system UML diagram was performed with the 

support of the LLM. See Figure 11 for the generated output. 

 
Figure 11: UML diagram (in PlantUMLTM) of an aircraft actuation system with four functions and two 

circuits, each with a pump and reservoir connected to a valve and actuator for each function.  

For the component use case, the LLM support the editing of a CAD model based on the a 

description of the sketch to update. See Figure 12 and Figure 13 for the process description. 

 

Figure 12: Diagram representing the design process steps.  The three steps on the left represent the 
conversational support of LLMs 
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Figure 13: Column comparison between the pre- and post-design change geometry expressed visually and 

verbally. Prompt and response of the LLM for step 3 are highlighted in the right.  
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Based on the geometrical description and a one shot example, the model can update the python 

code in the KBE application to represent the new geometry. When the code generated by the LLM 

is executed, the CAD correctly renders the new geometry, and the rest  of the KBE application can 

be used to analyze the new configuration, as shown in  

 

Figure 14: Cross section of the TRS showing the new geometry of the flange. Right: Complete TRS 
automatically meshed my using the same KBE functions. 

6.2. Conclusions 

The paper shows the potential to use generative AI technology on Engineering Design, where 

results are deterministic. The paper highlights opportunities, such as the reduced amount of 

training data (an example) required to train the model. Some of the chal lenges identified are the 

need for careful inspection of results and the need to improve the reliability of the LLM based 

applications. 

On the topic of reliability of LLM based systems, Chalmers University of Technology is further 

working on exploring the state of the art multi-agent framework such as [15] applied to an 

engineering design application. The work was initiated in the DEFAINE project, and it is continued 

after the project ends. It is expected to be presented in the NordDesign conference in August 

2024. 
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7. Surrogate modelling 

In the complex and computationally demanding field of aircraft design, surrogate modelling has 

emerged as a powerful tool to accelerate Design Space Exploration (DSE) and optimization 

processes. While computational advancements have aided design engineers in early-stage 

decision-making, the multidisciplinary nature of aircraft design often leads to extended project 

timelines, with simulations alone consuming weeks or even months. This challenge is further 

exacerbated by the multi-faceted nature of DSE, which often involves hundreds or thousands of 

simulations. Surrogate modelling addresses this bottleneck by constructing approximation models, 

also known as surrogates, of the underlying system. These surrogates, trained on a dataset of 

inputs and corresponding outputs, can effectively mimic the behaviour of the original system, 

enabling rapid and cost-effective exploration of the design space. 

The effectiveness of surrogate modelling within aerospace has been demonstrated in several cases, 

as it reduces computational expenses associated with DSE. However, it is crucial to critically 

evaluate the trustworthiness of surrogate predictions to ensure informed decision -making.  

This chapter presents an in-depth investigation into the performance of various surrogate models 

on a range of data sets. To objectively assess their capabilities, the predicted responses of 

surrogate models have been compared against the computed results, employing established quality 

metrics.   

7.1. Background 

The findings in study 1 and 2 are based on two research efforts: Elias Nilsson's MSc. thesis at 

Chalmers University, which focused on establishing a benchmark framework and evaluation 

strategy for surrogate modelling algorithms, utilizing synthetic data for controlled experimentation;  

and Petter Andersson's research, which utilized data from a Design Space Exploration study 

conducted within the DEFAINE project, providing insights into the performance of surrogate models 

on real-world aircraft design data. This evaluation provides valuable insights into the strengths and 

limitations of various surrogate modelling techniques. The results highlight the potential of surrogate 

modelling to streamline DSE and optimization processes while maintaining the accuracy and 

reliability essential for making informed design decisions. In addition, an industrial application from 

GKN Fokker Aerospace BV that consists of an aileron, which can be varied in dimensions, structural 

layout, materials and loading provides an example where surrogate modelling is used for 

optimisation. 

 

There are many models to choose from like kriging and random forests, which have their 

respective positives and negatives. In this study a number of surrogate models are tested to 

better understand when a particular surrogate model is feasible or not.  The benchmark study 

follows an experimental approach where different datasets are defined and described as 

mathematical formulas. The characteristic of each dataset is described in terms of Linearity, 

Polynomial, continuity, discrete, mixed etc. A typical data set can have both numeric and 

categorical parameters. The datasets are used to test a number of response surface algorithms. 

The result is presented in a tabular format where the problem datasets are described per row and 

the algorithms are presented in the columns. 

Numeric data can be integers such as the number of vanes or real numbers such as lengths or 

thickness. There are also have categorical data like the type of material that is used –  

or a binary value that indicates if a feature is included or not.  A typical data set can have both 

numeric and categorical parameters. Some models are purely numerical and have difficulties 
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handling categorical data out of the box and therefore have to use pre-processing methods like 

one-hot encoding. 

7.2. Methodologies and Experimental setup. 

We are using Surrogate Modeling Toolbox [6] , Scikit-learn [7] and GKN Aerospace in-house data. 

The Surrogate Modeling Toolbox (SMT) is an open-source Python package consisting of libraries 

of surrogate modelling methods (e.g., radial basis functions, kriging), sampling methods, and 

benchmarking problems. Scikit-learn is open source machine learning in python. A set of tools for 

predictive data analysis built on NumPy, SciPy, and matplotlib.   

Bellows follows a short description of the surrogate models used in this study.  

7.2.1. Kriging  

Kriging is an interpolating model that is a linear combination of a known function which is added to 

a realization of a stochastic process. The algorithm used in this study is found in the SMT 

Toolbox. 

7.2.2. Random Forest 

The Random Forest algorithm is an averaging algorithm based on randomized decision trees. 

Here, a diverse set of classifiers is created by introducing randomness in the classifier 

construction. The prediction of the ensemble is given as the averaged prediction of the individual 

classifiers. The algorithm used in this study is found in the Scikit-learn library. 

7.2.3. Multi-layer Perceptron  

Multi-layer Perceptron is a supervised neural network learning algorithm that learns a function by 

training on a dataset, where is the number of dimensions for input and is the number of 

dimensions for output. The algorithm used in this study is found in the Scikit-learn library.  

7.2.4. Radial basis functions 

The radial basis function (RBF) algorithm represents the interpolating function as a linear 

combination of basis functions, one for each training point. The algorithm used in this study is 

found in the SMT Toolbox. 

7.2.5. Nearest Neighbors 

Neighbors-based regression is a supervised learning method that can be used in cases where the 

data labels are continuous rather than discrete variables. The label assigned to a query point is 

computed based on the mean of the labels of its nearest neighbours. The algorithm used in this 

study is the K Neighbors Regressor based on the k nearest neighbors of each query point, where 

k is an integer value specified by the user and can be found in the Scikit -learn library.  

7.2.6. Support Vector Regression 

Is a subset of the Support Vector Machines supervised learning methods for regression. The 

implementation is based on libsvm. The fit time complexity is more than quadratic with the number 

of samples which makes it hard to scale to datasets with more than a couple of 10000 samples. 

The algorithm used in this study is found in the Scikit-learn library. 
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7.2.7. One-hot encoding 

One-hot encoding is a method used to represent categorical data in a numerical form that a 

computer can process. It is often used as a pre-processing step in machine learning models. In 

one-hot encoding, each category is represented as a binary vector with a "1" in the position that 

corresponds to the category and "0" in all other positions.  One-hot encoding allows us to use 

categorical data as input to machine learning algorithms, which typically require numerical input.  

7.3. Evaluation metrics 

The following evaluation metrics from the scikit learn library has been used to evaluate the 

performance of the different algorithms.  

7.3.1. Cross validation 

A common way to validate surrogate models is to split the data set in a training set and a set that 

is used for validating the performance. One way is to split the data % wise, often 20% and test 

once. To get a more comprehensive validation of the complete data set this can be repeated by 

dividing the set in a new set of training and testing points, until you have used all points as test 

data. In this work the cross validation is by dividing the dataset in 5 folds and repeat 10 times.   

7.3.2. R^2 (coefficient of determination) regression score function. 

Best possible score is 1.0 and 0 is bad. It can be negative (because the model can be arbitrarily 

worse). In the general case when the true y is non-constant, a constant model that always 

predicts the average y disregarding the input features would get a score of 0.0.  

  

In the particular case when y_true is constant, the score is not finite: it is either NaN (perfect 

predictions) or -Inf (imperfect predictions). To prevent such non-finite numbers to pollute higher-

level experiments such as a grid search cross-validation, by default these cases are replaced with 

1.0 (perfect predictions) or 0.0 (imperfect predictions) respectively. You can set force_finite to 

False to prevent this fix from happening.   

7.3.3. Symmetric Mean Absolute Percentage Error (SMAPE) 

For the first study the Symmetric mean absolute percentage error was used to measure the 

accuracy of the surrogate models performance for different synthetic data sets.  

SMAPE is defined as follows at Wikipedia. 

 
Where At is the actual value and Ft is the forecast value. Here the version providing a 

measurement between 0 and 100% is used. 

7.3.4. Mean Absolute Percentage Error (MAPE) 

The mean absolute percentage error (MAPE), is an evaluation metric for regression problems in 

the scikit learn library [7]. The idea of this metric is to be sensitive to relative errors. It is for 

example not changed by a global scaling of the target variable.  
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7.3.5. Explained variance score  

Explained variance score is an evaluation metric for regression problems in the scikit learn library. 

The best possible score is 1.0, lower values are worse. The difference between the explained 

variance score and the R² score is that the explained variance score does not account for 

systematic offset in the prediction. For this reason, the R² score, the coefficient of determination 

should be preferred in general. 

7.4. Result of the benchmark analysis 

Two studies have been conducted to better understand how well different surrogate models 

perform on different data sets. In this chapter the analysis results from the study are presented in 

tables with the outcome from evaluation of a number of surrogate models.  

7.5. Study 1, benchmark of synthetic data. 

From experience of typical engineering DSE studies, synthetic problems are defined as 

mathematical functions that mimic similar behaviour in order to provide different challenges for the 

surrogate models. This data can be used to try available response surfaces to see how they 

perform. Data are described by mathematical functions, which formulates the characteristics of 

the data and enables the creation of large data sets. Different response surfaces are used on the 

data sets to see how they perform. 

7.5.1. Distribution of numeric data 

Parameters may have simple distribution functions while others can be more complicated. 

Here we have three parameters with different distribution functions that are common in our data 
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The functions can also be more complex and conditionally dependent on other parameters. For 

example - the number of vanes on a model can have different 

sets of possible values depending on a related thickness parameter. 

 

  
The models performances is measured on 50 linearly sampled data points using leave-one-

out cross validation with 30 iterations for predicting the left out data point.  Categorical features, 

whenever included, are subjected to one-hot encoding, a common method of representing 

categorical features in a numerical form that models can handle.   

 

The result from the benchmark is presented in the Appendix in a tabular format, providing the 

mathematical formula for the problem together with boundary conditions. The table shows the 

evaluation of different surrogate models perform with respect to the Symmetric Mean Absolute 

Percentage Error and the R^2 for each problem.  

7.5.2. Conclusion 

 he results are      e    to two sect o s, the   rst  eal    w th “Only numeric parameters” and the 

seco    eal    w th “Numeric and categorical data”. The details are explained before each 

subsection. The problems are  el  eratel   es   e  to ca ture s ec   c  he o e a’s or 

challenges like undefined areas or gaps in an otherwise continues function. Some problems were 

defined as steps and mixtures of continues and categorical input such a polygonal function and 

“ ater al”  
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An important detail is that due to stochasticity, model performance is subject to some variation – 

thus, the exact numbers in the result tables can vary between iterations.  It should also be noted 

that further adjustments of the parameters for the algorithms tested could improve the 

performance of the algorithms, hence this study should only serve as a guideline when comparing 

different response surface models. With respect to the included algorithms and the problems 

presented in the study, Kriging is performing best for almost all circumstances, including a mixture 

of continues, none continues and categorical data. The only situation where Kriging did not 

perform well was with enormous exponential responses >10^10. Thus, if the response feature has 

these magnitudes, an idea could be to rescale the input features.  There are several interesting 

ideas to dive into and improvements to be done. E.g. non-uniform sampling of the input data. As 

of now, data is sampled uniformly, but it might be interesting to sample from a skewed distribution 

to see how the models perform. Improved analytics and automatic visualization; perhaps given 

some inputs. This is something that could be improved to better understand the qualities of 

different models. Iterating models via hyperparameter tuning, e.g., RandomizedSearchCV and 

providing parameters to tune. As of now, the model uses the default parameters. 

7.6. Study 2, benchmark of GKN Aerospace engines data 

Results from a DSE study performed in the DEFAINE project. The DSE support the  development 

of a component in an Electric Fan Thruster, a novel solution for more sustainable aviation  [8]. For 

the Fan Outlet Guide Vane (FOGV) assembly, the design objective is to provide a lightweight, 

high performance and cost efficient solution. This study builds on the work reported in the ICAS 

conference in Stockholm, Sweden 2022 [9] and CEAS conference in Lausanne, Switzerland 2023 

[10].  

 

Parameters used in this DSE study are the same as reported in Lausanne although somewhat 

other ranges. 

Name Type Kind Range 

Fogv hub aft wall thk Real Continuous 1.5:4 

Fogv hub attachemnt delta Real Continuous -4:4 

Fogv hub fwd wall thk Real Continuous 1.5:4 

Fogv hub ic thk Real Continuous 1.5:4 

Fogv hub include stiffner rib Boolean Nominal discrete No;Yes 

Fogv hub oc thk Real Continuous 1.5:4 

Fogv mnt lug ang pos Real Continuous 5:10 

Fogv oc aft stiff rib height Real Continuous 04:30 
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Name Type Kind Range 

Fogv oc attachemnt delta Real Continuous -4:4 

FOGV oc fwd stiff rib height Real Continuous 04:29.8 

Fogv oc thickness Real Continuous 1.5:5 

Fogv thrust lug angular pos Real Continuous 15:35 

Material String Nominal discrete Alu, Ti64,Steel 

Fogv vane t max Real Continuous 60:100 

Vane thickness Real Continuous 1.5:5 

Number of fogv Integer Discrete by value 20:50 

Use vane core Boolean Nominal discrete No;Yes 

 

 

Parameter: Number of FOGV:s 

 

The FOGV assembly described here is located at 

the rear of the rotating fan. The rotating fan does 

work on the flow by turning it, and the FOGVs 

subsequently align the flow in the axial direction. 

The FOGV assembly also provides a load path from 

the mount lugs to the core of the engine. The 

number of vanes is a design variable which can be 

varied, which has an impact on aerodynamic, 

aeroacoustic and structural aspects of the fan. To 

keep the aerodynamic impact low while varying the 

vane count, a parameter called solidity can be kept 

constant. Solidity is defined as the chord (distance 

from leading edge to trailing edge) divided by the 

circumferential distance between two adjacent 

vanes.  
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Parameter: Vane Material. 

 

The vane can be manufactured in metal using 

Aluminium, Titanium or Steel.  

 

  
  

Parameter: Vane max thickness, Vane wall 

thickness, vane hollowness. 

 

When reducing the number of vanes in the FOGV 

assembly, the total weight is increased. Mainly due 

to that vanes become longer and thicker so that the 

combined volume of the vanes is increased. When 

the vane is hollow the vane wall thickness is a 

parameter. If the vane configuration is of the three 

piece type and manufactured of carbon material 

there is a mid-foam material added.  

 

 

Parameter: Outer Case Forward and aft Stiffness 

Rib Height, Outer Case Thickness. 

 

There are three parameters that can be varied 

independently. By varying the stiffness rib height the 

structure can be adopted to meet different stiffness 

and strength requirements.   
Parameters: Hub fwd Wall Thickness, Hub aft wall 

Thickness, Hub outer case thickness, Hub inner 

case thickness, optional hub stiffness ring. 

 

The hub part of the assembly plays an important 

role of providing a load path from the vane ring and 

the thrust lugs to the engine core. The hub also 

provides attachment for the electrical engine and the 

gearbox. 

 

Parameter: HUB attachment delta, Outer Case 

attachment delta. 

 

The attachment between the vane and outer case or 

inner hub is realised either with a fitting feature as 

illustrated in the picture to the right or integrated in 

the vane as illustrated in the one piece type of vane. 

Hence the thickness parameter, used here, is a 

delta parameter that either increase or decrease the 

thickness in relation to the reference design.  
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Below are two different vane counts illustrated. 50 Vane Count and 20 vane count. 

 

  

 

The 16 parameters are included in a DOE for a Design Space Exploration study. The parameters 

are a mix of continues real, Nominal discrete and discrete by value, see Error! Reference source 

not found.. The distribution used is Latin Hypercube and 132 designs. The number of designs 

were decided on time available and amount of access to computer cluster.  

 

For this study we are only evaluating the two resulting outputs for prediction, Mass and supplier. 

Where the mass becomes a fairly continues function that is based on all parameters, and supplier 

is non-liner and based on if then else rules coupled to the parameters; optional hub stiffness ring, 

Material, Vane max thickness, the number of vanes and the use of vane core. 5 different suppliers 

in total. 

7.6.1. Predicting Mass 

Mass is a continues function that is based on all parameters presented above.  

 

Radial Basis Function 

 
Figure illustrating the variation between test data and the predicted data. 

 

Kriging 
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Figure illustrating the variation between test data and the predicted data. 

Random Forest Regression 

 

Figure illustrating the variation between test data and the predicted data. 

Summary of results for response surfaces predicting the mass of the component. 

Evaluation metric Radial 

Basis 

Function 

Kriging Random 

Forest 

Absolute percentage error 0.20 0.010 0.07 

Explained variance score 0.40 1 0.89 

R^2 score 0.28 1 0.88 

 

The evaluation shows that Kriging is performing best and almost spot on of the surrogate models 

evaluated. Random forest is also performing good and although Radial Basis Function captures 

the trend it is not able to predict with any accuracy. 
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7.6.2. Predicting supplier 

Supplier is non-liner and based on if then else rules coupled to 6 parameters; optional hub 

stiffness ring, Material, Vane max thickness, the number of vanes and the use of vane core. 5 

different suppliers in total. 

Radial Basis Function  

It was not possible to use the Radial Bases Function provided in the SMT toolbox on this data set.  

 

Kriging 

 

Random Forest Regression (RFR) 

 

 

Summary of results for response surfaces predicting the mass of the component . 
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Evaluation metric Kriging Random Forest 

Absolute percentage error 1.73e-07 0.00261 

Explained variance score 1 1 

R^2 score 1 1 

 

From the test performed it is clear that both Kriging and Random forest perform well on this type 

of data. It was not possible to use the Radial Bases Function, hence excluded from the table. 

7.6.3. Conclusion 

Similar to the first benchmark, Kriging is performing best for the datasets tested. This industrial 

use case included categorical data such as material and an optional feature, an extra stiffness rib 

in the hub. Also, the number of vanes represents countable but discrete values. This proved to be 

a challenge for the Radial Basis Function model although it managed to capture the trend when 

predicting the mass. The second output to predict was the preferred supplier, a categorical data 

out ut  ase  o  “if then else” statements resulting in 5 possible outcomes. This is not possible for 

Radial Basis Function and here both Kriging and Random Forest perform well on this type of data. 

Further benchmarking is needed to better understand the difference in performance between 

Random Forest and Neural network. 

7.7. Industrial application – Aileron use case 

The GKN Fokker Aerospace BV use case consists of an aileron, which can be varied in 

dimensions, structural layout, materials and loading. A surrogate model or response surface 

model (RSM) is created, which is validated on quality and subsequently used in t ypical concept 

study analysis. Toolsets used are GKN Fokker Aeros ace   ’s in house KBE applications 

combined with COTS NOESIS Optimus.  

7.7.1. Approach 

A surrogate model or RSM is based on a data set created with native toolsets. As this is time 

consuming, creation of the RSM is done in a frontloading phase. This starts with an initial Design 

of Experiments (DOE), aimed at deducing each design variable (DV) contribution to the objective, 

and to decide which DV will be taken into account for the RSM. Next an adaptive DOE algorithm 

is used, combined with an initial start data set to create the complete data set to be used for the 

RSM. Next a RSM algorithm evaluation is done, using multiple RSM algorithms and compare their 

mathematical quality indicators. These mathematical quality indicators are a good initial measure, 

however shown to be not sufficient to be fully confident on quality. Therefore, an addition al check 

data set is created, with which the native result is compared with the RSM prediction. In case the 

percentage difference is lower than a certain acceptable percentage the RSM is accepted.  
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7.7.2. Application 

The RSM is targeted to be used in design phases where time is limited. In this case in conceptual 

trade studies before contract award. Two typical examples are shown. First one is a small aileron 

with low loading (SLL) and second a larger aileron with higher loading (LHL). For both a multi-

objective optimization (MOO) with cost and mass as objectives is run, the plots  in Figure 15 and 

Figure 16 below show the pareto front combined with the iteration results. MOO results are 

verified with a single objective optimization (SOO) run per objective, which confirms the MOO 

results. And finally a native run is done for the optimum points to check possib le differences. 

These differences are lower than 2.5%, which is highly acceptable for the active design phase. 

Also results show that depending on the inputs different options become optimal for different 

areas in the design space, which shows different product behavior is supported by the use case. 

Next the RSM is used to explore the sensitivity of the objectives to a certain standard deviation in 

input. In this case it is assumed the OEM specifies the loading with a certain standard deviation. 

Using a Monte Carlo analysis the resulting standard deviation of the objectives is found, see 

Figure 17. In this case, the MC analysis is using 100 experiments, which cannot be done with 

native runs within an acceptable time frame, showing the added value of the RSM.  

7.7.3. Evaluation 

In this case the RSM is used in a phase with limited time. Which means it needs to be fast but 

also have an acceptable quality level. The initial quality checks during creation as well as the 

native run checks of the optima show <2.5% differences, which is  very acceptable. 

The creation of the native dataset took 27 hours to run, RSM creation + validation took 0.5 hr.  

Running 1 RSM call is < 1 sec, 1 native run is 201 sec. 

Running the MOO takes 36 iterations, so with RSM it takes: 14 sec, with native runs it takes 7236 

sec, which is a performance enhancement factor of 516. Including the native run check in the 

RSM runs, this factor becomes 33. 

So the performance enhancement is well achieved, facilitating the opportunity to do an increased 

number of concept evaluations compared to the traditional way of working. Additionally the RSM 

offers the capability to run sensitivity studies not possible in acceptable lead times with native 

runs. 

 

 
Figure 15 MOO analysis SLL aileron 
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Figure 16 MOO analysis LHL aileron 

 

Figure 17 Monte Carlo analysis on standard deviation on hinge moment 

 

7.8. Discussion and conclusion 

Two benchmark studies and an industrial use case has been presented to better understand how 

well different surrogate models perform on different data sets  and to provide an example of how 

the surrogate methodology can be applied. 

 

 

  



47 

 

Document: D5.3 Design Space Exploration & AI methods 

Version: 1.4 
Date: February 5, 2024 

 

 

DEFAINE - Design Exploration Framework based on AI for froNt-loaded Engineering 

 

References 
 

[1]  J. Sonneveld, T. van den Berg, G. la Rocca, S. Valencia Ibanez, B. van Manen, A. 

 ru  e a  a       e jer, “D  a  c work low  e erat o  a  l e  to a rcra t  o ea le 

arch tecture o t   zat o ,”    CEAS, Lausanne, 2023.  

[2]  D FAIN   o sort u , “D4      F  al release o  work low (re-)  or ulat o  tool(s),” I  A  

Call 6, 2023. 

[3]  D FAIN   o sort u , “D4      Seco   release o  Work low (re-) or ulat o  tool(s),” I  A  

Call 6, 2022. 

[4]  D FAIN   o sort u , “D4      F rst release o  Work low (re-) or ulat o  tool(s),” I  A   all 

6, 2022. 

[5]  D FAIN   o sort u , “D4       MDOWS,” I  A   all 6,  0    

[6]  “SM      0  ocu e tat o ,” [O l  e]  A a la le: 

https://smt.readthedocs.io/en/latest/index.html#. [Accessed 12 1 2024].  

[7]  “sc k t-learn - Mach  e  ear          tho ,” [O l  e]  A a la le: htt s://sc k t-

learn.org/stable/index.html. [Accessed 21 11 2023]. 

[8]  GKN Aeros ace, “GKN aeros ace to lea   e elo  e t o  electr c  a  thruster  or electr c 

a rcra t,”  0    [O l  e]  A a la le: htt s://www  k aeros ace co /e / ewsroo / ews -

releases/2021/gkn-aerospace-to-lead-development-of-electric-fan-thruster-for-electric-

aircraft/. [Accessed 30 01 2023]. 

[9]     A  ersso , M   ejo , A   ra as a   M  Jaco so , “De o strat    a  a  roach  or 

multidisciplinary set-based design within an aerospace research project - D FAIN ,”    

33RD Congress of the international council of the aeronatical sciences , Stockholm, 2022.  

[10]  P. Andersson, M. Lejon, S. Chidambaranathan, S. Dasari Wejletorp, M. Panarotto and M. 

Jaco so , “Mult   sc  l  ar   es    s ace ex lorat o : A  electr c  a  thruster co  o e t 

 es    use case,”    Aerospace Europe Conference 2023 - 10:th EUCASS - 9:th CEAS, 

2023.  

 

 

 

1. Schachinger P, Johannesson HL. Computer modelling of design specifications. Journal of 

engineering design. 2000 Dec 1;11(4):317-29. doi: 10.1080/0954482001000935.  



48 

 

Document: D5.3 Design Space Exploration & AI methods 

Version: 1.4 
Date: February 5, 2024 

 

 

DEFAINE - Design Exploration Framework based on AI for froNt-loaded Engineering 

 

2. Raudberget, D., Levandowski, C., Isaksson, O., Kipouros, T., Johannesson, H. and Clarkson, J., 

2015. Modelling and assessing platform architectures in pre-embodiment phases through set-

based evaluation and change propagation. Journal of Aerospace Operations, 3(3-4), pp.203-221., 

doi: 10.3233/AOP-150052. 

3. Müller, J.R., Siiskonen, M.D.I. and Malmqvist, J., 2020, May. Lessons learned from the application 

of enhanced function-means modelling. In Proceedings of the Design Society: DESIGN Conference 

(Vol. 1, pp. 1325-1334). Cambridge University Press. doi: 10.1017/dsd.2020.87. 

4. Müller, J.R., Isaksson, O., Landahl, J., Raja, V., Panarotto, M., Levandowski, C. and Raudberget, D., 

2019. Enhanced function-means modeling supporting design space exploration. AI EDAM, 33(4), 

pp.502-516. 

5. La Rocca, G., 2012. Knowledge based engineering: Between AI and CAD. Review of a language 

based technology to support engineering design. Advanced engineering informatics, 26(2), 

pp.159-179. 

6. van den Berg, T. and van der Laan, T., 2021. A multidisciplinary modeling system for structural 

design applied to aircraft moveables. In AIAA AVIATION 2021 FORUM (p. 3079).  

7. AD0759199 Stress Analysis Manual, US Air Force, https://apps.dtic.mil/sti/citations/AD0759199 

[Last accessed on December 2023] 

8. Panarotto, M., Isaksson, O., Habbassi, I., & Cornu, N. (2020). Value-Based development 

connecting engineering and business: A case on electric space propulsion. IEEE 

Transactions on engineering management, 69(4), 1650-1663. 

9. Panarotto, M., Bertoni, M., & Johansson, C. (2019). Using models as boundary objects in 

early design negotiations: analysis and implications for decision support systems. Journal 

of Design Research, 17(2-4), 214-237. 

10. Piotrowski, W., Kipouros, T., & Clarkson, P. J. (2019, September). Enhanced interactive 

parallel coordinates using machine learning and uncertainty propagation for engineering 

design. In 2019 15th International Conference on eScience (eScience) (pp. 339-348). 

IEEE. 

11. Mandel, J. (1982). Use of the singular value decomposition in regression analysis. Amer. Statist., 

36(1), 15–24. 

12. Feng, X., Sander-Tavallaey, S., & Ölvander, J. (2007). Cycle-Based Robot Drive Train Optimization 

Utilizing SVD Analysis. 33rd Design Automation Conference, Las Vegas, Nevada, USA.  

13. Krus, P. (2017). Design Space Configuration Trough Analytical Parametrization. In A. Chakrabarti & 

D. Chakrabarti (Eds.), Research into Design for Communities, Volume 1. Proceedings of ICoRD 

2017 (pp. 15–24). Springer Singapore. https://doi.org/10.1007/978-981-10-3518-0 

14. Krus, P. (2017). Design Space Configuration Trough Analytical Parametrization. In A. Chakrabarti & 

D. Chakrabarti (Eds.), Research into Design for Communities, Volume 1. Proceedings of ICoRD 

2017 (pp. 15–24). Springer Singapore. https://doi.org/10.1007/978-981-10-3518-0 

15. Qian, C., Cong, X., Yang, C., Chen, W., Su, Y., Xu, J., Liu, Z. and Sun, M., 2023. Communicative 

agents for software development. arXiv preprint arXiv:2307.07924.  

 

 

 

 

  

https://doi.org/10.1007/978-981-10-3518-0


49 

 

Document: D5.3 Design Space Exploration & AI methods 

Version: 1.4 
Date: February 5, 2024 

 

 

DEFAINE - Design Exploration Framework based on AI for froNt-loaded Engineering 

 

8. Appendix 

8.1. Benchmark of synthetic problems 

The bulk of the result from the first study is presented in this chapter to make the document easier 

to read. Hence, some of the information is repeated here to provide the context.  

From experience of typical engineering DSE studies, synthetic problems are defined as 

mathematical functions that mimic similar behaviour in order to provide different challenges for the 

surrogate models. This data can be used to try available response surfaces to see how they 

perform. Data are described by mathematical functions, which formulates the characteristics of 

the data and enables the creation of large data sets. Different response surfaces are used on the 

data sets to see how they perform. 

8.1.1. Distribution of numeric data 

Parameters may have simple distribution functions while others can be more complicated. 

Here we have three parameters with different distribution functions that are common in our data 

 

  
 

 
 

The functions can also be more complex and conditionally dependent on other parameters. 
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For example - the number of vanes on a model can have different 

sets of possible values depending on a related thickness parameter. 

 

  
 

 

The models performances is measured on 50 linearly sampled data points using leave-one-

out cross validation with 30 iterations for predicting the left out data point. Categorical features, 

whenever included, are subjected to one-hot encoding, a common method of representing 

categorical features in a numerical form that models can handle.   

 

The results are divided into two sections, Only numeric parameters and Numeric and categorical 

data. The details are explained before each subsection. 

 

1. Only numeric parameters: 

       Continuous input data 

       Non-continuous input data 

 

2. Numeric and categorical data 

       Continuous numeric input data and ordinal feature 

       Continuous numeric input data and categorical feature 

       Non-continuous numeric input data and ordinal feature 

       Non-continuous numeric input data and categorical feature 

 

8.1.2. Continuous input data 

Continuous input data and Non-continuous input data 

First parameter – Linear within (10, 20) 

Second parameter – Polynomial f(x) = x2 with domain in (2, 10) 
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Problem 

SMAPE / R2 

Kriging Random 

Forest 

Multi-layer 

Perceptron 

 

Nearest 

Neighbors 

Support 

vector 

machine 

Linear 

2x + 7y 

0.0% / 1.0 2.1% / 1.0 21.1% / 0.48 2.2% / 1.0  32.0% / 0.03 

Polynomial 

x^2 + 2y^2 

0.0% / 1.0 3.1% / 1.0 86.6% / -0.75 3.7% / 0.99 55.3% / -0.23 

Exponential 

e^((x+y)/15) 

0.21% / 1.0 5.0% / 0.85 73.9% / -0.20 3.53% / 0.66 80.1% / -0.23 

Poly- & Exp 

e^(x^2+y^2)/120 

100.0% / < 0 75% / -0.09 100.0% / < 0 80.1 % / < 0 100.0% / < 0 

 

8.1.3. Only numeric parameters Non-continuous input data 

First parameter – Linear within (10, 12) and (15, 20) 

Second parameter – Polynomial with domain in (2, 5) and (7, 10) 
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Problem 

SMAPE / R2 

Kriging Random 

Forest 

Multi-layer 

Perceptron 

 

Nearest 

Neighbors 

Support 

vector 

machine 

Linear 

2x + 7y 

0.0% / 1.0 1.32% / 1.0 19.8% / 0.53 2.01% / 1.0  50.2% / <0 

Polynomial 

x^2 + 2y^2 

0.0% / 1.0 2.5% / 1.0 84.7% /  

<0 

3.6% / 0.99 80.3% /  

<0 

Exponential 

e^((x+y)/15) 

0.6% / 1.0 5.5% / 0.92 86.9% / 

<0 

5.4% / 0.78 98.1% /  

<0 

Poly- & Exp 

e^(x^2+y^2)/120 

100.0% / < 0 66% /  

<0 

89.0% /  

< 0 

69.1 % /  

< 0 

100.0% /  

< 0 

 

 

8.1.4. Continuous numeric and ordinal feature 

 

First parameter – Linear within (10, 20) 

Second parameter – ordinal with 3 levels – transformed numbers 1, 2, 3 

 

Problem 

SMAPE  / R2 

Kriging Random 

Forest 

Multi-layer 

Perceptron 

Nearest 

Neighbors 

Support 

vector 

machine 

Linear 

2x + 20y 

0.0% / 1.0 0.50% / 0.99 13.8% /  

<0 

 

4.1% / 0.82  9.5% /  

0.26 

Polynomial 

x^2 + 20y^2 

0.0% / 1.0 3.4% / 0.94 75.9% / 

<0 

2.9% /  

0.96 

15.1% /  

0.02 

Exponential 

e^((x+20y)/120) 

0.0% / 1.0 1.1% / 1.0 45.3% / 

0.05 

19.0% /  

0.77 

45.2% /  

<0 

Poly- & Exp 

e^(x^2+20y^2)/120 

0.0% / 1.0 12.6% /  

0.57 

44.6% /  

0.52 

11.4 % /  

0.55 

50.3% /  

<0 

 

8.1.5. Continuous numeric and categorical feature 

First parameter – Linear within (10, 20) 

Second parameter – Categorical with 3 levels – with one-hot encoding 
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Problem 

SMAPE / R2 

Kriging Random 

Forest 

Multi-layer 

Perceptron 

Nearest 

Neighbors 

Support 

vector 

machine 

Linear 

2x + 20y 

0.0% / 1.0 0.38% / 1 15% / < 0 

 

5.2% / 0.65 10.6% / 0.01 

Polynomial 

x^2 + 20y^2 

0.0% / 1.0 2.4% / 0.97 77.3% / < 0 3.5% / 0.91 15.5% / < 0 

Exponential 

e^((x+20y)/120) 

0.0% / 1.0 0.22% / 1.0 9.6% / < 0 1.6% / 0.79 3.4% / 0.59 

Poly- & Exp 

e^(x^2+20y^2)/120 

0.2% / 1.0 15.6% /  

0.68 

59.3% / < 0 24.7  % / 0.59 59.3% / < 0 

 

 

 

8.1.6. Non-continuous numeric and ordinal feature 

First parameter – Polynomial within (2, 5) and (7, 10) 

Second parameter – Ordinal with 3 levels – transformed numbers 1, 2, 3 

 

Problem 

SMAPE / R2 

Kriging Random 

Forest 

Multi-layer 

Perceptron 

Nearest 

Neighbors 

Support 

vector 

machine 

Linear 

2x + 20y 

0.0% / 1.0 3.7% / 0.99 10.5% / 0.96 6.7% / 0.98 34.0% / <0 

Polynomial 

x^2 + 20y^2 

0.0% / 1.0 3.3% / 1.0 89.6% / <0 3.7% / 0.99 81.1% / <0 

Exponential 

e^((x+20y)/120) 

83% / 0.71 36% / 1.0 75% / <0 51% / 0.51 100% / <0 
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Problem 

SMAPE / R2 

Kriging Random 

Forest 

Multi-layer 

Perceptron 

Nearest 

Neighbors 

Support 

vector 

machine 

Poly- & Exp 

e^(x^2+20y^2)/120 

12% / 1.0 4.4% / 0.73 83% / <0 5.8 % / 0.49 66% / <0 

 

 

8.1.7. Non-continuous numeric and categorical feature 

First parameter – Polynomial within (2, 5) and (7, 10) 

Second parameter – Categorical with 3 levels – with one-hot encoding 

 

Problem 

SMAPE / R2 

Kriging Random 

Forest 

Multi-layer 

Perceptron 

Nearest 

Neighbors 

Support 

vector 

machine 

Linear 

2x + 20y 

0.0% / 1.0 3.2% / 0.99 11.8% / 0.96 6.7% / 0.98 34.5% / <0 

Polynomial 

x^2 + 20y^2 

0.0% / 1.0 5.0% / 1.0 89.4% / <0 7% / 0.99 81.1% / <0 

Exponential 

e^((x+20y)/16) 

87% / 0.26 38% / 0.13 79.2% / <0 48.3% / 0.14 99.7% / <0 

Poly- & Exp 

e^(x^2+20y^2)/6000 

24.8% / 0.85 5.6% / 0.65 83.1% / <0 6.7 % / 0.49 71.3% / <0 

 

 

8.1.8. Four polynomial parameters and a categorical feature with two levels 

This case involves more parameters and higher complexity. 

With response function Σ  _ ^  +  000 * l_   or  ol  o  al  ara eters  _  a   levels l_j 

 

Problem 

SMAPE / R2 

Kriging Random 

Forest 

Multi-layer 

Perceptron 

Nearest 

Neighbors 

Support 

vector 

machine 

Defined above 0.0% / 1.0 3.4% / 0.99 95.8% / <0 4.7% / 0.99 81.6% / <0 
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8.1.1. Conclusion 

The results are divided into two sections, the   rst  eal    w th “Only numeric parameters” and the 

seco    eal    w th “Numeric and categorical data”. The details are explained before each 

subsection. The problems are  el  eratel   es   e  to ca ture s ec   c  he o e a’s or 

challenges like undefined areas or gaps in an otherwise continues function. Some problems were 

defined as steps and mixtures of continues and categorical input such a polygonal function and 

“ ater al”  An important detail is that due to stochasticity, model performance is subject to  some 

variation – thus, the exact numbers in the result tables can vary between iterations.  It should also 

be noted that further adjustments of the parameters for the algorithms tested could improve the 

performance of the algorithms, hence this study should only serve as a guideline when comparing 

different response surface models. With respect to the included algorithms and the problems 

presented in the study, Kriging is performing best for almost all circumstances, including a mixture 

of continues, none continues and categorical data. The only situation where Kriging did not 

perform well was with enormous exponential responses >10^10. Thus, if the response feature has 

these magnitudes, an idea could be to rescale the input features.   There are several interesting 

ideas to dive into and improvements to be done. E.g. non-uniform sampling of the input data. As 

of now, data is sampled uniformly, but it might be interesting to sample from a skewed distribution 

to see how the models perform. Improved analytics and automatic visualization; perhaps given 

some inputs. This is something that could be improved to better understand the qualities of 

different models. Iterating models via hyperparameter tuning, e.g., Randomized Search CV and 

providing parameters to tune. As of now, the model uses the default parameters.  

 


