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Executive Summary 

The general goal of the context description is to depict the environment where a process is 
taking place and to characterize its state. Therefore, identifying the context is a supporting 
method for other work-packages within AITOC project and standardizing the way it is 
described will allow the integration of the various developed solutions. 

Within deliverable 3.1 “Context Definition with industrial Relevance” four categories of 
context have been defined and were confirmed during all further considerations within AIToC: 

• Human-centered Context, 

• Task-centered Context, 

• Environmental-centered Context, 

• Interaction-centered Context. 

Derived from these categories and based on several prototypical implementations this 
document proposes a context description format which is harmonized among the project 
consortium members. It is based on JSON due to its various advantages, including human-
readable format and wide language support. The document suggests utilizing the generic 
100% set of context parameters outlined in D3.1 as a comprehensive solution. For each 
specific use-case, relevant context parameters should be implemented, enabling a tailored 
approach to capture the required context information. 
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1 Introduction 

To determine a context description format with respect to industrial relevance in the field of 
manufacturing, a definition of context with its underlying parameters is required. Within 
deliverable 3.1, such a context definition and context parameters with industrial relevance 
was defined. A generic context definition according to Abowd et al. [1] forms the basis of the 
underlying activities within work package 3 of the research project AIToC. Within the 
definition of [1, p. 304], context is presented as “any information that can be used to 
characterize the situation of an entity, where an entity can be a person, place, or physical or 
computational object”. Moreover, this definition is enhanced by [[2], p. 5], whereby an entity 
is further described as “relevant to the interaction between a user and an application.“ 
Consequently, there is no restriction on context in terms of underlying parameters like the 
location; rather, it encompasses any knowledge that defines the present status and everything 
that can be beneficial and utilized by a specific context-aware application. Hence, it can be 
adopted to multifaceted use-cases like the manufacturing industry. Furthermore, considering 
the literature, a categorization of industrial relevant context parameters into four main 
categories emerges. Regarding the underlying term to define generic context, the authors [1] 
emphasized the general importance of the user/human and the task to be performed. Besides 
that, within the literature, the dimensions of significant context categories for manual 
assembly assistances are expanded to parameters that can be classified in an environmental 
[3] – [5] and interaction model [5], [6]. 

A variety of context-aware systems have been developed, explored, and presented to the 
scientific community, due to the wide range of crucial context inside the multifaceted use-
case of manufacturing. Because augmented reality (AR) applications are context-aware, 
having regard to the spatial registration of AR content in the external world [7], a wide range 
of assistances is developed in AR and characterized thus, as context-aware. To enable the 
mentioned spatial correct registration of digital content, information about the layout and 
object data is necessary [8], i.e., environmental-centered context data. Furthermore, 
approaches that are more complex exist, including additional algorithms and sensors to 
ensure an adaptive information presentation. In this context, the retrieving of static layout 
data or static task sequences from databases is combined with more sophisticated data such 
as continuous/dynamic data, to ensure a real-time adaptation. From this point of view, a static 
data acquisition is defined by preliminary collected data, that are pre-loaded and made 
available for the assistance system. These data are indeed updateable, but not during the 
specific information provision i.e., task execution. On the contrary, dynamic data are not pre-
loaded, but constantly collected during the task execution.  As an example, for dynamic 
context acquisition, besides the target assembly sequence, Mura et al. [9] utilized a force and 
a camera sensor to reason task progress, task type as well as assembly errors. Rodriguez et al. 
[10] gathered motion capture data by a Microsoft Kinect camera to determine equal context 
parameters, as well as Funk et al. [11]and thus predict the cognitive state. Task complexity is 
utilized and therefore predicted by Zaeh et al. [12] by a multi-dimensional measure across the 
four context categories with consideration of predetermined task time, general qualification 
as well as the cognitive state. Apart from task-centered or human-centered context 
parameters, continuous motion data retrieved from cameras [13], electromyography sensors 
[14] or inertial measurement units [15], can also be used to identify interaction-centered 
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context. Whilst implicit interaction needs no additional movement besides the ones that must 
be conducted to execute the specific tasks, explicit interaction is realized by performing extra 
tasks by the user (e.g., hand or eye gestures, user input by physical buttons or graphical user 
interfaces [16]). Furthermore, Binder et al. [16] utilized the explicit user input to determine 
human-centered context parameters such as the user’s preference and personal constraints 
like the existence of visual impairment or color blindness. Implicit interaction data are used 
by Bannat et al. [17]to gather the cognitive state. Westerfield et al. [18] used an ontology-
based approach to reason the cognitive state by implicit camera data and knowledge about 
task constraints.  

The presented context-aware systems are intended to serve as a basis for creating a list of 
possible context parameters. Thus, in the following the literature-based context parameters 
are assigned to one of the four main categories: human-centered, task-centered, 
environmental-centered, and interaction-centered context. However, the interaction context 
in particular shows that no one-dimensional context view can be used. More precisely, the 
collected interaction data can be used to determine human-centered context (e.g., search 
movements to determine the cognitive state) or task-centered context (e.g., task progress 
information from motion data). Therefore, no exact separation of the four context categories 
can be made, but rather must be seen in a multi-dimensional approach with dependencies 
between the individual parameters and models. Thus, the following allocation is a dynamic 
propose. 

1.1 Human-centered Context 

Regarding the literature, the human-centered context comprises parameters that can be 
directly linked to a specific human or a group of individuals (e.g., working group at a specific 
workplace). 

Table 1: Literature-based human-centered context. 

Generic Context 
Parameter 

Description Example: Specific 
Parameters 

Context 
Acquisition 

Example: Data 
Input  

Anthropometry  The user’s human body 
during the use-case-
specific task execution 
as well as in general 
with information about 
individual constraints. 

Restrictions, 
Bones, Posture 

Static or 
Dynamic 

Static: User-ID 
Dynamic: 
Camera-based 
Posture 
Tracking 

Cognitive State Information about the 
individual user’s 
cognitive processes, 
with the possibility to 
reason cognitive 
overload or underload. 

Stress, Cognitive 
Load 

Dynamic Smartwatch 

Preference The user’s individual 
opinion on different 
alternatives (e.g., 
visualization devices, 

Learning 
Type/Styles 

Static  User-ID  
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information provision 
methods…). 

Qualification Assessment of general 
knowledge as well as 
specific task-related 
skills that gives the user 
the ability to perform 
the task. 

General 
Qualification, 
Task-specific 
Qualification 

Static  User-ID: 
Company-
Specific 
Qualification 
Matrix  

Demographic 
Data 

Specific information 
about the user and 
his/her affiliation to 
certain groups of 
people. 

Age, Gender Static User-ID 

 

1.2 Task-centered Context 

The task-centered context category encompasses data that defines or specifies the task that 
should be executed by the user. Accordingly, more general parameters such as the task type 
as well as detailed calculations like the underlying complexity can be considered as relevant 
to adapt the assistance. 

Table 2: Literature-based task-centered context. 

Generic Context 
Parameter 

Description Example: Specific 
Parameters 

Context 
Acquisition 

Example: Data 
Input 

Task Complexity Assessment of the task 
characteristics that 
describes the need to 
integrate complicated 
mental and physical 
aspects independent of 
the individual user’s 
skills. 

Complexity 
Metrics (e.g. 
[39,40]), Error 
Rate 

Static Annotations, 
Historical Data 

Task Type Categorization of the 
specific tasks to higher-
level task groups. 

Higher-level Task 
Categories (e.g., 
MOSIM Task List) 

Static Annotations, 
Company-
Specific Work 
Plan 

Task 
Specifications 

Meta-Data, detailed 
information, or 
constraints about the 
task with high 
importance to consider 
during performance. 

Safety 
Information, 
Predetermined 
Task Time 

Static Annotations, 
Company-
Specific Work-
Plan or EDM-
System 

Task Progress The active task, 
according to granularity 
and possibility, tracking 
in terms of progress and 
correct execution. 

Task Sequence, 
Performed Tasks, 
Correctness of 
Performed Tasks 
(i.e., Errors) 

Static or 
Dynamic 

Static: 
Company-
Specific Work-
Plan 
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Dynamic: Hand 
Tracking (Data 
Gloves) 

 

1.3 Environmental-centered Context 

Parameters that are related to the specific environment in which the tasks that should be 
performed by the user take place, are linked to the environmental-centered context model. 
Thus, layout as well as object data and specific requirements are comprised by this category. 

Table 3: Literature-based environemntal -centered context. 

Generic Context 
Parameter 

Description Example: Specific 
Parameters 

Context 
Acquisition 

Example: Data 
Input 

Layout Data  Meta-data as well as 
transforms and 
geometry of layout-
related data. 

Data of Stations, 
Workplaces, 
Resources (e.g., 
Racks, Trolleys), 
QR-Markers 

Static or 
Dynamic 

Static: 
Annotations 
Dynamic: RFID-
Tags/Reader 

Object Data Meta-data (e.g., 
Grasping Points, Bill of 
Material, Assembly 
Path) as well as 
transforms and 
geometry of object-
related data. 

Data of Products, 
Tools, Sensors, 
Visualization 
Devices 

Static or 
Dynamic 

Static: 
Annotations 
Dynamic: RFID-
Tags/Reader 

1.4 Interaction-centered Context 

The interaction-centered context can be seen as a context model category with a strong 
interdependency to the other three context models. This is, due to the fact, that the 
interaction-centered context comprises parameters and data which are used to derive 
different parameters of the other context categories (e.g., task progress derived by the implicit 
interaction of the user by motion data). 

Table 4: Literature-based interaction -centered context. 

Generic 
Context 

Parameter 

Description Example: Specific 
Parameters 

Context 
Acquisition 

Example: Data 
Input 

Implicit 
Interaction 

Interaction of the 
user is derived from 
measurements 
during the use-case-
specific task 
execution. 

Behavioural/ 
Physicological/ 
Motion 
Measurements 

Dynamic Camera-based 
Posture 
Tracking 

Explicit 
Interaction 

Interaction of the 
user is done by 
additional tasks, 

Commands (Voice, 
Eyemovement, 

Dynamic Voice 
Commands  
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besides the use-
case-specific task 
execution. 

Gesture, Taktile 
Information) 

2 Implementation of context 

2.1 Annotations of parts and assemblies 

Identifying part features from geometry is a complex task that have been separated from the 
task reasoning routine to simplify the problem. Currently, the annotations of parts, 
geometrical features within parts, and assemblies is a manual effort. However, it is a good 
example of work that, with enough manually annotated examples, could be automated and 
used as training data for the AI. There are three levels of annotations: assembly level – 
describing relations between part-level markers to form semantic assembly representation; 
part level – identifying part types, material, categories, weight, overall dimensions, and 
function – this level is used in reasoning operation to determine which type of operation is 
applicable for specific part or which handling method to use for moving part around; finally 
feature-level annotations describe position, orientation and geometric parameters of a 
feature, a good example is threaded hole – to mate with proper screw, thread parameters like 
pitch, length, direction need to be known, in addition, position of the threaded hole and its 
orientation is required to position mating part in the assembly properly. 

Annotations of parts is done in annotation editor, that is a standalone tool based on Unity. 
This tool allows to annotate geometrical features, assign part level information, as well as 
define assemblies. Data is saved in the JSON format for readability and portability between 
systems, and task and operation editor can transform this JSON format to ASP definitions 
directly usable by the operation reasoner. 

For the annotations of features and functions a common dictionary of allowed and well-
defined properties need to exist at least on a company level, but preferably on the world-level 
to enable data and model exchange between part vendors and system integrators. 
Annotations are supplementary information for the CAD data and are closely related to the 
CAD data – for instance sharing common coordinate system. Therefore, we have adopted glTF 
CAD data exchange format, which is natively based on JSON and allows introducing extensions 
into the data format. This way annotations and CAD data can be merged into one open and 
widely supported data file. If alternative CAD format is required, annotations can 
accommodate that file in a separate JSON file. 

To maintain feature types and allowed values as a dictionary commonly available, the 
annotation editor synchronizes annotation definitions with a selected server, be it internal 
company or global standard providing server. The ultimate goal is to provide open living 
standard for part, feature and assembly-level annotations that will be updated as new 
features, part types are emerging. 

Assembly annotation in the JSON representation is currently under development, as parallel 
format ASP assembly annotation is already implemented and used directly. However, the 
JSON exchange format will ease editing of the annotations and cross-validation with the 
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template. The idea of assembly-level annotation requires simple array structure, where each 
array entry represents individual connection between two parts. The single array record 
contains reference always to two features at two different parts. 

Assembly annotation structure contains two parts: assembly-level key-value pair annotations 
that are used for assembly component characterization and categorization, and geometrical 
connection section that defines part relations. Currently there are no assembly level 
coordinate system definitions included in the assembly annotations, as connections between 
assemblies can be described based on the assembly components feature markers. An example 
is presented in the listing below. 

{ 

 “Properties“: [ 

 “Name“: “Front brake“, 

 “Subsystem“: “Braking system“, 

 “Location“: “Front left“, 

 “Vendor“: “Brembo“ 

 ], 

 “Assemblies“: [ 

 { 

 “ID“: “A20“,  

“Name“: “Brake calliper“, 

“Connections“: [{ 

“BaseAssembly“: ““, 

“BasePart“: “Caliper“, 

“BasePartFeature“:“1“, 

“PartAssembly“: ““, 

“Part“: “Piston“, 

“PartFeature“:“3“, 

}, 

{ 

“BaseAssembly“: ““, 

“BasePart“: “Caliper“, 

“BasePartFeature“:“2“, 

“PartAssembly“: ““, 

“Part“: “Piston“, 

“PartFeature“:“3“, 

}] 

}] 

} 

The interpretation of the annotation is that geometrical feature marker of part A should be 
aligned with the geometrical feature marker of part B to form a connection. There is no 
constrain of which features can be mated together, so for example a surface marker can be 
aligned with a thread marker if so desired. Restrictions on which geometrical feature marker 
on one part can be aligned with which geometrical feature marker on the other part are only 
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part of editor implementation, and should not be hard-coded, instead should be based on 
easily editable external definition. Currently, the Annotation Editor does not impose any 
restrictions on feature mating, but it will be introduced in future versions as aid for the user 
to limit the number of possible choices to sane selections.  

Part-level annotations comprise of key-value pairs describing parameter name and value. Both 
parameter keys as well as allowed values can be defined in the annotation template standard. 
Four different value types are supported: integer and floating-point numbers; string values 
(free input text), and single choice list items. This allows covering geometrical parameters 
using floating-part numbers to describe sizes, dimensions, weights, etc.; normalized 
parameters that are of integer type, descriptive fields, that might be more useful for human 
than automated systems string inputs – for example part names, comment fields, or features 
not yet supported by standard in transition phase; and lists that are great to store descriptive 
options like types, part group names, or subsystems names. Lists have the benefit over string 
fields in sense they do not allow any mistype in the feature value, so ensuring each definition 
is consistent with the standard. 

Feature level annotations comprise of the key-value pairs to define descriptive feature 
parameters and geometric definition of position within part (3D vector), orientation (as 
quaternion), translational and rotational ranges – for example to describe tolerances or 
permissible rotation angles or plane element extents. The definition for JSON representation 
of annotations follows MConstraint definition from the MOSIM project to maintain full 
compatibility with the MOSIM+ simulation tools.  

2.2 How tasks and operations are described 

In the AIToC project, common operation definitions are used. Each operation has a unique ID 
that allows translation of the operations to any language without affecting the context. The 
semantic meaning of each operation available currently is provided below: 

➢ Position (ID=9) – moving object to a desired position from current location, move can 
be made by hands or using a tool. This operation does not attach rigidly moved part 
to the base where it was moved, additional operations are required to secure part in 
place. 

➢ Stick on (ID=11) – similar action to positioning, except it implies the part will stay in 
place when force is removed as it contains glue. Please note that stick on assumes 
the glue is already on the part or base so glue application is not needed. 

➢ Tighten loose (ID=12) – tightening screw/nut operation without torque sensing tool, 
mostly performed using hand, but can also be performed using tool. After this 
operation part is still to move within limited clearance between screw hole and 
screw. 

➢ Tighten fully (ID=13) – tightening screw/nut operation that causes rigid fixing of the 
part to the base part. After this operation it is impossible to move the fastened part 
by applying force. 

➢ Tighten with torque (ID=14) – action wise it is equivalent to tighten fully, it additionally 
implies using torque wrench, so torque should be defined in operation parameters. 
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➢ Untighten (ID=15) – loosening screw or nut to enable its motion, for example for 
adjustment. The fasteners are not removed completely but only loosened. 

➢ Visual check (ID=16) – visual inspection of a part or connection, in simulation showed 
by gazing at the point of interest. It is a non-value adding operation. 

➢ Manual check (ID=17) – manual inspection, implies testing with a hand if part is in 
place, can move, have proper surface etc. Implies using hand for inspection. 

➢ Insert part (ID=18) – part is insert into another part hole or cavity. Inserting always 
means operation that does not require overcoming friction, or the friction is 
negligible. Inserted part is secured with maximally one translation and one rotation 
left free degree of freedom.  

➢ Press in part (ID=19) – similar to insert with the exception, that in this operation use of 
force is expected, and part is assumed to be held in place by friction. 

➢ Glue (ID=20) – similar to stick on, the difference is that glue operation requires first 
glue application and only then sticking the part on the base. 

➢ Snap clip (ID=21) – similar to position, except the snap on action fixes the part in place. 
Specific part motion close to the final position can be expected in this operation. 

➢ Unsnap clip (ID=22) – removing snappable clip from assembly, part becomes detached 
and free to move in all directions. 

➢ Clean (ID=23) – hand motion or tool motion along cleaning path defined within the 
target part. 

➢ Cut to length (ID=24) – cutting stock material to length, the cut-out element becomes 
active element for the next action. 

➢ Make a cut (ID=25) – cutting operation where material can be cut along straight line, 
the cut element does not become active part for the next operation. 

➢ Cut to shape (ID=26) – similar to make a cut operation with the exception that the cut 
shape can be any profile. 

➢ Subassembly (ID=27) – performing subassembly operation on a group of parts. 
➢ Assemble (ID=28) – positioning of a subassembly. 
➢ Remove (ID=29) – opposite to position, the part is taken from its final location and held 

in hand or put in material zone. 
➢ Check and adapt (ID=30) – manual check combined with final positioning. 
➢ Insert electrical connector (ID=31) – similar to inserting part, the additional context is 

operation on electrical system, and in future it might mean simulating cable motions. 
➢ Grease (ID=32) – applying grease on a surface, greasing path can be defined as 

annotation on the part being greased. 
➢ Route cable (ID=33) – threading cable through hole. 
➢ Open/close (ID=34) – Opening/closing door, parameters describe whether opening or 

closing motion is intended. 
➢ Control (ID=35) – abstract action of controlling a device, it is simulated as taking a pose 

and persisting in it, while other mechanism is moving according to a prescribed 
program. Useful for modeling general interaction between user and systems. For 
example, pressing button to wait for an elevator, where the elevator motion 
constraints waiting time before next action can be performed, or controlling a crane 
to move object from one place to another. 
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➢ Move (ID=36) – move object from one place to another. Object is not fixed at the final 
position; object must be in hand already in order to be moved. It is a lower-level 
positioning action, where reasoning does not consider grasping and reaching for an 
object. It is mostly useful if object at hand should be manipulated. 

➢ Document/read (ID=37) – reading text or preparing documentation, it is an abstract 
action and in simulation is just indicated symbolically. 

➢ Fix (ID=38) – attaching part to the base part rigidly. It assumes no motion, but simple 
application of a geometrical constraint between part and base in the position and 
orientation that is available on the initial phase of the fix. 

➢ Lay cable (ID=39) – placing cable on support, does not require threading through holes, 
but just laying out cables. 

➢ Thread cable (ID=40) – exactly same as route cable. 
➢ Open (ID=41) – opening a hatch, or hinged door panel. 
➢ Close (ID=42) – closing a hatch or a hinged door panel. 
➢ Press momentarily (ID=43) – pressing a button and releasing it immediately 
➢ Press persistently (ID=44) – pressing a button and holding it until another instruction is 

issued. 
➢ Tilt forward (ID=45) – tilting joystick forward; joystick needs to be already grasped. 
➢ Tilt backward (ID=46) – tilting joystick backward; joystick needs to be already grasped. 
➢ Tilt left (ID=47) – tilting joystick left; joystick needs to be already grasped. 
➢ Tilt right (ID=48) – tilting joystick right; joystick needs to be already grasped. 
➢ Tilt random (ID=49) – tilting joystick in a random direction, mostly for used for 

simulating joystick operations, joystick needs to be already grasped. 
➢ Walk (ID=50) – walking from current point to target point, this action includes path 

planning. 
➢ Jog (ID=51) – jogging from current point to target point, this action includes path 

planning. 
➢ Run (ID=52) – running from current point to target point, this action includes path 

planning. 
➢ Jump (ID=53) – making single jump in place. 
➢ Sit down (ID=54) – sitting down from standing position, action can include turning 

around to position avatar with respect to the chair. 
➢ Stand up (ID=55) – standing up from a sitting position. 
➢ Squat (ID=56) – performing a squat in place, provided there is sufficient space. 
➢ Enter (ID=57) – entering a vehicle – this action incorporates posture transitions 

required to take place inside the vehicle. 
➢ Exit (ID=58) – exiting a vehicle – this action incorporates posture transitions required 

to leave the vehicle. 
➢ Wave hand (ID=59) – waving a hand while looking at specific target. 
➢ Grab handrail (ID=60) – grabbing a handrail defined as a constraint. If walking is 

performed in the same time it will keep the hand following the handrail. 
➢ Release handrail (ID=61) – releasing a handrail and removing the walk path constraint 

imposed by the arm length and handrail shape. 
➢ Write (ID=62) – writing on paper wit h a pen. Action can be simulated using actual 

objects for writing or can be just described using simple visualization. 
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➢ Read (ID=63) – abstract reading action, that means gazing at specific object for fixed 
duration of time. 

➢ Stamp (ID=64) – placing a stamp on paper. 
➢ Scan (ID=65) – scanning barcode using handheld scanner. 
➢ Tie (ID=66) – attaching tie wrap around certain object, for example fixing cable in 

place. 
➢ Clamp (ID=67) - Clamping an object to a fixture. This action locks all degrees of 

freedom from the object. 
➢ Group tasks (ID=68) – reference to a task performed by a leader in which worker 

should take part or support it. Single user performs any tasks, and the other workers 
utilize group task to join to this task. This allows changing task leader task without 
need to update followers’ tasks. 

➢ Synchronize (ID=69) – waiting for another worker to finish certain task. This is implicitly 
used in group tasks< but can also be used explicitly to synchronize operations 
performed by independent workers. 

➢ Meet (ID=70) – going to a meeting point or waiting in the meeting point for the others. 
The location of the avatar defines whether the person stays in place (if he is already 
at the meeting place) or walks to the meeting place. Until all participants are not at 
the meeting place all are avatars cannot perform additional actions. When last avatar 
in this action arrives at the meeting place all avatars continue executing their own 
actions that follow the meet operation. 

➢ Sidestep (ID=71) – explicit request to make sidestep locomotion to a target point. 
Target point needs to be reachable by sidestepping. Currently walking does not use 
sidestepping even if it would be optimal motion to reach the goal, therefore if 
sidestep is required, it should be defined explicitly. 

➢ Adjust (ID=72) – adjusting position of a part. No motion is performed just abstract 
notion of adjusting real part position for a fixed amount of time. 

All those operations are defined framework wide. The semantic meaning of each operation is 
well defined and used in the same way across tools. Operations can be divided into three 
groups – assembly related value adding, assembly related non-value adding, and direct 
operations for human control. The first group focuses on building up an assembly, the second 
one describes additional operations that are required but do not change the product structure 
(like cleaning). The final group is used mostly for simulation control to provide ways of creating 
motion scenarios for the virtual workers. A good example is to send a worker to a specific 
place to the patrol neighborhood, or toggling control buttons to visualize actions required to 
control equipment to make a training video.  For every operation there is associated set of 
rules that govern which operations are related to each other or must be executed in a certain 
order or are prerequisites for the selected operation. Tasks are logically grouping elements for 
combining several operations together to from one larger action. They do not need 
standardization and can be defined as the user wants. On company level some constraints 
about tasks definitions can be introduced, like using dictionaries of tasks, to ease their reading 
and understanding by workers or support additional information for the simulation reasoner. 
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2.3 Active registry – central place for context definitions 

Active registry is the REST API and web-based front end for the data marketplace. It provides 
a central place for the AIToC platform user management, data management and storage space 
organization. It provides interfaces for definition of annotation templates as a central source 
of common knowledge that need to be synced between multiple applications belonging to the 
AIToC framework. It holds part types definitions, as well as serves for the backend of the 
knowledge organization and storage mechanism. As a central data management place, the 
data generated by each software tool can be attributed to projects within active registry.  

2.4 Context annotation with different data formats and models 

2.4.1 Data Formats and Models and their use in AIToC: An Overview 

In the AIToC project, a wide variety of data serialization formats and data models are used to 
store, use, and exchange context information. The respective types are selected for the 
respective application area and the models are optimized for the information to be held.  

Data Formats: For example, in REST, i.e., mostly web-based environments, the JSON data 
interchange format has been able to establish itself as a quasi-standard even outside the 
AIToC project. Another widely used data format and markup language, which is used mainly 
in the manufacturing sector, but is increasingly being replaced by JSON, is XML. Besides the 
biggest difference that JSON uses key-value pairs and XML is tree-based, both data formats 
have other differences. XML, for one, is older than JSON, which is why the former has more 
mature tools available for processing and is more commonly used in long-established software 
environments. XML is generally more complex and more difficult to write and read, which is 
because it is optimized for machine readability. JSON, on the other hand, has been optimized 
primarily for data exchange, which favors the integration of such data into one's own software 
environment. JSON and XML are text-based, which makes them rather unsuitable for high 
performance communication in e.g., RPC (Remote Procedure Call) environments. For this 
reason, more compact binary data is used in such environments. 

Data Models: Data models are serialized into data formats. The choice of which format to use 
depends among other things on its expressiveness, needed performance and if required, ease 
of use. If, for example, XML or JSON, are to be compared with this in mind, there are a few 
differences. Apache Thrift, on the other hand, is not suitable for representing complex models 
but it is very compact. In case of geometric context information, the data model gLTF is used 
in AIToC, which can be serialized to JSON or in binary. To define additional information such 
as constraints and semantic annotations (see Section 2.1) for use in MOSIM+ and other AIToC 
components, the gLTF standard has been extended to include additional JSON-based language 
constructs. For the definition of engineering related context information such as products, 
resources, processes, their internal dependencies as well as for the integration of external 
data such as geometry data, the standard AutomationML is used in AIToC, which is discussed 
in detail in Deliverable 3.1. and is widely used in the automation sector in general. 
AutomationML-based data is not only used as a basis for the manual and planning of processes 
at the respective industrial project partners, but it also serves as a basis for the automated 
process planning implemented in the project. For the representation of detailed task and 
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operation context information, which can be easily adapted by an end-user, a model 
developed in the MOSIM project and extended in AIToC is used, which was introduced in 
Section 2.2. As already mentioned, this model is primarily used for interaction with a user and 
simple exchange within the software architecture, which is why it is serialized in JSON. This 
data model is used for visualization and 3D simulation of worker instructions. The declarative 
logical programming language ASP (Answer Set Programming) is used to define context and 
planning rules or expert knowledge to generate assembly plans automatically. ASP in general 
and how it is used in AIToC was discussed in D2.2. RDF/RDFS and OWL are used in AIToC for 
the description of Natural Language information, knowledge graphs, agent models and agent 
behavior as well as for the integration of various context information. 

Combined Use of Context Information: For example, the Knowledge Editor, which can be 
used to define ASP-based expert knowledge, uses AutomationML and annotation information 
as the modeling basis for this knowledge to obtain contextual information about resources, 
tools, and processes. In addition, further meta information for the Natural Language-based 
interaction with the user is defined in OWL. The Instruction Viewer in turn uses geometry and 
annotation information stored in gLTF files as well as task and operations information to 
visualize and communicate worker instructions step by step. Another component used in 
AIToC to control simulated workers in 3D simulations of worker instructions and to 
automatically generate process plans is the agent engineering tool AJAN. It is used to 
implement the Operation Reasoner, which needs to collect a wide variety of contextual 
information such as resource information, annotations, and expert knowledge to infer process 
plans automatically. AJAN is also used to implement agents that control individual workers in 
a MOSIM+ simulation, which requires contextual information about the simulation 
environment, object annotations, and task and operation sequences. 

As illustrated, the AIToC project uses a variety of software components and data that are 
either newly developed (e.g., Annotation Editor), standard in the respective domains (e.g., 
AutomationML), used for high-performance real-time processing (e.g., MOSIM+ with Thrift), 
or used for the integration and processing of heterogeneous data (e.g., Operation Reasoner). 
As an overview of data used in WP3 with their field of application, Table 1 is presented.  

Through the data management tool of context information, called Active Registry (see Section 
2.3), developed in WP2, all information to be distributed in the AIToC project (as shown in 
Table 1) is available to the individual software components. The way chosen in AIToC to 
provide context information to the individual software components in the most optimal 
representation for the respective application area, and thus using different formats and 
models, has several reasons. On the one hand, the task of creating a general data format and 
model that meets the individual requirements of all application areas is a very complex and 
time-consuming procedure. To realize this undertaking, a single project with exactly this task 
is required. Furthermore, a central data format and model would require an additional, not to 
be underestimated, integration effort for the respective new and already established software 
components and for the project partners and their optimized internal processes. In addition, 
the components to be used only require a specific section of context information, which is 
why it is also impractical to develop a general data format and model. Furthermore, it is 
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uncertain to what extent such a common standard will be established outside AIToC, as other 
domains have different requirements.  

Table 1: Data Formats and Models and their use in AIToC 

Application Partner Data Model Data Format Transport Layer 

Model generation 
from real data 

EKS 

FMU models 
Binary AI-M Platform 

TWT 

isb 

AI models 

Requirements  
Engineering 

TWT 

Required model, 
Boilerplate 

JSON REST 

XML ReqIF 

AutomationML 
model 

AutomationML 
(XML) File Exchange 

ifak 

Eryaz 

Modelica model Modelica Language 

Geometry exchange 
EvoBus 

gLTF 
JT File Exchange 

LUT JSON REST 

Time Series 

ifak 

gRPC JSON MQTT 
EvoBus 

TWT 

eks 

Task List 
LUT 

MOSIM-Task JSON REST EvoBus 

DFKI 

Rule exchange 

EvoBus 

ASP 
JSON 

REST 

TWT 

LUT 

DFKI 

RDF/RDFS 

MOSIM+ 
DFKI 

MOSIM+ Thrift Thrift EvoBus 

LUT 

Data collection  
& (pre-) processing 

TWT 
raw data, processed data, 

models 

CSV 
Kafka 

JSON 

Exchange of Meta  
Information & models 

TWT 

Ontology OWL 
REST 

DFKI 

Vocabulary RDF/RDFS 

Reasoning DFKI 

SPARQL-BT 

RDF/RDFS/OWL,  
JSON 

REST,  
MQTT,  
THRIFT, 

File Exchange 

ASP 

PDDL 

Ontology 
(gLTF, MOSIM+,  

MOSIM-Task, 
AutomationML) 
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Nevertheless, in certain cases, context information must be homogenized in AIToC to be able 
to reason about it to automatically derive plans and actions, as it happens in the Operation 
Reasoner and the MOSIM+ Agents. For this reason, we will follow up on how the presented 
contextual information is homogenized and used in AJAN using Semantic Web technologies. 

2.4.2 Homogenizing Context Information 

As can be seen in Table 1, a wide variety of models such as MOSIM+, AutomationML or gLTF 
annotations are used, particularly in the area of reasoning. These models must be combined 
or homogenized so that conclusions can be drawn about the combined model. A central 
reasoning component in AIToC is AJAN (see Figure 1). The internal knowledge model or 
knowledge graph of an AJAN agent, such as the Operation Reasoner or a MOSIM+ agent, is 
available as RDF/RDFS or OWL. Therefore, for the internal reasoning of an AJAN agent, 
incoming data must first be translated into RDF. As can be seen in Figure 2, e.g., the Operation 

Figure 2: Operation Reasoner within AIToC WP3 

Figure 1: AJAN embedded in the AIToC Framework 
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Reasoner receives from different sources, different models for processing. For example, the 
agent receives from the Annotation Editor and assembly data in the form of ASP and gLTF data 
in JSON format. From the Knowledge Editor, context information is received in the form of 
expert knowledge in ASP. Additional context information from the requirements engineering 
domain is available as AutomationML data (which is XML serialized), for reasoning purposes. 

Mapping From <X> to RDF: Figure 3 shows the mapping of incoming ASP/JSON information 
from the Knowledge Editor into RDF/RDFS data. To translate data serialized in JSON, XML or 
CSV into RDF, RML mapping [21] is used. This requires an RDF-based mapping file (Figure 3, 
#2) that translates a JSON-based model (Figure 3, #1) into an RDF-based one (Figure 3, #3). In 
the mapping process, a JSONPath is mapped to an RDF element. For example, $.message.rules 
(JSONPath) becomes --> asp:asRules (RDF predicate). For translating a specific model, an 

Figure 3: Mapping from incoming Expert Knowledge (from 
Knowledge Editor) into RDF/RDFS data 

# 1 

# 2 # 3 
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RDF/RDFS vocabulary or an OWL ontology 
must be available into which it is translated. 
In the case of ASP data, a vocabulary 
developed by DFKI is used. With this 
vocabulary, the incoming ASP data can be 
stored as a string as shown in Figure 3 or as 
RDF-based ASP rules in a triplestore, as 
shown in Figure 4, where the ASP rule tool(X) 
:- wrench(X) is presented in RDF using said 
vocabulary. Even annotation information 
that is available in gLTF/JSON is translated 
into RDF via RML mapping and, depending on 
the reasoning used, left in RDF (in the case of 
SPARQL-BT-based reasoning) or translated 
into ASP rules (in the case of ASP-based 
reasoning. AutomationML data is also 
translated into OWL via RML mapping. In 
contrast to ASP, no new vocabulary or 
ontology had to be developed for this model. 
Instead, in AJAN the XML based data is 
translated into the official OWL-based 
AutomationMLOntology model. As soon as 
all context information required for a specific 
task is available for reasoning, the respective 
reasoning method can be executed with this 
homogenized data. In the case of the 

Operation Reasoner, ASP reasoning is primarily used, whereas SPARQL-BT and PDDL-based 
reasoning is used for MOSIM+ agents. For the reasoning in MOSIM+ agents, context 
information includes not only MOSIM-task sequences, gLTF-based annotation information, 
and information of the simulated MOSIM+ environment, but also the MMUs to be used. All 
mapping files used for the Operation Reasoner and MOSIM+ agents can be found under 
https://github.com/aantakli/AJAN-service/tree/master/executionservice/use-case/domains.   

Mapping From RDF to <X>: After the reasoning of an AJAN agent, the result is available in RDF 
and needs to be translated into the data format and model required for the particular domain 
in order to distribute it within it. In the case of the Operation Reasoner, the ASP-reasoning 
result is back-translated into plain ASP rules and sent via JSON to the Task and Operation 
Editor as well as the Active Registry. POSER is used for the mapping from RDF to JSON. Like 
RML, RDF-based mapping files are also required for the mapping. The individual RDF 
statements are translated into JSON key-value pairs. Figure 5 shows an example of such a 
mapping file that translates ASP reasoning results (Figure 5, #1)  into JSON (Figure 5, #2). In 
the case of a MOSIM+ agent, where communication takes place over Thrift, a programmatic 
mapping takes place that translates MMU instructions from an RDF graph and communicates 
with the simulation environment over Thrift. A detailed explanation is available at: 
https://github.com/aantakli/AJAN-service/wiki/MOSIM-Plugin 

Figure 4: ASP rules defined in RDF/RDFS using 
ASP vocabulary 

https://github.com/i40-Tools/AutomationMLOntology/blob/master/aml.ttl
https://github.com/aantakli/AJAN-service/tree/master/executionservice/use-case/domains
https://github.com/aantakli/AJAN-service/wiki/MOSIM-Plugin
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2.5 Instruction description 

Instructions within the AIToC project can be seen as an extension of the description of tasks 
and operations. The latter define the correct order and steps of an assembly which can be 
used for simulating the assembly process as well as for instructing workers which step to 
execute at the assembly line. However, the task and operation description initially holds only 

# 2 

# 1 

Figure 5: Mapping from RDF to JSON using POSER for storing reasoning result in the Active Registry 



 

Artificial Intelligence supported 
Tool Chain in Manufacturing Engineering 

Project Coordinator: Kristofer Bengtsson, 
Volvo 

 

 

 22/35 

 

the minimum information necessary for executing and simulating an assembly process, such 
as the part, the place to be assembled and required tools. While this is sufficient for simulation 
purposes, for adequately instructing human workers additional information may be needed: 
Highlights, animations, additional documents, images or videos may hold the relevant 
information for a worker to fulfill his task correctly and timely.  

Another aspect of worker-centered instructions is the correct granularity. Operations for 
simulations must include every single (small) step. For human workers, e.g., screwing 
operations can easily be grouped to a “tighten all screws” instruction, making sure only 
relevant information is conveyed. 

Due to the very close interplay between tasks, operations and instructions, the standardized 
instruction description is integrated with the task and operation description in one common 
file format. This format can be used in an instruction viewer only visualizing the tasks and 
operations as well as visualizing previously added instructions. This way, a manual authoring 
step is not mandatory. In the current state of the project, this is realized using a JSON-based 
file structure facilitating the integration into the AIToC web-based tools. During the last 
project period, it is planned to moreover realize a redundant format using Automation ML. 

Building instructions on tasks and operations, the first part of the instruction description holds 
this information: 

 

Figure 6: Task and operation part of the instruction description 

The main sections contain basic information (“Header”), the underlying CAD data references 
(“Instances”) and the tasks and operations regarding a specific workplace (“Workplaces”). The 
operations moreover refer to annotations from the annotation editor, making sure the 
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instruction editor as well as the viewer are able to position the subassemblies correctly in 3D 
space.  

Following this kind of information, in the second part of the actual instructions are described: 

 

Figure 7: Instruction part of the description 

Firstly, camera positions defined in the instruction editor are specified (“Cameras”).  The 
“Instructions” set contains a number of instructions. Each instruction references 1-n 
operations and 1-n views, each containing 1-n cameras, a subset of the operations and 0-n 
visuals. The views are the central element of an instruction: They are meant as one view for 
the human worker containing a view position (the camera), the set of operations to describe 
and a number of visuals to clarify the task. Visuals can be seen as annotations that are located 
in the 3D space at the current state of the assembly. The type of a visual can be a text, a URL, 
an image, a video, a 3D model or an animation. The following overview helps to understand 
the instruction data hierarchy:  
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Figure 8: Hierarchy of the instruction description 

 

2.6 Communication between viewer and assistance system for viewer control  

2.6.1 Phase I: Initialization of Contextual Data 

In the initialization phase, three categories of contextual data are integrated: Human-
Centered Context (HCC), Task-Centered Context (TCC), and Environmental-Centered Context 
(ECC). In this phase, the viewer communicates with the Worker Support System to identify the 
user's specific work station. This exchange of information enables the viewer to retrieve task-
specific data. Within the Task-Centered Context, variables such as task type, task specification, 
and task progress are considered. The Environmental-Centered Context incorporates variables 
related to the layout and object data. 

Following the data initialization, the user profile selection process is initiated to optimize the 
user experience. Upon login, the data platform customizes the interface by presenting 
templates that are specific to the user's profile. In the Human-Centered Context, preferences 
related to the color scheme are included. Additionally, qualifications are considered to define 
the level of support needed and to provide customized instructions. 

2.6.2 Phase II: Real-time Adaptation of Visualization Data 

After completing the initialization, the system transitions to a state of real-time adaptation. 
During this phase, the Worker Support System continuously monitors activities and updates 
the viewer with notifications upon the completion of actions or when deviations from the plan 
are detected. Specifically, the Task-Centered Context is updated to reflect the current task 
progress. 
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Alongside these automated system updates, different options for user interaction are 
available. Users have the option to engage with the system through explicit and implicit 
means. In terms of explicit interactions, direct voice and touch commands are supported, 
known as ICC Explicit Interaction. On the other hand, implicit interactions utilize data gathered 
from Mimetik data gloves, categorized as ICC Implicit Interaction. 

Explicit Interaction via Voice Commands 

Explicit interactions employ voice commands as an option of user input. Voice commands are 
systematically translated into standard messages by the Worker Support System. Once 
translated, the subsequently publishes those commands as messages to viewers. Feedback 
mechanisms are also in place; the viewer issues a confirmation message upon the successful 
execution of a command. Additionally, the viewer uses a descriptor file, typically in YAML 
format, to communicate its range of supported commands and capabilities. This descriptor 
file is initially transmitted upon the viewer's first registration with the WSS. 

Implicit Interaction via Mimetik Data Gloves 

In addition to explicit interactions via voice commands, Mimetik Data Gloves facilitate implicit 
interactions by processing and converting raw motion data into standard messages. These 
messages are interpreted as specific types of operations by the Mimetik MiTracker software. 
Future iterations of the system are anticipated to incorporate gesture recognition capabilities 
as part of ongoing research. 

Feedback mechanisms are similar to those for explicit interactions. The viewer issues a 
confirmation message upon successful command execution and employs a descriptor file, 
typically in YAML format, to communicate its range of supported commands. This descriptor 
file is initially sent upon the viewer's first registration with the WSS. 

Architectural notes: 

The figure below illustrates the communication infrastructure based on the MQTT protocol. 
An MQTT broker acts as the central hub for message exchange. Context providers act as MQTT 
publishers and are responsible for providing context information. On the other hand, MQTT 
subscribers, including the 3D viewer and video player, act as components that evaluate the 
received context and perform appropriate actions. This architecture allows the components 
to communicate seamlessly and exchange information in real time, resulting in efficient and 
responsive interaction. 

Speech Recognizer

3D ViewerData Glove 
Adapter

MQTT Broker

Video Player

context provider infrastructure context consumer

MQTT publisher

MQTT publisher

MQTT subscriber

MQTT subscriber

 

Figure 2: Architecture of the communication infrastructure for context providers and consumers 
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In the following sections we will look at two important aspects of the communication 
infrastructure. First, we will look at the configuration of the context providers, which is 
essential to ensure their functionality. Then we will explain the structure and coding of the 
messages to be transmitted in more detail in order to gain an understanding of the data 
exchange within the system. 

The data glove adapter serves as a bridge between a data glove and an MQTT broker. It utilizes 
gRPC to communicate with the data glove on one side, facilitating data exchange. The 
adapter's configuration is divided into three sections and each section has parameters: 

• header: This section contains meta-information used to enhance log messages for 
better readability. 

o title: This is the component name, usually “MPU Adapter”, where MPU stands 
for Mimetik Processing Unit and Mimetik is the manufacturer of the data 
gloves. 

o description: a short description of the adapter. 

• client: Here, the gRPC client's configuration details are specified, enabling seamless 
communication with the data glove. 

o address: The "address" parameter in the configuration specifies the location or 
network address of the data glove, indicating where it can be reached. 

o port: The "port" parameter defines the specific port number through which the 
data glove communicates using the gRPC protocol. 

• broker: This section defines the configuration settings for the MQTT broker, allowing 
the adapter to publish messages to the broker. 

o address: MQTT broker host address. 
o port: MQTT broker port number. 
o client_id: Identification of the adapter at the broker. 
o username: Part of the credentials used to access the broker. 
o password: The other part of the credentials required for broker access. 
o topic: The MQTT topic which the data glove adapter uses to publish 

information about current actions of the worker. 

An example of the data glove adapter configuration in YAML format is as follows: 

header: 
  title: MPU Adapter 
  description: This is a gRPC client providing MPU actions to an MQTT broker. 
client: 
  address: "169.254.30.47" 
  port: "50051" 
broker: 
  address: "127.0.0.1" 
  port: "1883" 
  client_id: mpu_adapter_001 

  username: guest 
  password: guest 
  topic: "evobus/pilotstation/dataglove" 

YAML (YAML Ain't Markup Language) is a human-readable data serialization format commonly 
used for configuration files. It uses indentation and colons to represent data structures and 
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key-value pairs, making it easy to read and write. YAML is often used as an alternative to JSON 
(JavaScript Object Notation) and shares a similar relationship with JSON, as they both serve as 
data interchange formats. However, YAML provides a more concise and human-friendly 
syntax compared to the more verbose and machine-oriented nature of JSON. 

The adapter serves as the intermediary, supplying messages to the MQTT broker, which, in 
turn, disseminates them to all its subscribers. The payload of each message follows a specific 
structure, ensuring uniformity and ease of data interpretation. This standardized structure 
allows efficient communication and seamless integration between the adapter and the 
broker, enabling smooth data transmission to all interested parties. 

Here's a description of all payload parameters: 

• hdr: An object containing header information for the message. 
o sessionId: A unique identifier representing the session when the message was 

generated (in our implementation we use a string providing time of opening 
the session in ISO 8601 date-time format). 

o reqId: A numerical value indicating the request ID associated with the message. 
A single call to the gRPC server is answered with multiple return values sent at 
different times (a similar approach to WebSockets). We use the time of 
initiating the call. The encoding is UNIX epoch, the number of seconds that have 
elapsed since 00:00:00 Coordinated Universal Time (UTC) on January 1, 1970. 

• processId: A numerical value specifying the process ID. 

• timeStamp: A numerical value representing the timestamp when the message was 
generated (UNIX epoch, but in milli-seconds). 

• actionId: A numerical value representing the ID of the action performed. This is the 
original code sent by the Mimetik data glove. The value range is described below. 

• actionName: A string indicating the name or type of the action performed, as defined 
by the manufacturer of the data glove (Mimetik). 

• err: A numerical value indicating the error code associated with the message. A value of 
0 typically means no error occurred. The error code is defined by the manufacturer of 
the data glove (Mimetik). 

• aitocActionId: A numerical value representing the ID of the action performed. This is the 
AIToC specific action code to be understood by other AIToC applications. The mapping 
is given by a value table below. 

• aitocActionDescription: A string indicating the description of the action performed, as 
defined by the AIToC consortium. 

“err” and “actionID” require more explanation. Only a gRPC interface was available describing 
codes and numeric values. In the following descriptions of the value ranges for those two 
parameters, the codes and values are valid but the descriptions reflect our assumptions of the 
meanings of the codes without knowing the details of the data gloves: 

• err 
o eSUCCESS (0): The operation was successful. 
o eNO_DEVICE_FOUND (1): No data glove device was found. 
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o eNO_MODEL_FOUND (2): The required artificial neural network model was not 
found. 

o eNO_DATA_IN_DB (3): There is no data available in the database for 
evaluation. 

o eCANNOT_EXECUTE_FEATURE (4): The data evaluation feature cannot be 
executed. 

o eDATA_SIZE_MISMATCH (5): The size of the data does not match the expected 
format. 

o eNO_PERSON_FOUND (6): No person was found or recognized. 
o eCANNOT_ADD_SESSION (7): It's not possible to add a new session for data 

evaluation. 
o eCANNOT_DELETE_SESSION (8): The session for data evaluation cannot be 

deleted. 
o eNO_SESSION_FOUND (9): The specified session for data evaluation was not 

found. 
o eNO_SKILL_NOT_MATCH_WITH_DEVICE (10): The user's skill level does not 

match the required skill level for the data glove device. 
o eCANNOT_ADD_PROCESS (11): A new data evaluation process cannot be 

added. 
o eCANNOT_REMOVE_PROCESS (12): An existing data evaluation process cannot 

be removed. 

• actionId: 
o eRandom (0): Represents non-predetermined movements. 
o eToGet (1): "to fetch or get something". 
o eToPosition (2): "to position or place something”. 
o eToTightenLoose (3): "to tighten loosely”. 
o eToTighten (4): "to tighten firmly”. 
o eToCutToLength (5): "to cut something to length”. 
o eToPutAway (6): "to put something away”. 
o eToPlug (7): "to plug or insert something”. 
o eToEquip (8): "to equip or prepare something”. 
o eToCarryOut (9): "to carry out or perform something”. 
o eToInstall (10): "to install or lay something, e.g., a cable harness”. 
o eToFix (11): "fix or secure something”. 
o eToGlue (12): "to glue or adhere something”. 
o eToTightenWithTorque (13): "to tighten with torque”. 
o eToGrease (14): "to grease or lubricate something”. 
o eToApplyAdhesive (15): "to apply adhesive or glue”. 

This JSON payload provides a structured and comprehensive representation of the message, 
with header information, action details, and error status, facilitating clear and consistent 
communication between the adapter and the MQTT broker, ensuring seamless distribution to 
all subscribers. 

To enable other AIToC applications to utilize data glove actions, a mapping between the 
manufacturer's "actionId" and the project's "aitocActionId" as introduced in section 2.2 is 
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established by AIToC project members. This allows for seamless integration and harmonized 
communication between the data glove and AIToC applications: 

actionId aitocActionId aitocActionDescription 

0 0 Unknown action 

1 29 Remove 

2 9 Position 

3 12 Tighten loose 

4 13 Tighten fully 

5 24 Cut to length 

6 29 Remove 

7 18 Insert part 

8 28 Assemble 

9 28 Assemble 

10 39 Lay cable 

11 67 Clamp 

12 20 Glue 

13 14 Tighten with torque 

14 32 Grease 

15 20 Glue 

 

An example of a payload is given by the following JSON code: 

{ 
  "hdr": { 
    "sessionId": "2023-07-25T17:14:42.375423", 
    "reqId": 1690298082 

  }, 
  "processId": 1, 
  "timeStamp": 1690298085426, 
  "actionId": 2, 
  "actionName": "position", 
  "err": 0, 
  "aitocActionId": 9, 
  "aitocActionDescription": "Position" 
} 

The payload structure is not optimized for speed and data efficiency but for human readability 
because it was designed for research purposes and debugging of the applications. Of-course, 
the payload could be reduced to a structure like {timeStamp, actionId, err}. 

The following sections are related to a configuration file, which is utilized by a speech 
recognizer. It enables configuration of actions and their corresponding IDs. This file plays a 
pivotal role in tailoring the speech recognizer to the specific needs of the user or application 
(e.g. 3D viewers or video players). By employing a YAML format, the configuration file offers 
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a human-readable and easily editable structure. Through this file, users can define custom 
actions and assign unique IDs, allowing the speech recognizer to accurately identify and 
execute the desired actions based on recognized voice commands. The precise layout and 
syntax of the YAML configuration is described in the following: 

• header: Contains meta-information about the speech recognizer. 
o title: The title of the application. 
o description: A brief description of the application, highlighting its purpose as 

an MQTT client for processing command IDs. 

• broker: Defines the MQTT broker configuration details. 
o address: The IP address of the MQTT broker. 
o port: The port number through which the MQTT broker is accessed. 
o client_id: The unique client ID for the MQTT client. 
o username: The MQTT broker username. 
o password: The MQTT broker password. 
o topic: This attribute is of no relevance and should have the value "none". It 

stems from a generic application structure and should be removed in 
production systems. 

• application: Specifies application-specific details. 
o topic: The MQTT topic to which the speech recognizer subscribes for receiving 

commands. 
o commands: A list of different commands that the speech recognizer can 

recognize and execute. 

Each command in the commands list consists of: 

• id: A numerical value representing the unique ID of the command. 

• title: A descriptive title for the command, providing context for what the command 
does. 

• voice_commands: A mapping of voice commands for different languages (e.g., "de" for 
German and "en" for English). Each language has a list of voice command variations 
that users can say to trigger the associated action. 

Additionally, here is a complete example of the configuration file structure: 

header: 
  title: vplay - A video player 
  description: This is an MQTT client, which receives and processes command IDs. 
broker: 
  address: "127.0.0.1" 
  port: "1883" 
  client_id: vplay_001 

  username: guest 
  password: guest 
  topic: "none" 
application: 
  topic: "evobus/pilotstation/vplay" 
  commands:  
    - id: 1 

      title: play the video from current position 
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      voice_commands:  
        de: 
          - start 
          - anfangen 

          - fang an 

          - beginnen 

          - beginne 
          - weiter 
          - fortsetzen 

          - setze fort 
        en: 
          - start 
          - start video 

          - continue 

          - continue video 

          - resume 

          - resume video 

    - id: 2 

      title: stop the video play back 
      voice_commands:  
        de:  
          - halt 
          - stopp 

          - stoppen 

          - anhalten 

        en: 
          - stop 

          - stop video 

          - hold on 

    - id: 4 

      title: jump in the video stream <number> seconds forward 

      voice_commands:  
        de:  
          - <number> sekunden vorwärts 
          - <number> sekunden vor 
        en: 
          - <number> seconds forward 

          - <number> seconds ahead 

 

This is the configuration file for the speech recognizer that processes voice commands and 
publishes messages to an MQTT broker. The MQTT broker is located at IP address "127.0.0.1" 
and port "1883". The client ID for the MQTT client is "vplay_001", and it uses the username 
"guest" with the password "guest" for authentication. 

According to this example configuration, the application listens to the topic 
"evobus/pilotstation/vplay" and recognizes specific voice commands for two commands: 

• Command ID: 1 - "Play the video from the current position" 
o Supported voice commands in German: "start", "anfangen", "fang an", 

"beginnen", "beginne", "weiter", "fortsetzen", "setze fort" 
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o Supported voice commands in English: "start", "start video", "continue", 
"continue video", "resume", "resume video" 

• Command ID: 2 - "Stop the video playback" 

o Supported voice commands in German: "halt", "stopp", "stoppen", "anhalten" 

o Supported voice commands in English: "stop", "stop video", "hold on" 

• Command ID: 4 - "Jump in the video stream <number> seconds forward " 
o Supported voice commands in German: "<number> sekunden vorwärts", 

"<number> sekunden vor" 

o Supported voice commands in English: "<number> seconds forward", 
"<number> seconds ahead" 

The configuration file structure enables easy customization of the speech recognizer, allowing 
users to define their own set of new commands and their respective voice variations, tailoring 
the system to recognize and execute desired actions based on recognized voice inputs. 

A first example of the payload of the speech recognizer is as follows: 

{ 
  "id": 1, 
  "title": "play the video from current position", 
  "text": "start video", 
  "number": null 
} 

We can describe this payload as follows: 

• id: An integer field that represents the command ID. In this example, the command ID is 
1, which corresponds to the "play the video from the current position" command. 

• title: A string field that provides a descriptive title for the command. In this case, it 
describes the action of playing the video from the current position. 

• text: A string field that contains the voice command text. In this example, the voice 
command is "start video," which is one of the recognized voice commands for the 
"play" action. 

• number: Since this command (ID 1) doesn't require a numeric value, the number field is 
set to null. 

A second example demonstrates on how to get back spoken numbers: 

{ 
  "id": 4, 
  "title": "jump in the video stream <number> seconds forward", 
  "text": "10 seconds forward", 
  "number": 10 

} 

Since this command (ID 4) requires a numeric value (the number of seconds to jump forward), 
the number field is set to 10, representing the specified number of seconds. 

The payload structure is not optimized for speed and data efficiency but for human readability 
because it was for research purposes and debugging of the applications. Of-course, the 
payload could be reduced to a structure like {id, number}. 
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3 Summary and next steps 

The research document proposes a context description format harmonized in the project 
consortium. It uses JSON due to its various advantages, including human-readable format and 
wide language support. The document suggests utilizing the generic 100% set of context 
parameters outlined in D 3.1 as a comprehensive solution. For each specific use-case, relevant 
context parameters should be implemented, enabling a tailored approach to capture the 
required context information. 

It emphasizes that the choice and individual implementation of context parameters, such as 
the selection of sensors and data sources, is company-specific, domain-specific, workplace-
specific, and use-case specific. This approach allows for flexibility and adaptability based on 
unique requirements. 

The document highlights the significance of process complexity in ensuring reliable context-
capturing. Higher complexity is associated with a medium context capturing rate, while lower 
complexity results in a higher context capturing rate. For instance, in a task tracking scenario 
with data gloves, manual effort increases with higher complexity (e.g. assembly of individual 
products), but with a mass production with recurring activities, the automatic context 
capturing rate is high. 

The future work within the AIToC Project involves creating a generic example of context-aware 
worker assistance, specifically focusing on the assembly of an Ikea Hyllis Shelf. The objective 
is to implement and demonstrate the entire toolchain/workflow in action, showcasing how 
context information can be effectively captured and utilized in a real-world scenario. 
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