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EXECUTIVE SUMMARY 

This deliverable describes the sensor anomaly detection algorithm based on Deep Neural Network 
anomaly detection. We describe the motivation, method design, and evaluation results in detail. 
  



 

 

 

TABLE OF CONTENT 

EXECUTIVE SUMMARY .............................................................................................................................. 2 

1 INTRODUCTION.................................................................................................................................... 4 

2 RELATED WORK .................................................................................................................................. 5 

3 PROBLEM FORMULATION ................................................................................................................. 6 

3.1 SMART HOME SENSOR DATA ............................................................................................................. 6 
3.2 SENSOR FAILURE TYPES ................................................................................................................... 6 
3.3 SENSOR ANOMALY DETECTION .......................................................................................................... 7 

4 APPROACH ........................................................................................................................................... 7 

4.1 DNN METHOD SELECTION................................................................................................................. 7 
4.2 SIMULTANEOUS SPORADIC SENSOR ANOMALY DETECTION ................................................................. 8 

5 EVALUATION ........................................................................................................................................ 8 

5.1 EXPERIMENT SETUP .......................................................................................................................... 8 
5.1.1 Dataset .................................................................................................................................... 8 
5.1.2 Baselines ................................................................................................................................. 8 
5.1.3 Error Injection .......................................................................................................................... 8 

5.2 ANOMALY DETECTION ACCURACY ...................................................................................................... 9 
5.3 THRESHOLD DETERMINATION .......................................................................................................... 10 

6 CONCLUSIONS................................................................................................................................... 10 

REFERENCES ............................................................................................................................................ 11 

 

  



 

 

1 INTRODUCTION 

Sensor-enabled smart home applications (e.g., energy management, security, and healthcare) are quickly 

emerging with the proliferation of low-cost sensors. Despite the opportunities, recent works have found 

that the sensor systems suffer from various types of sensor failures [7], including network failure, 

hardware malfunction, and incorrect sensory readings. In particular, detection of the contextual failures 

(sensors reporting incorrect values temporarily) is nontrivial, complicating the reliable operation of sensor 

systems. For example, widely used passive-infrared (PIR) motion sensors can report erroneous values 

due to temporary sunlight, which may wrongly control the appliances. 

Accurate error detection for sensor systems remains an unsolved problem after many years of research. 

Many commercial sensor systems still rely on manual diagnosis, i.e., replacing/debugging sensors 

regularly or upon failure, which incurs high maintenance costs and extended downtime. To address the 

challenge, automated anomaly detection methods have been proposed [8, 10, 11, 17]. These methods 

train rules or machine learning models with long-term operational data to distinguish normal sensory 

readings from abnormal ones. However, prior works have two limitations. First, they focus on limited 

failure types; in particular, sporadic contextual failures have not been their primary interests. Second, 

these methods are limited to detecting a single sensor failure, which hardly handles simultaneous sensor 

faults (e.g., multiple motion sensors simultaneously affected by sunlight). 

In this paper, we aim to explore the possibility of using Deep Neural Network (DNN) to identify 

simultaneous sporadic sensor anomalies. In particular, we propose an anomaly detection algorithm by 

extending Hypershpere Classification (HSC) [14], designed for one-class anomaly detection (i.e., normal 

vs. abnormal). Our algorithm models the normality of multi-sensor data with a small number of anomaly 

data. Unlike typical classification algorithms, it estimates the boundaries of normal multi-sensor data more 

reliably only with a minimal amount of per-sensor anomaly data. In addition, it identifies the anomaly 

associated with individual sensors instead of reporting the system failure as a whole. 

We evaluate our method on a public smart home dataset. The detection performances for simultaneous 

sporadic sensor failure of the baselines drop up to 54.4% while ours drops up to 1.1%. 

  



 

 

2 RELATED WORK 

Table 1: Sensor Anomaly Detection System 

 

We summarize prior sensor anomaly detection methods in Table 1. These methods take an unsupervised 

learning approach, which learns the pattern of normal sensor data. At runtime, these methods determine 

anomaly if the input data goes beyond the discovered normal data pattern. However, these works are 

limited to detecting fail-stop failures of a single sensor. 

Association Rule Learning (ARL) is the most widely used method for smart home anomaly detection [2, 8, 

10]. In the training stage, this method extracts association rules composed of antecedent and consequent 

sensors; the consequent sensor is determined based on the pattern of the antecedents. This method has 

a limitation in that the rules hardly represent rich features such as the number of sensor events and the 

existence of sensor events, making it challenging to identify complex patterns of contextual failures. 

Additionally, ARL detects the sensor anomaly based on the assumption that all antecedents follow normal 

behavior, which is invalid when multiple sensors simultaneously fail. 

FailureSense [11] utilizes Gaussian Mixture Model (GMM) to learn the distribution of normal sensor data. 

FailureSense trains GMMs for each sensor to detect sensor-wise anomalies. GMM can detect non-fail-

stop sensor failures. However, FailureSense does not reflect the relationship between multiple sensors. 

CLEAN [17] proposes a clustering-based sensor anomaly detection algorithm. This work defines a 

distance between sensor events and cluster sensor events using a clustering algorithm [6]. At runtime, a 

sensor event is classified as anomalous when the distance between the event and the clusters is larger 

than the threshold. CLEAN only detects specific anomalous events but does not detect sporadic 

anomalies.  



 

 

3 PROBLEM FORMULATION 

In this section, we formulate a sensor anomaly detection problem. 

 

Figure 1: Floorplan of Aruba testbed of CASAS smart home dataset. The PIR motion sensor starts 
with M, and the door sensor starts with D. Red dots refer to the PIR motion sensors, and larger 
red circles refer to the long-range PIR motion sensors. There are three door-open sensors.   

3.1 Smart Home Sensor Data 

Our formulation assumes a set of binary sensors (e.g., a motion sensor triggers ON/OFF events). In 

particular, we assume a set of motion sensors deployed in a smart home (See Figure 1 from CASAS 

dataset [3]). The motion sensor passively measures infrared light in their field of view and triggers ON 

events when the change of infrared radiation amount exceeds the pre-defined threshold. It triggers OFF 

events when the amount of infrared radiation drops more than the threshold [5]. 

We formulate an event triggered by a motion sensor as 𝑒𝑖 =< 𝑡𝑖 , 𝑠𝑖 , 𝑓𝑖 > where 𝑖 is the index of the event, 

𝑡𝑖 is the timestamp, 𝑠𝑖 is the triggered sensor (𝑠𝑖 ∈ 𝑆 where S is the set of sensors), and 𝑓𝑖 is the event 

type where 𝑓𝑖 ∈ {0,1} (i.e., 𝑓 = 1: ON event, 𝑓 = 0: OFF event). Each ON event is followed by its 

corresponding Figure 1: Floorplan of Aruba testbed of CASAS smart home dataset. The PIR motion 

sensor starts with M, and the door sensor starts with D. Red dots refer to the PIR motion sensors, and 

larger red circles refer to the long-range PIR motion sensors. There are three door-open sensors. OFF 

event. One ON/OFF event pair of sensor 𝑠 is composed of two events, < 𝑡𝑘 , 𝑠, 1 > and < 𝑡𝑙 , 𝑠, 0 >, where 

𝑡𝑙 is the minimum 𝑡𝑖 of all < 𝑡𝑖 , 𝑠, 0 > (𝑡𝑘 < 𝑡𝑖). We assume sensor events are segmented into sensor data 

segments 1𝑚 = {𝑒𝑘 , 𝑒𝑘+1, … , 𝑒𝑘+𝑔−1} by segmentation algorithms [4, 9, 12] at the start and end of motions. 

3.2 Sensor Failure Types 

We model two types of sensor failure: fail-stop failure, and sporadic failure. These two failures can both 

occur in a single sensor and multiple sensors simultaneously. The followings are details of two error 

types. 

 

Figure 2: Sensor Failure Types. The red dots are the events triggered by sensors. 

Fail-stop failure. This error indicates hardware failure due to aging, circuit short, or battery drain. When it 

occurs, the sensor no longer records nor sends data. In order to reproduce this error for evaluation, all 

events 𝑒𝑖 =< 𝑡𝑖 , 𝑠𝑖 , 𝑓𝑖 > of a failed sensor 𝑠 are discarded from the time 𝑡𝑖 onward. 

Sporadic failure. Sensor hardware is not broken, but it misses some ON/OFF event pairs for a certain 

duration. This failure occurs when the sensor’s capacity (e.g., sensitivity, sensing range) is weakened due 



 

 

to environmental changes (e.g., illumination, temperature, or humidity), temporary occlusion by objects 

(e.g., box, pet, or user), and the aging of the sensor. In such cases, partial data are reported normally 

while the remaining are missed. In evaluation, we reproduce sporadic failure by randomly discarding the 

ON/OFF event pairs of sensor 𝑠 with the probability of 𝜌. 

Importantly, these two sensor failure models extend to multiple sensors. That is, the above failures can 

occur in more than one sensor simultaneously. It’s easy to imagine a case of simultaneous fail-stop 

failures on multiple sensors; just a few of the smart home’s sensors are broken. A group of sensors also 

suffer from sporadic failure. For example, when strong afternoon sunlight comes through the windows to 

the living room, the smart home environment changes rapidly, and then the sensing range of some 

sensors is shortened. In evaluation, to reproduce this scenario, we inject sporadic failure with 𝜌=0.5 to 

three motion sensors (M009, M013, M020) in the living room of Figure 1. 

3.3 Sensor Anomaly Detection 

Sensor anomaly detection methods learn the normal pattern of sensor data with the training data and 

detect anomaly sensors at runtime. We build an anomaly detection model for each sensor. For each 

model, we denote the anomaly detection target sensor as the target sensor and the other sensors as non-

target sensors. Each model is trained with the set of normal segments 𝑴 = {𝑚1
𝑛𝑜𝑟𝑚, … , 𝑚𝑀

𝑛𝑜𝑟𝑚}. Optionally, 

abnormal segments can be used for training. In the runtime, each model outputs an anomaly value 𝑎𝑠 for 

sensor 𝑠 where 𝑎𝑠 ∈ {0,1} with 𝑎𝑠 = 0 for normal sensor, and 𝑎𝑠 = 1 for the abnormal sensor. 

 

4 APPROACH 

In this section, we introduce our anomaly detection pipeline designed for simultaneous sporadic sensor 

errors. 

4.1 DNN Method Selection 

We first choose the proper DNN-based method for our anomaly detection problem. The prior methods 

learn the pattern of the target sensor with the given condition of non-target sensor data [8, 10, 11, 17]. 

These methods lack the ability to detect simultaneous faults because they have an invalid assumption 

that the non-target sensor data is normal. For example, ARL-based methods infer the anomaly state 

based on the assumption that all antecedent events are from normal sensors. Multiple abnormal data in 

the antecedent events incur low anomaly detection accuracy. 

We apply a DNN algorithm to overcome the limitation of the prior works because DNN algorithms do not 

assume the normality of the non-target sensor data. There are a few DNN algorithm that fits our problem. 

DNN-based binary classification can be used as an anomaly detection method trained with normal and 

anomaly data. However, it is not trivial to collect a large amount of anomalous sensor data of various 

types. Unsupervised deep one-class classification methods are proposed to overcome the limitation of 

DNN-based classification, which learns a pattern of normal data in an unsupervised manner. For 

instance, Deep SVDD [13] learns a transformation to the feature space that the normal data is bounded in 

a small area. However, it has a shortcoming to learning sufficient features only with normal data, 

decreasing the anomaly classification accuracy. 

We find that the DNN-based Supervised Outlier Exposure (OE) [14] method best fits our system. 

Supervised OE methods differ from unsupervised learning that they train the models with a small amount 

of anomaly data and differ from supervised learning that they assume that only normal data has a specific 

characteristic while anomaly data does not. Specifically, we adopt Hypersphere Classification HSC [14], 

which concentrates normal data around the origin, and pushes abnormal data far away from the origin on 

the feature space F. This desensitizes the anomaly detection accuracy to the threshold. Let 𝜙 (·|W): X → 

F be a neural network of HSC and 𝑙(·): F → [0, 1] be a function that maps the output to a probabilistic 

score. The objective of HSC is given as follows: 

 

 



 

 

where 𝑦𝑖 ∈ {0,1} is an anomaly label, with 𝑦𝑖 = 0 denoting normal data, and 𝑦𝑖 = 1 abnormal data. For 

each input 𝑥, HSC outputs the anomaly score as 𝑠(𝑥) = ||𝜙(𝑥|𝑊)||
2
. HSC compares the anomaly score 

with the threshold to detect an anomaly. 

4.2 Simultaneous Sporadic Sensor Anomaly Detection 

We extend the HSC algorithm for our anomalous sensor detection problem. We first need to convert the 

segments of sensor data 𝑚𝑗 to the vectors 𝑥𝑗 of the same size to be used as HSC input. We use two 

segment-wise values, the first timestamp of the first event in the segment, the time length of the segment, 

and two sensor-wise values, the number and the sum of the duration of ON/OFF event pairs, which 

makes the vector size 2|S| + 2. Then, we can train an HSC model with the training dataset {(𝑥1, 𝑦1), . . . , 

(𝑥𝑀, 𝑦𝑀 )}, where 𝑦𝑖 ∈ {0, 1} is an anomaly label of 𝑥𝑖 with 𝑦 = 1 denoting normal data and 𝑦 = 0 

abnormal data. 

To enable sensor-wise anomaly detection, we train HSC for each sensor 𝑠 ∈ S with the normal data X 

𝑛𝑜𝑟𝑚 and abnormal data 𝑋 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑠 of the sensor respectively. We find that the naive training method 

incurs a detection accuracy drop. When the data from non-target sensor 𝑠 ′ ∈ S − 𝑠 is abnormal, the HSC 

for sensor 𝑠 anomaly detection classifies the data as abnormal even when 𝑠 is normal. To handle this 

problem, we modify the normal data for training an HSC to detect sensor 𝑠 anomaly as follows: 

 

The neural network of HSC for each sensor 𝜙 (·|W) is composed of 4 fully-connected layers with a feature 

size of 40, 30, 20, and 15. We determine the threshold for anomaly score with 5-fold stratified cross-

validation with the anomaly data. At the runtime, we detect sensor anomaly 𝑎𝑠 for each sensor 𝑠 from the 

corresponding HSC model. 

5 EVALUATION 

5.1 Experiment Setup 

5.1.1 Dataset 

We evaluate our method on Aruba testbed of CASAS smart home dataset [3]. It includes sensor events of 
31 motion sensors and 3 door sensors in a single-resident house. The sensor events include a timestamp, 
sensor id, motion type (e.g., Sleeping, Meal preparation, Eating), and binary sensor event information (i.e., 
motion sensor: ON/OFF, door sensor: OPEN/CLOSE). The Aruba dataset only contains normal sensor 
data. We use sensor events triggered during top-7 frequent motion classes. We randomly choose 20% of 
the data for testing, and the rest for training. 

5.1.2 Baselines 

Association Rule Learning. We implement a sensor anomaly detector based on Association Rule 
Learning (ARL) inspired by prior works [8, 10]. We extract association rules with the apriori algorithm [1] for 
each motion class and select the rules with a confidence score higher than 0.4. At runtime, a rule 𝑟 and a 

segment 𝑚𝑗 are considered mismatched when all sensors in the antecedent of the rule trigger at least once 

in the segment, but the consequent sensor is not triggered. We calculate anomaly score 𝑠(𝑥) =

∑
support𝑟

1.2−confidence𝑟
𝑟∈𝑅𝑚𝑗

 where 𝑅𝑚𝑗
 is the set of mismatched rules of the segment 𝑚𝑗 . The sensor whose 

anomaly score exceeds the pre-defined threshold will be considered an abnormal sensor. 

Gaussian Process Regression. We implement an anomaly detection method based on Gaussian Process 
Regression (GPR) to represent sensor anomaly detection methods based on stochastic methods. 
FailureSense utilizes Gaussian Mixture Model (GMM) for sensor anomaly detection, but GMM cannot 
model the relation between multiple sensors, so the anomaly detection accuracy drops significantly. For a 
fair comparison, instead of using GMM, we apply GPR to enable both sensor-wise anomaly detection and 
learning multi-sensor relations. GPR is an unsupervised learning method that outputs anomaly probability 
for the input data. We use the same data pre-processing method as our method. To enable sensor-wise 
anomaly detection, we train GPR models per each sensor with normal sensor data. We use Radial Basis 
Function (RBF) kernel to train GPR models. We set the anomaly detection threshold as 0.8 empirically to 
achieve its best accuracy. 

5.1.3 Error Injection 

We inject abnormal patterns into the normal data to train our method and evaluate the anomaly detection 
methods. Based on the sunlight scenario in Section 3.2, we inject errors where the sunlight comes into the 



 

 

living room, and intermittent sensor fault occurs simultaneously from three sensors (M009, M013, M020) in 
the living room (Figure 1). To observe the effect of the number of simultaneously faulty sensors, we inject 
the error to the multiple sensors simultaneously randomly selected among the three sensors. 

5.2 Anomaly Detection Accuracy 

 

Figure 3: AUC of ROC curves of the anomaly detection accuracy of the baselines and our method 
for each failure type and detecting target sensors. (a)-(c) show the results for failure-stop failure, 
and (d)-(f) sporadic failure. 

We use two metrics to measure the sensor anomaly detection accuracy: AUC of ROC curves, and F1-

score. Figure 3 shows the accuracy of anomaly detection methods in AUC-ROC. Each subfigure shows 

the results for each failure type and detection target sensor. The number on the x-axis is the total number 

of anomaly sensors. Our method shows a more stable and robust performance in most settings. In 

particular, our method outperforms the baselines for all failure types and target sensors when the number 

of simultaneously faulty sensors is three. 

The AUC of ARL (0.960∼0.980) is higher than HSC (0.878∼0.944) for fail-stop failure when the number 

of simultaneously faulty sensors is 1 or 2, but the accuracy drops significantly for sporadic failure. This is 

because ALR has a fundamental limitation in detecting a failure with a stochastic pattern. The AUC of 

ALR (0.438∼0.812) drops significantly when the number of simultaneously faulty sensors is 3, as the 

assumption of the normal behavior of the non-target sensor does not hold anymore. Our method (0.916 

for three sensors) still shows only negligible AUC drops or even increases. 

The AUC of GPR (71.6∼95.7) is higher than our method (69.5∼92.6) only when the number of 

simultaneously faulty sensors is 1 for both failure types. GPR has some capability to detect anomalies 

with a stochastic pattern, such as sporadic failure. However, the AUC of GPR (43.5∼63.6) drops 

significantly when the number of the simultaneously faulty sensors is larger than 1, while the AUC of our 

method shows only negligible drops or even increases. This is because GPR also assumes that the input 

data x shows normal behavior. 



 

 

5.3 Threshold Determination 

Table 2: F1-scores of the baselines and our method for fail-stop and sporadic failure. The 
numbers (1, 2, 3) denote the number of simultaneously faulty sensors. 

 

Table 2 shows the result in F1-score. Our method shows high robustness for threshold determination 

problems. Especially, our method beats the baselines for all failure types and target sensors when the 

number of simultaneously faulty sensors is three. The F1-score of our method is always higher than that 

of ARL for sporadic error. The F1-score of ARL is higher than our method when the number of 

simultaneous fail-stop sensors is smaller than 3, but it drops significantly when the number of faulty 

sensors increases to 3. 

The F1-score of our method is higher or similar to that of GPR for fail-stop failure. The F1-score of GPR 

(0.669∼0.761) is higher than our method (38.7∼48.0%) when the number of the simultaneously faulty 

sensor is 1 for some sensors (M013, M020), but it significantly drops when the number of simultaneously 

faulty sensors larger than 1 (2.8∼17.3%). This is because threshold determination for unsupervised 

learning methods is fundamentally a tricky problem. Our method explicitly increases the distances 

between normal and abnormal data on the feature space, making the detection accuracy insensitive to 

threshold determination (65.6∼80.2%). 

6 CONCLUSIONS 



 

 

We develop a new sensor failure detection method for smart homes. The solution addresses not only fail-

stop failures on a single sensor but simultaneous sporadic failures on multiple sensors, which can be a 

common case in practice. We find that existing sensor anomaly detection methods cannot detect these 

kinds of failures. Our approach is to leverage DNN-based anomaly detection algorithms, which leverage 

only a small amount of anomalous sensor data to enable sensor-wise anomaly detection. The evaluation 

results show that our methods beat the baselines regarding anomaly detection accuracy for the 

simultaneous sporadic failure of multi-sensors. 
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