

Artificial Intelligence supported Tool Chain in Manufacturing Engineering

ITEA 3 – 19027

Work package 6

Integration of plug & play modules and tools

Deliverable 1
Requirements for integration functions and architecture

Document type
Document version
Document Preparation Date
Classification
Contract Start Date
Contract End Date

: Deliverable
: 1
: 2022-11-16
: public
: 2021-01-01
: 2024-02-29

Artificial Intelligence supported
Tool Chain in Manufacturing Engineering

Project Coordinator: Kristofer Bengtsson, Volvo

 2/11

Final approval Name Partner

Review Task Level Sabino Roselli Chalmers

Review WP Level Gamze Kecibas Ford Otosan

Review Board Level Klaus Fischer DFKI

Artificial Intelligence supported
Tool Chain in Manufacturing Engineering

Project Coordinator: Kristofer Bengtsson, Volvo

 3/11

Executive Summary

The aim of the AIToC platform is to create a modular architecture with the implementation of
the basic modules demonstrating its fitness in the use cases provided by the industrial
partners. To maintain interoperability between systems, standard data exchange formats
must be supported. In addition, internal data exchange within the framework should at least
follow the framework wide internal standard, that needs to be clearly described to allow
extensibility of the framework with any number of modules. A distributed architecture is
preferred to allow leveling of the computational and storage load between multiple systems,
and the deployment in cloud environments, which provides scalability. This document brings
in requirements from the project partners towards the AIToC framework, that should be
satisfied in order to create a comprehensive tool, tackling key manufacturing industrial
problems. Deliverable 6.4b will at the end of the project summarize the use case realization
utilizing the framework and its modules, demonstrating final implementation results of the
herein stated requirements.

Artificial Intelligence supported
Tool Chain in Manufacturing Engineering

Project Coordinator: Kristofer Bengtsson, Volvo

 4/11

Content

Executive Summary .. 3

1 Introduction .. 5

2 Requirements for integration ... 5

2.1 Interoperability with other systems... 5

2.2 Simple and compact data exchange within framework components 5

2.3 Integration to existing Product Data Management (PDM) systems 6

2.4 Modularity .. 6

3 Framework components and architecture ... 6

3.1 Data marketplace ... 6

3.2 PAIP platform ... 7

3.3 Task and operation planning and reasoning .. 7

3.4 Layout planning .. 8

3.5 Overall architecture of the AIToC platform ... 9

3.6 Framework to world communication .. 10

3.7 User interfaces ... 11

4 Summary and conclusions .. 11

Artificial Intelligence supported
Tool Chain in Manufacturing Engineering

Project Coordinator: Kristofer Bengtsson, Volvo

 5/11

1 Introduction

This document summarizes technical requirements from the use case providers towards the
AIToC framework. Requirements are divided into integration related and architecture ones.
The Core focus on WP6 is the integration and homogenization of architectures defined in
other use cases to form one common platform. Requirements are the baseline for those
integration actions and for key achievements definition for project progress reporting.

2 Requirements for integration

2.1 Interoperability with other systems

The AIToC platform is designed to provide connectivity internally between its modules.
Interoperability with other systems should be provided through adaptation of open data
formats that are standardized. The car industry requires interoperability with AutomationML,
software developers appreciate JSON format for message data exchange as well as
transactional information exchange. We have selected glTF as main solution for CAD data
exchange. In addition to single file exchange operations, network connectivity is required for
online data exchange between software modules and the AIToC platform. REST interface will
be adopted to accommodate need for short request-response transactions, and MQTT and
web sockets will be utilized for message passing that can be bandwidth intensive. A messaging
system need to support subscription to topics and publishing data within topics to alleviate
many-to-many routing.

2.2 Simple and compact data exchange within framework components

Based on discussions in the project meetings we have decided to support primarily JSON
format as inter framework communication data exchange format. The decision is based on
the human readability of the format, extensibility that does not break backward compatibility,
and availability of parsing modules for any programing language that would be practically used
to create framework modules. In addition, this format allows seamless integration with the
CAD data representation format that is glTF, which is also based on JSON. As described in
deliverables from work package two, the glTF has been selected as standard CAD data
exchange for the use within AIToC framework. The decision is dictated by the optimization of
the format for the network and Internet use and wide adaptation of the format within tools
for creating 3D web interfaces. In addition, the XML-based AutomationML format will be
utilized for specific modules that target communication of the framework with the outside
components and systems. This is dictated by the need to adhere to the automotive industry
requirements. Task and operation reasoning which is the scope of WP3 will utilize common
data format based on JSON to describe:

• Parts annotations – that brings semantic meaning to the geometrical features of
individual parts, assemblies, and components.

• Assembly definitions.

• Tasks and operations.

Artificial Intelligence supported
Tool Chain in Manufacturing Engineering

Project Coordinator: Kristofer Bengtsson, Volvo

 6/11

• Instructions based on tasks and operations and including links to interactive content and
supportive content like sound, video, images, or documents.

2.3 Integration to existing Product Data Management (PDM) systems

The integration layer of the AIToC framework should be based on a single master module that
will facilitate communication within the framework using internal standard and
communication with the external systems through one end point. This is required to limit
integration effort of the framework and internal PDM and PLM systems in factories to build a
single data exchange module between framework data layer and framework components,
without need to any modification of the later ones. It is required that at least one common
data platform is defined within the project demonstrating use of the AIToC registry as the top
framework management layer so that the framework would be deployment ready with fully
functional backend for data management and storage. Documentation for extension or
replacement of the open-source data marketplace with industrial PLM/PDM systems must be
provided as one of the key results of this project.

2.4 Modularity

AIToC framework will be designed in a modular fashion with extendibility in mind. To achieve
that goal clear data exchange between modules must be defined with preferably uniform API
allowing service discovery, subscription, dependency, maintenance, and resolution. Modules
of the framework should be isolated to the extent that replacement of a single module should
be a simple operation. If certain module uses dependent modules, mechanism for resolving
those dependencies need to be implemented in the framework to automatically install
required submodules. Connectivity between modules should preferably be based on a
network protocol to allow distributing modules between separate machines without requiring
all the modules to be working on a single system. Data exchange should be possible between
all the modules. User access with a single sign-in mechanism should be implemented to
control access to resources and data, based on user and group policies. Modules that require
user interface should all be based on the same platform to allow seamless integration of user
interfaces to a common system. It would be desired to create a single web-based user
interface platform for all the modules, where each user interface would be a plugin for the
main user interface system. This would simplify deployment of the AIToC platform. Modules
should be packaged so that it is easy to move them from one system to another and install in
the framework. Preferably new modules should integrate into all tools that can utilize them
using service discovery system. User interface available outside a single computer must
provide secure connection to maintain passwords and data secrecy.

3 Framework components and architecture

3.1 Data marketplace

To facilitate user management and access rights management, a single sign-in system needs
to be part of the data marketplace integration layer. Keycloak – a free and open-source
module has been selected as a major candidate for this job. Integration of the single sign-in

Artificial Intelligence supported
Tool Chain in Manufacturing Engineering

Project Coordinator: Kristofer Bengtsson, Volvo

 7/11

mechanism for all tools in the web-based platform utilizing OpenID and OAuth2 standards will
enable easy integration of existing tools for data management, database access, storage
management without need for developing our own user management system.

Data marketplace will be directly connected to the Active registry data access layer and the
frontend for the framework to enable seamless transitions between direct access to platform
using web-based user interface and transactional access channels based on the same API for
the component communication with the framework.

3.2 PAIP platform

We have identified the need for data processing as part of data collection and usage scenarios.
The sources for digital information are very broad and use of information often requires data
preconditioning, filtering, transformation, or aggregation before useful output is obtained. As
those operations are repetitive and can be templated for individual use cases, the idea of the
PAIP platform came to life. A graphical user interface allowing to map data inputs, processing
blocks, and data outputs, is required to enable usage of this pipeline by engineers and not only
data specialists. In addition, such GUI provides far more control over visual data flow
correctness evaluation. The processing, data providing, and outputting modules share the
same GRPC communication architecture. This enables modules to aggregate more than one
function. For example, the data loading module could integrate also common filtering or data
mapping functions that are required. As data flows through the pipeline, it can be shared by
multiple modules, enabling for instance implementation of online data monitoring and
processing that provides output to common message broker in a form of events, which in turn
can be used by other system modules to take specific actions and therefore synchronize or
adapt process control to changing conditions.

3.3 Task and operation planning and reasoning

To derive the tasks and operations required to assemble a product, different aspects of the
product and the production site have to be considered during the reasoning process. The most
obvious are the parts assembled in the final product. According to the single elements and
their special features, the required tasks and operations for the assembly can be derived using
corresponding rules, for example, a screw will lead to a screwing task. However, during the
reasoning it also must be considered that not all required tasks are always directly derivable
from the product and its components itself. For example, temporary parts are applied and
later removed to protect design parts, or some parts require some processing such as cleaning
which cannot be retraced from the product geometry. Further, it is also necessary to include
knowledge about the actual production site and the surrounding. According to the availability
of tools or parts – parts and tools might be available on the worktable so it is sufficient to pick
them up, but they might be located in toolboxes or on racks what involves first walking toward
them before they can be picked up. In some cases it is also required to prepare the tools prior
to use. Such tasks are not directly related to the product and will require the input of further
information.

To perform this task and operation derivation and scheduling, the so-called Operation
Reasoner, an ASP based reasoning is integrated into the agent system AJAN. To serve different

Artificial Intelligence supported
Tool Chain in Manufacturing Engineering

Project Coordinator: Kristofer Bengtsson, Volvo

 8/11

data sources, multiple REST endpoints are realized in AJAN to, inter alia, receive data from the
database where the rules are stored and from the annotation editor, which provides product
and assembly related information. Further APIs could be used to add more information for
example about the assembly site or tool availability to derive non-product related operations.
The final command to start the actual reasoning process using the so far received information
is also triggered through the REST API.

The result of the reasoning process is a JSON file with parts, operations, tools, and operation
parameters. To visualize the result the so-called Task and Operation Editor is offered as a web
service where the result is received. The user can then, if necessary, fine tune the results of
the Operation Reasoner using visual user interface and clean presentation of the tasks and
operations.

From the generated and finetuned tasks and operations, the human-readable assembly
instructions must be prepared. This is done by the Instruction Editor in a semi-automatic way.
It uses the JSON file as well as the 3D models of the assembly as an input and pre-processes
instructions for each task and operation. The result is a definition of visible parts and highlights
for the current operation, viewpoints, and basic animations. The work planner can manually
optimize the instructions and add animations, further annotations and descriptions. The
resulting instructions are added to the input JSON file.

Finally, an Instruction Viewer can read this file and use it to automatically show the prepared
work instructions. Different kinds of viewers will be able to show instructions as text, videos
or in 3D. The Instruction Viewer can be controlled by the Worker Assistance System to always
show the correct instructions.

3.4 Layout planning

Layout planning and optimization is one of the main outcomes of the project. Factory layout
has large influence on the task and operation generation, as tasks at some point need to be
attributed to individual workstations, and tools and parts need to be assigned to the
workstations. The part and tools assignments to workstations on the other hand influences
layout optimization problem, as internal workstation layout should be adapted to specific
tasks and operations performed there and facilitate parts transfer from and to workstation.

Layout optimization can be multilevel and references to higher layers should be always
maintained. This means that factory layout (the highest level) can optimize placement of
workstations and common material zones based on process flow diagram and warehouse
constraints. Then detailed workstation layout optimization can happen where actual parts,
material storage places, worktables, etc. are arranged within single work cell. The second level
optimization can influence for example task assignment to individual stations or can influence
tool and component assignment to stations. And that should be possible in the framework.
Also, notification to modules that depend on the specific layout should be provided.

To tackle that problem common data format describing layout is developed. This format can
be then used in WP3 for task and operation planning as well as in WP5 for the layout
optimization. In addition, process workflow format needs to be defined that can be used as

Artificial Intelligence supported
Tool Chain in Manufacturing Engineering

Project Coordinator: Kristofer Bengtsson, Volvo

 9/11

input to factory layout optimization (to serve as a constrain between individual workstations)
and for task and operation planning to designate tasks to individual workstations and workers.

3.5 Overall architecture of the AIToC platform

AIToC data related framework architecture has been planned realized in work package 2. In
addition, data processing pipeline architecture has been developed in work package 4. Work
package 3 provided additional architecture requirements towards task and operation editing
with special focus on data flow between process editors, layout planning personnel, factory
workers being end users for instruction viewers, and production engineers supervising
automatic task and operation derivation. In WP6, those intermediate layouts are combined
into single AIToC framework and data communication, messaging system, and data handling
and storage system.

Figure 1 Active registry architecture

Data management is performed by a centralized platform that offers common API for wide
range of data storage mechanisms. The idea behind active registry is to enable separation of
data storage mechanisms, that should be flexible and adaptable to specific use case needs,
from key AIToC framework components that interact with the data. This way every client –
being part of AIToC framework modules – needs to only implement one data input and output
method to communicate with the active registry. For the modules the way that data is stored
and organized is irrelevant, what is important, is the unified data access layer and user rights
control implemented outside the module to remove the burden of data management from
each module and locate it in the central place where all modules can utilize it as a service.
Active registry provides communication mechanisms: the first one is based on HTTP requests
and provides convenient access layer for clients that require data in portions or provide data
in portions. For example, editors, data collection from sensors, or consuming data by
pipelines. This is a stateless interface which means simplicity in the implementation and usage
– single request is followed by a single response. Using polling mechanism, clients can update
their status based on data related events that can happen in other modules. For use cases like

Artificial Intelligence supported
Tool Chain in Manufacturing Engineering

Project Coordinator: Kristofer Bengtsson, Volvo

 10/11

online collaboration on the data, or data processing that need to reflect changes in real time
and not after undetermined delay, MQTT protocol is provided. This protocol is based on the
idea of subscriber/publisher and allows clients to subscribe to events related to data, and then
receive information immediately when such events happen – the core difference here is that
active registry can push notification to clients at any time and even buffer messages for
temporarily unavailable clients if such buffering is required by the client. Behind active registry
service there is data marketplace storage pool, which comprises of relational databases,
NoSQL databases, object storage compatible with Amazon’s S3 architecture, to allow
unlimited scaling of the data backend, and file storage for simple use cases. The API for the
clients provides interfaces that allow to rely on the active registry to select the right storage
method and provide data to the client without client implementing direct access to the
storage backend, and for those clients that have specific requirements the storage method
can also be selected by the client and proxied to the client by the active registry service. This
allows migration of the storage backend without affecting the clients, what in turn allows
simple adjustment on the server side to cope with the changing data types, access frequency
and size.

By utilizing plugin models for data access blocks, active registry offers opportunity for one
place integration to internal company data systems. This means that adopting AIToC
framework to individual data storage mechanism needs only be done in one place for the
whole framework to function with the new data provider.

The active registry is designed with the data workflows identified in the use cases of the AIToC
project. Allowing for flexibility in data movement through the framework and providing
intermediate results storage and management, including knowledge storage mechanisms for
reasoning engines.

Modules in the AIToC framework communicate through MQTT protocol provided by the data
marketplace service. The access to the resources and constrains of the communication
channels is provided by the active registry identity management system, which in this moment
is the open-source Keycloak project. This facilitates centralized user and user privileges
management and implements single sign in mechanism.

3.6 Framework to world communication

Active registry service will be used as the gateway between AIToC framework components
and inter framework communication, and the external services that will utilize AIToC
framework or provide services, data storage, etc. to the AIToC framework. Common internal
API will allow to simplify data mangling to the gateway and utilize common data and
messaging platform for internal components to simplify module development and reduce
need for reimplementation of format exchange in individual modules.

Active registry will provide plug and play modules that tackle individual data exchange needs
to facilitate communication between AIToC framework and the external tools/services/end
users. For manual data management, module development, user management, verification
purposes and audits, user interface will be provided to give overview as well as low level data
access methods. For regular or large-scale integrations with external systems, API will be
provided that will facilitate connecting external clients/servers to the AIToC framework. In

Artificial Intelligence supported
Tool Chain in Manufacturing Engineering

Project Coordinator: Kristofer Bengtsson, Volvo

 11/11

addition to data exchange and mangling, also a messaging service will be provided that will
enable sending notifications to subscribers when selected events occur – for example
modification of data, incoming data, or adding/removing data source/sink. This will enable
creating data pipelines that are event driven.

3.7 User interfaces

Web interface is preferred for all the modules. Common interface should be developed that
allows to extend its functionality with modules. It is expected that many modules will require
only basic configuration by specifying numerical and textual values. For such use cases a
template-based user interface should be offered to minimize need for such simple interfaces
to be developed separately for each module. Template-based user interfaces will be
configurable by adding a module manifest file in JSON format with specification of parameter
types and allowable ranges. A module will be then provided with the parameter values
obtainable through request to the Active registry API. In the same way, such module will be
allowed to register its need for user interface and parametrization options.

For use cases where a more advanced user interface is required, or a web-based user interface
is already part of the module, the active registry will provide proxy functionality with single
sign on functionality. This way, complete user interfaces will be integrated into common web
interface.

For standalone tools, the AIToC Active Registry service will provide an installation package
location, that will be conveniently available to end users, so that they could download and
install the tool on local machine.

4 Summary and conclusions

The technical requirements and status of the current integration is provided in this document.
Ideas for the implementation will be put into production during the last year of the project
and documented accordingly. The core components of the framework are planned as open-
source tools with permissive licenses allowing to royalty free reuse of the framework in new
applications and in industrial and commercial products and services. Data storage and
management is taken care of centrally to offload module developers from the burden of data
access control and data sharing implementation. A common data access API provides
integration opportunities with minimum dependencies and allows for integration of modules
written in different programming languages. The network communication protocols chosen,
adhere to industrial and open commercial standards, providing wide compatibility of the
framework out of the box. Internal data formats have been defined around mostly JSON
messages to limit burden required to support multiple formats and thus data checking
libraries.

