

BUMBLE Deliverable D3.5 (Version 3)

MPS-based Blended Modelling Generation Environment

Edited by: BUMBLE Team

Date: March 2023

Project: BUMBLE - Blended Modelling for Enhanced Software and Systems Engineering

2

BUMBLE
Deliverable 3.5

PAGE 2 OF 12 DELIVERABLE D3.5V3 MPS-BASED BLENDED MODELLING GENERATION ENVIRONMENT

Executive summary
This document describes the updated results for model generation environments that exploit

Jetbrains MPS as core DSML technology. MPS out-of-the-box supports generation of multiple

editors (projections) that are automatically synchronized with each other as they represent the same

underlying model data (AST).

Apart from the facilities in MPS to import EMF models as described in Deliverable D3.2 (through

ecoreimport plugin or the mbeddr Ecore Importer), BUMBLE also exploits some activities in the

context of UC1 and UC5 where MPS models are generated. In the context of UC4 the MPS

technology is integrated with web editing, which leads to a situation similar to model generation in

that case.

Only the abovementioned use cases involve generation of model environments beyond the normal

use of Jetbrains MPS are covered in this document.

3

BUMBLE
Deliverable 3.5

PAGE 3 OF 12 DELIVERABLE D3.5V3 MPS-BASED BLENDED MODELLING GENERATION ENVIRONMENT

Contents

EXECUTIVE SUMMARY 2

ACRONYMS 3

VERSIONS 3

1 INTRODUCTION 4

2 EMF/MPS INTEROPERABILITY (UC1) 5

2.1 BRIDGING MPS AND EMF ... 5

1.1.1 EcoreLanguage: Implementing Ecore in MPS... 6
1.1.2 Automatic Export from MPS to EMF ... 6

2.2 EVALUATION ... 9

3 BLENDED MODELLING GENERATION ENVIRONMENTS AND DCLARE (UC5) 10

4 INTEGRATION OF MPS WITH WEB EDITORS 10

5 CONCLUSION 12

Acronyms
AST Abstract Syntax Tree

DSML Domain Specific Modelling Language

EMF Eclipse Modelling Framework

MPS Meta Programming System

UC Use Case

XMI XML Metadata Interchange

XML Extensible Markup Language

Versions

RELEASE DATE REASON OF CHANGE STATUS DISTRIBUTION

V1 22/11/2021 FIRST RELEASE OF D3.5 FINAL
UPLOADED TO

ITEA PORTAL

V2 23/9/2022 SECOND RELEASE OF D3.5 FINAL
UPLOADED TO

ITEA PORTAL

V3 MARCH 2023 THIRD RELEASE OF D3.5 FINAL
UPLOADED TO

ITEA PORTAL

4

BUMBLE
Deliverable 3.5

PAGE 4 OF 12 DELIVERABLE D3.5V3 MPS-BASED BLENDED MODELLING GENERATION ENVIRONMENT

1 Introduction
This document describes the updated results for model generation environments that exploit

Jetbrains MPS as core DSML technology. MPS out-of-the-box supports generation of multiple

editors (projections) that are automatically synchronized with each other as they represent the same

underlying model data (AST).

Apart from the facilities in MPS to import EMF models as described in Deliverable D3.2 (through

ecoreimport plugin), BUMBLE also exploits some activities in the context of UC1 and UC5 where

MPS models are generated. Only these use cases involve generation of model environments

beyond the normal use of Jetbrains MPS. We report here on the work performed in the context of

these two use cases, UC1 and UC5.

This deliverable describes BUMBLE solutions for the generation of editors in the MPS technology

ecosystem. Regarding the five BUMBLE features as introduced in the deliverable D2.2, the

generation of editors is particularly motivated by the BUMBLE feature “Evolution (E)”. Regarding

the BUMBLE Technology Bricks and requirements (cf. deliverable D2.2), the work and solutions

described in this deliverable contribute to the following ones:

Technology bricks Description of main contributions Main requirements

Editor
Generators

We provide architectural descriptions for editor
generators as part of different use cases in the
Eclipse ecosystem.

BC1, BC2, BT1, BT2,
BT3, BT4

(Meta-)model
co-evolution

The editor generators mentioned above have
the main purpose of supporting the language
and thereby (meta-)model (co-)evolution.

BC9, BT22, BT24

The remainder of this deliverable is structured as follows. Chapter 2 describes an approach to

generate models in the context of mapping meta models (DSML definitions) between EMF and

Jetbrains MPS. Chapter 3 summarizes the current state-of-affairs in relation to DClare. Chapter 4

discusses the integration of MPS technology with web editors. Table 1 provides links to download

relevant sources.

Table 1. Links for downloading open-source solutions described in this deliverable.

Use
Case

Chapter Links

UC1 2
https://github.com/hilalosoft/exchanging_ecore_model_MPS (code)

https://play.mdh.se/media/t/0_4qpus1y0 (video)

UC5 3
https://github.com/ModelingValueGroup/dclare (code)

https://github.com/ModelingValueGroup/dclareForMPS (code)

https://plugins.jetbrains.com/plugin/9422-ecoreimport
https://github.com/hilalosoft/exchanging_ecore_model_MPS
https://play.mdh.se/media/t/0_4qpus1y0
https://github.com/ModelingValueGroup/dclare
https://github.com/ModelingValueGroup/dclareForMPS

5

BUMBLE
Deliverable 3.5

PAGE 5 OF 12 DELIVERABLE D3.5V3 MPS-BASED BLENDED MODELLING GENERATION ENVIRONMENT

2 EMF/MPS Interoperability (UC1)
This chapter discusses the BUMBLE efforts in UC1 on bridging two language workbenches,

JetBrains MPS (later also referred to as simply MPS) and the Eclipse Modelling Framework (EMF).

More specifically, the work is devoted to the mapping of metamodels defined in MPS towards

metamodels conforming to the EMF specification language, namely Ecore. Technically, we firstly

contribute with an Ecore language specification for MPS. Based on this, users can create

metamodels by using the MPS language workbench features and possibly create models

conforming to such metamodels. Alternatively, we contribute with a transformation for mapping the

metamodels defined in MPS as Ecore metamodels usable in EMF. In this latter scenario, users can

leverage EMF plug-ins e.g., to generate default tree editors, create a custom concrete syntax, use

the metamodel as part of a model transformation chain, and so forth.

2.1 Bridging MPS and EMF

Figure 1. Process of bridging MPS and EMF, and evaluation of the solution.

Throughout the rest of the text, we refer to metamodels created in EMF as EcoreEMF metamodels

(.ecore extension), and the ones created in MPS as EcoreMPS metamodels (.sandbox.mps

extension). Implementation and evaluation of this solution are carried out by following the process

illustrated in Figure 1. The process consists of two main steps.

STEP 1: Recreate the Ecore meta-metamodel, as defined in EMF, as a language (EcoreLanguage)

in MPS and evaluate whether the EcoreMPS metamodel conforming to EcoreLanguage is

equivalent to the EcoreEMF metamodel conforming to the Ecore meta-metamodel in EMF. By

equivalent, we mean that the metamodels contain the same concepts and hierarchical structure,

while the order by which meta concepts persist in the metamodel file might differ.

6

BUMBLE
Deliverable 3.5

PAGE 6 OF 12 DELIVERABLE D3.5V3 MPS-BASED BLENDED MODELLING GENERATION ENVIRONMENT

STEP 2: Define automated mechanisms (i.e., model transformations) to transform EcoreMPS

metamodels to Gen_EcoreEMF metamodels and evaluate whether the latter is equivalent to the

corresponding EcoreEMF metamodel and whether it can be correctly loaded and used in EMF. In

addition, the generated Java classes from both metamodels (i.e., Gen_EcoreEMF metamodel and

EcoreEMF metamodel), should be the same.

1.1.1 EcoreLanguage: Implementing Ecore in MPS

The first step towards providing a bridge between EMF and MPS is recreating the Ecore meta -

metamodel as an EcoreLanguage in MPS. The structure of EcoreLanguage consists of concepts,

concept interfaces, and their corresponding children, properties, and references, as found in the

Ecore meta-metamodel. For each concept of the language, there is an editor that facilitates the

manipulation of the Abstract Syntax Tree (AST) and provides intuitive interaction. The constraints

aspect is used to express advanced constraints that cannot be covered by the language structure.

Moreover, to allow the initialization of some properties/references/children to default values when

a concept instance is created, we use concept constructors and rely on the behavior language

aspect in MPS. Upon complete implementation, the language is packaged as a plugin that can be

distributed to users. By importing this language, we can start defining EcoreMPS metamodels.

1.1.2 Automatic Export from MPS to EMF

To build a bridge and enable the exchange of metamodels between MPS and EMF, EcoreMPS

metamodels are transformed to Gen_EcoreEMF metamodels that can be correctly loaded and used

in EMF. The transformations are defined in Java and driven by an implicit mapping that is used to

define correspondences between elements of the source (i.e., EcoreLanguage) and target (i.e.,

Ecore meta-metamodel) languages. While defining these correspondences, it is important to fully

understand the structure of both languages, thus, in the following we provide code excerpts from

the definition of a metamodel, both in EMF and MPS. To simplify the reading, we describe the

procedure by its instantiation on a specific example, the Family metamodel (depicted in Figure 2 in

terms of EcoreEMF).

Figure 2. Family EcoreEMF metamodel.

7

BUMBLE
Deliverable 3.5

PAGE 7 OF 12 DELIVERABLE D3.5V3 MPS-BASED BLENDED MODELLING GENERATION ENVIRONMENT

The listing in Table 2 details the eClassifier Gender of type EEnum, whose values are restricted to

eLiterals Male and Female from the family.ecore file. If we make a reference to Figure 1,

family.ecore represents the EcoreEMF.ecore artifact.

Table 2. XML version of family.ecore.

1. <eClassifiers name="Gender" xsi:type="ecore:EEnum">
2. <eLiterals literal="m" name="Male" value="0"/>
3. <eLiterals name="Female" value="1"/>

4. </eClassifiers>

The listing in Table 3 details the Gender concept, from the familymodel.sandbox.mps file that

represents the EcoreMPS.sandbox.mps artifact in Figure 1 and it consists of two parts.

1. Language definition: Defines the languages used for the definition of EcoreMPS metamodels.

For this specific case, we have used a built-in language from MPS (line 3-5), and

EcoreLanguage (line 6-11). EcoreLanguage reflects the Ecore meta-metamodel, where each

concept can contain references, properties, and children, and they are all assigned randomly

generated index values. Line 7 details the EEnum concept, while line 10 the EEnumLiteral

concept.

Table 3. XML version of family.sandbox.mps.

1. <-- language definition -->
2. <registry>
3. <language id="ceab5195-25ea-4f22-9b92-103b95ca8c0c"

 name="jetbrains.mps.lang.core">

4. ...
5. </language>
6. <language id="45e9c502-be8d-4b95-92c9-8ad2f7c494aa"

 name="EcoreLanguage">

7. <concept id="5921274573544802721"
 name="EcoreLanguage.structure.EEnum" flags="ng"

 index="1BB5TV">

8. <child id="5921274573544802722" name="eLiterals"
 index="1BB5TS"/>

9. </concept>
10. <concept id="5921274573544831328"

 name="EcoreLanguage.structure.EEnumLiteral"

 flags="ng" index="1BBqUU"/>

11. </language>
12. </registry>

13. <-- metamodel definition -->
14. <node concept="1BB5TV" id="5qTU7U3AdSP" role="3Lc43O">
15. <property role="TrG5h" value="Gender"/>
16. <node concept="1BBqUU" id="5qTU7U3AdT0" role="1BB5TS">
17. <property role="TrG5h" value="Male"/>
18. <property role="1BBqUN" value="0"/>
19. <property role="1BBqUK" value="male"/>
20. </node>
21. <node concept="1BBqUU" id="5qTU7U3AdT4" role="1BB5TS">
22. <property role="TrG5h" value="Female"/>
23. <property role="1BBqUN" value="1"/>
24. <property role="1BBqUK" value="female"/>
25. </node>

26. </node>

8

BUMBLE
Deliverable 3.5

PAGE 8 OF 12 DELIVERABLE D3.5V3 MPS-BASED BLENDED MODELLING GENERATION ENVIRONMENT

2. Metamodel description: Defines the instances of concepts (i.e., nodes) that are described in

the language. Each node stores a reference to its declaration, its concept. The node in line 14

stores a reference to EEnum, while the node in line 16, stores a reference to EEnumLiteral.

To connect the language definition and metamodel definition, we use hash-tables as data structures

that can map keys to values. Starting from the language definition, we iterate through all the

elements of the language, and store the element's index as key, and the element's name as value.

Being that nodes store references in the attribute concept, while properties and references store

references in the attribute role, we define two hash-tables; one for conceptElements and one for

propertyElements (used both for properties and references).

The next step consists in defining a recursive function that leverages the tree-like structure of XMI

files and traverses the nodes, starting from the root node in the XMI file and branching to the leaves.

First, we access the get(Object key) method of the conceptElements hash-table, which returns

the value to which the key is mapped in this hash-table. Depending on the meta-object that equals

the returned value, the implementation outputs an XML file that follows the same template as an

EcoreEMF metamodel.

The listing in Table 4 details a code excerpt of the analyzeNode function. In lines 2 and 3, we have

conditional statements that perform different computations, depending on the meta object that

equals the returned value of the get() method. In the listing we only illustrate the “EPackage” and

“EEnum” meta objects. Lines 4-13 detail the computations that take place when the conditional

statement that checks whether the returned value of the get() method equals “EEnum”, evaluates

to true. The first step in this computation consists in creating an eClassifier and adding the attribute

that identifies an EEnum in XMI to it. Next, we iterate through the childNodes of the node we are

currently analyzing.

Table 4. analyzeNode function.

1. public static Node analyzeNode(Node concept) {
2. if (conceptElements.get(concept.getAttributes().

 getNamedItem("concept"). getNodeValue()).

 equals("EPackage")) {...}

3. else if (conceptElements.get(concept.getAttributes().
 getNamedItem("concept"). getNodeValue()).

 equals("EEnum")) {

4. element = eclipseEcoreXML.createElement("eClassifiers");
5. element.setAttribute("xsi:type","ecore:EEnum");
6. for (int i=1; i <concept.getChildNodes().getLength(); i=i+2) {
7. if (concept.getChildNodes().item(i).getNodeName().

 equals("node")) {

8. element.appendChild(analyzeNode(concept.
 getChildNodes().item(i)));

9. } else if (propertyElements.get(concept.getChildNodes().
 item(i).getAttributes().getNamedItem("role").

 getNodeValue()).equals("name")) {

10. element.setAttribute("name",concept.getChildNodes().
 item(i).getAttributes().getNamedItem("value").

 getNodeValue());

11. }
12. }
13. return element;
14. }
15. …
16. }

9

BUMBLE
Deliverable 3.5

PAGE 9 OF 12 DELIVERABLE D3.5V3 MPS-BASED BLENDED MODELLING GENERATION ENVIRONMENT

If the childNode's name is equal to “node”, the childNode is passed as a parameter to the

analyzeNode function, and the appendChild() method is used to append this childNode to the

list of children of the node under analysis. Else, we access the get() method of the

propertyElements hashtable, where we pass as a parameter the value of the childNode's role

attribute. If the returned value equals to “name”, then we set the value of the childNode's value

attribute on the name attribute of the element.

After all the nodes of the XMI file are visited, we run the transformations, which use the

family.sandbox.mps file (corresponds to EcoreMPS.sandbox.mps) as input and generate the

family.ecore file (corresponds to Gen_EcoreEMF.ecore) described in the listing of Tab le 5 as output.

Table 5. XML version of the generated family.ecore

1. <eClassifiers xsi:type="ecore:EEnum" name="Gender">
2. <eLiterals name="Male"/>
3. <eLiterals name="Female" value="1"/>

4. </eClassifiers>

2.2 Evaluation

The evaluation process of the solution conceives of two major steps, as illustrated in Figure 1:

STEP 1: Concerns the correctness of EcoreLanguage, which is validated via conceptual and

structural comparison of EcoreMPS and EcoreEMF versions of a same metamodel. In case we

identify inconsistencies between the two metamodels, EcoreLanguage is adjusted accordingly. The

advantage of this evaluation step is two-fold. First, it assures that the EcoreLanguage is well-defined

and the artefacts that are used as input to the transformations are correct. Second, validating the

implementation in an iterative manner reduces time and effort in case of errors, as it facilitates the

identification of the erroneous artefact. If the evaluation were only performed at the end of STEP 2,

it would be extremely challenging to identify the erroneous artefact (i.e., EcoreLanguage or

transformations). With regards to our example, we needed to compare the metamodel EMF

definition in the listing of Table 2 to the metamodel MPS definition in the listing of Table 3. Both

metamodels include the EEnum Gender that contains two ELiterals (Male and Female) as children,

thus we consider them equivalent, as they contain the same concepts and hierarchical structure.

STEP 2: Focuses on the correctness of the transformation implementation. For the transformations

to be considered correct, the following conditions need to be fulfilled: i) the Gen_EcoreEMF

metamodel should be correctly loaded in EMF, ii) the XMI of Gen_EcoreEMF metamodel and the

XMI of EcoreEMF metamodel need to be equivalent, and iii) the generated Java classes from the

genmodel of each metamodel need to be equivalent. If any of these conditions is not fulfilled, the

transformations need refinement. Considering the Family metamodel, we needed to compare the

listing in Table 2 of that in Table 5. As it can be seen, both listings contain the same eClassifiers

and eLiteral, as well as the same structural hierarchy. The order of elements and attributes might

differ, but that does not affect the output, since the generated Java classes (implementing the

metamodel in the modelling ecosystem as editors and resources) are the same for both

metamodels.

10

BUMBLE
Deliverable 3.5

PAGE 10 OF 12 DELIVERABLE D3.5V3 MPS-BASED BLENDED MODELLING GENERATION ENVIRONMENT

It is important to emphasize that, although in the described example model, we leverage the sole

Family metamodel for exemplification purposes, in the actual evaluation process it was only the

simplest metamodel that we accounted for several metamodels (e.g., SmartHome and Airport), with

varying complexity in terms of number of meta elements, were used for evaluation purposes too.

The interested reader can download the open-source implementation at

https://github.com/hilalosoft/exchanging_ecore_model_MPS as well as watch a demo of the

solution at work at https://play.mdh.se/media/t/0_4qpus1y0.

3 Blended Modelling Generation Environments and

DClare (UC5)
DClare, a general-purpose declarative language based on Java, is being developed by the

Modelling Value Group B.V. The DClare concepts have been inspired by Object Oriented

Programming, functional programming, Object Oriented Modelling and Spreadsheets.

DClare has built-in functionality to synchronize changing models between multiple modelling

environments across the internet. The DClare-based collaboration solution does not use a central

repository. Instead, it uses a stateless service that exchanges model changes across multiple

modeling clients.

DClareForMPS is a opensource plugin for MPS, it supports the mentioned model synchronization

for MPS clients. In addition to the standard MPS functionality for blending syntaxes, it also supports

(bidirectional) transformations between different languages in MPS.

Enhancement of (Distributed) DClare is the core of UC5 and is reported on in Deliverables D4.2

and D5.1. In principle, DClare can connect to any Java based modelling technique and therefore

could also bridge between MPS and EMF. At present, DClareForEMF development was not

requested actively and hence, its development did not start yet. For reports on DClare and its

concepts we refer to the aforementioned deliverables.

The interested reader can download the open-source implementation at

https://github.com/ModelingValueGroup/dclare and

https://github.com/ModelingValueGroup/dclareForMPS.

4 Integration of MPS with web editors
MPS supports blending of editors by mixing notations (textual, tabular, graphical…), as well as

being capable of showing multiple projections of the same data. The current section focuses on

reusing the data structures, and using an external web editing framework, such as WebEditKit,

JointJS, and D3. This allows for creating custom editing experiences that can tightly couple to the

data provided in MPS/Modelix models.

This construction allows for the creation of highly dedicated modeling environments for part of the

modeling ecosystem, with very polished user-experiences, additional to the MPS editors. The

MPS editors can maintain a strict relation to the language definitions , whereas the web-editors

may be simpler, and have no need for advanced error checking. This allows advanced users to

use the MPS front-end to define their more specialized information, while novice users only use

https://github.com/hilalosoft/exchanging_ecore_model_MPS
https://play.mdh.se/media/t/0_4qpus1y0
https://github.com/ModelingValueGroup/dclare
https://github.com/ModelingValueGroup/dclareForMPS

11

BUMBLE
Deliverable 3.5

PAGE 11 OF 12 DELIVERABLE D3.5V3 MPS-BASED BLENDED MODELLING GENERATION ENVIRONMENT

that information. Typically, the powerful checking and transformation rules of MPS are not needed

in these contexts.

There are currently two major approaches to the integration of such front ends, both of which are

available in Modelix:

● via a generated model API that implements an OpenAPI specification, or

● via MPSServer and a generic-purpose (meta-level) querying mechanism.

Figure 3: Modelix System Architecture from https://github.com/modelix/modelix-samples

This architecture shows how in addition to the general Modelix Model API, different API’s can be

used for different front end technologies. An example Single Page Application using React and an

OpenAPI service specification for an MPS language allow querying from and submitting model

data to the model server of Modelix.

In addition to these API approaches, it is possible to deploy MPS Server with Web Edit Kit to

achieve a similar interaction.

https://github.com/modelix/modelix-samples

12

BUMBLE
Deliverable 3.5

PAGE 12 OF 12 DELIVERABLE D3.5V3 MPS-BASED BLENDED MODELLING GENERATION ENVIRONMENT

Figure 4: Deploying MPS with MPSServer and Web Edit Kit editor.

5 Conclusion
In this document a number of results for model generation environments have been described that

exploit Jetbrains MPS as core DSML technology. The BUMBLE project has exploited some activities

where MPS models are generated which go beyond the regular use of Jetbrains MPS, and it is this

work that has been reported here.

In summary, the contributions are all on keeping DSML definitions and artefacts in sync across

different environments: between MPS and EMF (chapter 2), between different languages and

models within MPS by Dclare (chapter 3), and between an interactive web representation and the

underlying model in MPS (chapter 4).

