
BUMBLE Deliverable D3.6

Integration with external tools

Edited by: BUMBLE Team

Project: BUMBLE - Blended Modeling for Enhanced Software and Systems Engineering



Release Date Reason of change Status Distribution

V0.1 20/12/2022 First draft,

Internally-revised draft, chapter
structure in place

Draft WP
Leaders

V0.2 04/02/2023 Polished on chapter structure, added
introduction, Executive summary

Draft Contribut
ors

V1.0 24/03/2023 Finalization Final Uploaded
to ITEA
portal



Executive summary
This deliverable includes the software results of task T3.4 related to the integration with external tools
(pre-existing tools/software not developed as part of the BUMBLE project). The results from various integration
activities are presented. The purpose of the deliverable is to illustrate the investigations done to mainly integrate
different solutions that already exist, how to make workflows smoother, migrate/re-use data from one solution to
another, and so on. The external tools do not necessarily have to be modeling software, but regular software
identified as being good options to integrate with to improve the overall user experience.

There are no previous versions of this document, so this is the only and final version of the D3.6 document.



Contributors
Kousar Aslam, Ivano Malavolta VU

Martin Axelsson, Mattias Mohlin HCL

Federico Ciccozzi, Malvina Latifaj MDU

Luca Berardinelli MJKU

Roelof Hamberg, Joost van Pinxten Canon

Ruud Meeuws, Alexander Darmonski Sioux

Reviewers
Detlef Scholle Pictor

Jörg Holtmann GU

Acronyms
AST Abstract Syntax Tree

DSML Domain Specific Modelling Language

EMF Eclipse Modelling Framework

MPS Meta Programming System

UC Use Case

XMI XML Metadata Interchange

XML Extensible Markup Language



Contents
Executive summary 3

Contributors 4
Reviewers 4
ACRONYMS 4
1. INTRODUCTION 6
2. Integrating Existing Modeling Editors into a Real-time Collaboration Engine 8

2.1 Collaboration Plugin for EMF 9
2.2 Collaboration Plugin for MPS 10
2.3 State Machine DSML 12
2.4 TrafficSignal.statemachine: Model for Collaboration 13

3. Migration from HCL RTist to RTist in Code – Prototype 15
4. Integration of Multiple Open-source Frameworks for Metamodeling and Modeling 17

4.1 Integration of Sirius and Xtext 17
4.2 Integration of EMF and MPS 17
4.3 Integration of Draw.io and TextX 18

5. Integration of JSONware and Modelware via JSONSchemaDSL 19
6. Modelix and MPS 21

6.1 Modelix Deployment, Authorization, and User Management 21
6.2 Version & Dependency Management 21
6.3 Integration with other Front End Technologies 22
6.4 Integration with DClare 23

7. SuperModels + MPS 23
7.1 Generic Part - RService 24
7.2 SuperModels-specific Part 25

8. Summary 26



1. Introduction

This deliverable focuses on the integrations with different software, either within the BUMBLE project
or to external tools (pre-existing tools/software not developed as part of the BUMBLE project). The
external tools do not necessarily have to be modeling software, but regular software identified as being
good options to integrate with to improve the overall user experience. The below chapters will illustrate
some of the tool integrations used or created as part of the BUMBLE project. The idea is to describe
and document the integrations used. The following applicable contributors were identified and their
integrations are described in the following chapters of this document.

● Chapter 2 - Integrating existing modeling editors into a real-time collaboration engine
● Chapter 3 - Migration from HCL RTist to RTist in Code – prototype
● Chapter 4 - Integration of multiple open-source frameworks for metamodelling and modelling
● Chapter 5 - Integration of JSONware and Modelware via JSONSchemaDSL
● Chapter 6 - Modelix + MPS
● Chapter 7 - SuperModels + MPS

The work and solutions described in this deliverable contribute to the following BUMBLE Technology
Bricks and requirements:

Technology bricks Description of main contributions Main requirements

Platform
Integration

We have integrated multiple Eclipse-based
technologies as well as bridged Eclipse and
MPS for blended (meta-)modelling

BT5, BT6, BT9, BT10,
BT17, BT18

In chapter 2, VU elaborates on how they have designed the architecture and built a prototype
implementation of a cross-platform real-time collaboration engine, based on the requirements elicited
from the use-cases provided by the partners in the BUMBLE project. The software architecture and
prototype implementation of this architecture have been discussed in D5.1-v2. To demonstrate the
functioning of the BUMBLE collaboration engine – BUMBLE-CE, VU describes how to apply it in the
context of collaborative modeling between Eclipse EMF and JetBrains MPS. The example is used as a
common basic use case within the BUMBLE project, which involves the usage of a simple DSML for
representing state machines. In chapter 2, VU explains the setup of collaboration on both EMF and
MPS side, the State Machine metamodel and the TrafficSignal.statemachine conforming to this
metamodel which is our main model for collaboration. The real-time collaboration is supported in both
directions, that is, EMF to MPS and vice- versa.

In chapter 3, MDU elaborates on how they investigated the migration of models from HCL RTist to
RTist in Code. Chapter 3 explains why such a migration is useful and how it is designed and
implemented.

In chapter 4, MDU elaborates how they have investigated how to integrate several disjoint tools for
metamodeling and modelling purposes. Note that the technical details of each integration are not
provided, instead the focus is on the benefits of the integrations. Technical solutions and descriptions
can be found in other deliverables for WP3 and WP4. The sub-chapters to chapter 4 covers e.g.
integration of Sirius and Xtext, integration of EMF and MPS and integration of Draw.io and TextX.



In chapter 5, JKU elaborates on how to integrate JSONware and Modelware via JSONSchemaDSL,
where JSONSchemaDSL is a model-driven approach to bridge two unrelated technical spaces (TS),
namely JSONware and Modelware. The JSONware TS includes JSON (JavaScript Object Notation)
and JSON Schema. Modelware TS refers to software tools and platforms that are used to develop,
maintain, and manage models as cornerstone artifacts of a (software) engineering process.
JSONSchemaDSL leverages the Eclipse Modeling Framework (EMF)-based software tools and
platforms, like Xtext, Sirius, and GEMOC.

In chapter 6, Canon elaborates on different integrations between Modelix and MPS, for example
Discuss on how to handle user authentication, Modelix Deployment, Authorization and User
Management as well as Integration with other Front End technologies

In chapter 7, Sioux elaborates on their integration between SuperModels and MPS, where
SuperModels serves as the frontend and MPS the backend. This chapter illustrates the architecture of
this integrations and the technologies used.



2. Integrating Existing Modeling Editors into a Real-time
Collaboration Engine

VU has designed the architecture and built a prototype implementation of a cross-platform real-time
collaboration engine, based on the requirements elicited from the use cases provided by the partners
in the BUMBLE project. The software architecture and prototype implementation of this architecture
are part of the activities of WP5 and are presented in detail in deliverable D5.1. For the sake of
understandability, we show the architecture of the BUMBLE generic cross-platform real-time
collaboration engine in Figure 2.1 below.

Figure 2.1. Detailed architecture of the BUMBLE cross-platform real-time collaboration engine
(presented in detail in D5.1)

To demonstrate the functional principle of the BUMBLE collaboration engine – BUMBLE-CE, we
describe how to apply it in the context of collaborative modelling between Eclipse EMF and JetBrains
MPS. The example is used as a common basic use case within the BUMBLE project, which involves
the usage of a simple DSML for representing state machines. Below, we explain the setup of
collaboration on both EMF and MPS side (i.e., Collaboration plugin from Figure 2.1) , the State
Machine metamodel and the TrafficSignal.statemachine conforming to this metamodel which is our
main model for collaboration. The real-time collaboration is supported in both directions, that is, EMF
to MPS and vice- versa. In this chapter, the term Modeller is used to refer to a modelling tool user.



2.1 Collaboration Plugin for EMF

On the EMF side, the Collaboration Plugin1 uses an activator to control its lifecycle. It activates a new
window of a run-time editor and initiates the server client when the modeller launches the collaboration
application and terminates the plugin when the modeller exits the editor window. The run-time model
editor allows the modeller to import new models from various resources or generate model instances
from existing metamodels (i.e., an Ecore model).

In this prototype, we use the publish-subscribe pattern for data communication. The Eclipse
Collaboration Plugin listens to the changes happening in the editor domain and sends them to the
server. The EMF cloud server acts as the publisher that receives messages from clients (i.e., sub-
scribers) and propagates the changes to all of its subscribers. The changes that were received by the
client are then applied to the local model in the editor domain. In the example application, we assume
the Ecore model already exists in the server so that modellers can post models generated from it into
the server. Once the collaboration button is clicked, the plugin first checks if the local model has a
copy in the server by sending a GET request to the server. If the server confirms that the model exists,
then the model is pulled from the server and the local version stored in the editor’s resource set is
replaced with the server version. If the model is not in the server, the plugin will POST the local model
to the server. At this stage, the communication between the client and server is done via REST API.
Once the initiation is done, the client subscribes to the model in the server through WebSocket.

Listener

In the context of EMF, the model instance itself and its contents can all be represented using
EObjects. The EMF library provides a ChangeRecorder class that can listen to changes in EObjects
and returns notifications that include the details of the changes. In this prototype, we only listen to
semantic changes. This means that the listener will only be notified if a property change is fully done,
e.g., a modification in the name of a node. The collaboration plugin parses the notification and
converts it into a JSON patch based on the operation type of the change (i.e., replace, remove, and
addition). The JSON patch includes the operation type, the path that locates the node and the new
value.

Propagation

The JSON patch is sent to the server if a change is detected. Once it is received, the server first
applies the change to the model on its side and publishes it to the subscribers. The published
message is again in the format of JSON patch which resembles the JSON patch it receives from
clients. In practice, the JSON patch sent to and received from the server are not always exactly the
same. Operations such as removal and addition may cause position changes in other nodes. Thus, a
single JSON patch sent from the client may eventually lead to a list of JSON patches published from
the server to its subscribers and each JSON patch in the list states a single step of change. The
propagation function is provided by the EMF cloud server and it ignores the platform of the JSON
patch sender and model subscribers. As long as the message the client sends to and receives from
the server is in the format of JSON patch, the platform of the client is not restricted.

1 https://github.com/Yunabell-VU/nl.vu.cs.bumble.emfcollaborationplugin



Subscription

The Eclipse collaboration plugin subscribes to the model in the server via WebSocket. It receives
JSON patches from the server and applies the changes to the local model in the modeller’s editor
domain. This is achieved by parsing the JSON patches one by one and for every single patch. The
parser locates the position of the node to be changed through the path value in the patch, creates a
new EObject with the new value, and attaches it to the position located. From the modeller’s
perspective, the model in the editor domain changes with new properties on certain nodes in real-time
if other clients made a change on their side.

2.2 Collaboration Plugin for MPS

MPS provides an architecture for setting up standalone plugins to achieve particular functionalities. To
enable real-time collaboration on the MPS side, we needed to implement two functionalities:
enable/start a collaboration session, and disable collaboration. Each functionality comprises a
sequence of action coded to initiate different sets of logic. These actions are combined into a group
called Collaboration which is configured to display these actions in the context menu for nodes. A
model in MPS is stored in a data structure called node, specifically root node. Thus in order to begin
collaboration, a user right-clicks on the root node and clicks on Enable collaboration. This action from
the modeler will launch the Collaboration plugin in MPS, if it is not already running. Upon the launch of
this plugin, three components are fired up one after another, which we describe in the following.

Synchronizer

This component is responsible for ensuring that all aspects of the selected node in MPS are equivalent
to that of the model in the EMF model server. This implies that the language structure of the given
node complies with the Ecore logic of the EMF model, as well as the content at the start of the
collaboration. This is achieved with the following sub-components:

1. Validator: Ensures that the selected node is present in the EMF model server by performing a
GET request with the name of the selected node. If available, the validator checks whether the
language structure of the selected node conforms to the metamodel of the corresponding
model in the model server. This is achieved with the help of a mapper component. If the
validation process fails for any one of the two steps mentioned above, the collaboration is
automatically disabled.

2. Mapper: Since the logic of the language structure of MPS and Ecore are packed differently,
this component cross-checks the EStructuralFeatures and ESuperTypes of Ecore with the
language structure in MPS. Each root node of the language structure of MPS represents a
concept, which might or might or might not extend and implement other concepts. A concept is
referred to as an EClass in EMF terminology. In order to store and read Ecore data, the Ecore
is fetched from the server via GET request in XMI format, packed as a JSON string, and
stored in data classes with Jackson’s Object Mapper2. In order to read data from the root
nodes of MPS, one of the MPS’s platform languages, SModel3, was used. After ensuring that
all EClasses from the EMF metamodel are present in the language structure of MPS, the
EStructural features and ESupertypes of each EClass are compared.

3 https://github.com/JetBrains/MPS/tree/master/core/openapi/source/org/jetbrains/mps/openapi

2 https://fasterxml.github.io/jackson-databind/javadoc/2.7/com/fasterxml/jackson/databind/ObjectMapper.html



3. ContentSynchronizer: After mapping is performed between MPS node and EMF models, the
ContentSynchronizer component compares and synchronizes the content of the selected
node in MPS to that of the EMF model in the model server. The ContentSynchronizer
performs structural comparison of the values for all the attributes and other properties
between EMF and MPS models. If there is any inconsistency found, then the content of the
selected node is overwritten to that of the model present in the model server.

Communication between EMF Model Server and MPS

The communication between MPS and EMF is established via the external library,
emfcloud-modelserver4. Originally, the emfcloud-modelserver has been designed to accommodate
EMF logic so we designed our own mapper component discussed earlier to interpret and exploit this
logic for MPS. Models stored on the model server can be attained via GET requests in various
formats, BUMBLE-CE uses JSON format. In order to propagate the changes made during the
collaboration session on a given model, the modeller is subscribed to the model via websocket. These
edit operations on the MPS side are received as JSON patches. Once subscribed, patch operations
can be performed on the models using MPS’s SModel language to reflect any change made to the
model in the model server locally in MPS.

Listener

MPS provides a library called Open API5 which provides controlled access to a given model and also
provides interfaces in order to provide a custom implementation in various aspects, in our case for the
listener. Among the listeners provided by OpenAPI, we are using SNodeChangeListener in our work.
When an edit operation is performed on a given node in MPS, SNodeChangeListener is notified via
MPS’s message bus and the operation is propagated to the EMF model server. For now, the listener is
configured to report changes character by character on MPS side in the BUMBLE-CE. In the future,
we will refine the implementation to receive and propagate the change as a whole.

When the user decides to end the collaboration session, the user right clicks the node involved in their
collaboration session and clicks Disable collaboration. With this action, the Listener and
EmfModelServer websocket client are disabled one after another.

5 https://github.com/JetBrains/MPS/tree/master/core/openapi/source/org/jetbrains/mps

4 https://github.com/eclipse-emfcloud/emfcloud-modelserver



2.3 State Machine DSML

Figure 2.2: Ecore Metamodel of State Machine

The State Machine DSML was initially designed by the Modeling Value Group (MVG) in MPS6. We
translated the State Machine DSML from MPS to EMF manually. The Ecore metamodel of the State
Machine DSML is shown in Figure 2.2. According to thismetamodel, a State Machine extends three
metaclasses: BaseConcept, NamedElement and Element; also, a state machine can contain sets of
Input and Output elements, States, and Transitions.

The State Machine keeps track of the current input, output and state through the references
currentinput, currentoutput and currentstate to the metaclasses Input, Output and State. The current
State receives a trigger defined by the metaclass Input, transitions to a new State and produces a new
Output. The Transition metaclass handles the switching from one state to another state on receiving
an input through references to Input and State metaclasses. The metaclasses Input, Output, and State
have attributes name and description. The metaclass State has references to the metaclasses Input
and Output; and the metaclass Transition has references to the metaclasses Input and State. In this
way, our metamodel illustrates essential concepts to define a state machine. BUMBLE-CE considers
the modeller to be responsible for storing the metamodel of the used DSML (StateMachine in our
case) in the server. We expect that the metamodel of the used DSML is not subjected to changes
frequently and storing the metamodel on the server is only a one-time action performed by the
modeller.

6 https://github.com/ModelingValueGroup/statemachines



2.4 TrafficSignal.statemachine: Model for Collaboration

Figure 2.2: Model TrafficSignals.statemachine that conforms to the metamodel shown in Figure 2.1

We have generated a model TrafficSignal.statemachine conforming to the StateMachine metamodel
shown in Figure 2.1. The StateMachine metamodel is imported into the editor at run-time through the
file system. The TrafficSignal.statemachine model represents the working of a traffic signal with three
inputs Go, Wait and Stop and three states Red, Yellow and Green. When in state Red or Green and
on receiving inputs Go or Stop respectively, the TrafficSignal.statemachine will transition to the state
Yellow. When in state Yellow, if input Stop is received, the TrafficSignal.statemachine transitions to the
state Red and if input Go is received, the TrafficSignal.statemachine transitions to the state Green.
The TrafficSignal.statemachine will be our subject of collaboration between EMF and MPS.

To start the collaboration, a modeller right clicks on the TrafficSignal.statemachine in their respective
editor and clicks on the Start Collaboration menu item provided by the BUMBLE-CE. The Session
Manager uploads the TrafficSignal.statemachine on the server so that other modellers can also join
the collaboration session. Once a modeller performs an operation on the model (for instance, adds or
deletes a node, edits the name of an attribute, or changes the position of a node in the tree), the
change will be propagated on the other side to the subscribed models through web sockets. Figure 2.3
shows the collaboration scenario for Replace operation between EMF and MPS. The
TrafficSignal.statemachine is shown for both EMF and MPS before starting the collaboration in Figures
2.3(a) and 2.3(b) respectively. The modeller on the EMF side replaces the name of Input Wait with
Hold and the change is immediately reflected on the MPS side, see Figures 2.3(c) and 2.3(d). Figure
2.3(e) presents the log history for events happening on MPS side showing that the Replace operation
is successfully received and corresponding changes are made to the model.



(a) TrafficSignals.statemachine in EMF before any
edit operation

(b) TrafficSignals.statemachine in MPS before any
edit operation

(c) TrafficSignals.statemachine in EMF, the name of
Input Wait is edited to Hold. The operation is propagated
to the MPS side.

(d) TrafficSignals.statemachine in MPS, the edit
operation to change the name of Input Wait to Hold is
received on the MPS side and reflected in the model.

(e) Logs in MPS showing that the edit operation is successfully received and propagated in the
TrafficSignals.statemachine

Figure 2.3: Example scenario of cross-platform (between Eclipse EMF and JetBrains MPS) real-time
collaboration using BUMBLE-CE



3. Migration from HCL RTist to RTist in Code – Prototype

HCL RTist is an Eclipse-based modeling and development environment for creating complex,
event-driven, real-time applications. RTist in Code is a next generation tool for creating stateful
real-time C++ applications developed as an extension for Visual Studio Code (VS Code) and Eclipse
Theia. It is based on the language server technology and began as an effort to provide support for
other integrated development environments (IDEs) than Eclipse. This effort is based on the premise
that developers may benefit from modeling in multiple IDEs in order to take advantage of the strengths
of each and choose the one that is most appropriate for their purposes. Through the use of language
server technology, language functionality is decoupled from the IDE being used by separating
language-aware modules into separate processes and communicating via the Language Server
Protocol (LSP).

RTist in Code is available for both Visual Studio Code and Eclipse Theia for the following reasons.
First, both VS Code and Eclipse Theia share the same extension model, meaning that an extension
developed for one can also run in the other. Moreover, they both rely on web-based technologies, so
developers can access their functionality through a web browser. This is particularly useful when
working remotely or across multiple devices. Furthermore, both VS Code and Eclipse Theia are
popular IDEs on the market, which means that they have a significant user base.

While RTist in Code represents a promising solution, models defined in HCL RTist need to be
translated into models that can be used in RTist in Code. This is due to the fact that models defined in
HCL RTist apply the UML Real Time and CPPPropertySet profiles (the former defines the real-time
specific extensions to UML, and the latter defines properties related to transforming models to C++
code). In contrast, the models in RTist in Code conform to the Art textual language. Art is an extension
to C++ that provides high-level concepts not directly available in C++. The Art compiler converts these
concepts into C++ code. Therefore, the models must be translated in order for them to be used in
RTist in Code.

The automatic migration of models developed in HCL RTist for Eclipse into models that are compatible
with RTist in Code for Visual Studio Code and Eclipse Theia serves several purposes. First, it
eliminates the need for developers to manually migrate models, thereby saving time and effort. In
addition, it ensures that the models conform to the Art textual syntax and may be used in RTist in
Code, thereby reducing the risk of errors or issues arising during manual migration. Furthermore, it
improves the overall process by providing an automated solution that can handle the migration of
models in an efficient and cost-effective manner and supports the integration of HCL RTist with RTist
in Code.

In BUMBLE, we are providing an approach that supports the automatic migration of models from HCL
RTist to RTist in Code through a model exporter. This model exporter enables users to quickly and
easily translate their .emx models defined in HCL RTist (Eclipse IDE) into .art models that can be used
in RTist in Code (Eclipse Theia or Visual Studio Code). As a result, users do not need to recreate their
models from scratch, hence saving them a lot of time and effort. Moreover, as the Art language can be
subject to future changes, we provide a solution where the transformations from .emx to .art models
can be regenerated with a minimal mapping effort from developers. The workflow of the approach is
detailed in Figure 1.



Figure 1: Model exporting approach workflow

Starting from the UML metamodel and profiles, and the Art textual grammar, we define the emx_2_art
mapping model conforming to the mapping metamodel proposed in [LC23]. This model consists of a
set of mapping rules between UML and profiles, and Art textual grammar, and is defined only once
(unless the UML profiles or the Art textual grammar are modified). The mapping model is then given
as input to higher order transformations (HOTs) that use the UML metamodel, UML profiles and Art
textual grammar to resolve references to the mapped elements. The HOTs output a unidirectional
model to model (M2M) transformation that takes as input .emx models (defined in HCL RTist in the
Eclipse IDE) and outputs .art models (that can be used in RTist in Code in Eclipse Theia and VS
Code).

Migration of models may also require several preferences to be input by the user. Among these
preferences is the separation of the translated model into .art files. Rather than generating a single .art
file for the whole model, model migration can be configured to place individual elements in separate
.art files. This preference will be supported due to the fact that each client possesses a distinctive
modeling style and it is generally preferred for the migrated models to closely resemble hand-written
models. The separation of output models into separate files is also helpful in avoiding merge conflicts
as there is a reduced likelihood of the same file being edited simultaneously by different contributors.
Furthermore, the C++ generator in RTist in Code uses a thread pool to parallelize code generation,
where each thread in the pool reads one source .art file and produces a set of .cpp (i.e.,
implementation) and .h (i.e., header) files. Translation of several small .art files in parallel on a
machine with multiple cores is typically faster than translation of a few larger ones. Currently, we are



investigating the full set of user preferences that should be supported. A settings and preferences
menu will provide users with the ability to configure the model exporter in accordance with their needs.

4. Integration of Multiple Open-source Frameworks for
Metamodeling and Modeling

In this section, we summarize the integration of disjoint tools for metamodeling and modeling
purposes. Note that the technical details of each integration are not provided here, where we instead
focus on the benefits of the integrations. Technical solutions and descriptions can be found in other
deliverables for WP3 and WP4.

4.1 Integration of Sirius and Xtext

Sirius and Xtext are both available under the Eclipse umbrella, but there is no ready-to-use
out-of-the-box mechanism to seamlessly connect them. In BUMBLE, we have exploited model
transformation techniques to link Xtext textual notations to Sirius graphical notations via annotated
EMF metamodels. More specifically, we allow the generation of graphical languages from annotated
EMF metamodels that are in turn generated from Xtext grammars (and vice versa).

The integration of these two frameworks allows the end-user to switch between graphical and textual
editing of the same models, as depicted in Figure 4.1.1, and it is the ground for the generation of
blended textual and graphical modeling environments in the Eclipse ecosystem.

Figure 4.1.1. Blended notations with Xtext and Sirius

4.2 Integration of EMF and MPS

EMF and MPS are the two disjoint core modeling environments addressed by BUMBLE. There is no
connection out-of-the-box between the two. In BUMBLE, we have provided the pillars for bridging
these two powerful (meta-)modeling environments. Via EMF, the end-user can define tree-based and
graphical languages, as well as models conforming to them, and via MPS, she can describe textual
languages and exploit the power of projectional manipulation of textual models via multiple views
[AC22]. The possibility to visualise and edit the same information in these two platforms, otherwise
disjoint, can greatly boost communication between stakeholders, who can freely select their preferred
notation or switch from one to the other at any time. The framework’s architecture combining EMF and



MPS is depicted in Figure 4.2.1. More details are provided in other deliverables related to multiple
editors.

Figure 4.2.1. Framework architecture

4.3 Integration of Draw.io and TextX

Draw.io (soon to become Diagrams.net) is a standalone web-based environment for cross-platform
graph drawing software developed in HTML5 and JavaScript. Its interface can be used to create
informal diagrams such as flowcharts, wireframes, organizational charts, and network diagrams.

TextX is a standalone Python-based framework for the definition of Python-based grammars; TextX is
based on Xtext but does not rely on the Eclipse ecosystem.
Draw.io is very useful and used for early design and communication of software systems via informal
diagrams. Due to their notational freedom and effectiveness for communication, informal diagrams are
often preferred over models with a fixed syntax and semantics as defined by a modeling language.
However, precisely because of this lack of established semantics, informal diagrams are of limited use
in later development stages for analysis tasks such as consistency checking or change impact
analysis. In BUMBLE, we have provided an approach to reconciling informal diagramming and
modeling such that architects can benefit from analysis based on the informal diagrams they are
already creating [JC22] Our approach supports migrating from existing informal architecture diagrams
in Draw.io to flexible and textual models in TextX, i.e., partially treating diagrams as models while
maintaining the freedom of free-form drawing. Moreover, to enhance the ease of interacting with the
flexible models, we provide support for their blended textual and graphical editing. The workflow is
depicted in Figure 4.3.1.



Figure 4.3.1. Workflow for transitioning from Draw.io drawings and TextX models and back

5. Integration of JSONware and Modelware via
JSONSchemaDSL

JSONSchemaDSL is a model-driven approach to bridge two unrelated technical spaces (TS), namely
JSONware and Modelware.

The JSONware TS includes JSON (JavaScript Object Notation) and JSON Schema. Modelware TS
refers to software tools and platforms that are used to develop, maintain, and manage models as
cornerstone artifacts of a (software) engineering process. In particular, JSONSchemaDSL leverages
the software tools and platforms based on Eclipse Modeling Framework (EMF), like Xtext, Sirius, and
GEMOC (see Figure 5.1).

Figure 5.1: JSONSchemaDSL components

JSON schema is taken as input by JSONSchemaDSL (1), which generates (2), via a semi-automated
process, the corresponding Ecore metamodel, and Xtext grammar. Thanks to the native capabilities of
EMF and Xtext, tree-based and textual editors for JSON instance documents are automatically
generated, and enriched by JSON schema-specific OCL constraints. The textual editor adopts the
native JSON notation and is meant to be used by domain experts already acquainted with the JSON



notation for their particular engineering activity. In addition, MDE experts can also further inspect or
edit the actual structure of the in-memory representation of the JSON artifact in EMF using the
generated tree-based editor.

A graphical concrete syntax for the given JSON schema is realized via Sirius, an Eclipse project which
allows the generation of a graphical modeling workbench for EMF-based models.
Language engineers and domain experts are expected to agree on the graphical notation. A graphical
editor is then generated for JSON instance documents. The Sirius-based editor offers the possibility to
visualize and edit the content of a JSON instance document.

It is worth noting that all the editors mentioned above, i.e., tree-based, textual, and graphical, share
the same in-memory representation based on EMF and can be opened in the same Eclipse IDE.
This capability is necessary for a blended modeling experience of JSON artifacts (4). Indeed, domain
experts can seamlessly choose among three different editors to manipulate the same JSON Instance
document, which, in turn, conforms both to the original JSON schema and the generated Ecore
metamodel and Xtext grammar. Moreover, by preserving the native JSON notation, the domain
experts can continue using any existing JSON document editor.

Finally, if a JSON schema is provided with executable operational semantics, any compliant JSON
instance documents can be executed (5).
Executable operational semantics are domain-specific, i.e., different operational semantics are
expected to be specific for a given JSON schema in order to make executable any valid instances of
that schema. We did it for the Shipyard workflow language provided by Keptn tool7 using the GEMOC
Studio. GEMOC reuses metamodels/grammars (3) and provides generic components through Eclipse
technologies developing, integrating, and using heterogeneous xDSLs via a language workbench. In
particular, the GEMOC Studio integrates Kermeta 3, an action language used to implement the
execution semantics of Ecore metamodels, as the ones generated by the JSONSchemaDSL.
Kermeta 3 is built on top of the Xtend, a dialect of Java, which compiles into readable Java-compatible
source code. As a result, a Java-compliant interpreter can be generated for a given JSON schema.
The availability of executable semantics and interpreters for JSON-based xDSLs may help (i) domain
experts in performing activities and (ii) tool providers to augment their tools with MDE technologies
whenever JSON schemas are used in model-based DevOps processes.

It is worth noting that the JSONSchemaDSL is not a "one size fits all" approach. It covers
domain-independent steps, like representing the JSON metaschema in Ecore and domain-specific
ones. The latter must be replicated for each JSON schema.

Details on technical implementations of JSONSchemaDSL can be found in related publications
[CG21], [CH21] and [CB22].

JSONSchemaDSL has been conceived to be compatible by construction with software tools and
platforms used in the JSONware and EMF TSs.

The integration with tools and platforms can be faced from two main user viewpoints.
● End-User viewpoint/JSON expert/MDE-agnostic. This user can seamlessly use JSONware

and Modelware tools. The Xtext-based editors generated by the JSONSchemaDSL approach
reuse the native JSON notation. As such, a JSON document (e.g., a JSON schema or

7 https://keptn.sh/



schema instance) can be copy-pasted from/to JSON editors (e.g., Visual Studio Code) and the
Xtext-based editors.

● Tool Experts. A bird's eye view of the technical realization is given in Fig. X. In JSONware
TS, JSON documents can be manipulated through a variety of existing tools for JSON (e.g.,
GSON8) and JSON Schema-specific ones9, e.g., validators. JSONSchemaDSL is
implemented on top of Eclipse-based technologies and provides an EMF-based Java API to
manipulate a JSON document programmatically as a EMF-model conforming to a generated
schema metamodel. From an MDE expert’s perspective, JSON documents can now be
managed as EMF-based ones, allowing the reuse of model management platforms like
Eclipse Epsilon to implement model-based functionalities and integrate external tools, with a
preference for Java-based tools.

6. Modelix and MPS
The Modelix platform uses several general purpose frameworks to achieve a cloud-based, multi-user
modeling environment. In this document, we only give a high-level description of these integrations.
For some aspects, more details can be found in the WP3 and WP5 deliverables.

6.1 Modelix Deployment, Authorization, and User Management

Docker, helm, and Kubernetes are used to automate the creation of a Modelix platform. Once a
Modelix platform has been instantiated, the Kubernetes cluster automatically deploys new pods with
MPS and Projector when a user opens a workspace. A caching mechanism has been created so that
a user who does not have an assigned pod will receive an unbound pod. This means the user does
not have to wait long for a new MPS instance to be started, at the cost of some resource overhead.

Authentication is currently managed by a Keycloak instance, which is configured through a reverse
proxy to add the user profile to the request for the MPS pods, or redirect the user through a log-in
page. The log-in page can be connected to several authentication end-points, such as ADFS, OAuth,
or a log-in page that allows Keycloak itself to verify the user’s account.

6.2 Version & Dependency Management

Modelix currently supports the creation of workspaces, which determine the version of MPS that is
used, along with the location of the language and model dependencies that need to be loaded in the
collaborative environment. These languages and model dependencies are automatically downloaded
and built (if necessary) from different locations:

● (Maven) artifact repository
● Git repository (by specifying a git tag, HEAD, or commit ID)
● Workspace uploads (ZIP archives)

This mechanism allows for specifying which language plugin version is to be used in a particular
workspace, similar to setting up a development/modeling environment on a local machine which has
MPS installed. A next step includes exporting the state of the modeling environment back to a git

9 Here a set of tools to for JSON schema-related activities
https://json-schema.org/implementations.html

8 google/gson: A Java serialization/deserialization library to convert Java Objects into JSON and back
(github.com) https://github.com/google/gson

https://json-schema.org/implementations.html
https://github.com/google/gson
https://github.com/google/gson
https://github.com/google/gson


branch. This would allow traditional DevOps and Quality Gates to be connected to the collaborative
environment.

The modeling infrastructure requires the specific versions to be specified. At the time of writing, MPS
only partially supports defining the version of a language/plugin. This means it does not have strong
support yet for checking backward compatibility of modeling languages. To circumvent this
shortcoming, one either should allow that only strict dependency versions are used, or that no strong
guarantees are given about the compatibility of language/plugin versions. Special care needs to be
taken with changing API’s and data structures, as this may eventually lead to corruption of the
modeling environment.

6.3 Integration with other Front End Technologies

Modelix can be used as a centralized model server with the MPS Projector front-end, or through an
API to query model information. This has been further described in deliverable D3.5.

Figure 6.3.1: Modelix System Architecture from https://github.com/modelix/modelix-samples

The architecture shown in Figure 6.3.1 explains how in addition to the general Modelix Model API,
different API’s can be used for different front end technologies. An example Single Page Application
using React and an OpenAPI service specification for an MPS language allow querying from and
submitting model data to the model server of Modelix.

Some deployment options are shown in Figure 6.3.2. In addition to the API approaches described
above, it is possible to deploy MPS Server with Web Edit Kit to achieve a similar interaction. This

https://github.com/modelix/modelix-samples


approach is more applicable to linking top-level specifications together, whereas the exposing of the
MPS DSL editor is more applicable to special-purpose, powerful editors with a rich syntax.This leads
to highly tailored, specific purpose web wizards, hiding the more complex interactions with DSML
editors.

Figure 6.3.2: Deploying MPS with MPSServer and Web Edit Kit editor.

6.4 Integration with DClare

Modelix provides a centralized modeling environment. As plugins can be installed in the workspace, it
is also possible to deploy a DClare client, which allows connecting to a decentralized modeling
environment. This approach is being explored in the BUMBLE Dutch Demonstrator.

7. SuperModels + MPS

In UC7, we created a blended modeling environment (ME) that combines the strengths of
SuperModels and MPS. It’s tentatively called SuperME. That allows us to keep our investments in
SuperModels and at the same time tap into the established ecosystem of the more mature MPS ME.

SuperModels and MPS are deeply integrated, not meerly mechanically combined. As depicted in
Figure 7.1 below, SuperModels serves as frontend and MPS serves primarily as backend assuming
the responsibility of model storage (persistence). DSML users can employ all aspects of existing
SuperModels DSMLs like diagrammatic editors, model checks and generators. At the same time, they
can employ all aspects of MPS DSMLs like editors, model checks and generators. We selected
JetBrains RD as an interfacing technology that allows immediate inter-process communication
between MPS (JVM process) and SuperModels (.NET process).



Figure 7.1: Overview of SuperModels and MPS integration

7.1 Generic Part - RService

The SW stack used to implement SuperME has a generic part and a SuperModels-specific part. Let’s
first look at the generic part that we called RService (see Figure 7.1.1).

Figure 7.1.1: SuperME SW stack - generic part



RService is built with the JetBrains Reactive Distributed (RD) communication framework and thus
employs a client-server architecture. RD allows a server and a client to communicate via remote
procedure calls (RPCs) but also via shared data. In essence, the server and the client keep a copy of
the shared data, and RD takes care to synchronize them. If either side introduces changes, RD will
reactively propagate only those changes to the other side. RD allows for either side to subscribe to
changes that it cares about. RD communication interface is specified in a DSL in terms of RPCs
and/or structure of the shared data.

In our case, we want the server to provide access to MPS models of any MPS language. So we chose
to define the communication interface on the abstract model level, meaning that the shared data is in
the form of ASTs. We decided to keep our communication interface as close as possible to the MPS’
SModel API since it’s a familiar API in the MPS community. Hence we called it RModel. Consequently,
we called our model server RServer and our model client RClient.

RServer runs from within MPS and is packaged as an MPS plugin. It provides access to MPS models
via the RModel interface by synchronising MPS models to and from its local copy of the RModel data
structure.

RClient is a code generator and runtime library that allows to export MPS metamodels into C# classes
that provide a type-safe wrapper around the RModel API.

7.2 SuperModels-specific Part

Let’s now see how the generic RService is applied in the integration of MPS and SuperModels (see
Figure 7.2.1).

Figure 7.2.1: SuperME SW stack - SuperModels specific part



As mentioned above, we decided to allocate the model storage responsibility (also called persistence)
to MPS. This means that models expressed in SuperModels DSMLs must be hosted on MPS and
accessed via RServer. This implies that by necessity the structure aspect of SuperModels DSMLs
should be implemented in MPS. We implemented the SuperModels meta meta model in MPS as
SuperModels Base Language (only the structure aspect). Then, any SuperModels DSML in MPS is an
extension of SuperModels Base Language.

This architecture allows for SuperModels editors to show and modify the AST stored in MPS and thus
to behave similar to an MPS projectional editor. This also allows for SuperModels generators and
model checkers to query (read-only) the AST. The fact that SuperModels has access to the models on
AST level makes it possible to preserve existing SuperModels DSMLs without the need to change
them. Said differently RService is applied to synchronise SuperModels specific ASTs between model
server in MPS and model client in SuperModels.

Having SuperModels and MPS models stored at one place (namely the MPS model repository) allows
us to exploit the MPS facility of hyperlink-like traceability within and across DSMLs. So we can link
between models from both SuperModels and MPS.

8. Summary

During the BUMBLE project, a vast set of (meta-)modeling tools have been integrated into different
tooling environments for a variety of purposes. Theses purposes encompass enabling certain features
like blended modeling or real-time collaboration, allowing a DSML user to flexibly change the tooling
environment within a heterogeneous tool chain, migrating modeling to web and cloud environments,
and automating error-prone and time-consuming work on transferring model information between
different tooling environments. In the deliverable at hand, we sketched these integrations and referred
for further, more detailed information to other BUMBLE deliverables.

References

[LC23] Latifaj, M., Ciccozzi, F., & Mohlin, M. Higher-Order Transformations for the Generation of
Synchronization Infrastructures in Blended Modeling. Frontiers in Computer Science, 4, 166.

[AC22] Anwar, M. W., & Ciccozzi, F. (2022, April). Blended Metamodeling for Seamless Development
of Domain-Specific Modeling Languages across Multiple Workbenches. In 2022 IEEE International
Systems Conference (SysCon) (pp. 1-7). IEEE.

[JC22] Jongeling, R., Ciccozzi, F., Cicchetti, A., & Carlson, J. (2022). From Informal Architecture
Diagrams to Flexible Blended Models. In European Conference on Software Architecture (pp.
143-158). Springer, Cham.

[CG21] A. Colantoni, A. Garmendia, L. Berardinelli, M. Wimmer, and J. Bräuer, "Leveraging
Model-Driven Technologies for JSON Artefacts: The Shipyard Case Study," 2021 ACM/IEEE 24th
International Conference on Model Driven Engineering Languages and Systems (MODELS), 2021, pp.
250-260, doi: 10.1109/MODELS50736.2021.00033.

[CH21] A. Colantoni, B. Horváth, Á. Horváth, L. Berardinelli, and J. Bräuer, "Towards Continuous
Consistency Checking of DevOps Artefacts," 2021 ACM/IEEE International Conference on Model



Driven Engineering Languages and Systems Companion (MODELS-C), 2021, pp. 449-453, doi:
10.1109/MODELS-C53483.2021.00069.

[CB22] A. Colantoni, L. Berardinelli, A. Garmendia, and M. Wimmer, "Towards Blended Modeling and
Simulation of DevOps Processes: The Keptn Case Study. In ACM/IEEE 25th International Conference
on Model Driven Engineering Languages and Systems (MODELS ’22 Companion), October 23–28,
2022, Montreal, QC, Canada. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3550356.3561597

https://doi.org/10.1145/3550356.3561597

