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Abstract 

In this document we will describe the outcome of the first Proof of Concept demonstration for the electron 

microscopy use case. This use case involves the automated correction of defocus and A1 astigmatism 

at the electron microscope through a reinforcement learning agent. The agent itself has been trained on 

simulated data, obtained from the digital twin of the electron microscope. In what follows we will first 

provide the required information on electron microscopy, digital twinning, classical alignment strategies 

and reinforcement learning.  

 

In the first section we will introduce the electron microscope and discuss the Ronchigram image 

formation. Next, we discuss the implementation of the Digital Twin and how it enables Ronchigram 

simulation.  

 

Based on the simulated data we will first present state-of-the classic optimisation strategies, capable of 

retrieving the optimal alignment. Afterwards, we introduce reinforcement learning and explore how it can 

be used for minimizing defocus and A1 astigmatism. 

 

Important concepts are first introduced via a the ‘ASIMOV-in-a-nutshell' demonstrator. Later on they are 

applied on both simulated as experimental microscope data. 

 

Finally we discuss the live application at the electron microscope and present an outlook on how to 

productize this use-case to a product feature.  
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1. Electron Microscopy 

1.1 Transmission Electron Microscope 

The image formation process in Transmission Electron Microscopy (TEM) is very similar to that of 

an optical light microscope. The main difference is related to the use of electrons as the source of light 

and the associated replacement of glass lenses by electromagnetic coils. In TEM, electrons are 

accelerated towards the specimen using high voltages in order to obtain images with a resolution higher 

than achievable in optical light microscopes. These electrons are emitted from a thermionic gun or a field 

emission gun (FEG). Afterwards they pass through a system of condenser lenses, to produce a beam 

with desired size, intensity and convergence. In TEM mode, a parallel coherent beam is formed, which 

illuminates the sample uniformly. In Scanning Transmission Electron Microscopy (STEM) mode however, 

the beam is focused into a fine probe, which is scanned across the specimen.  

 

Once the desired electron beam is formed, it interacts with the specimen, which is placed in a dedicated 

specimen holder. This holder is located between the two pole pieces of the objective lens. The transmitted 

electrons are focused by the objective lens into a diffraction pattern in the back focal plane of the objective 

lens after which they recombine, yielding an enlarged image of the specimen in the objective lens its 

image plane.  An ideal lens system is expected to image a single point source as a point.  

 

Scherzer [1], however, demonstrated that for round symmetric electromagnetic lenses, aberrations are 

unavoidable. These aberrations contribute to blurring of the image and therefore a loss in resolution. For 

both the condenser- and objective lenses, stigmators are therefore present which apply an asymmetric, 

correcting field to minimize the effect of the aberrations. 

 

Below the objective lens, a system of intermediate and projector lenses create a magnified image of either 

the sample in real space or the corresponding diffraction pattern in reciprocal space. This image can e.g. 

be visualized using a Charged Coupled Device (CCD) or a direct electron detector. The complete buildup 

of a transmission electron microscope is presented in Figure 1. 
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Figure 1: Illustration of the components of an electron microscope [2] 

 

1.2 Ronchigram 

For the STEM use case, Ronchigram images are key to finding the right parameters that minimize 

aberrations and therefore maximizes the spatial resolution. The term Ronchigram is a reference to the 

“Ronchi test”; a standardized test for shaping aberration-free optical lenses. By placing a diffraction 

grating within the focus of the optical lens, the imperfections of the lens would be recognizable from the 

obtained interference pattern.  

 

Constructing a Ronchi’s grating is not feasible in TEM. Due to the high frequency of the accelerated 

electrons, the gratings’ spacing would have to be only a few picometers wide for interference to occur. 

Creating such a grating is therefore extremely challenging. Instead, the atomic arrangement in 

amorphous materials is used, which provide a nearly random assortment of atomic potentials. This 

random assortment formsa good approximation of a noisy grating which mimics the Ronchi test and gives 

interference patterns that reveal the presence aberrations in electromagnetic lenses.  
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Key features in the Ronchigram which can be exploited to correct the lower order aberrations, consist of 

the Ronchigram’s symmetry and magnification. When in focus, the center of the Ronchigram has a high 

local magnification that represents the aberration-free portion of the electron beam. Further away from 

the center, thus moving away from the optical axis, aberrations reduce the local magnification. (Figure 2, 

center row). Having an as large as possible magnified central region is a first indicator for an optimal 

defocus. The presence of asymmetric aberrations breaks the rotational symmetry of the Ronchigram. 

Two-fold astigmatism unidirectionally stretches the region of high magnification, thereby producing 

distinctive streaks (Figure 2, bottom row). Axial coma, shifts the center of the Ronchigram and higher 

order aberrations further break the symmetry of the Ronchigram (Figure 2, top row). 

 

1 

Figure 2: Visualizations of a Ronchigram obtained on amorphous carbon in underfocus (UF) and 

overfocus (OF) as a function of astigmatism (A1) and axial coma (B2). [3] 

 

If we want to train a reinforcement learning agent to correct for the lower order aberrations, it is 

essential that we have large amounts of labeled Ronchigram images. Obtaining such images would 

require substantial microscope time which is expensive. To levitate the need for physical system time we 

will therefore explore Digital Twinning (DT) as an alternative to create labeled Ronchigram data. 
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2. Digital Twin  

A Digital Twin (DT) is a digital representation of a real-world system. The core of a DT consists of a 

model or a combination of models mimicking a generic real-world module or process. These models can 

be physics-based or data-driven and they are validated against the theory and the real-world data. 

Although we mostly work with the generic models at this stage, it is worth mentioning what a full-scope 

DT can look like. In its full scope, a DT is specific to a particular instance of its real-word counterpart and 

is predictive in a defined window into the future. In general, this requires the DT models or their 

parameters to be fine-tuned and for the DT to have real-time connection to the physical system. The latter 

requires an efficient DT. A DT with the above properties is capable of dynamically controlling the real-

world system. More details on the properties and evolution of a digital twin can be found in [1]. 

  

A digital twin has several potential applications. Evaluating new ideas where the required hardware is not 

available is an instance where a DT can be used. Here, however, we focus on the fast and scalable data 

generation used in training a reinforcement learning (RL) algorithm. A TEM consists of several modules. 

The digital twin of TEM includes models describing these modules. Here, a wave-optics approach is used 

to describe the changes in the electron wave as it travels from top of the TEM column (the electron gun) 

until it interacts with a camera or a detector at the bottom of the column.  For the STEM use-case, we 

target aberrations in the probe forming part of the TEM (i.e., the condenser system) wherefore a 

convergent beam electron diffraction pattern (i.e., CBED or Ronchigram image) is recorded on a pixelated 

camera.  

 

TO DELETE [2]:  
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Figure 4. A simplified view of STEM imaging mode in a TEM and the CBED pattern formation. Figure 

from [3].  

  

Using the DT described above, several datasets were generated, ranging from 80,000 to 800,000 images, 

which served as training data for the RL. For the objective of ASIMOV, the AI agent should learn how to 

move the state of a TEM system, via control knobs for first order aberrations, namely, defocus and two-

fold astigmatism, towards a state with minimal aberration. Therefore, the data consists of Ronchigram 

images under different values of defocus and two-fold astigmatism.  

  

A subset of typical DT data is shown in Figure 6 with changes in defocus represented along the x-axis 

and changes in two-fold astigmatism magnitude along the y-axis. Here a central part from the Ronchigram 

has been cropped out to enhance the features of interest. The green box represents the state of minimal 

aberration, i.e., the goal for RL agent.   
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Figure 6. Changes in the Ronchigram due to defocus and two-fold astigmatism. The green box shows 

the goal state of zero aberration. 
  
 

Knowing how synthetic data can be simulated, thereby alleviating the need for (time) expensive 

microscopy time, we will explore optimization strategies for retrieving the conditions with minimal lens 

aberrations and therefore the highest image resolution. Prior to discussing Reinforcement Learning 

strategies, we will investigate the performance of classical optimization problems on synthetic data. 
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3. Classical optimization for aberration correction 

The first step in applying classical methods to correct two-fold astigmatism and defocus is finding 

a valid abstraction. A very generic abstraction is the following; in calibration problems, the objective is to 

drive certain internal states 𝑥 to zero. These internal states are ‘imperfections’ or aberrations in the case 

of the STEM. Once these imperfections are gone, the instrument is calibrated. An illustrative example of 

this abstraction for the electron microscopy use case is shown in Figure 8. 

 

  

Figure 8. Abstraction of the focus problem (left) with focus state 𝑥 , input 𝑢 , and specimen thickness 𝜃1. 

On the right, a curve constructed from observations of the focus problem, which resembles the reward 

𝑟 for different inputs. Observe that multiple inputs can result in the same value for 𝑟 (i.e., the map is non-

injective). 

 

The figure on the left shows a simplified model of the focus problem. The electron beam is focused into 

a single point, which ideally should be on the surface of the sample to be examined. We can change the 

vertical position of the focus point through calibration, which is represented in the Figure 8 by 𝑢 . 

Additionally, there might be an unknown set of parameters 𝜃 , which causes the calibration to be 

potentially different every time, hence the need for re-calibration. In this case, the internal state is the 

distance between the focus point and the sample surface, 

 

𝑥 =  𝑢 − 𝜃1 

 

Generally, this internal state cannot be directly measured (this would trivialize the calibration problem). 

Instead, we are only provided with an output or observation which gives indirect information about the 

internal state. For example, 

 

𝑟 =  𝑥2 + 𝜃2 

 

 

where 𝜃2 is some unknown parameter.  
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In this example, a single observation does not yield a unique corresponding internal state. In practice, an 

example of this in STEM is that an object in under- or overfocus is blurred in a similar manner. However, 

with multiple observations, it is possible to estimate the internal state or to move to an output which 

corresponds to the goal state. This exact type of problem clearly holds true for the STEM use case. 

 

In this preliminary approach, only the defocus and the A1x tuning knobs will be calibrated. These two 

turning knobs correspond to two internal states: the x component of A1 astigmatism and defocus. The 

observation in the EM is the Ronchigram, which is a greyscale image. While it is possible to tune the two 

knobs in order to find a specific (category of) image, the problem can be simplified by instead evaluating 

a lower-dimensional feature space. As shown in Figure 7, the optimal input settings correspond to the 

Ronchigram which has the most axisymmetric and smallest geometry. These desired properties in the 

Ronchigram can be mapped to features through a series of operations. Therefore, the lower dimensional 

space of choice is constructed by applying a two-dimensional Fourier Transform to the Ronchigram, then 

fitting a two-dimensional Gaussian Multivariate to the resulting shape. The feature extraction process is 

shown in Figure 9. 

 

 

Figure 9. Feature extraction process of the Ronchigram. The top row shows Ronchigrams corresponding 

from left to right to fully calibrated state; underfocus state; astigmatism with slight underfocus state; 

astigmatism with severe underfocus state. The second row shows the corresponding 2D Fourier 

transforms. The third row shows the eigen decomposition of the estimated bivariate Gaussian covariance. 
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From here, a scalar reward can be constructed from the eigenvalues of the bivariate Gaussian as a 

measure of quality of the current Ronchigram. In short, the calibrated Ronchigram corresponds to two 

small eigenvalues, while any deviation towards larger eigenvalues indicates a non-calibrated state. We 

can calculate the reward for a set of Ronchigrams according to a gridded set of inputs, which is shown in 

Figure 10 on the left. Observe from the figure that the maximum reward (approximately) corresponds to 

the calibrated state 𝑥 = 0 , and that any distance from this state results in a lower reward. 

 

If the complete set of Ronchigrams is available from the start, and a reward is calculated for each, finding 

the calibrating input is trivial. Instead, a more representative problem is to calibrate using a limited set of 

observations, which are chosen in a clever way. To do so, we simultaneously estimate the function we 

are maximizing. Gaussian processes (GP) present a method to estimate unknown functions effectively 

using very few samples. An application of GPs to estimate the reward environment is shown below on 

the right. This application uses a zero-mean prior and squared exponential prior covariance. The 

hyperparameters of the GP are optimized using log marginal-likelihood during the sampling of the 

function. After only 12 observations, the Gaussian process estimate largely resembles the rough shape 

of the true reward environment. More importantly, the maximum in the true reward environment coincides 

with the maximum in the estimate.  

 

An additional benefit of this Gaussian process is that it also provides a measure of uncertainty for all 

points in the estimation. In automating the calibration problem, there is a trade-off between gathering 

information about the reward landscape (improving our estimates), and moving to where we currently 

believe the maximum is according to our GP estimate. One method to solve this trade-off is called 

Bayesian optimization (BO) [4]. BO balances between the estimated maximum and the uncertainty of the 

estimate in a so-called acquisition function. The results shown later in this section use the ‘expected 

improvement’ acquisition function, present in literature [5]. 
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Figure 10: Calculated reward landscape, based on the on dimensional feature extraction (left). Derived 

reward landscape by the Gaussian Process methodology (right). On top we visualize a 3D rendering from 

which one can appreciate the landscape, below we show the height profile of the landscape. 

  

The results of applying BO with a GP estimator and the aforementioned feature extraction from the 

Ronchigram are quite promising for the use case. Using the synthetic dataset, a success rate (success = 

arriving at the calibrated state) of 100% in 50 attempts is achieved. In these attempts, an average number 

of 8.5 observations is required in order to arrive within a Euclidean distance of 10 from the calibrated 

state. In Figure 11, a typical episode is shown, where the marked points indicate the method's chosen 

inputs. The number indicates the corresponding input index. Note that the first input is randomized, and 

that the method is initialized without any datapoints at every attempt. Observe that Bayesian optimization 

uses the first few observations to explore the edges of the input space, since those points have the 

highest uncertainty at first. After these points, the basic shape of the reward environment is already 

established. The later observations are used to gather more information around the true optimum of the 

reward environment (the point 0,0), since the BO acquisition function deems this area most promising. 
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Figure 11: Illustration of the explored settings for the tuning knobs during a typical attempt. 

 

Whilst advanced classical optimization can clearly solve the defocus/two-fold astigmatism problem, 

it is dependent on feature extraction and devising a reward landscape. This might become problematic 

when attempting to correct higher-order aberrations. It furthermore remains unclear how scalable the 

current method remains under such conditions: the initial exploration of the high dimensional space might 

become too time intensive. For this reason, we will explore the use of Reinforcement Learning (RL) to 

solve the same issue, since RL has already conducted the exploration during training instead of during 

application.  Before discussing the experimental outcome, we will provide a short introduction on RL and 

a simplified example to clarify the core concepts of the performed work.  
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4. Reinforcement Learning 

4.1 Introduction  

In short, RL refers to solving a particular type of problem where decision making is sequential, and 

the feedback is typically very sparse. Examples include computer games or robotics. A reinforcement 

agent interacts with a (virtual) environment and aims to attain both short- and long-term goals. For this, it 

is provided with a reward signal by the environment. What sets RL apart from traditional approaches such 

as from the optimal control field or optimization is its ability to learn from very sparse feedback and to 

operate without any prior or learned assumptions on the environment or the reward landscape.  

 

ASIMOV report Task 1.1. contains an elaborate introduction to both RL and its main disadvantages, next 

to a bottom-up introduction to model free Q learning. [9]  

 

Figure 12: Illustration of Reinforcement learning way of working. [10] 

 

We will briefly touch upon the major challenges when applying RL algorithms. These are: 

• Exploration-exploitation dilemma, 

• Data inefficiency, 

• General performance of RL 

• Reward function design, 

• Stability and repeatability. 

The exploration-exploitation dilemma refers to the fact that the RL agent must learn from its behavior 

(exploitation) applying what it knows, yet also explore new actions to take to expand its knowledge. 

(exploration) In this sense, this dilemma is similar to the exploration issue for Gaussian Processes 

(Section 3) and can be difficult to balance. In addition, RL agents are (hopelessly) data inefficient. A 

sparse reward signal, meaning that you only receive a reward once you have reached the goal, translates 

into massive data requirements, stressing the need for simulated data. Not only must this data be 

available, but it also results in long computationally intensive training runs. Designing more complex 

reward functions, as a non-trivial and potentially subjective task. Lastly, RL training is subject to high 

variance and general instability. Together with the aforementioned data inefficiency, it makes research 

tough. 
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Prior to going into detail on the application of reinforcement learning on the simulated and experimental 

Ronchigram data, we will present the ASIMOV-in-a-Nutshell demonstrator. This demonstrator uses a 

simplified system that is inspired by the electron microscopy use case, in order to provide initial insights 

into the TEM use case. 

 

4.2 ASIMOV-in-a-Nutshell demonstrator 

The goals of this demonstrator are as follows: 

• Illustration of the ASIMOV project vision in a simpler setting than the TEM use case. 

• Early exploration of the impact of Digital Twin modelling decisions on Reinforcement Learning. 

• Early exploration of the systems engineering challenges imposed by Reinforcement Learning.  

 

For fast exploration in terms of both development time and runtime without high hardware requirements, 

the demonstrator ignores detailed physics modeling and case-specific image recognition as much as 

possible. In the remainder of this section, we first introduce the simplified system to be optimized. 

Afterwards we explain the experimental set-up and the resulting agent behavior. Finally, we discuss some 

early exploration results beyond topics that are already addressed in the Electron Microscopy use case. 

4.2.1 System to be optimized 

The ASIMOV-in-a-Nutshell demonstrator optimizes a noisifier system that produces images with 

two types of noise (blur and dots). Such abstraction was chosen to have a comparable system to the 

defocus and astigmatism deterioration of TEM images.  The system produces noise images based on a 

collection of non-noisy base images, and two knobs that control the applied noise levels. At the beginning 

of each episode a base image is selected randomly, and afterwards the system can be operated by 

repeatedly observing the produced noisy image and by adjusting both knobs. 

 

 

Figure 13: Illustration of the ASIMOV goal 

 

As shown in Figure 13 the goal is to develop an RL agent that operates the system knobs until an image 

with minimal noise is obtained. To this end the optimizer can only use the input knobs and the output 

images. In particular, the optimizer cannot reduce the noise by applying some post-processing to the 

produced noisy images. Note the similarities with the electron microscopy use case. In both cases there 

is an imaging system with control parameters, and when the control parameters are not set optimally the 
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result is a noisy image. Of course, the type of noise differs, both in the way it is computed and in the way 

it can be recognized in the images. 

4.2.2 Experimental set-up 

The experimental set-up for the ASIMOV-in-a-Nutshell demonstrator is summarized in Figure 14. 

We use rectangles to represent processing steps and ovals to represent data artifacts. The processing 

steps are grouped in three dashed areas conform the ASIMOV reference architecture [11]. Note that we 

use a single area for the physical system and digital twin, and that we ignore data orchestration such as 

logging. 

 

 

Figure 14: Asimov-in-a-Nutshell Experimental Set-up 

 

The blue elements are directly related to the image noisifier. Its output is a noisy image, and its inputs 

are the collection of base images and the applied noise levels. When all applied noise levels are set to 0, 

the noisy image is identical to the base image. 

 

The red elements are directly related to the Reinforcement Learning technology that we intend to use for 

the optimizer agent. Its outputs are knob actions (moving the knobs in a certain direction or to a certain 

position), and its inputs are the observation and reward. The reward is only used during the training 

phase; the other inputs and outputs are used both in the training and operational phase. We use the Soft 

Actor-Critic (SAC) algorithm [7] for Reinforcement Learning. 

 

Finally, the green elements represent the intermediate components that link the blue and red elements: 

• The noise classifier (or regression) is a separate AI component that takes a noisy image and 

estimates the applied noise levels. It is based on a LeNet-5 convolutional neural network that is 

trained using supervised learning using only the image noisifier. 
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• The reward computation is only used during the training phase, and it accesses the real applied 

noise level. This information would not be externally visible on a real implementation of the 

noisifier system, but it is accessible in a DT of the noisifier system. 

• The knob distortion computes the applied noise levels based on the actual knob positions. To 

ensure that the agent does not know the optimal knob positions in advance, the knob distortion 

adds linear knob offsets that are selected randomly at the beginning of each episode. 

• The knob action interpreter computes the actual knob positions based on knob actions, which 

can be either relative changes in a certain direction or absolute positions. To experiment with 

different knob sensitivities between multiple similar systems (for example within a product family, 

or between a real system and a digital twin), it also applies linear knob multipliers that are selected 

randomly at the beginning of each episode. 

• Finally, the observation computation takes the estimated noise levels and actual knob positions 

as observation input of the reinforcement learning. To be more precise, it takes both the current 

values and the previous historical value. 

 

Our current implementation consists of two independent copies of the agent and reward system, where 

each copy focuses on one specific noise type. 

4.2.3 Agent behavior 

When running the trained agent on this system, for each type of noise we obtain diagrams like Figure 

15. The horizontal axis denotes time progression. In addition, there are two vertical axes: 

• The left vertical axis denotes knob positions (ranging from –2 to 2). The green dashed line 

indicates the optimal knob position, and the green area indicates the knob positions that are 

sufficiently close to the optimum. The blue line indicates the attempts by the agent to reach the 

green area. Note that the agent is not aware of the green area nor the green dashed line. 

• The right vertical axis denotes noise levels (ranging from 0 to 4). The orange line indicates the 

noise level applied by the noisifier, whereas the red line indicates the noise level estimated by 

the agent. Note that the agent is not aware of the orange line. 
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Figure 15: ASIMOV-in-a-Nutshell agent behavior 

 

Experimentation shows that the optimizer always seems to reach the optimum area. The blue line from 

Figure 15 shows the very typical swinging back-and-forth movements that stabilize around the green 

optimum. This mimics a typical human approach to find an optimal value. 

 

Nevertheless, the number of action steps from the agent to get to the optimum area varies greatly. This 

raises questions about systems engineering for such AI agents. Do we understand the behavior of the 

agent? Do we need to understand the agent before we can trust it? How to deal with the varying number 

of required steps (including steps that make the system temporarily function less optimal)? Basically, 

such an AI agent is a relatively unpredictable component. 

 

When comparing the difference between the orange and red lines, you can see that the noise classifier 

does not behave perfectly. Especially when there is either a lot of noise or very little noise. Moreover, 

when there are multiple types of noise, the accuracy of a specific noise classifier typically improves when 

the other noise levels get lower. The inaccuracies at very low noise levels cause challenges for the 

Reinforcement Learning agent when getting close to the green acceptable area. 

 

To explore scaling the number of knobs, we have naively combined two independent agents for single 

knobs. We notice that the agents sometimes jump out of their green area after reaching it, as there is 

currently no clear stopping criterion for them. This shows that reaching the optimal area and staying in 

the optimal area are different things for the AI agent. It is further work to develop stopping criteria that 
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give a more efficient workflow. Moreover, we envision that an RL agent trained on both knobs can reduce 

the number of steps to reach the desired goal and can display even more systematic paths.  
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5. Reinforcement Learning for Aberration Correction 

Having explored and clarified the initial concepts through the ASIMOV-in-a-nutshell demonstrator, 

we will go into more depth on the way-of-working for the electron microscopy use-case. Our deep learning 

approach was based on model free Q learning, on the simulated Ronchigram images.Figures 18 shows 

an example roll out of a synthetically trained agent on unseen real data. Synthetic data performance is 

stable at 100%. The agent learns to handle the defocus knob to infer the A1x lens aberration. On average 

the Agent needs 12-16 steps to reach the goal. Real world data performance currently sits at 84%, but 

critically suffers from several issues that we will detail here. Firstly, the environment provides the goal 

state and the accompanying feedback to the agent. On an actual microscope the agent will have to learn 

how to stop by itself. Secondly, the environment defines the bounds of known universe for the agent and 

will simply put it back the moment it tries to venture outside. Although we don’t fully observe this behavior, 

it is possible to get quite close to the goal state by learning to always turn the A1 knob up and then to 

bounce around.   

 

 

Figure 18: Illustration of a trajectory taken to reach the optimum state on experimental data. The red 

square reflects the end state, whilst the blue square indicates the starting position. 
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6. Live application at the electron microscope  

 

Until now we have trained and validated the developed methodologies on simulated and/or pre-

acquired data. In this section we discuss connecting the pre-trained RL agent to the TEM and enabling 

real-time application.  

 

6.1 Discussion and Results 

Using the described set-up, we connected the RL agent (Figure 17) to the electron microscope. In 

order to test the RL agent performance, we placed the microscope in various misaligned states by 

changing the value of defocus (C1) and A1x. For a pre-set number of steps, we acquired a Ronchigram, 

processed it through the Reinforcement Learning Network and applied the A1x and C1 changes 

suggested by the network.  

 

Below we provide a graphical representation of the conducted experiments. The potential initial values 

for A1x were [0 , 50, 100, 150, 200, 300] nm while A1y was kept at 0. C1 was initially set to a value within 

[-300, -150, -50, 50, 150, 300] nm. It must be noted that the used RL network was trained on data for 

which the aberrations did not exceed 200 nm. In addition, it only encountered states for which the 

aberration was a multitude 20 nm. Hence, in our experimental set up, the network was pushed beyond 

its training conditions. 

 

For each experiment, the network was allowed to conduct 15 steps. On the graphical representation 

(Figures 20-21) each experiment is illustrated as a line. The dot represents the end state of the 

experiment. The experiments have been color-coded in terms of their success. The measure of success 

was determined by the network’s ability to get the microscope back to the aligned state (A1x = 0, C1 = 

0).  

 

To account for the fact that the best C1 value depends on the local thickness, the success condition was 

relaxed by introducing a tolerance. If the network drove the TEM to a state for which the Euclidian distance 

√𝐶1
2 + 𝐴1𝑥

2   was below 40 nm (roughly 2 steps away from the ‘goal’), it was counted as a success. If the 

end state of an experiment is within the tolerance, the experiment is a success and the line is colored 

green. If the experiment was at any point, apart from the start- and end-state, within the tolerance, it was 

considered a partial success and colored orange. If the experiment never came within the tolerance, it 

was deemed a failure and colored red. We must consider partial successes as well, since we currently 

do not have a stopping criterion. Hence, the network will keep performing steps even though it might have 

already encountered the ‘goal’ state. Hence, establishing a stopping criterion will turn the partial 

successes to real success.  



IR1.2 

Proof of Concept Demonstration and Evaluation – 

use case electron microscopy 

public 

 

 

 

    

Version Status Date Page 

0 public 2023.03.20 30/34 

 

 

In Figure 20 we display the experimental runs as described above, separated as function of their initial 

A1x value. Figure 21 illustrates a subset of the same runs as a function of initial C1 values. 

A first thing to notice is that whenever an experiment was started with an A1x or C1 value beyond the 

trained conditions (+- 200), it has difficulty navigating towards the goal state. Either the network drives 

A1x or C1 in the wrong direction, or the network is unable to reach the desired state within the pre-set 15 

steps. This demonstrates that the network does not necessarily generalize well over unseen conditions. 

 

For every starting point with values below 200 nm, two experiments were conducted. It is curious to see 

that not in all cases they follow the same trajectory. For a starting value of A1x = 50 nm and C1 = 150 

nm, we can even discriminate a case where one experiment succeeded, and the other failed. This is the 

result of the non-zero exploration factor at the end of training the Neural Network.  

 

For high values of A1x (>50), the network consistently knows in which directions it should drive C1 in 

order to reach the goal state. Experiments with a low initial A1x value but a high defocus, prove to be 

difficult as the network seems unable to establish whether it currently is in over or under focus. Overall, 

the high number of (partial) successes depicts a promising future for the TEM use-case.  

 

 

 

Figure 20: Illustration of the RL trajectories as function of their starting A1x values. The trajectories have 

been colored as function of their performance. If the TEM is within the tolerance of the goal (0,0) for the 

last step, the trajectory is green. If the TEM is not within the tolerance for the last step, but came within 
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the tolerance during operation, it is orange. If the TEM never came within the tolerance, the trajectory is 

red.  

 

    

 

 Figure 21: Illustration of the RL trajectories as function of their starting C1 values. The trajectories have 

been colored as function of their performance. If the TEM is within the tolerance of the goal (0,0) for the 

last step, the trajectory is green. If the TEM is not within the tolerance for the last step, but came within 

the tolerance during operation, it is orange. If the TEM never came within the tolerance, the trajectory is 

red. 

 

 

6.2 Conclusion 

Here we have demonstrated the potential of RL to align the electron microscope and reduce A1x and 

defocus. Although the pretrained agent generalized well on offline experimental data (85%), we could 

easily find starting conditions for which the agent would consistently fail. Hence, more effort is required 

to establish a robust and reliable workflow. First of all, a stopping criterion needs to be established to 

ensure that the network no longer acts once it has reached the optimum state. This can either be trained 

in the network or done in a less explicit way. In addition, until now only a small subset of aberrations has 

been corrected. In order to get a functional workflow, the RL agent needs to be scaled up to include more, 

higher order, aberrations.  
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TO DELETE[8]. 

 

  

  



IR1.2 

Proof of Concept Demonstration and Evaluation – 

use case electron microscopy 

public 

 

 

 

    

Version Status Date Page 

0 public 2023.03.20 33/34 

 

7. Terms, Abbreviations and Definitions 

 

Table 1 - Terms, Abbreviations and Definitions 

ABBREVIATION EXPLANATION 

AI Artificial Intelligence 

DT Digital Twin 

EM Electron Microscopy 

RL Reinforcement Learning 

STEM Scanning Transmission Electron Microscopy 

TEM Transmission Electron Microscopy 

C1 Defocus 

A1 Two-fold Astigmatism 

A1x X component of two-fold astigmatism 
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