
BUMBLE Deliverable D3.4

Eclipse-based Blended Modeling
Generation Environment
Documentation

This document will be treated as strictly confidential. It will not be disclosed to anybody not having signed the
ITEA Declaration of Non-Disclosure.

2

BUMBLE

Contributors
Jörg Holtmann University of Gothenburg

Jan-Philipp Steghöfer University of Gothenburg

Weixing Zhang University of Gothenburg

Gloria Ninsiima Mälardalen University

Joakim Korhonen Mälardalen University

Malvina Latifaj Mälardalen University

Reviewers
Roelof Hamberg Canon Production Printing

Federico Ciccozzi Mälardalen University

3

BUMBLE

Project Acronyms
<ACR> <Acronyms>
BUMBLE Blended Modeling for Enhanced Software and Systems Engineering
MDE Model-Driven Engineering
DSML Domain-Specific Modeling Language
EMF Eclipse Modeling Framework
MM Metamodel
EAST-ADL Electronics Architecture and Software Technology – Architecture Description Language
EATOP EAST-ADL Tooling Platform
RCP Rich Client Platform
EATXT EAST-ADL Textual Language
IDE Integrated Development Environment
M2M Model-to-Model Transformation
M2T Model-to-Text Transformation
VSM Viewpoint Specification Model

Versions

Release Date Reason of change Status Distribution

V1.0 30/11/2021 Initial version describing the editor generation
aspects of UC3

Final Uploaded to ITEA
portal

V2.0 30/09/2022 - Document restructuring

- Added editor generation aspects for UC1
(Section 3)

- Added and updated editor generation aspects for
UC3 (now Section 2)

Final Uploaded to ITEA
portal

V3.0 03/03/2023 Only minor changes in comparison to V2.0 Final Uploaded to ITEA
portal

4

BUMBLE

Executive Summary
Handcrafting and manually evolving a concrete syntax editor based on the metamodel of a modeling
language requires effort. Blended modeling proposes the application of and the seamless switching
between multiple concrete syntaxes based on one metamodel, thereby increasing the effort through
requiring realizing and evolving not one but multiple concrete syntax editors. To reduce this effort
through automatization, the purpose of this deliverable is the description of two BUMBLE solutions
regarding the generation of editors for the Eclipse technology ecosystem.

5

BUMBLE

Table of Contents
BUMBLE Deliverable D3.4

Eclipse-based Blended Modeling Generation Environment Documentation 1

Contributors 2

Reviewers 2

Project Acronyms 3

Versions 3

Executive Summary 4

Table of Contents 5

1. Introduction 6

2. Editor Generation and Evolution Environment for EAST-ADL 6

2.1. Generating Implementation Metamodels from Documentation Metamodels for the
Evolution of EAST-ADL 7

2.2. Post-processing of Initially Generated EATXT Grammars with the GrammarOptimizer for
the Evolution of EAST-ADL 11

2.2.1. Design of the GrammarOptimizer 12

2.2.2. Use of the GrammarOptimizer 13

3. Automatic Generation of Graphical Editors from Annotated Ecore-based DSMLs 13

3.1. Graphical Notation Specification Guide 15

3.2. Model-to-text Transformations 17

3.3. Discussion 18

4. Conclusion 18

6

BUMBLE

1. Introduction
Modeling languages and their related metamodels are typically subject to evolution and evolving
hand-crafted editors corresponding to the metamodels usually requires manual effort. An automatic
approach for the realization of metamodel-based editors, via generative approaches, would markably
reduce the effort of co-evolving editors (and models) in response to metamodel evolutions.

This deliverable describes BUMBLE solutions for the generation of editors in the Eclipse technology
ecosystem. Regarding the five BUMBLE features as introduced in the deliverable D2.2, the generation
of editors is particularly motivated by the BUMBLE feature “Evolution (E)”. Regarding the BUMBLE
Technology Bricks and requirements (cf. deliverable D2.2), the work and solutions described in this
deliverable contribute to the following ones:

Technology bricks Description of main contributions Main requirements

Editor Generators We provide architectural descriptions for editor
generators as part of different use cases in the
Eclipse ecosystem.

BC1, BC2, BT1, BT2,
BT3, BT4

(Meta-)model
co-evolution

The editor generators mentioned above have
the main purpose of supporting the language
and thereby (meta-)model (co-)evolution.

BC9, BT22, BT24

From the BUMBLE use cases (UC) leveraging the Eclipse technology ecosystem (cf. deliverable
D2.2), there are currently UC3 (Vehicular Architectural Modeling in EAST-ADL) and UC1 (Blended
modeling in open-source) that can directly benefit from an editor generation approach. We describe an
EAST-ADL editor generation and evolution environment for EAST-ADL in EATOP in Section 2, and an
approach to generate graphical editors with Ecore and Sirius in Section 3.

2. Editor Generation and Evolution Environment for EAST-ADL
The Electronics Architecture and Software Technology – Architecture Description Language
(EAST-ADL)1 is a DSML for the specification of automotive embedded systems, which is used at Volvo
Technology AB. The Eclipse-RCP-based tool suite EATOP2,3 provides tree and form editors to enable
the tool-based specification of EAST-ADL models based on the Eclipse Modeling Framework (EMF)4.
In BUMBLE’s UC3 and w.r.t. the BUMBLE feature (B) (cf. Deliverable D2.2), we complement these
existing editors with a textual notation and a seamless switching and synchronization between the
textual representation and the tree-/form-based editors, that is, blended EAST-ADL modeling. In
Deliverable D3.1, we introduce the textual editor for the textual notation EATXT and describe its
architecture.

4 https://www.eclipse.org/modeling/emf/
3 https://bitbucket.org/east-adl/east-adl/
2 https://www.eclipse.org/eatop/
1 http://www.east-adl.info/

https://www.eclipse.org/modeling/emf/
https://bitbucket.org/east-adl/east-adl/src/Revison/
https://www.eclipse.org/eatop/
http://www.east-adl.info/index.html

7

BUMBLE

As the EAST-ADL language and thereby its metamodel is subject to evolution (the current EAST-ADL
version is 2.2), maintaining the EATOP editors as well as the EATXT editor in a manual way is an
effortful task. Thus, we describe in this section an editor generation and evolution environment for
EAST-ADL. Figure 1 depicts the overall workflow for this environment.

Figure 1: Overall workflow for the EAST-ADL editor generation and evolution environment

The overall workflow starts with the specification/evolution of an EAST-ADL documentation
metamodel, for which we provide means to generate the EATOP modeling infrastructure from it
(described in Section 2.1). The second part of the overall workflow covers the generation of an initial
EATXT grammar by means of the language engineering framework Xtext5, for which we provide
means to automatically optimize the initially generated grammar (described in Section 2.2).

2.1. Generating Implementation Metamodels from Documentation
Metamodels for the Evolution of EAST-ADL6

Developing EATOP is itself a complex endeavor. The research project MAENAD7 has addressed this
complexity with an approach that distinguishes between a metamodel for documentation purposes

7 http://www.maenad.eu/

6 This section contains contents of the MODELS’22 Tools & Demonstrations paper “Migrating from
Proprietary Tools to Open-source Software for EAST-ADL Metamodel Generation and Evolution”
(https://doi.org/10.1145/3550356.3559084).

5 https://www.eclipse.org/Xtext/

http://www.maenad.eu/
https://doi.org/10.1145/3550356.3559084
https://www.eclipse.org/Xtext/

8

BUMBLE

(documentation MM) and a structurally different implementation metamodel (implementation MM) that
is deployed to EATOP. Particularly, the approach generates the structurally different implementation
MM as well as other artifacts, such as customized model and edit code plugins for EMF, from the
documentation MM. This generation of the EATOP modeling infrastructure decouples the model and
edit code plugins specific to a concrete EAST-ADL version from the remaining EATOP plugins
providing the actual tooling features. This means that EAST-ADL can evolve separately from EATOP.

However, this approach relies on the proprietary commercial-off-the-shelf (COTS) modeling tool
SparxSystems Enterprise Architect8, which annihilates the advantages and goals of the otherwise
completely open-source-based metamodel evolution and generation workflow for EATOP. In the
following, we report on our migrated Eclipse-native tooling for this workflow, which in comparison with
the original approach based on Enterprise Architect supports rapid prototyping by eliminating tool
gaps, avoids vendor lock-in, is platform-independent, and provides better maintainability.

Figure 2 depicts the general transformation approach from the EAST-ADL documentation MM to the
implementation MM, with the EAST-ADL Documentation MM on the left-hand side and the EATOP
Implementation MM on the right-hand side.

Figure 2: General approach for transforming
an EAST-ADL Documentation MM to an EATOP Implementation MM

The Documentation MM has the purpose of aligning the MM in its specific version with the
corresponding version of the EAST-ADL specification. This encompasses structuring the MM into
packages that correspond to the specification structure (e.g., the metaclass SystemModel in the

8 https://www.sparxsystems.eu/enterprise-architect/enterprise-architect-editions

https://www.sparxsystems.eu/enterprise-architect/enterprise-architect-editions

9

BUMBLE

package Structure.SystemModeling and the metaclass Situation in the package Requirements),
providing diagrams for each package, and providing documentation texts for the particular
metaclasses (cf. annotations "<documentation>")—where the diagrams and documentation texts
also show up in the specification.

The Implementation MM is the basis for generating model and edit code which applies a customized
serialization format. This follows the standard approach used by EMF to generate a number of plugins
which are deployed into the generic EATOP framework. To this end, the transformation approach
flattens the package hierarchy from the Documentation MM. However, the original hierarchy is
persisted by extending the original metaclass annotations with information about it. That is, all
metaclasses (e.g., SystemModel and Situation) are rearranged directly under the root package
EAST-ADL, and their documentation annotations are extended by their original fully qualified names
(cf. annotations "<documentation> Original fully qualified name: ..."). Both the actual
documentation and the original fully qualified name in these annotations are exploited at runtime in
EATOP.

Figure 3 depicts the internal, technical workflow of our new Eclipse-native generator for the general
transformation approach described in Figure 2. As in the original approach on Enterprise Architect, we
realize the workflow in Java and apply the EMF and Sphinx9 APIs. Similarly to the original workflow,
the workflow is triggered by the evolution of the EAST-ADL metamodel and takes as input a
documentation MM that is structured as explained in Figure 2. In contrast to the original workflow, this
documentation MM is stored as an .ecore file and has been created and maintained using the
documentation and diagramming features of EcoreTools included in EMF. In the step
Post-processing (which is realized by means of an adapted subset of post-processing templates
used in the original approach), the Documentation MM gets transformed into the Implementation

MM. From this Implementation MM, the Eclipse plugins including a generator model, an EMF XMI
schema, and the model/edit code are generated, like in the original approach.

Figure 3: New Eclipse-native workflow for the MM transformation

9 https://www.eclipse.org/sphinx/

https://www.eclipse.org/sphinx/

10

BUMBLE

In the documentation MM, the textual documentation for the particular metaclasses and the
package-wise diagrammatic documentation is conducted by means of the EMF-native component
EcoreTools. Figure 4 depicts screenshots of this approach. The upper part of the figure shows a class
diagram for the package EAST-ADL.Structure.SystemModeling (cf. left part of Figure 2). Like
Enterprise Architect from the original approach and most other modeling tools, the EcoreTools diagram
editor provides a model element palette, the actual diagram canvas with typical layouting capabilities,
and a property editor. For the same package, the middle part of the figure depicts a documentation
table, which provides a row-wise list of the package’s metaclasses that can be selected for editing
(i.e., metaclass SystemModel in the figure). In contrast to Enterprise Architect where the user has to
open a property editor for each class, the documentation table provides a convenient overview of the
documentation texts for all classes of a package. The bottom part of the figure shows
the text editor for the selected table row. This text editor provides the same text editing capabilities as
the property editor of Enterprise Architect.

Figure 4: Screenshots—package-wise class diagrams
and class-wise documentation through EcoreTools

By eliminating the COTS tool Enterprise Architect from the generation and evolution workflow for the
EAST-ADL language and metamodels, we establish a pure open-source solution and enable all
open-source advantages, which were earlier annihilated by the incorporation of Enterprise Architect.
The advantages encompass rapid prototyping, the avoidance of vendor lock-in,
platform-independency, a better maintainability, equivalent documentation features, as well as the
possibility of (meta-)model co-evolution.

11

BUMBLE

We provide the new approach including a comprehensive user documentation as part of the
EAST-ADL Bitbucket repository10.

2.2. Post-processing of Initially Generated EATXT Grammars with the
GrammarOptimizer for the Evolution of EAST-ADL

Xtext generates a default grammar from an Ecore metamodel, but the generated grammar is complex,
not user-friendly, not easy to use, and enforces a very verbose style of writing. The default grammar,
therefore, needs to be optimized to make it easier and user-friendly to users, and in line with the needs
expressed by Volvo Technology AB in the BUMBLE Use Case 3. To this end, we first designed the
grammar style in cooperation with Volvo, and modified the grammar to the one we want. But the
modification work could be very cumbersome when the language is large. For example, EAST-ADL
has more than 200 classes in its metamodel which results in about 3,000 lines of text in the Xtext file.
It is cumbersome to do so many manual modifications. Therefore, we have to automate the
modification work. To this end, we had two possible technical solutions to achieve it:

1. Customize the grammar generator of the Xtext framework, so that it could directly generate
grammar in the appearance we want.

2. Modify the content of the *.xtext file after it is generated from the ecore metamodel.

The first possibility has the disadvantage that the grammar generator is dependent on the Xtext
version used, because grammar generators use low-level implementation details of Xtext. In addition,
it is very dependent on the underlying meta-model since it provides translation rules based on the
concepts in it. That means that the grammar generator has to be changed whenever either Xtext or
the underlying meta-model is updated.

The second possibility is independent of the version of Xtext since it works on the generated grammar
file. Thus, it does not use any of the implementation details of Xtext. It is also more independent of the
underlying meta-model since it works on the structure of the grammar, rather than on meta-model
concepts. So we chose the second solution.

Therefore, we designed the independent plug-in to realize the second potential solution. We called this
independent plug-in GrammarOptimizer. The GrammarOptimizer takes the generated grammar file
and transforms the style of the grammar by modifying the texts in the grammar file. Figure 5 shows the
workflow for generating an optimized grammar with the second solution. The whole workflow process
is:

1. Xtext generates the Xtext grammar (i.e., the initial textual grammar of a DSL) from the Ecore
metamodel;

2. Configure the GrammarOptimizer according to the generated grammar and the domain
concepts of the DSL (this step is operated by human manually);

3. Execute the GrammarOptimizer, i.e., the GrammarOptimizer optimizes the generated
grammar according to the configuration automatically.

After those steps, we end up with an optimized grammar.

10 https://bitbucket.org/east-adl/east-adl/src/Revison/org.eclipse.eatop/genmodelcodegen/

https://bitbucket.org/east-adl/east-adl/src/Revison/org.eclipse.eatop/genmodelcodegen/

12

BUMBLE

Figure 5: The workflow of generating a grammar with the second alternative solution

2.2.1. Design of the GrammarOptimizer

We designed GrammarOptimizer to parse an Xtext grammar into an internal data structure which is
then modified and written out again. The language engineer controls this process via the API, usually
in a standalone Java program that calls the necessary methods.

When GrammarOptimizer reads an Xtext grammar, it builds an internal data structure as depicted in
Figure 6. A Grammar contains a number of GrammarRules that can be identified by their names. The
rule in turn consists of a sorted list of LineEntrys with their textual lineContent and an optional
attrName that contains the name of the attribute defined in the line.

Figure 6: The class design for grammar rules.

Optimization rules are all derived from the abstract class OptimizationRule as shown in Figure 7.
Derived classes overwrite the apply() method to perform the specific text modifications for this rule. In
doing so, the specific rule can access the necessary information through the class members: field
grammar (i.e., the entire grammar), grammarRuleName (i.e., the name of the specified grammar that a
user wants to optimize separately), attrName (i.e., the line that a user wants to optimize exclusively).
Sub-classes can also add additional members if necessary.

13

BUMBLE

Figure 7: Excerpt of the class diagram for optimization rules.

2.2.2. Use of the GrammarOptimizer

The GrammarOptimizer is an independent Eclipse plugin implemented in Java. Before using it, you
need to import it into Eclipse, and you should make sure that its code is in the workspace where the
project org.bumble.eatxt is located. Then the steps are:

1. Right-click on the plugin project (i.e., org.bumble.xtext.grammaroptimizer).
2. Click “run as” and then click “Java Application”

Optionally, if you want to start the optimization from a freshly generated grammar:

1. Import the project org.eclipse.eatop.eastadl<desiredVersionNumber>.
2. Start the grammar generation via File -> new -> Other -> Xtext Project From

Existing Ecore Models:
a. Add eastadl<desiredVersionNumber>.genmodel and select EAXML as entry rule.
b. Specify org.bumble.eatxt as project name, org.bumble.eatxt.Eatxt as language

name, and eatxt as extensions.

Once you have optimized the grammar with the GrammarOptimizer, the modeling workflow engine file
(i.e., *mwe2 file) has to be run to generate the Xtext artifacts (i.e., the editor) of the language. This
completes the workflow steps to generate the textual editor for EAST-ADL.

3. Automatic Generation of Graphical Editors from Annotated
Ecore-based DSMLs

Sirius11 is an open-source Eclipse Project that allows the creation of graphical modeling workbenches
leveraging the Eclipse Modeling Framework (EMF) and Graphical Modeling Framework (GMF)12.
Relying on EMF facilitates the integration of Sirius with a variety of modeling technologies based on
EMF such as Xtext, a framework for the development of textual domain-specific languages. Thus, the
fact that both Sirius and Xtext are based on EMF, enables a basic and out-of-the-box integration that

12 https://www.eclipse.org/modeling/gmp/
11 https://www.eclipse.org/sirius/overview.html

https://www.eclipse.org/modeling/gmp/
https://www.eclipse.org/sirius/overview.html

14

BUMBLE

allows for seamless switching and synchronization between graphical and textual editors. The process
of integrating Sirius and Xtext is explained in the following.

The overall workflow starts by defining the language in a grammar using Xtext. The XtextResource
contains a parser that allows for the generation of an Ecore model from the grammar, where the Ecore
model can be used by other EMF based tools such as Sirius. Given the Ecore model, Sirius allows to
specify representations by creating and configuring a Viewpoint Specification Model (VSM) which
defines and configures viewpoints and their associated representations (e.g., diagrams). However,
creating the VSM in a manual manner can be challenging for new users and a tedious, repetitive, and
error-prone process for experienced users. To simplify this task, we analyze how to describe a
graphical notation to be used as input to automate the generation of Sirius graphical editors from it.
As part of the solution, we have developed i) a graphical notation specification guide for annotating
Ecore models and describing each element's concrete syntax and ii) model-to-text transformations
(M2T) that can generate VSMs containing the *.odesign file extension.

Figure 8 illustrates the steps that a user must take in order to generate a Sirius graphical editor using
our proposed approach. Assuming that the Ecore model has already been defined and validated, the
user must complete the following steps.

1. Annotate the Ecore model using the graphical notation specification guide. The outcome is an
annotated Ecore model.

2. Validate the annotated Ecore model. If the validation fails, the user needs to re-annotate the
Ecore model (back to Step 1); alternatively, if the validation is successful the user creates a
new runtime instance and proceeds with the next step.

3. Run M2T transformations. The outcome is an *.odesign file.
4. Generate the graphical editor using the *.odesign file. The outcome is a Sirius graphical editor.
5. Validate the graphical editor. If the validation is successful, the outcome is a fully functioning

graphical editor; alternatively, the user has to re-annotate the Ecore model (back to Step 1).

In Section 3.1 we describe the graphical notation specification guide, and in Section 3.2 we provide
implementation details on M2T transformations. Lastly, in Section 3.3 we detail a discussion of the
proposed approach.

15

BUMBLE

Figure 8: Automatic generation of Sirius graphical editors

3.1. Graphical Notation Specification Guide
The graphical notation specification guide is a crucial element of the proposed solution that allows the
user to define the graphical representation for each concept of the underlying metamodel. To define
the graphical notation specification guide, we first identified a set of concepts that are frequently used
during the creation of graphical editors and incrementally added more relevant concepts. These
concepts can be described as EAnnotations, that can be used to annotate EMF models/metamodels
and describe how each concept of the latter should be visualized in the generated graphical editor.
The most common concepts that we identified are diagrams, containers, nodes, and edges which are
part of the majority of graphical editors. We want the graphical editor to allow both the visualization
and editing of the representations. Thus, we focus not only on EAnnotations that will allow users to
visualize the elements, but also on EAnnotations that will allow the user to create, edit and delete
elements. In the following, we detail the graphical notation specification guide, by presenting the main
concepts, providing a description of the concepts, and giving an example of how the user can define
the annotations and the required details.

@sirius - Used to define the viewpoint naming and diagram naming, the root of the metamodel, and
the file extension of the metamodel.

16

BUMBLE

@sirius(name = "", mainclass="", viewpoint="", diagram="")

@namespace - Used to define the URI of the metamodel and the prefix for the models instantiated
from the metamodel.

@namespace(uri="", prefix="")

@sirius.container - Used for EClasses that should appear on the diagram as containers. A container
is an element that can contain other elements.

@sirius.container(name=“”, expression=“”, background=“”, foreground=“”, container=“”,
domain=“”, icon=“”, presentation=“”, bordercolor=“”, mapping=“”)

@sirius.node - Used for EClasses that should appear on the diagram as nodes. A node is an element
that cannot contain other elements.

@sirius.node(name=“”, expression=“”, style=“”, label=“”, icon=“”, color=“”, container=“”,
height=“”, width=“”, domain=“”, labelcolor=“”, bordercolor=“”, icon=“”)

@sirius.altnode - Used to specify an alternate style for a node, where the alternate style is applied based
on a boolean condition.

@sirius.altnode(belongsto=“”, condition=“”, color=“”, label=“”)

@sirius.borderednode - Used for nodes which appear on the side of other elements (e.g., ports for
state machines).

@sirius.borderednode(name=“”, expression=“”, style=“”, color=“”, label=“”, icon=“”)

@sirius.edge - Used for EClasses that should appear on the diagram as connections between
diagram elements.

@sirius.edge(type=“”, source=“”, target=“”, containerreuse=“”, color=“”, domain=“” , name=“”,
label=“”, targetFinderExpression=“”, sourceFinder Expression=“”, targetStyle=“”,
sourceStyle=“”, expression=“”)

@sirius.altedge - Used to specify an alternate style for an edge, where the alternate style is applied
based on a boolean condition. This alternate style may specify another color or label to the edge and is
mainly used to visualize an internal attribute that would otherwise not be visualized.

@sirius.altedge(belongsto=“”, condition=“”, color=“”, label=“”)

@sirius.decoration - Used for adding small graphical annotations to the diagram elements.

@sirius.decorations(name=“”, type=“”, style=“”, expression=“”, image=“”, mappings=“”)

@sirius.tool - The tools that enable editing of elements in the graphical editor can all be defined by
using the @sirius.tool EAnnotation. To differentiate between their capabilities we use the type
attribute as follows.

- Create - Used to create elements in the graphical editor.
@sirius.tool(name=“”, type=”CreationDescription”, mappings=“”, reference=“”,
belongsto=“”, source=“”, target=“”, containerexpression=“”)

- Delete - Used to delete elements in the graphical editor.
@sirius.tool(name=“”, type=”DeleteElementDescription”, feature=“”, mappings=“”,
belongsto=“”)

- Edit - Used to edit the labels of elements directly in the diagram itself, by clicking on the label.
@sirius.tool(name=“”, type=”DirectEditLabel.”, feature=“”, mappings=“”, belongsto=“”)

17

BUMBLE

- Redirect - Used to redirect edges from one element to another.
@sirius.tool(name=“”, type=”ReconnectEdgeDescription”, feature=“”, mappings=“”,
belongsto=“”)

3.2. Model-to-text Transformations
M2T transformations enable the generation of Sirius graphical editors by transforming the annotated
Ecore model that contains details related to both abstract and concrete syntax into VSMs (i.e.,
*.odesign file). For the definition of M2T transformations, we used Xtend13, an open-source,
expressive, and flexible language whose IDE is integrated within the Eclipse IDE. It provides templates
for code generation and is commonly used for M2M and M2T transformations.

The transformations take as input the annotated metamodel and generate the XML representation of
the *.odesign file. The defined template of the transformations are designs to generate XML files
following the structure of *.odesign files. The generated *.odesign file can then be used to generate a
graphical editor for the respective metamodel. The basic idea is that the M2T transformations iterate
through the metamodel concepts, fetch the corresponding information described in the annotations for
each concept, and generate text conforming to XML to populate the *.odesign file. In Listing 1, we
provide an example of the compile function which is the starting point of the implementation. The text
in between triple quotes is printed as plain text, and the text in between << >> is evaluated and the
outcome is printed. As it can be seen it follows the structure of an XML schema file defining the XML
version and encoding. The mmPackage represents the metamodel package and functions such as
getViewpoint(mmPackage) and getDiagram(mmPackage) iterate through the annotations of
the mmPackage and collect the required information.

Listing 1: compile function of the M2T transformations

public def compile(Package mmPackage)
'''<?xml version="1.0" encoding="UTF-8"?>
<<val viewpoint = getViewpoint(mmPackage)>>
<<val diagram = getDiagram(mmPackage)>>

<<val fileextension = getExtension(mmPackage).toLowerCase()>>
<description:Group xmi:version="2.0" ...>
<ownedViewpoints name="<<viewpoint>>"

modelFileExtension="<<fileextension>>">
<<val mainclass = getMainClass(mmPackage)>>
<ownedRepresentations xsi:type="description_1:DiagramDescription" name="<<diagram>>"

domainClass="<<mmPackage.name>>::<<mainclass>>"> <metamodel href="<<mmPackage.nsURI>>"/>
<defaultLayer name="Default">

...
</defaultLayer>
</ownedRepresentations>
<ownedJavaExtensions qualifiedClassName="<<getPath(mmPackage)>>.Services"/>
</ownedViewpoints>

</description:Group>
'''

13 https://www.eclipse.org/xtend/

https://www.eclipse.org/xtend/

18

BUMBLE

3.3. Discussion
The proposed approach was validated utilizing three use cases that implement complementary
features. We used the basic family metamodel, the UML-RT for state machines metamodel and the
NoSQL visualization tool metamodel. The graphical notation specification guide and M2T
transformations were iteratively revised whenever errors were identified in the generation of a
particular editor. Additionally, the validation involved inspecting whether the resolved errors affected
the generation of other editors. Lastly, for any missing concepts in our editor, we enriched the
graphical notation specification guide, and the M2T transformations to include them. The metamodels
and the complete implementation can be found online14.

The solution can reduce the effort involved in the process of creating graphical editors and
co-evolving graphical editors in response to metamodel evolution. In the case of creating graphical
editors in Sirius from scratch, the approach of including all information relevant for creating a graphical
editor in Sirius in one single file requires less effort, is less error-prone, and more intuitive. Same
argument is true for co-evolving graphical editors. For instance, consider that the user wants to make
changes to the underlying metamodel. With the manual approach, the user must make the changes to
the metamodel in the workspace instance, register it, and then import it in the runtime instance. Then,
the user must revise the *.odesign file to reflect the changes made in the metamodel by using the tree
editor offered by Sirius out-of-the box. Alternatively, using our proposed approach the user can make
the changes to the metamodel and annotations that describe how the concepts should be graphically
represented, in one single textual or tree editor, which allows for increased usability. In summary, this
makes for an easier way of creating and co-evolving graphical editors, thus facilitating the tedious and
repetitive manual process.

4. Conclusion
In this deliverable, we presented two approaches for automatically generating editors based on
language metamodels in the Eclipse ecosystem. These generative approaches markably reduce the
engineering effort in comparison to hand-crafting modeling editors in the case of language evolution.

First, in Section 2, we presented the editor generation and evolution environment for EAST-ADL,
which generates from a documentation metamodel both EATOP editors and an implementation
metamodel. Based on this implementation metamodel, we use Xtext to initially generate a grammar
and apply our GrammarOptimizer to automatically post-process this grammar in order to yield the
EATXT editor. Then, in Section 3, we presented an approach to generate graphical editors from
annotated metamodels. In this context, an arbitrary Ecore metamodel is annotated following a
graphical notation specification guide. From the annotated metamodel, a Sirius configuration is
generated that can subsequently be used as concrete graphical editor for instances of the Ecore
metamodel.

14 https://github.com/JocksTheGul/Auto-generated-graphical-editors-in-Sirius

https://github.com/JocksTheGul/Auto-generated-graphical-editors-in-Sirius

