
BUMBLE Deliverable D3.1

Architecture Description for BUMBLE
Eclipse Platforms

This document will be treated as strictly confidential. It will not be disclosed to anybody not having signed the
ITEA Declaration of Non-Disclosure.

2

BUMBLE

Contributors
Jörg Holtmann University of Gothenburg

Jan-Philipp Steghöfer University of Gothenburg

Weixing Zhang University of Gothenburg

Mattias Mohlin HCL

Malvina Latifaj Mälardalen University

Robbert Jongeling Mälardalen University

Johan Fredriksson Saab

Reviewers
Ivano Malavolta Vrije Universiteit Amsterdam

Federico Ciccozzi Mälardalen University

3

BUMBLE

Project Acronyms
BUMBLE Blended Modeling for Enhanced Software and Systems Engineering
MDE Model-Driven Engineering
DSML Domain-Specific Modeling Language
UML Unified Modeling Language
EMF Eclipse Modeling Framework
UML-RT UML for Real-time
rtUML Real-time UML
SysML Systems Modeling Language
xtUML Executable UML
CNL Controlled Natural Language
ALF Action Language for Foundational UML
XML eXtensible Markup Language
GMF Graphical Modeling Framework
SoC System-On-Chip
NoC Network-On-Chip
ECU Engine Control Unit
MPS Meta Programming System
PapyrusIC Papyrus Industry Consortium
PapyrusRT Papyrus for Real-time
OEM Original Equipment Manufacturer
AST Abstract Syntax Tree

Versions

Release Date Reason of change Status Distribution

V1.0 01/12/2021 Initial version Final Uploaded to ITEA
portal

V2.0 30/09/2022 - Added new contents to UC2, resulting in new
Subsections 3.2.1 and 3.2.2

- Added architectural description of UC6
(Section 3.4)

- Updated architectural description of UC3
(Section 3.3)

Final Uploaded to ITEA
portal

V3.0 03/03/2023 Only minor changes in comparison to V2.0 Final Uploaded to ITEA
portal

4

BUMBLE

Executive Summary
The purpose of this deliverable is to provide and to aggregate several architectural descriptions of
selected BUMBLE solutions for the Eclipse technology ecosystem. For this purpose, it first sets up the
context by describing generically the Eclipse technology ecosystem and its architectural variants.
Subsequently, we describe the architectural concepts of four BUMBLE solutions in this ecosystem.

5

BUMBLE

Table of Contents
BUMBLE Deliverable D3.1 1

Architecture Description for BUMBLE Eclipse Platforms 1

Contributors 1

Reviewers 2

Project Acronyms 3

Versions 3

Executive Summary 4

Table of Contents 5

1. Introduction 7

2. The Eclipse Technology Space as Base DSML Technology 8

2.1. Architecture Overview 8

2.2. Eclipse RCP 10

2.3. Client/Server Architectural Styles based on Eclipse Technologies 10

2.4. Existing Support with respect to BUMBLE Features 11

2.4.1. Blended Syntaxes & Modeling (B) 12

2.4.2. Collaborative Modeling (C) 14

2.4.3. Evolution (E) 14

2.4.4. Traceability (T) 14

2.4.5. Model Non-conformance (N) 15

3. BUMBLE Extensions to the Eclipse Technology Space 16

3.1. Architectural Description of UC1 (Canonical State Machine Use Case) 16

3.1.1. Eclipse Xtext and Eclipse Sirius 16

3.1.2. Implementation 17

3.1.3. Relation to BUMBLE Features 19

3.2. Architectural Description of UC2 (Combined Textual and Graphical Modeling of State
Machines in HCL RTist) 21

3.2.1. Architecture Based on the Eclipse RCP 22

3.2.1.1. Parsing with Xtext 22

3.2.1.2. Model merge 23

3.2.1.3. Managing model references 23

3.2.1.4. Synchronization between model notations 24

3.2.1.5. Eclipse plugin architecture 24

6

BUMBLE

3.2.1.6. Relation to BUMBLE Features 25

3.2.2. Architecture based on the Language Server Technology 26

3.2.2.1. Using Xtext in a Language Server 26

3.2.2.2. Graphical Diagrams with GLSP 28

3.2.2.3. Language Server Modules 29

3.2.2.4. Generated Code as Another View of the Model 30

3.2.2.5. Relation to BUMBLE Features 30

3.3. Architectural Description of UC3 (Vehicular Architectural Modeling in EAST-ADL) 30

3.3.1. Architectural Description for the Eclipse RCP 31

3.3.2. EATXT in VS Code Applying the Language Server Protocol 33

3.3.3. EATXT Grammar Optimization 34

3.3.4. Relation to BUMBLE Features 34

3.4. Architectural Description of UC6 (Blended Editing and Consistency Checking of SysML
Models and Related Program Code) 35

3.4.1. Model and Code Matcher 35

3.4.2. Relation to BUMBLE Features 37

4. Conclusion 37

7

BUMBLE

1. Introduction
This document describes the architectures of the solutions BUMBLE proposed for the Eclipse
technology space. These architectures can be separated into two target platforms: the architecture for
the Eclipse Rich Client Platform (RCP) and the architecture for client-/server-based solutions that use
the underlying Eclipse technology. Chapter 2 introduces these two more specific target platforms and
explains how the BUMBLE use cases and the requirements identified in D2.2 relate to them. Chapter
3 then introduces four use cases in more detail:

● UC1, driven by MDU, is the canonical use case used in BUMBLE to illustrate basic concepts
using simple languages for the modeling of state machines;

● UC2, driven by HCL, focuses on combining textual and graphical modeling of sophisticated
state machines in HCL RTist;

● UC3, driven by Volvo, addresses blended modeling for vehicular architectures using
EAST-ADL; and

● UC6, driven by Saab, aims to allow blended editing and consistency checking of SysML
models and related program code.

In comparison to the version 1 of this deliverable, we particularly updated the description of UC2 with
an alternative realization based on a client/server architectural style. Furthermore, we updated all
sections with the current status quo and added a conclusion.

The table below shows additional use cases that also use the Eclipse technology space. However, in
this deliverable version, we focus on the four use cases above as representative examples. All three
use cases only focus on the Eclipse technology space and do not consider JetBrains MPS as
underlying DSML core technology. Examples for use cases that consider MPS are provided in D3.2.
Furthermore, two of the three examples do not only require solutions that work within the Eclipse RCP,
but also require client-server solutions in order to allow blended modeling in editors such as VS Code
and Eclipse Theia that rely on language servers as the backing for the editors.

Use
Case

Description Lead
Partner

MPS EMF Includes
client/server

aspects

UC1 Software Open-Source Blended
Modeling

MDU X X

UC2 Combined Textual and Graphical
Modeling of State Machines in HCL
RTist

HCL X X

UC3 Vehicular Architectural Modeling in
EAST-ADL

Volvo X X

UC5 Reactive and Incremental
Transformations across DSMLs

MVG X (X)

8

BUMBLE

UC6 Blended Editing and Consistency
Checking of SysML Models and
Related Program Code

Saab X

UC10 Development Process of Low-Level
Software

Unibap X

UC11 Multi-Aspect Modeling for Highly
Configurable Automotive Test Beds
Ready for Smart Engineering
Demands

AVL X X

The work and solutions described in this deliverable contribute to the following BUMBLE Technology
Bricks and requirements:

Technology bricks Description of main contributions Main requirements

Blended Editors We provide architectural descriptions for
blended editors as part of different use cases
in the Eclipse ecosystem.

BT2, BT3, BT4

Editor Generators We provide architectural descriptions for editor
generators as part of different use cases in the
Eclipse ecosystem.

BC1, BC2, BT1, BT2,
BT3, BT4

(Meta-)model
co-evolution

The editor generators mentioned above have
the main purpose of supporting the language
and thereby (meta-)model (co-)evolution.

BC9, BT22, BT24

2. The Eclipse Technology Space as Base DSML Technology
Within the Eclipse technology space, a number of common concepts are used as introduced in
Section 2.1. The concrete solution based on these common concepts can then either be realized in
the Eclipse Rich Client Platform (RCP) as discussed in Section 2.2 or based on a client/server
architectural style as discussed in Section 2.3. We also show how the existing technologies support
the main BUMBLE requirements in Section 2.4 and which extensions are necessary.

2.1. Architecture Overview
Independent of the architectural style, the architecture for the Eclipse technology space follows a
model-view-controller pattern in which a model source holds information about the models that are
viewed or edited and graphical and textual editors provide the controllers and view. Depending on the
target platform and the concrete view, there can also be a translation layer between the model and the

9

BUMBLE

view and controller parts. This is explained in more detail in the two subsequent sections for each of
the architectural styles. This abstract architecture is shown in Figure 1.

Figure 1. An abstract view of the architecture within the Eclipse technology space with different
technologies depending on the chosen architectural style (Eclipse RCP or client/server).

In the Eclipse world, the base technology to represent, query, and modify any model at runtime is the
Eclipse Modeling Framework (EMF)1. It is based on a highly generic meta-model (Ecore) that can be
used to specify domain-specific modeling languages. The Unified Modeling Language (UML)
implementation used in Eclipse and in editors like Eclipse Papyrus is, e.g., specified based on Ecore.
That means that the M2 meta-model provided by Ecore is used to specify the M1 meta-model for UML
which is in turn used to create M0 model instances. An M0 model instance is always represented as
an EMF model tree with a clearly defined root note. EMF ensures that a model tree conforms to its M1
meta-model. Therefore, the single source of truth that the EMF model tree represents always
conforms to the meta-model.

The EMF model tree is stored in memory. Eclipse offers a resource set and editing domain mechanism
that provides scoping for EMF model trees. It is therefore possible to load the same model in different
scopes and manipulate it independently. Synchronization happens on save and reload, whereas
blended modeling editors should synchronize on any change of the model in any representation.
Conversely, if two editors use the same editing domain, they can access a model within the same
scope. That means that a change made by one editor can be immediately picked up by the other
editor – at least, if the view is updated accordingly. Simply put, if one editor changes the EMF model
tree (i.e., the single source of truth), the other editor can "see" these changes immediately.
Publish-subscribe is usually used to implement such an update mechanism.

EMF also provides a transaction concept that enables a limited form of concurrent editing. Write
accesses to the EMF model tree can be wrapped in a transaction that protects the model tree from
concurrent writes. Resolving these conflicts is, however, left to the editors that triggered the change.

1 https://www.eclipse.org/modeling/emf/

https://www.eclipse.org/modeling/emf/

10

BUMBLE

It is possible to load multiple M0 model instances based on different M1 meta-models at the same time
with EMF. These model instances can then cross-reference each other. EMF ensures the integrity of
these references.

In many cases, EMF model trees can be accessed directly, e.g., by graphical editors. The editor can
retrieve the EMF model tree of a resource (usually a file) directly from EMF. Depending on the
concrete file format, EMF has built-in deserialisation capabilities (e.g., for XMI files). In some cases,
however, an additional translation layer is needed. The most prominent example of this are textual
editors that work with a specific notation different from XMI. In this case, a parser needs to deserialize
the text file into an EMF model tree. A common technology used for this purpose is the language
engineering framework Xtext2. In the context of client-server solutions, additional translations need to
be made to serialize the contents of the EMF model tree for transfer over HTTP.

2.2. Eclipse RCP
The Eclipse Rich Client Platform is the foundation of the Eclipse IDE and other, specialized tool
workbenches. It uses a plugin architecture based on the OSGi standard to provide a modular
environment in which features can be added dynamically as plugins, also called bundles. Popular
modeling tools for the Eclipse RCP include Eclipse Papyrus and Polarsys Capella. These tools are
based on more foundational technologies such as EMF mentioned above as well as GMF and Sirius
as technologies that support the implementation of graphical editors. The latter technologies are
specific to the Eclipse RCP and tightly coupled with the underlying abstractions for graphical user
interfaces.

The advantage of RCP solutions is that the end user receives an application that has all relevant
features bundled and can therefore be used out of the box. The developer can create these "products''
based on any set of compatible features. Eclipse provides a system called P2 that ensures that the
installed features and all prerequisites work as expected.

2.3. Client/Server Architectural Styles based on Eclipse Technologies
The Eclipse ecosystem has also brought forward a number of technologies that are independent of
Eclipse RCP or have, over time, found a new life outside of the confines of the rich client platform. In
particular, Eclipse Theia is a web-based IDE, similar to VS Code, that can run in the browser. Like VS
Code, Eclipse Theia uses language servers as the foundation of its editors. There are also solutions
relying on language servers that enable using EMF outside of the Eclipse IDE, for example, in VS
Code or Eclipse Theia.

Importantly, however, technologies like EMF.cloud3 allow the use of Eclipse modeling technologies in
such an environment. This increases interoperability with existing modeling environments, provides a
transition path for organizations that want to evolve their modeling environments from Eclipse RCP
applications, and makes the powerful tools that are already available in the Eclipse ecosystem
available to client/server solutions. Note, however, that the transitioning from the Eclipse RCP to a
language server based architecture is even smoother if the language server is implemented in Java,
since in that case developers can use EMF as is.

3 https://www.eclipse.org/emfcloud/
2 https://www.eclipse.org/Xtext/

https://www.eclipse.org/emfcloud/
https://www.eclipse.org/Xtext/

11

BUMBLE

In terms of the architecture in Figure 1, the client/server architectural style requires a more involved
translation layer. That is, while all editors in the RCP can share an in-memory representation of the
viewed or edited model and access it via the EMF API, a client/server solution requires translating the
model into a representation that can be transferred over the network in both directions. The Language
Server Protocol (LSP) has been designed to facilitate this exchange of information. Clients and
servers implement it to exchange information about a model and enable features such as syntax
highlighting and code completion. The Eclipse Graphical Language Server Platform (GLSP)4 extends
this mechanism to also accommodate graphical editors on the client side. Some viewers or editors
also use JSON as an exchange format, e.g., the tree view in VS Code.

2.4. Existing Support with respect to BUMBLE Features
In the following, we briefly describe the current capabilities of the Eclipse Technology Space for the
five high-level BUMBLE features identified in Deliverable D2.2. As appropriate, we will reference the
core requirements as well as the relevant use cases. Furthermore, we exemplarily illustrate some of
the current capabilities throughout the following subsections by referencing Figure 2. An overview of
the current capabilities is provided in Table 1. The BUMBLE Core Requirements (BCx) w.r.t. the
BUMBLE features are specified in D2.2 as follows:

● BC1: It must be possible to define multiple concrete syntaxes / representations for a single
DSML model definition, including relevant views or editors conforming to the concrete
syntaxes / representations.

● BC2: A DSML user must be able to select a preferred concrete syntax / representation for a
DSML model instance. A DSML developer must define a default concrete syntax /
representation.

● BC3: In case multiple syntaxes exist for a (single element of a) DSML model definition, all
concrete syntaxes / representations must be updated in accordance with any changes that
have been performed by means of using one of those syntaxes.

● BC4: In case multiple syntaxes exist for a (single element of a) DSML model definition, it must
be possible that certain elements may not be relevant or visible in one or more specific
abstract and concrete syntaxes. Semantics of (an element of) a DSML model definition that is
considered in multiple abstract and concrete syntaxes must (be enforced to) be/remain the
same.

Table 1. Overview of the support for the five main BUMBLE features in the Eclipse Technology
Space.

BUMBLE Feature Out-of-the-Box Support in the Eclipse Technology Space

Blended Syntaxes &
Modeling (B)

The Eclipse RCP partially supports BC1 and BC2 with its facilities to
generate editors for DSMLs, but there is no existing technology that
directly supports BC3 and BC4 without further development since
changes in one editor are not synchronized continuously to another.
The client/server architectural style does not provide editor generators
or other blended modeling capabilities and thus does not fulfill any of
the requirements.

4 https://www.eclipse.org/glsp/

https://www.eclipse.org/glsp/

12

BUMBLE

Collaborative
Modeling (C)

The Eclipse RCP is single-user oriented, but provides some extensions
to support certain forms of collaboration. While there are projects that
provide support for collaborative programming (e.g., the Saros project5)
no such support currently exists for any of the common model editors.
Eclipse Connected Data Objects (CDO)6 supports persisting changes
to a database and propagating these changes to different clients, but is
implemented on the level of the abstract syntax (EMF). Even the
client/server architectural style does not support such collaboration out
of the box. While the underlying technologies are in theory capable of
multi-user support, they only support single user access at this point7.

Evolution (E) Evolution of the meta-model is partially supported by a number of
model transformation tools that allow automatic transformation of
models to accommodate changes in the meta-model.

Traceability (T) Traceability across models is supported out of the box if such
references are defined in the meta-models. For the Eclipse RCP, more
capable solutions are available in fulfillment of BC6, but the
client/server architectural style lacks capable traceability tools.

Model
Non-Conformance (N)

Non-conformance is relevant for textual editing of models. Since all
technologies for textual editing of models in the Eclipse technology
space are parser-based, non-conformance needs to be resolved
manually by the user.

2.4.1. Blended Syntaxes & Modeling (B)

As demonstrated in UC1, Eclipse RCP technologies provide some support for blended modeling
out-of-the-box. Apart from the graphical editor presented in UC1, Eclipse also has different views and
editors that access the same underlying model, e.g., the outline view and the properties editor. In
many cases, changes in these views and editors are directly reflected in the model and vice versa. For
instance, the properties editor allows changing attribute values in a UML class in Papyrus. The outline
view allows calling refactoring commands for methods in a Java file. Any change that is made is
reflected in the model. On the other hand, updates in the model are also visible in these views, e.g.,
when the code structure changes, the outline view changes accordingly. Listeners allow propagating
these changes, as illustrated in the top of Figure 2. In addition, there is powerful support for defining
modeling syntaxes and generating editors for them. For example, Figure 2 illustrates the definition of
both a textual and graphical concrete syntax specification based on one metamodel as well as their
instantiation based on one model. Together, these capabilities partially address BC1 and BC2.
Considering the client-/server architectural style, even though language servers and other
technologies exist, they are less mature than their counterparts on the Eclipse RCP side and, e.g., do
not yet support generating graphical editors for DSMLs. For this architectural style, BC1 and BC2 are
thus not fulfilled.

7 https://eclipsesource.com/blogs/2021/02/25/the-emf-cloud-model-server/
6 https://www.eclipse.org/cdo/
5 https://www.saros-project.org/

https://eclipsesource.com/blogs/2021/02/25/the-emf-cloud-model-server/
https://www.eclipse.org/cdo/
https://www.saros-project.org/

13

BUMBLE

Figure 2. Functional principles of the Eclipse RCP architectural style regarding the BUMBLE
features (B), (C), and (N) [figure partially based on Nachreiner et al.8]

Within the Eclipse RCP, different views can access the same underlying model (e.g., an editor and the
outline view, cf. Figure 2), but this is not blended modeling where different concrete syntaxes are
involved. The same is true for the client/server architectural style. The editor presented in UC1
synchronizes the views on save, but not continuously in the spirit of BC3 and BC4. Likewise, there are
currently no existing blended solutions for the client/server architectural style, even though the
foundational technologies exist. Thus, BC3 and BC4 are not fulfilled.

8 L. Nachreiner; A. Raschke; M. Stegmaier; M. Tichy: CouchEdit: A Relaxed Conformance Editing
Approach. In 2nd Modelling Language Engineering and Execution Workshop, 2020

14

BUMBLE

2.4.2. Collaborative Modeling (C)

The BUMBLE core requirement BC5 addressing this feature states: “It should be possible to support
real-time collaboration between multiple DSML users. This means that - independent of which
concrete syntax the DSML users have chosen - changes by an individual DSML user are instantly
visible to all other DSML users that have viewing/reading and/or editing/writing rights to the considered
(collection of) DSML model instance(s).” (cf. Deliverable D2.2)

The built-in capabilities of the technologies for Eclipse RCP do not provide collaborative modeling
capabilities that go beyond collaboration via version control. For example, consider Modeler A and
Modeler B in Figure 2 editing in two different editors: Despite the figure indicating a synchronization via
the model, the editors of the Eclipse RCP are not intended to provide such collaborative real-time
modeling. While the SAROS project9 offers a collaborative code editor, it is limited to text files. The
CDO Model Repository does offer multi-user access to EMF models along with change propagation
and transactional access. However, CDO operates on the EMF level (i.e., on the abstract syntax level)
and therefore needs to be connected to a translation layer as illustrated in Figure 1 to support blended
modeling. BC5 is therefore partially addressed in the Eclipse RCP.

In principle, client/server solutions support accessing the same model by different clients. However, in
practice, current solutions in the Eclipse technology space are not capable of dealing with concurrent
modifications of the same model by different clients out-of-the-box since they are missing the
necessary conflict resolution mechanisms. Therefore, BC5 is only partially fulfilled for the client/server
architectural style.

An overview of existing technologies for collaborative modeling and their capabilities and shortcomings
as relevant for the BUMBLE project can be found in D5.1.

2.4.3. Evolution (E)

The BUMBLE core requirement BC9 addressing this feature states: “It should be possible to deploy a
new version of a DSML model definition by means of automatically migrating existing instances of that
DSML model definition. In conjunction with that, cross-references to other DSML model definitions and
instances must be migrated automatically.” (cf. Deliverable D2.2)

There are a number of model transformation technologies that can be used to automatically migrate
models to new versions of a meta-model (e.g., Eclipse QVTO, Eclipse Henshin). If the meta-model
evolution is itself expressed as a model transformation, it is even possible to derive the
transformations of the models automatically from these higher-order transformations. While EMF as
the underlying technology for both architectural styles in the Eclipse technology space does not
support model non-conformance out of the box, these transformation capabilities can still partially
address the requirement expressed in BC9.

2.4.4. Traceability (T)

The BUMBLE core requirement BC6 addressing this feature states: “It should not be impossible to
integrate BUMBLE-based DSML environments in larger (non DSML technology based) applications
that enable (real-time or non real-time) collaboration between users of that larger application context.”
(cf. Deliverable D2.2)

9 https://www.saros-project.org/

https://www.saros-project.org/

15

BUMBLE

In terms of traceability, EMF as the underlying technology supports references between models it
manages. This applies to both the Eclipse RCP as well as the client/server architectural styles. EMF
can store and resolve references across models and automatically loads referenced models when
necessary. Changes in the models that affect the cross-referenced models are automatically resolved.
However, support for this kind of traceability is dependent on the meta-models explicitly defining such
cross-references.

If it is necessary to trace across the boundaries of EMF (e.g., from a model to a source code file) or to
establish relationships between models whose meta-models do not provide cross-references,
additional technologies are necessary. Tools like Yakindu Traceability10 or Eclipse Capra11 can be used
to establish traceability in the Eclipse RCP. However, such technologies are currently not available for
the client/server architectural style.

In terms of traceability across model versions, EMF offers a number of tools for diffing and merging of
models in the Eclipse RCP. Notably, EMF Compare12 provides these capabilities for the Eclipse RCP.
However, no such tools are available for the client/server architectural style.

Overall, BC6 is thus partially addressed in the Eclipse RCP architectural style and not addressed in
the client/server architectural style.

2.4.5. Model Non-conformance (N)

EMF as the underlying technology for model handling in the Eclipse technology space does not
support non-conforming models out of the box. The standard tree-based or graphical editors that are
provided by Eclipse and common technologies like Eclipse GMF or Eclipse Sirius do not allow creating
non-conformant models either since they limit the users' ability to create model elements to what the
meta-model explicitly allows. Sometimes, a concrete syntax specification and a graphical editor even
add additional constraints to forbid certain undesired modeling states. In Figure 2, this is reflected in
the bottom left-hand part by the guard “[if constraints fulfilled]” on the “edits” flow, where the
constraints refer to the constraints of both the abstract syntax metamodel and the concrete syntax
metamodel.

This strict conformance to the meta-model is no longer given in text-based editing of models. There,
the user can freely enter text. If these textual editors are based on Eclipse Xtext, the underlying parser
will fail to construct the abstract syntax tree for the model and therefore not construct a suitable
in-memory representation (cf. guard “[if parseable]” of the “transformed to” flow in the upper right-hand
side part of Figure 2). Instead, the user will see error messages which need to be resolved manually. If
the text needs to be transformed into a valid model before saving (e.g., because the textual
representation is only an intermittent format and the model is serialized differently as in UC3), the user
will not be able to save their changes before resolving the errors.

This is a limitation of parser-based approaches as further elaborated in Deliverable D3.2. Section 3.1
also discusses this limitation in the context of UC1. We have no current plans to address this limitation
for the Eclipse technology space.

12 https://www.eclipse.org/emf/compare/
11 https://eclipse.org/capra
10 https://www.itemis.com/en/yakindu/traceability/

https://www.eclipse.org/emf/compare/
https://eclipse.org/capra
https://www.itemis.com/en/yakindu/traceability/

16

BUMBLE

3. BUMBLE Extensions to the Eclipse Technology Space
In the following, we describe the architectures of three use cases:

1. UC1: The Canonical State Machine Use Case
2. UC2: Combined Textual and Graphical Modeling of State Machines in HCL RTist
3. UC3: Vehicular Architectural Modeling in EAST-ADL
4. UC6: Blended Editing and Consistency Checking of SysML Models and Related Program

Code

These descriptions show how the Eclipse Technology Space is used and extended within the
BUMBLE project. The use cases cover both architectural styles and make use of many common
frameworks in the Eclipse ecosystem. For each use case, we also provide a discussion of how they
relate to the high-level core requirements.

3.1. Architectural Description of UC1 (Canonical State Machine Use Case)
This use case covers a public show case for the BUMBLE technologies. It provides blended modeling
for a canonical state machine DSML. The focus is not on the expressiveness of the state machines,
but rather on providing a vendor-neutral common baseline that showcases the possibility to generate
at least two model specific notations, one graphical and one textual, and related editors.
The following describes a prototypical implementation of this scenario with unmodified, out-of-the-box
Eclipse technologies for the Eclipse RCP architectural style. In particular, this prototype highlights the
shortcomings of the existing solutions and justifies the need for additional effort in BUMBLE.

3.1.1. Eclipse Xtext and Eclipse Sirius

Eclipse Xtext and Eclipse Sirius, are two open-source frameworks for the development of textual and
graphical model editors respectively. They are both based on the Eclipse Modeling Framework (EMF),
which allows for an out-of-the-box synchronization between these two frameworks. In this work, we
describe the process of integrating these two frameworks, the capabilities, and drawbacks. Figure 3
provides an overview of how the synchronization takes place.

Both Xtext and Sirius contain a ResourceSet. A ResourceSet is a collection of Resources, where the
latter represent an in-memory model of the physical file system (i.e., the text file). An Xtext
ResourceSet contains the Xtext Resource, which includes a parser, linker and serializer that supports
loading the model from the text file (i.e.,parsing) and saving the model in the text file (i.e., serializing).
A Sirius ResourceSet contains two resources; a SemanticResource which in our case is an
XtextResource, and a DiagramResource that contains all the graphical information such as shape,
size, colour, position etc. The diagram elements reference their semantic counterparts and to
synchronize between the two, Sirius uses the CanonicalEditPolicy that automatically updates the
Diagram Resource upon changes in the Xtext Resource that is located in the Sirius ResourceSet.

It is important to highlight that the Xtext Resource located in the Xtext ResourceSet and the Xtext
Resource located in the Sirius ResourceSet, are two separated resources. If the user makes changes
in the Xtext editor, these changes are reflected only in the in-memory model (i.e., Xtext Resource in
the Xtext ResourceSet). However, if the user decides to save these changes, the text file will be
modified. When the Xtext Resource in the Sirius ResourceSet loads from the text file, the
CanonicalEditPolicy updates the Diagram Resource.

17

BUMBLE

Figure 3: Out-of-the-box synchronization for Xtext and Sirius

3.1.2. Implementation

This prototype is based on a domain model that describes basic concepts about State Machines. The
workflow of defining our prototype is as follows.

We start off by defining a grammar in Xtext that is used to describe State Machines. This grammar
defines four concepts used to describe state machines; StateMachine (root element), InitialState,
FinalState, State, and Transitions, and is detailed in Listing 1.

StateMachine:
'InitialState' initialstate = InitialState

'FinalState' finalstate = FinalState
('IntermediateState' '{' states+=State ("," states+=State)* '}')*
'Transitions' '{' transitions+=Transitions ("," transitions+=Transitions)* '}' ;

InitialState:
name = ID ;

FinalState:
name = ID ;

State:
name = ID
'InAction' InAction = STRING
'OutAction' OutAction = STRING ;

Transitions:
name = ID
'Condition' condition = STRING
'Action' action = STRING
('EnterState' enterstate=[State])?
('InitialStateTransition' initialstatetransition=[InitialState])?
('ExitState' exitstate=[State])?
('FinalStateTransition' finalstatetransition=[FinalState])? ;

Listing 1: Xtext grammar describing State Machines

18

BUMBLE

After defining the grammar, we generate the Xtext artifacts. From this process, among others, we
obtain the generated Ecore metamodel of the defined grammar and we register it in the Package
Registry. The generated Ecore metamodel is detailed in Figure 4.

Figure 4: Generated Ecore metamodel

In a new runtime instance, using Sirius perspective, we create a new Viewpoint Specification Project,
and add a new representation to the viewpoint. The representation can either be a diagram
description, an edition table description, a cross table description, a tree description, or a sequence
diagram description, but in our prototype we use the diagram description. After defining the diagram
description, in the MANIFEST.MF file, we add the plug-in that defines the StateMachine metamodel
and associate the metamodel to the diagram representation. This enables the graphical representation
of instances of StateMachine by the diagram. In the Domain Class property of the diagram, we specify
the root element and then in the default layer we start adding new diagram elements that correspond
to model elements. More specifically, we define node elements used to display the State, InitialState
and FinalState and element-based edges to display the Transitions. Moreover, we specify the style for
each diagram element, in order to define the way they are graphically represented in the diagram.
However, the current implementation can only display an existing model. In order to enable the
creation of new model elements from the graphical editor using a palette, we create a new section and
add Node Creation and Edge Creation elements to it. In addition, we define the action that will be
executed by each element.

19

BUMBLE

To finalize our prototype, we create a new Project, including an Xtext file that details a TrafficLight
model, and a .aird file where we add this model and create a new representation for it. Figure 5
provides an overview of the two editors side-by-side.

Figure 5: Prototype of integrating Xtext and Sirius

3.1.3. Relation to BUMBLE Features

The integration of Xtext and Sirius is relatively easy to achieve by following the aforementioned
workflow. For a single model, the user can instantiate both graphical and textual editors and switch
between them. Moreover, the changes done in one editor, are propagated to the other upon save.
However, this out-of-the box synchronization has the following downsides to it.

Synchronization on-demand

The synchronization between the two representations happens on demand and not on-the-fly, thus to
propagate changes from one editor to the other the user needs to first save these changes. A possible
solution would be for Sirius and Xtext to share the same resource, but the latter leads to further issues.
A change in the textual editor results in Xtext removing the old AST and inserting a new one, based on
the changes. Being that the AST/resource that is shared between Xtext and Sirius, serves as the
semantic model for Sirius, when the AST is removed, the CanonicalEditPolicy updates the diagram
model and removes the notational elements. When the new AST is inserted, the diagram model is
recreated based on a default mapping, but all user customizations are lost.

For more information regarding synchronization mechanisms, we refer to the BUMBLE deliverable
D4.2.

20

BUMBLE

Propagating changes with syntax errors

When using the textual editor, the user might write an expression that leads to syntax errors and save
the file. Upon saving these file changes in the textual editor, the diagram in the graphical editor gets
refreshed, and the elements defined after the syntax error are no longer available in the diagram.
Figure 6 details the elements present in the textual and graphical editor before a syntax error.

Figure 6: State of the editors before the syntax error

Figure 7 details the syntax error in the textual editor, and the remaining elements in the graphical
editor after saving the file changes in the textual editor and refreshing the graphical editor.

Figure 7: State of the editors after the syntax error with an automatic refresh strategy

As it can be seen, all the elements defined after the syntax error (i.e., State “green” and Transition
“yellowTogreen”), are no longer present in the graphical editor. Even if the user was to undo the
changes, or fix the syntax errors, the diagram information cannot be recovered. A possible solution to
this is changing the refresh strategy. At this point, the diagram gets refreshed upon saving the model

21

BUMBLE

in the textual editor. However, if we uncheck this option, and save the model in the textual editor that
has syntax errors, we do not lose the elements in the graphical editor, but instead get a warning
regarding the elements that will be lost if we decide to manually refresh the diagram. This provides the
opportunity to fix the errors before refreshing the diagram and risk losing the notational information.

Figure 8: State of the editors after the syntax error without an automatic refresh strategy

Concurrent dirty states

A possible scenario is to modify elements in both graphical and textual editors without saving the
changes in either of them. Being that both editors use their own memory instance of the model unless
they try to save the changes, we encounter no issues.

However, if we first try to save the changes in the graphical editor and click on the textual editor to
refresh, we get a warning that the file has been changed (from the graphical editor). The textual editor
is now aware of that, because the file changes have been saved. If we decide to ignore the file
changes, and then try to save the modified elements in the textual editor, we get an update conflict
because the file has been changed on the file system (save operation in the graphical editor) and we
can either choose to overwrite it or not. A similar thing happens if we try to save the changes in the
textual editor first. To summarize, the user is always forced to choose to save the changes made on
one editor only, losing the ones made on the other one. In the future, we will investigate whether other
EMF persistency solutions like CDO can mitigate this issue.

Possible solutions would be to have on-the-fly synchronization or in the case of on-demand
synchronization to restrict the user from making changes to one editor if there are unsaved changes in
the other editor.

3.2. Architectural Description of UC2 (Combined Textual and Graphical
Modeling of State Machines in HCL RTist)

Two separate solution architectures have been developed for this use case. The first architecture is
based on the Eclipse RCP, which is the most straightforward approach (given that HCL RTist is a
modeling tool based on Eclipse). In parallel to working on this solution, we have also developed a
second solution architecture which is based on the Language Server technology. Both these solution
architectures are presented below.

22

BUMBLE

3.2.1. Architecture Based on the Eclipse RCP

The picture below shows the functional principle for the use case implementation in HCL RTist:

Figure 9: Functional principle of the support for textual state machines in HCL RTist

3.2.1.1. Parsing with Xtext

A textual syntax for state machines has been implemented (shown in the above picture as the
StateMachine.srt text file). The grammar for this syntax is defined using Xtext. While Xtext can
automatically generate an EMF model to use as meta model for the defined syntax, this approach
cannot be used for this use case since the requirement is to integrate the solution into the existing
HCL RTist modeling tool which uses the standard UML meta model. Fortunately, Xtext also allows to
use any existing EMF meta model by importing it into the grammar definition:

grammar com.hcl.xtools.dsl.statemachine.StatemachineRT with

org.eclipse.xtext.common.Terminals

import "http://www.eclipse.org/uml2/5.0.0/UML" as uml

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

The mapping from the concrete state machine syntax to the abstract syntax (i.e. the UML meta model)
can in most cases be expressed directly in the Xtext parser rules. For example:

StateMachine returns uml::StateMachine:

"statemachine" (name=NAME)? "{"

region+=Region

"}" ";"

;

Here “name” and “region” are features on the UML StateMachine meta class that we can use for
storing necessary data while parsing.

But in some cases the mapping isn’t that straight-forward. For example:

23

BUMBLE

InitialTransition returns uml::Transition:

((name=NAME | ownedComment+=RedefineOrExclude

redefinedTransition=[uml::Transition|NAME]) ":")? "initial" "->"

target=[uml::Vertex|QNAME_OR_HISTORY]

(effect=Effect)?

";"

;

In the syntax there is not enough information for setting up the “source” feature which is mandatory for
all UML transitions. Fortunately Xtext is very configurable and allows us to write our own Java code for
controlling how to create the proper UML representation from the textual state machine syntax. We
have used these two customization features:

1. Store information as comments while parsing (see “ownedComment” in the example above).
Then in the Xtext AST factory we convert such comments into the proper UML representation.

2. Use custom code in the Xtext Linker for creating additional information based on resolved
links in the parse model. For the above example we can identify the initial transition based on
the fact that “target” is bound, but “source” is not. We can then create an Initial pseudo state
and use that as the source of the transition, to ensure the created model conforms to UML
rules.

3.2.1.2. Model merge

The abstract parse model is managed by the Xtext parser and cannot be directly inserted into the main
HCL RTist model. It is necessary to clone the parse model, and merge the clone into the main model.
The trigger for doing this is based on an Xtext model listener. It gets called whenever the textual state
machine is modified.

The merge itself is based on a name and structure based comparison between the cloned parse
model and the existing HCL RTist model. The HCL RTist model is then updated according to the
changes detected in the parse model.

3.2.1.3. Managing model references

There are three kinds of model references, shown in the picture above as R1, R2 and R3.

● R1 Reference within the parse model
For example, the reference to state “s1” from the initial transition.

● R2 Reference from the parse model to the HCL RTist model
For example, the reference to port “timing” from the triggered transition.

● R3 Reference from the HCL RTist model to the parse model
For example, a dependency (not shown in the picture) from package “CPPModel” to state
“s2”.

References of the kind R1 and R2 are set-up by the Xtext linker based on names used in the textual
syntax. An Xtext scope provider has been implemented to perform this linking according to desired
name resolution rules. In many cases (especially for references of kind R2) it is necessary for the
scope provider to use the HCL RTist model element that is the context for the textual state machine (a
capsule). This is accomplished by treating the state machine text file (.srt) as a fragment file. A

24

BUMBLE

fragment file is referenced in another (parent) model file, and it’s hence possible to find out to which
part of an HCL RTist model a certain textual state machine belongs.

References of the kind R3 require that the Xtext parse model element have stable and predictable
EMF URIs. This is not the case by default, where elements may get new URIs each time the text is
parsed. To address this, an Xtext fragment provider (IFragmentProvider) has been implemented. The
fragment is the last part of the element URI, and by default this part of the URI is not stable. The
implemented fragment provider ensures that fragments are based on fully qualified names, which is
the most stable way of identifying an element in a textual syntax. References of the kind R3 will hence
use a fully qualified name to reference elements inside the textual state machine. As long as such
elements are not renamed, and none of its container elements also are not renamed, the reference will
not become broken, even after reparsing the text.

3.2.1.4. Synchronization between model notations

The textual representation of a state machine is another model notation that needs to be updated if the
state machine model changes. This works in a very similar way to how the graphical notation (i.e. a
statechart diagram) gets updated. The textual state machine editor uses a resource change adapter to
intercept notifications when the state machine model changes, and triggers a serialization of the state
machine to get a new textual representation.

Note that the mapping between concrete syntax and abstract syntax is always ambiguous in the sense
that multiple concrete syntaxes yield the same abstract syntax representation. For example,
comments and whitespace in the concrete syntax are not present in the abstract syntax. This means
that serialization will “normalize” the syntax, i.e. the abstract syntax is mapped into one particular
concrete syntax that is equivalent, but usually not identical, to the original concrete syntax typed by the
user.

3.2.1.5. Eclipse plugin architecture

The picture below shows the new Eclipse plugins developed for supporting textual state machines in
HCL RTist, and the open-source and commercial plugins they depend on.

25

BUMBLE

Figure 10: Eclipse plugins with some key classes

In the picture, some key classes that implement the functionality described above are mentioned:
● StateMachineMergeUtil

Merges the Xtext parse model into the HCL RTist model. See Model merge.
● StateMachineRTAstFactory and StateMachineRTLinker

Modifies and augments the Xtext parse model so it becomes a valid UML model. See Parsing
with Xtext.

● QualifiedNameFragmentProvider
Ensures that Xtext parse model elements get stable and predictable EMF URIs based on their
qualified names. See Managing model references.

3.2.1.6. Relation to BUMBLE Features

The features described above are all related to the BUMBLE feature “Blended Syntaxes & Modeling
(B)”. The Xtext generated editor essentially becomes another view on the model, in a similar way to
how other Eclipse views (such as Project Explorer, Properties view, diagrams etc) are. Just like other
views it allows a subset of the model to be viewed and edited (the subset defined by the implemented
syntax).

The main difference with this textual view is that it internally uses a different model (the parse model
created by Xtext), but that thanks to the implemented Xtext customizations this model is made
compatible and compliant with the UML model so that the user gets the feeling of working with a single
model through multiple views and notations.

26

BUMBLE

3.2.2. Architecture based on the Language Server Technology

The promise of the language server technology is to enable the decoupling of the language
functionality from the IDE being used. This is done by breaking out the language-aware modules into a
separate application which runs in a separate process than the IDE and communicates with it using
the language server protocol (LSP). The LSP is standardized and supported by many IDEs, including
the Eclipse IDE; we chose to explore this solution in the context of two other IDEs, namely Visual
Studio Code (VS Code) and Eclipse Theia. These IDEs were chosen based on their popularity in the
market, and on the fact that they share the same extension model (i.e., an extension developed for VS
Code can also run in Eclipse Theia). Another reason is that both VS Code and Eclipse Theia are
implemented via web technologies, allowing developers to access their functionalities via a web
browser.

To avoid confusion with the previously presented solution, we will refer to HCL RTist as “RTist in Code”
for this solution. We chose to implement the language server in Java so that components from HCL
RTist can be easily reused for RTist in Code. The picture below shows the high-level architecture of
RTist in Code:

Figure 11: High-level architecture of RTist in Code

Note that just like RTist makes use of CDT for C/C++ support in Eclipse, RTist in Code makes use of a
C++ extension for Visual Studio Code / Eclipse Theia. There are more than one such extension
available, but for now we have assumed Microsoft´s C/C++ extension is used. In the future also other
C++ extensions, for example “clangd”, will be supported too.

3.2.2.1. Using Xtext in a Language Server

Just like for RTist, we use Xtext for implementing the parser in RTist in Code. However, while in RTist
this parser only needs to cover state machines, it needs to cover the whole UML-RT language in RTist
in Code. The reason is that we cannot reuse the modules of RTist used for creating the part of the
model that contains the state machines. The Language Server Protocol is designed for textual
languages and VS Code and Eclipse Theia are text-centric IDEs, encouraging the editing of models
using a textual notation.

27

BUMBLE

Since it’s natural to think about a language in terms of its syntax, we chose to give a new name to this
new implementation of the modeling language, even if the concepts are identical from UML-RT. We
call the language Art, and in addition to providing a textual syntax for well-known UML-RT concepts
such as capsules, protocols and events, it also provides a few additional capabilities:

● The ability to embed C++ code snippets in specific areas of the model (Art uses C++ as action
and expression language).

● The ability to annotate model elements with typed properties, in order to augment the model
with data that can be used by tools that operate on the model (e.g.,code generators, semantic
validators). By having a generic property syntax we can keep the Art language small, simple
and resilient to future changes.

The picture below shows an example of a model conforming to the Art language.

Figure 12: Example of Art model

The example defines a capsule containing a timer port and a simple state machine. Grey text enclosed
in backticks are embedded C++ code snippets. Backtick was chosen as the delimiter to avoid the need
for escaping characters in the embedded code snippet (backtick is an unusual character in C++ code).
Orange text enclosed in double square brackets are properties. Properties can have values of
boolean, enumeration, integer and string type, and since a code snippet at Art level is nothing but a
string, properties can also store code snippets. This is shown in the example above for the property
“rt::impl_preface”.

28

BUMBLE

Note that the textual state machine syntax from the Eclipse RCP solution is reused in the Art
language.

Xtext provides the necessary glue code for integrating the generated parser, and related language
features such as content assist etc, with the LSP.

3.2.2.2. Graphical Diagrams with GLSP

The Graphical Language Server Platform (GLSP) is a technology built on the same core idea of LSP,
but for graphical languages rather than textual ones. GLSP consists of a server part where the
language implementation is realized, and a UI part that runs in the IDE and renders the diagrams
provided by the server. Hence the architecture fits nicely with the high-level architecture shown in
Figure 11 above.

Currently, three types of diagrams are supported for the Art language: class diagrams, structure
diagrams, and state diagrams. Class diagrams show relationships (such as inheritance) between
capsules, classes, and protocols. Structure diagrams show the internal structure of a capsule, i.e.,
which parts it contains and how they are connected. State diagrams show the state machine behavior
of a capsule or class.

Figure 13: Art diagrams implemented with GLSP

The diagrams refresh automatically when the underlying Art model is changed. This is implemented by
registering a listener which gets notified whenever an Art file is modified. On each notification to this
listener it sets a 1.2 second timer, and when this timer times out the diagrams that show anything from
the modified Art file are refreshed. The use of a timer avoids too frequent diagram updates after every
keystroke, and ensures a responsive editing experience.

Currently Art models are mostly modified by editing the textual Art file, and the diagrams are therefore
mostly read-only. However, GLSP provides the ability to build proper editors and as long as all
graphical edit commands can be mapped to Art model updates, it is possible to build rich editors using
GLSP. RTist in Code allows model elements to be renamed from diagrams. This graphical editing
action is mapped to a “refactor-rename” operation where the model element, and all references to it,
are updated to a new name.

29

BUMBLE

Figure 13: Renaming a port from within a diagram

3.2.2.3. Language Server Modules

We can break down the language server of RTist in Code into three main modules, as shown in the
picture below. Differently from the solution architecture based on the Eclipse RCP, these modules are
plain JAR files, and not plugins. The whole language server is a plain Java application that loads these
three JAR files.

.

Figure 13: Language server modules

● com.hcl.rtistic.art
This component contains the Xtext generated parser and other language features that are not
dependent on the IDE. For example, semantic validation, support for code formatting etc.

● com.hcl.rtistic.art.ide
This component contains functionality that interacts with the IDE. For example, it provides
commands that can be invoked from the IDE extension using APIs provided by the LSP. It also
contains the glue code provided by Xtext for implementing the LSP.

30

BUMBLE

● com.hcl.rtistic.art.glsp
This component contains the server-side code of GLSP and the implementation of the
graphical diagrams for the Art language.

3.2.2.4. Generated Code as Another View of the Model

Just like diagrams update automatically 1.2 seconds after an Art file has been modified, we also
trigger the generation of C++ code at the same time. This is a major difference with RTist where code
generation is always the result of an explicit user action. The main reason for implementing this
incremental and automatic code generation functionality is to let the generated C++ code act as
another view of the model. It is a view that just like diagrams currently is mostly read-only, but since
generated code contains certain code blocks enclosed in special comments, it is possible to let the
user modify such code blocks and automatically synchronize such changes back to the Art file.

Figure 14: Editable code blocks in generated C++ files

3.2.2.5. Relation to BUMBLE Features

The features described above are all related to the BUMBLE feature “Blended Syntaxes & Modeling
(B)”. Contrary to the Eclipse RCP solution where the model is stored in XML files that are independent
of any concrete model view, with this solution there is no stand-alone model representation and
instead the textual Art files are used for storing the model. This means that textual editing of Art files is
the main way in which the model is created and updated. This is a solution that fits well with the
text-centric approach of IDEs such as Visual Studio Code and Eclipse Theia.

Editing from other views, such as graphical diagrams and generated C++ code is possible, but
requires an unambiguous mapping of each editing action to corresponding updates of the Art file. To
support a higher degree of editing freedom, something that in particular may be desired in the
graphical diagrams, it will be necessary to store additional graphical information in files next to the Art
files.

3.3. Architectural Description of UC3 (Vehicular Architectural Modeling in
EAST-ADL)

The Electronics Architecture and Software Technology - Architecture Description Language
(EAST-ADL)13 is a DSML for the specification of automotive embedded systems, which is applied at
Volvo Technology AB. The Eclipse-RCP-based tool suite EATOP14,15 provides tree and form editors to

15 https://bitbucket.org/east-adl/east-adl/
14 https://www.eclipse.org/eatop/
13 http://www.east-adl.info/

https://bitbucket.org/east-adl/east-adl/src/Revison/
https://www.eclipse.org/eatop/
http://www.east-adl.info/index.html

31

BUMBLE

enable the tool-based specification of EAST-ADL models based on EMF. Furthermore, a graphical
notation similar to class diagrams exists that is able to depict the hierarchies of EAST-ADL models. In
the BUMBLE Use Case 3 and w.r.t. BUMBLE feature (B), we want to complement these existing
editors with a textual notation and a seamless switching and synchronization between the textual
representation and the tree-/form-based editors, that is, blended EAST-ADL modeling.

Besides the editors, EATOP provides the (de-)serialization from/into a special persistence format
called EAXML. EAXML is a customized variant of the conventional EMF persistence format XMI and,
beyond custom XML tags, preserves the order of the persisted elements according to their tree-based
representation (cf. core stakeholder requirement C3.6 in BUMBLE deliverable D2.2).

In Section 3.3.1, we describe the architecture of the new editor for the textual notation and its
relationship to the architecture of the existing EATOP editors in the context of the Eclipse RCP.
Subsequently, we describe the architecture for the new textual editor in the context of a client/server
architectural style, which enables the application of the editor in VS Code. In Section 3.3.2, we present
the architecture of an approach that automates the evolution of the textual editor in the case of
EAST-ADL language evolutions. Finally, we establish a relationship to the BUMBLE features.

3.3.1. Architectural Description for the Eclipse RCP

Figure 11 depicts, among other things, selected EATOP plugins that are relevant to the activities for
the BUMBLE Use Case 3 w.r.t. the BUMBLE feature (B). The EATOP tree- and form-based editors are
represented by the plugins o.e.eatop.examples.[editor/explorer/actions]. The customized
(de-)serialization from/into EAXML is represented by the plugin o.e.eatop.serialization. The
plugins o.e.eatop.geastadl and o.e.eatop.eastadl22 provide the actual DSML metamodels
geastadl.ecore and eastadl22.ecore, respectively. These metamodels describe the language
concepts of EAST-ADL in the version 2.2.

32

BUMBLE

Figure 11: Architecture for the textual editor for EAST-ADL models and its relationships to EATOP

In the first stage, the University of Gothenburg (GU) conceived a textual notation for EAST-ADL in
collaboration with Volvo Technology AB. For this purpose, we proposed different variants of the
language and refined it in multiple stages to one variant that was favored by Volvo’s engineers. In the
second stage, we implemented a textual editor for this notation based on Xtext, which we call EATXT.
Xtext generates different plugins that make up the EATXT editor, namely org.bumble.eatxt,
org.bumble.eatxt.simplified.ide, and org.bumble.eatxt.ui as depicted in Figure 11.
Furthermore, Xtext allows the generation of grammars based on existing Ecore metamodels, which we
exploited for our use case. In Figure 11, the resulting generated grammar Eatxt.xtext as part of the
plugin org.bumble.eatxt imports the EAST-ADL language concepts from eastadl22.ecore and
associates them with a textual concrete syntax.

Beyond the pure generation of these plugins, we had to customize certain features in the plugin
org.bumble.eatxt due to several reasons:

1. We had to adapt the grammar as part of Eatxt.xtext to achieve the textual notation as
favored by Volvo. In the case that changes in the EAST-ADL metamodel eastadl22.ecore
occur, we automated these adaptations with a grammar optimization plugin (cf. Section 3.3.3).

2. By default, Xtext assumes that for any metamodel/grammar that there is a mandatory attribute
name which is used as the unique identifier of all the model elements. However, in EAST-ADL,
there is an optional name attribute but a different mandatory and uniquely identifying attribute
called shortName. Thus, we had to make the Xtext framework aware of this attribute instead
of the default behavior, which we do in the class EastAdlQualifiedShortnameProvider (cf.
Figure 11).

33

BUMBLE

3. As the whitespace-aware language feature of our textual EAST-ADL notation is no default
Xtext behavior, Xtext’s default error messages for potential parsing errors are typically not very
meaningful to the user of the editor. Furthermore, the EAST-ADL metamodel restricts certain
String attributes to be in a certain format w.r.t. regular expressions. If the user of the textual
notation does not adhere to such a format, the error message of the underlying metamodel is
not meaningfully translated to the resulting Xtext error message. To provide meaningful error
messages to the user in such cases, we customize the corresponding error messages in the
class EatxtSyntaxErrorMessageProvider (cf. Figure 11).

4. As EAST-ADL uses the attribute shortName and not the attribute name as a unique model
element identifier (see above), we also had to adapt the default Xtext behavior regarding
scoping for cross-references between model elements of an EAST-ADL model (e.g.,
references to types). In this context, we let Xtext’s auto-completion feature let propose the
shortNames of other model elements, which we implemented in the class
EatxtScopeProvider (cf. Figure 11).

We are currently working on the blending between our EATXT and the other EATOP editors via a
synchronization in the EAXML persistence format.

3.3.2. EATXT in VS Code Applying the Language Server Protocol

As mentioned in Section 2.3 and also described for a different use case in Section 3.2.2, the
Language Server Protocol (LSP) enables transferring solutions relying on Eclipse RCP / EMF to
modern web-based IDEs like VS Code. In order to provide the textual EAST-ADL editing capabilities
also for engineers favoring VS Code, we hence applied the LSP approach to transfer EATXT to this
IDE.

Figure 12 describes this realization. On the server side as part of the Eclipse plugin
org.bumble.eatxt (cf. last section), we provide the Java class RunServer that spawns an instance
of the class LanguageServerImpl provided by the plugin o.e.xtext.ide. On the client side, we
developed the VS Code extension eatxt-vscode (being also fully compatible with Eclipse Theia).
Beyond the EATXT language configuration, this extension provides the TypeScript module Extension.
This module spawns an instance of the module LanguageClient (provided by the VS Code package
vscode-languageclient) when an EATXT file is opened in the runtime workspace of VS Code.

Figure 12: Architecture for bringing the EATXT editor to VS Code and Eclipse Theia via LSP

34

BUMBLE

3.3.3. EATXT Grammar Optimization

The language's concrete grammar is what we call grammars (like our EATXT grammar, cf. center of
Figure 13), generated from Ecore metamodels (like EAST-ADL's metamodel, cf. left-hand side of
Figure 13). The generated grammar is always user-unfriendly and difficult to use, so we coordinated
the EATXT language design with Volvo to make many adjustments to the grammar that is initially
generated by the Xtext framework from the EAST-ADL metamodel (cf. Section 3.3.1).

Figure 13: Architecture for the post-processing of the EATXT grammar

Sometimes the size of a grammar is large, e.g., the generated grammar of EAST-ADL has about 3000
lines of text. In such a large grammar definition file, it is obviously cumbersome to do repetitive
operations such as moving the shortName attribute to the front of a production rule and applying the
same operation to all the production rules. To efficiently incorporate these adaptations to the grammar
in case the EAST-ADL metamodel evolves, we developed a post-processing plugin called
org.bumble.xtext.grammaroptimizer (cf. right-hand side of Figure 13), which automates these
grammar modifications. It will play a huge role in the evolution of the metamodel. The grammar
depends on the metamodel, and the grammar needs to be changed as the metamodel evolves which
is usually in the form of regenerating the grammar from the evolved metamodel. Therefore, the
originally optimized grammar will be overwritten by the newly generated grammar, which results in the
need to optimize it again. Apparently, GrammarOptimizer automates the whole grammar modification
work again.

The GrammarOptimizer uses Regular Expressions to find parts of the grammar that is initially
generated by Xtext and to replace these parts with the corresponding parts of our modified grammar.
In this context, the grammar is passed as a parameter, so that no actual dependency between the
plugins exists. We opted for post-processing the grammar instead of directly modifying the Xtext
grammar generator, because the latter approach would have led to code that would be very specific to
each Xtext version and thereby would have to be changed on every Xtext version increment. In
contrast, the application of conventional Regular Expressions guarantees the stability of our code.

We describe the functional principle of the plugin in the BUMBLE Deliverable D3.4.

3.3.4. Relation to BUMBLE Features

Blended Syntaxes & Modeling (B)

As a prerequisite to achieve this BUMBLE feature, we developed a new textual syntax and editor
called EATXT, which complements the existing EAST-ADL tree-/form-based notations and their

35

BUMBLE

EATOP editors. The EATXT editor can be applied both within the Eclipse RCP and as part of a
client-/server-based architectural style. The latter enables to edit EATXT files in cloud IDEs like VS
Code and Eclipse Theia.

In order to extend the BUMBLE Use Case 3 in such a way that it supports blended EAST-ADL
modeling, we are currently working on both the Eclipse RCP and the client-/server-based architectural
style. One the one hand, in the Eclipse RCP architectural style that the EATOP tool suite uses (cf.
Section 3.3.1), we want to achieve blending between the EATXT editor and the other EATOP editors
through a synchronization in the EAXML persistence format. However, with this architectural style, we
will probably have the same issues as the ones that we discovered in the canonical use case 1 (cf.
Section 3.1.3).

Evolution (E)

As mentioned above, our design of the grammar for EATXT deviates strongly from the grammar that
Xtext initially generates from the EAST-ADL metamodel. Thus, together with the actual design of the
EATXT grammar, we directly co-conceived and co-implemented an automatic grammar optimizer to
efficiently cope with potential EAST-ADL metamodel evolutions.

3.4. Architectural Description of UC6 (Blended Editing and Consistency
Checking of SysML Models and Related Program Code)

At Saab, SysML is the modeling language chosen for designing complex system architectures and
designing system behavior. There are a number of different tools that provide a graphical interface for
viewing and creating models in SysML.

A system model is created to describe the decomposition of the system into so-called “system
components” that are then assigned to software or hardware components. Moreover, the intended
functionality of those components are modeled via behavioral diagrams (e.g., state machines) and
internal block diagrams. The software components are implemented in various ways, among which
C++ is one.

3.4.1. Model and Code Matcher

We have set up a bridge between C++ code and the XML description of the system described in
SysML. A matcher tool implemented in Java indexes both the code and the SysML model and finds
probable links between them. These links can be improved by adding additional heuristics for guiding
the tool in creating links. Links can also be invalidated. The matcher tool indexes can be stored
persistently. The matcher has been deliberately IDE agostic to be able to augment with several
different models and modeling tools.

The Matcher assumes that there are architectural rules in both models (SysML and C++) that can be
matched. It creates two tuples for matching. From the SysML model elements it creates a tuple for
each model element € consisting of €:<structure S€, element type €T, element name €N and element
stereotype €T>. For each code element C it creates a tuple C<Structure SC, code type CT and code
name CN>. The matcher has a set of conditions <c1,c2,c3>. These conditions are related to structure,
type and name.

The first condition c1 compares the structure SC and S€ to make sure that both elements belong to the
same architectural entity. The structure is defined as the relation between hierarchy in the model, and
repository and directory structure in the code.

36

BUMBLE

The second condition c2 compares the pair <€T,€S> with the code type CT to make sure that the correct
level of design is compared, E.g., in SysML both a component and an interface may be of the type
“block”, however they are stereotyped differently.

The third condition c3 compares the names CN and €N. Because names are sometimes abbreviated, or
harmonized in either model or code, a dictionary is used for widening the name comparison. Some
abbreviations can be rule based, others need to be explicit.

If all three conditions are fulfilled the matcher will create a trace between the model and the code, The
traces (links) that are created are bi-directional and will be used in several different ways. The first
step has been to indicate the consistency of each system component. Basic KPIs, showing the
percentage of consistency between the model and code are presented in an html page.

Further work is done in order to use the links to blend the SysML diagrams from the SysML tool of
choice (currently Rhapsody) together with the Software IDE (currently Jetbrains CLion). The selected
code should show the appropriate SysML diagram is the CLion IDE. To show the Rhapsody diagrams
in CLion, we are planning on running Rhapsody in headless state, and dynamically retrieve diagrams
based on the links created by the matcher.

By blending the notations and showing the links continuously it is easier for both software engineers,
and systems engineers to understand the gaps in the consistency between the model and its
implementation that emerge throughout the evolution of the system.

Figure 14 shows the overall architecture of the matcher, CLion and Rhapsody.

More details on the synchronization between systems and software artifacts in the scope of this UC
can be found in the BUMBLE deliverable D4.2.

Figure 14. Overall architecture of the matcher, CLion and Rhapsody

37

BUMBLE

3.4.2. Relation to BUMBLE Features

Blended Syntaxes & Modeling (B)

As discussed the Blending will be performed by showing SysML diagrams in the code IDE or vice
versa. While working with code the linked SysML diagrams should be shown.

Traceability (T)

The main purpose of the proposed solution with a matcher is to automatically create links between
models based on heuristics. In our (Saab) case we have created a set of rules and conditions based
on our architectural guidelines.

Evolution (E)

It is obvious that the links help in understanding the evolution of the system. The regression of the
links them-selves may also be used for creating information of “evolution-rate”. As elements emerge or
disappear in the system model (matched or not) is an indication of how fast the system model is
evolving, and vice versa.

4. Conclusion
In the context of the Eclipse technology space, this deliverable presents the software architectures of
approaches that realize four out of seven BUMBLE use cases based on the Eclipse technology space.
The presented approaches build upon the Eclipse RCP and the client/server architectural style. We
also relate each of the described use cases to the corresponding BUMBLE features that they provide.

