

Machine Intelligence for Smart and Sustainable Planning and Operation of IoT and Edge

D1.2 KPI Framework

Work Package	WP1
Dissemination level	Public
Status	Final
Date	June 2021
Deliverable leader	Eliar
Potential Contributors	All

Contributors

Names	Organisation
Sencer Sultanoğlu, Mustafa Çom	Eliar
Barış Bulut, Burak Ketmen	Enforma
Julien Deckx	3E
Geert Vanstraelen	Macq
Renaud Gonce	Shayp
Joana Sousa	NOS

Reviewers

Names	Organisation
Joana Sousa	NOS
Pedro Miguel Salgueiro Santos	ISEP

Table of Contents

Abbrevia	ations	4
Executiv	e Summary	5
1. Key	Performance Indicators (KPIs)	5
1.1.	UC1 ("Distributed renewable energy systems")	5
1.2.	UC2 ("Secure Internet provisioning")	6
1.3.	UC3 ("Traffic management")	8
1.4.	UC4 ("Water management")	11
1.5.	UC5 ("Continuous auto configuration of industrial controllers at edge")	12
2. Con	clusions	17

Abbreviations

AI	Artificial Intelligence		
ANPR	Automatic number-plate recognition		
AWS	Amazon Web Services		
CPE	Consumer Premises Equipment		
FoV	Field of View		
HD	High Definition		
KPIs	Key Performance Indicators		
Mbps	Megabits per second		
OSI Model	Open Systems Interconnection		
PPR	Project Progress Report		
SLAs	Service Level Agreements		
VGA	Video Graphics Array		

Executive Summary

This deliverable is driven by the project's Task 1.2: Service levels and key performance indicators. It is the first version of what is basically a two-version deliverable, with the second version scheduled in 13 months after the first one. The outputs of this task and deliverable contribute to work package 4, in particular Tasks 4.1-3.

Following deliberations with the project consortium, it was concluded that the scope of the deliverable should include only Key Performance Indicators (KPIs) and not Service Level Agreements (SLAs). This is because KPIs are needed to gauge the success of an activity or a project in general, whereas SLAs are more for customer-service provider relations, and that is out of scope of MIRAI.

The methodology based on which whether a particular KPI is met can vary based on the type of the KPI. For a KPI which is based on a physical value such as bandwidth utilisation, duration, rate, performance and so on, the detection is straightforward since it is also based on requesting the value from the system. For softer KPIs such as Market Access and TRL, corresponding definitions must be used to evaluate if a certain criteria is met.

In MIRAI's project, there will be a system or systems distributed on different nodes in a network and potentially across different organizations. In order to evaluate the performance of the distributed system, a set of key performance indicators (KPIs) are needed to evaluate a configuration.

The underlying objectives of Task 1.2 aims to perform the carry out the following actions:

- Elicit and define suitable KPIs, which should be support in the MIRAI solution
- Identify and define relevant context factors such as bandwidth and trustability of nodes in a distributed system.

1. Key Performance Indicators (KPIs)

MIRAI's project has a relatively use case rich consortium despite its relatively small-to-medium size, with 5 use cases from different technical verticals.

This section presents the key performance indicators for each of the 5 use cases within the project, namely:

- Use case 1: Distributed renewable energy systems (UC owner: 3E)
- Use case 2: Secure Internet provisioning (UC owner: NOS)
- Use case 3: Traffic management (UC owner: Macq)
- Use case 4: Water management (UC owner: Shayp)
- Use case 5: Continuous auto configuration of industrial controllers at edge (UC owner: Eliar & Enforma)

A detailed documentation of the above use cases is presented under Section 2 of Deliverable 1.1.

The KPIs were grouped by use cases, where each group of KPIs is listed by the corresponding use case owner. The important thing is to have a KPI attribute which is meaningful to the technology and business, and is measurable (preferably both now and at the end of the project).

КРІ	Initial (Jan 21)	Current (Aug 22)	Target (Dec 23)	Measurement Method
Granularity of data	1min		1s	N/A
Update rate of data	5min		1s	N/A

1.1. UC1 ("Distributed renewable energy systems")

Response time to control signal (Control signal update rate)	N/A	15 min.	5 min.	Cloud + Edge response time
Network utilisation (5MW plant)	<<1Mbps		≤ 1Mbps	The network load measured by Network Monitor tools is an indicator of the network utilization.
Availability	99.8%		99.9%	The ratio of the system uptime to total time
Configuration person-hours (5MW plant)	3h		15min	Plant configuration and integration time in SynaptiQ

Note on "Granularity of data" and "Update rate of data": It is not measured value, but a setting parameter. The initial value is what we can set in the FTP push service of the on-site logger. The target value is what we can achieve with the new edge device.

1.2. UC2 ("Secure Internet provisioning")

КРІ	Initial (Jan 21)	Current (Aug 22)	Target (Dec 23)	Measurement Method
Traffic Monitoring period	-	-	Always-on.	Extract timestamp when a packet is captured at CPE and when it arrives at the cloud: Monitor_period=Tcloud – Tcapture Check at regular times that packets are arriving at the cloud.
Smart and customized protection	-	-	Three profiles should be created: Normal Client, IoT Client and Gamer Client.	Train the system with a given profile. Then completely change the profile that is being used. Check the effects of the solution
Layers of the OSI model to be analysed	-	-	System should detect attacks in OSI layer 3,4 and 7 (100% detection rate)	Use different types of threats that affect different layers of the OSI model. For example, an ICMP flood can be used to measure the network layer performance, a TCP fragmented attack can be used to measure the transport layer performance, and an HTTP flood attack to measure the application layer performance.

			1	
Type of DDoS attacks to be mitigated	Firewall rules to mitigate some attacks (ICMP flood)	-	Protection against flood, amplifier and fragmented attacks.	Perform different attacks and evaluate how the system behaves. Check if the defence mechanism is able to detect the attack, if the home network of the client was successfully protected and if the system was able to quarantine the infected devices.
Report	-	-	For every alert, a report shall be generated and contain the type of attack and the time when it happened.	For every alert a report must be available.
Alerts	-	-	The alert should take less then 1s to be generated and sent to the victim.	Perform an attack and check if, after the detection of the attack, an alert is generated. Take timestamps from when the alert is generated and when it arrives at the user.
Detection Speed	-	-	< 5 seconds	A test bench should be used to generate an attack. When the attack starts a timestamp is taken. Then when the edge node detects the attack, another timestamp is taken. It is then possible to measure the time that the system took to detect an ongoing attack.
Multi Platforms	-	-	Priority: Google Cloud and AWS Nice to have: Azure.	Repeat all the process that took place in Google Cloud to the other clouds.
Service Recovery Time	-	-	The CPU usage during an attack cannot reach 100% systematically. Memory usage cannot make the router unusable.	When the edge node is under attack a serious of metrics such as, the internet speed connection, the gigabit connection and the responsiveness of the CPE interface should be measured. A measurement of the CPU and memory usage could be useful to indicate how the CPE handles an attack.
Operationally unavailable (optional,	-	-	The system should continue to monitor and detect attacks	Perform a test without an internet connection (no cloud access). Then start an attack and

requires			when the network is	check if the CPE is able to detect
analyses).			not available.	the infected device and
				quarantine the device in
				question.
				When the monitoring system is
Loss of performance	-	-	The performance of the CPE cannot be affected. The internet speed shall be the same with or without	implemented on the CPE a series of tests should be performed such as responsiveness of the CPE, checking for interference with other modules, internet
			the MIRAI mechanism.	speed test, gigabit availability and
				resources used.
Router restarting	NOS already monitors the number of reboots.	-	The project shall not increase the number of reboots. The detection mechanism should be resilient to avoid reboots.	During the tests performed for the MIRAI project, if a reboot of the CPE happens it should be thoroughly investigated. If the investigation finds out that the cause is related with the MIRAI defence mechanism the problem leading to the reboot should be solved.
Detection of infected CPE	-	-	A variation in 10% of the CPU usage and memory should trigger an alert of a possible ongoing attack. If a CPE is being used to search the web shall trigger the system	Use the CPE in a way that does not correspond to the profile created (for example, using a tool to stress the CPU and memory). Verify if the system is able to detect the anomalous behaviour.
Accuracy of			False positive and true	Use different malicious
the Machine			negative rates should	datasets/attacks and measure the
Learning	-	-	be low (less or equal	efficiency of the machine learning
Algorithm.			to <5%).	algorithm.

1.3. UC3 ("Traffic management")

КРІ	Initial (Jan 21)	Current (Aug 22)	Target (Dec 23)	Measurement Method
Reaction time	Dependi ng on the load		100 ms	Difference between image timestamp and message timestamp
Effective framerate	10 fps		30 fps	The framerate is a sensor parameter. To measure if it is effective the dropped frame count should be close to zero.
Actual FoV	41 6x		Covering half of 5MP image	The ROI is a configuration of the camera. It must be verified that all frames are

	44		have all and a second all a second
	41 6		handled and the object detections work on all parts of the configured ROI.
Graceful degradation	No	Yes	 Observe the working of the system in following scenario's: one of the camera's powered off removed network cable camera operational but sensor covered camera moved outside the region The cameras are not redundant. Installing two cameras that see the same scene would be more expensive than what customers would pay for the additional up time.
Communication maintaining privacy	No [100%]	Yes 100%	Assessment of the protocol(s) used between MFBB that reside on different edge devices or backend servers. Assessment that exchanged data is necessary for the functional needs of the application. For each protocol the values are binary. There can be more than one interface exposing data. Minimizing the number of attack surfaces is an overall security goal for the edge devices that not only concerns privacy.
Number of supported kinds of sensor data	1	6	To be counted but also evaluate how data is stored after fusion
Bandwidth needed for communication relative to generated raw data.	Not availabl e	0.1	Volume communicated data divided by Volume raw data
Time synchronisation accuracy	10 ms	1 ms	NTP Measurements
Accuracy of timestamps on data	10 ms	5 ms	Compare with time info injected at the source (for instance a precision clock visible in the image)
Use of a common framework like MIRAI.	No	Yes	Assessment
Pool of distributed collaborating cameras	No	Yes	Assessment
Number of different countries the	For distribut ed	5 count	Assessment of market penetration at the ries end of the project and 3 years after the end of the project

distributed AI	systems:		
enabled product is	0		
marketed to.			
TRL	3-4	6-7	Assessment

Notes on "Graceful degradation": In case of a failure on one of the distributed cameras the system as a whole will continue to operate. Failure does not only mean a hardware or software failure but also occlusion of the camera's sight or blinded by direct sun light.

Notes on "Communication maintaining privacy": All communications involving sensitive data between components of the MIRAI framework are secured. Depending on the application privacy sensitive information will or will not leave the camera. On one side of the spectrum, we have license plate (ANPR) information with a visible picture of the car and his driver using a cell phone and not wearing his safety belt. There are however also a lot of applications where we don't need this and where cameras are only accepted if they don't send nor store privacy sensitive information. This becomes more complicated when in the case of a cooperating distributed edge camera system they need to share intermediate calculation results. We need a new data sharing protocol where both from the data and the communication protocol point of view privacy and security are guaranteed.

Notes on "Number of supported kinds of sensor data": The MFBB must support data from various type of heterogeneous sensors such as:

- Colour
- B&W
- Thermal
- Time of Flight
- Radar
- Sound

Notes on "Bandwidth needed for communication relative to generated raw data". Considering static images, the range is from 6 Mbyte (2 Mpixels images) to 24Mbyte (8 Mpixels image). Considering video streaming a VGA camera consumes 7.1Mbit/sec and a FullHD camera consumes 48Mb/s. The current generation of cameras already does all calculations on the edge and only sends the final results to the backend system in the cloud. This is a multiple times one camera to the cloud architecture. We want to extend this to a multiple time multiple (distributed) camera to the cloud model. The distributed cameras will share intermediate results, which are optimized to reduce the communication bandwidth and balance the calculation power. The communication resources used must be more than 10 times less than the raw data.

Notes on "Time synchronisation accuracy": Correct time synchronization between the systems is important to allow data fusion of intermediate results from the different components."

Notes on "Use of a common framework like MIRAI": In the current state of the art integrating third party components heavily weights on the used computational resources because each component has a tendency to be as standalone as possible. A framework where those components can share intermediate results would be beneficial to the system as a whole. Macq has co-creative relationships with the 'third' party component manufactures. If they adapt to the MFBB more components could

cohabit offering more functionality to the end-user and more market offerings for Macq and his thirdparty suppliers.

1.4. UC4 ("Water management")

КРІ	Initial (Jan 21)	Current (Aug 22)	Target (Dec 23)	Measurement Method
Device lifetime	10 years	10 years (same as initial as algorithm not yet implemented)	16 years	Using a current consumption measurement tool.
Anomaly detection time for households	1-3 hours	1-3 hours (same as initial as algorithm not yet implemented)	< 1 hour	Values are inherent to the detection algorithm (at cloud level) which uses a dynamic window to analyse the water consumption. The provided values are the ones used by the algorithm giving the best performance.
Anomaly detection time for corporate buildings	3-24 hours	3-24 hours (same as initial as algorithm not yet implemented)	< 3 hours	Values are inherent to the detection algorithm (at cloud level) which uses a dynamic window to analyse the water consumption. The provided values are the ones used by the algorithm giving the best performance.
Pattern recognition at the edge	-	-	Anomalies	Initially, no consumption analysis is performed at the edge, but the goal is to be able to detect anomalies.
Field test validation of anomaly detection (TRL 7)	-	-	1	Either there is one or there isn't.
Device firmware remote update to support new patterns	-	-	1	Either there is one or there isn't.

1.5. UC5 ("Continuous auto configuration of industrial controllers at edge")

КРІ	Initial (July 21)	Current (Aug 22)	Target (Dec 23)	Measurement Method
Percentage overshoot in closed-loop temperature control (<i>process</i>)	3%	2.6%	2%	At least 50 randomly selected instances of temperature control phase data from all machines will be analysed
Percentage of processes with oscillatory and/or unstable behaviour (<i>process</i>)	1%	0.7%	0%	At least 50 randomly selected instances of temperature control phase data from all machines will be analysed
Percentage of processes getting to setpoint in time (process)	99%	99.3%	100%	At least 50 randomly selected instances of temperature control phase data from all machines will be analysed
Number of {Attribute, edge device} that will be handled by distributed AI algorithms (<i>distributed AI; horizontal</i> <i>scaling</i>)	{0, 0}	{3,5}	{5, 10}	Counting T7701ex edge devices and attributes
Number of TRL-7 validated systems using distributed AI (system)	0	0	1	Validation at a dyehouse.
Network utilisation (distributed AI; horizontal scaling)	~3.6Kbps	~5Kbps	≤ 100Kbps	Using network monitoring tools.
Steam source being allocated according to an algorithm instead of first come first served (<i>process</i>) (<i>distributed</i> <i>AI; horizontal scaling</i>)	-	-	Present	Validation at a dyehouse.

2. Top 4 Global KPIs

This section consists of top 4 global KPIs that are initially defined in the FPP and be reused in each of the Project Progress Report (PPR). The KPI values needs to be updated for each PPR. Depending on the changes in the state-of-the-art, a KPI can be removed/changed/updated or a new KPI can be added.

	Initial value	Targeted value	Current value
1. Decrease Response Time (Sense- Compute-Act Latency) by deploying Al at the edge	15min	3s (reduce by 100x or more)	1min

KPI type: Business

<u>Metric description and value explanation</u>: values shown are expressed in an amount of time, in seconds (s), between event of interest and reaction by the system.

"Initial/Target/Current Value": those of the MIRAI application with stricter temporal requirements (application provided by NOS; see next table).

State-of-the-art cloud-based processing services impose a penalty on the communication link alone of at least 10ms per direction (this value needs to be multiplied by the number of message exchanges required to decide on action); edge computing can bring that to 1ms.

Application-specific KPIs:

Provider	Initial value	Targeted value	Current value
Macq	<undisclosed></undisclosed>	100 ms	<undisclosed></undisclosed>
3E	N/A	5 min.	15 min.
Shayp	Detection within 1-3h	Detection within <30min	Detection within 1h
NOS	Detection within 15 min	Detection within <3s	Detection within 1min

Justification for the application-specific values:

- Macq: Reaction time should be 100 ms (difference between image timestamp and message timestamp).
- 3E: Response time to control signal (cloud+edge control response time): 5 min. So far, no control command is deployed by the SynaptiQ platform. Within the MIRAI project, this new control function is added with a newly installed edge device (CloudGate). Over the cloud, schedules are per 15 minutes. With the edge device functionality, it will be reduced to 5 minutes.
- Shayp: non-supervised ML on Edge/IoT devices capable of detecting leaks with high accuracy within less than 30min and trigger alerts.
- NOS: NOS will provide an AI/ML service in the CPEs (customer-premises equipment), thus reducing response times for intrusion detection in attacks to CPEs (<3s). Currently this is around 15min.

	Initial value	Targeted value	Current value
2. Increase availability and service efficiency when compared to a centralized approach	95%	99.5%	95%

KPI type: Business

Metric description and value explanation: values provided correspond to:

- Availability: percentage (%) of time that good results should be available; and
- *Service efficiency:* percentage (%) of satisfactory performance of service deployed at edge. Depending on the application, this may refer to quality of event detection (applications of NOS, Shayp, Macq) or process tracking (3E, Eliar).

"Initial value": State-of-the-art is a typical 95% of availability and service efficiency.

"Target value": Application providers often report targets of 100% availability and service efficiency; we aim at 99.5% as a conservative estimate.

Application-specific KPIs:

Provider	Initial value	Targeted value	Current value
Macq	<undisclosed></undisclosed>	100% availability & service efficiency	<undisclosed></undisclosed>
3E	99.5% availability	99.8% availability	99.5% availability
NOS	N/A	100% availability. 100% detection rate (service efficiency), and false positive and true negative rates should be low (less or equal to <5%).	N/A
Eliar	Service efficiency: - 99% of processes getting to setpoint in time - 3% overshoot in closed- loop temperature control - 1% of processes with oscillatory and/or unstable behaviour	Service efficiency: - 100% of processes getting to setpoint in time - 2% overshoot in closed- loop temperature control - 0% of processes with oscillatory and/or unstable behaviour	Service efficiency: - 99.3% of processes getting to setpoint in time - 2.6% overshoot in closed-loop temperature control - 0.7% of processes with oscillatory and/or unstable behaviour

Justification for the application-specific values:

- Macq: In case of a failure on one of the distributed cameras the system as a whole will continue to operate. Failure does not only mean a hardware or software failure but also occlusion of the camera's sight or blinded by direct sun light.
- 3E: Renewable energy assets have a typical availability of 99.5% to 99.8%. Edge solutions should result in higher accuracy of monitoring, sensing and computing. Typical availability increases are expected in the order of 0.1%.
- NOS: The system should continue to monitor and detect attacks when the network is not available.
 System should detect attacks in OSI layer 3, 4 and 7 (100% detection rate). False positive and true negative rates should be low (less or equal to <5%).
- Enforma & Eliar: the percentage overshoot in closed-look temperature control should decrease from 3% to 2%, the percentage of processes with oscillatory and/or unstable behaviour should decrease from 1% to 0%, and the percentage of processes getting to setpoint in time should increase from 99% to 100%.

	Initial value	Targeted value	Current value
3. Guarantee secured data exchange between edge nodes and cloud and execution of AI algorithms at edge nodes, provide data privacy policies, and enable	0% secure comm's and computation	computatio	50% secure comm's and computatio
protected horizontally-scaled distributed computation at the edge		n	n

KPI type: Business & Technical

<u>Metric description and value explanation</u>: Values shown as percentage (%) of secure communications and computation in MIRAI applications.

"Initial value": Edge nodes are scarce in resources and many communications in the IoT world are unsecured. The state-of-the-art is that security mechanisms and privacy management for edge nodes (and *between* edge nodes) are less available.

In "Current value", we quantify the fulfilment of the security-related MIRAI goals ("Target value"), namely:

- Ensure 100% communications involving sensitive data between components of the MIRAI framework are secured all applications are using secure communications.
- Integrate 1 mechanism for running AI algorithms in a secure fashion in COTS edge/IoT nodes no application is implementing this as of now.
- Develop techniques for secure data sharing and a new privacy preserving technique at edge computing applications under development.
- Provide 1 set of policies and tool for privacy management by the end user under development.

Application-specific KPIs:

Provider	Initial value	Targeted value	Current value
Macq	90% (data may not leave camera)	100% (data is shared among edge nodes in a secure way for more computation power)	90%
3E	0% (FTP-based comm's and computation)	100% (comm's and computation fully secured)	50% (secure comm's)
NOS	0% (no secure comm's and computation)	100% (comm's and computation fully secured)	50% (secure comm's)

Justification for application-specific values:

- Macq: Depending on the application privacy sensitive information will or will not leave the camera. On one side of the spectrum, we have license plate (ANPR) information with a visible picture of the car and his driver using a cell phone and not wearing his safety belt. There are however also a lot of applications where we don't need this and where cameras are only accepted if they don't send nor store privacy sensitive information. This becomes more complicated when in the case of a cooperating distributed edge camera system they need to share intermediate calculation results. We need a new data sharing protocol where both from the data and the communication protocol point of view privacy and security are guaranteed.
- 3E: MFBB compliance with utility standards for privacy & security. Protection against intrusion risk at the edge computing level becomes crucial as energy assets can be controlled remotely in this way.
- NOS: NOS will provide data about an IoT ecosystems in order to use it for data profiling and intrusion and attacking. Based on it, proactive actions will be applied to turn the ecosystem safer and some dashboards will be available in order to explain what happen to the customer (reports per 5 min after the identification of the attack).

			Initial value	I value Targeted value		Current value	
4.	Reduce	bandwidth	Up to 48Mb/s (per	Up	to	4.8Mb/s	Up to 48Mb/s
rec	requirements		edge device)	(reduction of 10x)		of 10x)	

KPI type: Business

<u>Metric description and value explanation</u>: Values shown are expressed in bandwidth (bit/s) required by applications.

"Initial value": that of the MIRAI application with the highest initial bandwidth requirement (application provided by Macq; see next table).

"Target value": corresponds to target reduction aimed at by partners.

Bandwidth reduction depends on many things (e.g. compression, protocol design, and frequency of communication), making it hard to provide a single state-of-the-art value.

Application-specific KPIs:

Provider	Initial value	Targeted value	Current value
Macq	48Mb/s	Reduce by 10x	48Mb/s
3E	<<1Mbp	Reduce by 10x	≤1Mbp
Shayp	<battery to<br="" up="">10y></battery>	<extend 16y="" battery="" to="" up=""></extend>	<battery 10y="" to="" up=""></battery>
Eliar	~3.6Kbps	<100Kbps	~5Kbps

Justification for application-specific values:

- Macq: bandwidth needed for raw data: considering static images, the range is from 6 Mbyte (2 Mpixels images) to 24Mbyte (8 Mpixels image), and considering video streaming a VGA camera consumes 7.1Mbit/sec and a FullHD camera consumes 48Mb/s. The current generation of cameras already does all calculations on the edge and only sends the final results to the backend system in the cloud. This is a multiple times one camera to the cloud architecture. We want to extend this to a multiple time multiple (distributed) camera to the cloud model. The distributed cameras will share intermediate results, which are optimized to reduce the communication bandwidth and balance the calculation power. The communication resources used must be more than 10 times less than the raw data.
- 3E: communication cost reduction with a factor 10. Data flow from the site to the cloud is very high and growing rapidly because of more active & smart devices being installed on site. A typical site of 50 MWp collects now about 10k tags. Now 1' data granularity is sent (often standard compression is applied) and we want to go to 1" data.
- Shayp: reduce battery usage to reach an increased battery life compared to today (10 years), the objective being the same lifetime as water-meters (i.e. 16 years).
- Eliar & Enforma: Top bandwidth utilisation of the edge device (T7701ex) should be \leq 100 kbps.

3. Conclusions

In a distributed Artificial Intelligence (AI) environment, in order to evaluate where in the network to distribute the computation, a set of key performance indicators (KPIs) are needed to evaluate a configuration. This report successfully presents the various KPIs that are relevant and meaningful for each of the 5 use cases in project MIRAI.

This deliverable was driven by the project's Task 1.2: Service levels and key performance indicators, being the first version of what will basically become a two-version deliverable, with the sequel scheduled 13 months after the first one. The outputs of this task and deliverable is aimed to contribute to work package 4, in particular Tasks 4.1-3. Following deliberations with the project consortium, it was concluded that the scope of the deliverable should include only the KPIs and not the SLAs, since KPIs are needed to gauge the success of an activity or a project in general, whereas SLAs are more for customer-service provider relations, and that is out of scope of MIRAI.

