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Executive summary 

In order to achieve the goal of rearranging the factory layout, production lines and production 

planning to optimize profuction efficiency and flexibility, several altorithms and mathematical 

methods will be used. This deliverable provides a description of the algorithms being developed 

and use with the purpose of reconfiguring and organizing factory operations and make production 

more efficient. These descriptions follow a mathematical notation, presenting the operations the 

algorithms and models need to perform in order to achive the desired result. 
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1. Introduction 

1.1. Document objectives and scope 

The objective of this document is to provide information about the mathematical models being 

used in the project for the configuration of equipment, combining processes from different 

production lines, transmutation between manual and automated processes, optimisation of 

the use of resources (machines, human resources, materials, energy, etc.).  

There models lead to the algorithms developed in the project. However, this deliverable does 

not focus on the development of the algorithms themselves or their  performance, but on the 

mathematical underlying principle. 

1.2. Document structure 

This document is divided in several subsections, each of them providing information for 

different types of mathematical models depending on their purpose.  

  



  Mathematical model for factory layout and 
production systems balancing 

Page 9 of 41 

Public 

2. Mathematical models 

In this part, the mathematical models that will be used within the scope of the project for 

modelling the factory layout and balancing the production systems are explained. These 

models provide important information for improving production processes and increasing 

efficiency, which is the aim of the MUWO project. 

2.1. Models for reconfiguring the equipment 

These models aim to flexibly design production and factory systems using a digital twin-based 

approach, and to have this design be reconfigurable. To achieve this, multiple 2D – 3D 

sensors were used to gather up-to-date and instant information about the real production 

process, and the data from these sensors was synthesized so that the model in the digital 

twin could be updated instantly. The digital twin offers the opportunity to rearrange the 

production system and modify it according to the problem by modelling the production 

systems at different levels, such as assembly processes, production stations, and line levels.  

The first model considered in this context aimed to create a production model based on 

human-factory cooperation [1]. As can be seen from the workflow shown in Figure 1, multiple 

alternatives have been generated for the locations and layouts of the components. Then, the 

main workstation was created based on resource planning, and the state of the environment 

and process was monitored using sensors from there. Since this monitoring is a continuous 

and instantaneous process, if any anomaly or unexpected behaviour is detected, the system 

will be aware of this situation, receive the information in the physical world, and allow the 

digital twin to use this information to rearrange the created workstation and production 

environment. As previously mentioned, the search algorithms based on artificial intelligence 

determine how the regulated and reconfigured business environment should be.  

 

Figure 1. Paradigm on the design workflow of HRC applications. 
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In another alternative model, an architectural basis for a cloud simulation platform is 

examined [2]. In this model, a data-based modelling and simulation method was used to 

achieve automated modelling. Third, the system was implemented in the cloud using Java, 

MySQL, and the Anylogic platform, and the effectiveness of the proposed method was verified 

through experiments in a real workshop of a company. In this model, a proposal is made to 

create a general cloud-based simulation architecture that responds immediately to users' 

requests and enables the creation of a simulation environment according to these requests. 

The general outline of the proposed structure can be seen in Figure 2. 

 

Figure 2. Data-driven cloud simulation architecture for AFPLs in smart factories. 

In data-based modelling, simulation models are created using data collected from production 

environments. With the simulation optimization module and dynamic optimization module, 

resources are distributed in an optimized manner and optimum planning is created for a 

flexible and automatic production line. All created modules are placed on the cloud platform,  

and users can use an interface and simulation model from there. Unlike traditional cloud -

based applications, the generalized simulation model is uploaded directly to the cloud. To 

customize this simulation environment for a specific application or problem, strategy and 

smart algorithm libraries have been created. This allows the user to customize the simulation 

environment using these libraries. On the other hand, the desired simulation environment can 

be created instantly from the data-based general model, which greatly reduces modelling 

time. In the method, the user is responsible for regularly collecting and updating real -time 

data. The simulation model is shown in Figure 3. 
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Figure 3. Factory collaborative cloud simulation. 

Three steps are required to create simulation models and manufacturing processes:  

• First, data is collected and standardized. Then, this data is classified, and a data structure 

is created. After the data structure is created, the data is divided into three  categories: 

layout data, operation planning, and dynamic data. Layout data sources include the 

numbers and distributions of sources. It contains operation planning control logic and 

planning rules. Dynamic data, on the other hand, contains production process 

information. 

• A general library of simulation models is created. A general library of simulation models 

is created for each different production area and product. This library contains three types 

of data: production, transportation, and inventory. For example, the production library 

includes CNC machines and mobile robots. Using these libraries reduces workload and 

increases efficiency in real-time simulation. 

• To automatically create the simulation environment, a source production engine was 

created, and the layout of the simulation model was provided automatically according to 

the incoming layout data by using the objects in the general production model library with 

this created engine. In addition, by looking at the operation planning data, the variables 

of the resources can be adjusted accordingly. At the same time, these data are updated 

regularly to ensure that the simulation model moves in coordination with real -time. 

In these models, which were created by reconfiguring the factory equipment, making  the 

production processes much more efficient and faster was the main focus.  
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2.2. Models for combining different production lines 

The increasing demand for personalization in products requires high flexibility in production 

systems to adapt to changes. The open architecture machine tools (OAMT) are a new class 

of machine tools defined and developed as a fixed standard platform with addable and quickly 

interchangeable personalized modules. Engineers can flexibly reconfigure the production 

system to match the process plan by integrating personalized modules into the OAMT. The 

fundamental enabling techniques are detailed, including how to combine the cyber and 

physical systems and how to quickly program the production capacity and functionality of 

production systems to adapt to rapid changes in products. The effectiveness of the proposed 

approach in reducing the overall costs of the reconfiguration process by automating and 

optimizing it quickly and in achieving advanced system performance is demonstrated through 

a physical application. The digital twin-based manufacturing system is a typical representative 

of smart manufacturing and has several advantages beyond the latest technology. However, 

when it is necessary to reconfigure a production system to meet new produc tion 

requirements, manual reconfiguration of the digital twin-based production system is time-

consuming and has high labour costs due to the complexity and flawed models of the system. 

If the production system has industrial robots with complex functions and inflexible 

programming, this problem becomes even more acute. 

The first of the models discussed in this context is about modularizing production systems 

and rapidly restructuring these systems. This restructuring is important in the manufacture of 

3C products (e.g., smartphones) that have fast deadlines and high change rates in the 

production system. The method aims to realize the production of customer-specific products 

by increasing the flexibility of a production system. A digital twin-driven approach is proposed 

to rapidly reconfigure the production system to respond to changes in product orders. The 

method creates a new reconfiguration through a digital twin-driven rapid restructuring 

platform after analysing the differences between two products and determining whether the 

existing system can produce them. 

In this sense, a REST (Representational State Transfer)-based IIoT (Industrial Internet of 

Things) model has been proposed for rapidly reconfiguring the controls and sensor network 

without human intervention. This approach can quickly switch the production system's 

capacity and rapidly integrate multiple processes into existing systems, enabling the quick 

initiation of new product orders. A two-level programming approach of high-level efficiency 

rebalancing and low-level restructuring cost is offered to find an optimal reengineering 

solution. The proposed approach can also minimize the overhead of the restructuring process 

by automating and optimizing it. 

As shown in Figure 4, this work used the REST architectural style. In REST, all operational 

objects are abstracted as resources. The location of resources is identified by a uniform 

resource identifier (URI). The operation of the resource is determined by the URI and the 

Uniform Interface (e.g., HTTP). REST provides an architectural principle for building scalable, 
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simple, portable, and loosely coupled applications. Due to the capabilities of REST, resources 

are often represented by standard templates. Resources in the cluster can be mapped to the 

network by creating a REST-based embedded Web server on the smart gateway as the 

cluster head node. The mapping relationship between a physical resource and a virtual model 

is defined in mathematical language in a template. Resources are organized in the IIoT 

network through an intelligent gateway. In a Web network, resources are aggregated 

according to the physical connection mode of the clustering. 

 

Figure 4. REST-based IIoT system 

In the other model digital twin-based manufacturing systems (RDTMS) framework [3] was 

designed to create digital twin-based manufacturing systems with high accuracy, high 

applicability, high flexibility, high intelligence, and high reconfiguration capability. The 

proposed framework uses the five-dimensional fusion model of the digital twin virtual entity 

(DTVE), which realistically describes the relevant knowledge, capabilities, and rules of the 

various production resources and environments in the physical space. As shown in Figure 5, 

the framework of RDTMS is designed to create DT-based manufacturing systems with high 

accuracy, high applicability, high flexibility, high intelligence, and high reconfiguration 

capability. 
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Figure 5. Five-dimensional fusion model-driven framework of RDTMS. 

The work mentioned that there are three levels (equipment, unit, and system) in 

reconfigurable problems of physical production systems (Figure 5). Virtual and augmented 

reality are used to provide more efficient monitoring and management. The proposed mode l 

is a five-dimensional fusion model in the physical production system and is based on DT. The 

five dimensions of the model are the Geometric Model, the Physical Model, the Ability Model, 

the Behaviour Model, and the Rule Model.  

Geometric Model: An obvious feature of the DT-based production system is that operators can 

observe in detail the entire scene and production process of the physical production system using 

virtual and augmented reality, which makes monitoring and management more efficient, intuitive 

and accurate. Therefore, you can change the shape, size, location, etc. of physical assets. A 

descriptive Geometric Model is required. 

GM = (Shape, Size, Position, Rotation vb.) 

Physical Model: One of the requirements of this research is to create a DT-based manufacturing 

system with high accuracy and high applicability. Therefore, PM is necessary to describe the 

physical structures, physical rules, and property values of physical entities. It allows virtual assets 

to simulate the same results as real operations under the same environmental conditions. For 

example, pallets or other assets in the virtual production system will accelerate and decelerate 

on the conveyor belt based on the friction and mass value described in the PM. PM also supports 

several SFBs, such as the SFB of energy consumption calculation. 

PM = (Speed, Mass, Friction, Abrasion vb.) 

Capability Model: To implement automatic reconfiguration of the DT-based production system, 

the computer must understand the capabilities and roles of each type of production resource in 
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the production system; it can also be considered as relevant information to support the SFBs of 

outcome prediction. Performance evaluation, planning optimization etc. These two opposing 

capability modes can be abstracted into functional interfaces on an entity. When two entities have 

a pair of complementary capability interfaces, they will interact in the production system and then 

the interfaces will be used and transformed into the other two forms of capability i.e. what it does 

and what it does. Dynamic description of DTVE's capabilities. In addition, the value of a skill and 

the objectives of applying a skill will also be explained in a particular skill. 

CM = (Cando, Isdoing, Canbedone, Isbeingdone, etc.) 

Behaviour Model: Every entity in a physical production system has certain operations to perform 

a complete production process or to implement some function. Virtual entities with manufacturing 

capabilities, such as industrial robots and computer numerically controlled machine tools, should 

be treated as self-contained functional units capable of performing a series of autonomous actions 

under certain conditions (the event tracked in the SFB as shown in Figure 8). It greatly reduces 

repetitive and inflexible programming. It is also used to implement some services such as 

automatic running of RDTMS and estimation of production results. Therefore, an UN is needed 

to abstractly define the behavioral logic of any entity in a physical production system.  

BM = (Take, Motoron, Wait, Fault, etc.) 

Rule Model: Derivation rules, association rules, constraint rules, etc. There are many rules in the 

production process and about each asset to support inference and recommendation SFBs that 

can be divided into. These rules can be derived from big data production. And it can also be 

defined by experts to make RDTMS safer and smarter. In the reconstruction process, the interface 

matching rules and spatial calculation rules will be considered by the computer. 

RM = (Derivation, Association, Constraint vb.) 

To verify the practicality and effectiveness of RDTMS, a robotics-based workshop was used for 

assembly in this section. An RDTMS prototype was created based on the modeling method 

proposed in this paper. A system-level reconfigurable task is implemented by the design upgrade 

strategy and the results are analyzed. In addition, the progress of the modeling approach and the 

applicability of the reconfigurable problem for DT-based manufacturing systems are explained by 

comparing it with three other common modeling approaches. 
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Figure 6.The structure of the prototype system. 

The structure of the prototype system is described in Figure 6. Real-time data interaction between 

physical layer, model and service layers are handled by Siemens PLC, software I/O and SQL 

server database. DTVE model data, dependency tree and related information data are stored in 

SQL server database and model files. The control buttons of the equipment and data visualization 

interfaces are integrated into the virtual simulation platform in the service system of RDTMS. 

 

 

Figure 7.The results of the reconfigurable task 
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Another approach aims to create flexible digital twins according to changes in design 

stages. Through the case study, it is aimed to reveal hidden flaws and propose solutions when 

the digital twin is used in factory design. Thus, it is aimed to reduce the creation time of the digital 

twin model thanks to the modular approach. However, the fact that different industries have 

different characteristics and the needs of these industries to use different modules should also be 

considered. With the designed modular design model, it is planned to facilitate the flexible design 

of factories. With this model, it has been tried to make it possible for factory designers to design 

factories by considering instant needs. For example, the production line of a paper cup 

manufacturing plant in China is modeled. Production routes are as shown in Figures 8 and 9. 

 

Figure 8. Product routing for a Chinese paper cup factory 

 

Figure 9. Material flow route between workshops 

The construction process and interface of the digital twin is shown in Figure 10. Based on the 

minimum calculations, the initial layout design can meet the annual output demands and achieve 

the theoretical equipment utilization rate. 
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Figure 10. An example of the model building process 

2.3. Models for resource optimization 

The model [4], which will be exploited for resource optimization, uses digital twin and ALC 

(Augmented Lagrangian Coordination) method to overcome the problem of credit sensitive 

resource allocation in shared production.  

Shared production is a production model in which the production service is not provided by a 

single enterprise but is completed by the cooperation between multiple enterprises in different 

geographical locations. Optimum Distribution of Production Resources in Shared Production 

aims to coordinate these resources between organizations. The credits of the sourcing 

providers are considered in order to obtain reliable trading in shared production, as the 

participants in the shared production (i.e. the sourcing, the customer) may not always know 

each other. Credit: It includes criteria such as quality evaluation of the manufacturing service, 

error rate, on-time delivery rate. A digital twin-driven service model has been created to 

realize remote monitoring and control of shared production resources. 

Resource allocation is provided by the Augmented Lagrangian Coordination method.  

Compared with the Genetic Algorithm to support it, it has been seen that it gives more reliable 

and more stable results that the source providers take care of their credits. To demonstrate 

the feasibility of the proposed methods, a platform consisting of three main functions: joint 

resource management, joint resource allocation and process monitoring has been developed 

(Figure 11). 
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Figure 11. Management platform of shared manufacturing resources. 

Figure 11 (a) shows the home page of the platform. It has tabs for resource classification, 

requirements classification, and resource and requirements. Figure 11 (b) shows the resource 

management module of the system. Production resources such as provider, machining 

centers, CNC machine tools and simulation equipment are recorded in a unified and 

standardized format. The basic information of a CNC machine, processing information and 

service quality are recorded. Thus, virtual sharing of services has been realized. Figure 11(c) 

shows the three main steps of the resource allocation module: requirements submission, 

requirements fulfillment, and production plan. Customers define production tasks uniformly, 

present their requirements and processing methods. Next, the task is decomposed into 

subtasks and subtasks are matched to obtain the candidate resource set. Resource allocation 

is accomplished by calling the optimization method. Finally, a detailed optimized production 

plan is obtained. Figure 11 (d) and (e) show the production process monitoring module, which 

consists of a physical production area and a virtual production area. The production 

monitoring process mainly consists of components such as equipment operation status 

monitoring, task progress tracking, production progress tracking, material consumption 

monitoring, process parameter monitoring. Monitoring can be shown in real time. As shown 

in Figure 13 (d) and (e), the high-speed CNC with ID L001 works to perform task 1 in the 

physical workshop, simulation and cost analysis are performed in the virtual space.  
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2.4. Models for smart production 

Today, with the development of digital technology, it becomes possible to create smarter, 

high-performance, and high-efficiency systems by designing the production systems used in 

the industry in an integrated manner with the developing technologies.  While manufacturers 

want to react quickly and cost-effectively to sudden changes in the global and domestic 

market, they also want to reach the end user with their safe products and get ahead of the 

competition in the field, the concepts of "smart manufacturing" or "digital manufacturing" 

Industry 4.0 brought to the fore thanks to Intelligent production systems; cyber physical 

system (Cyber Physical System - CPS), internet of things (Internet of Things - IoT), artificial 

intelligence, big data (Big Data), cloud computing (Cloud Computing), simulation, virtual 

reality (Virtual Reality - VR), augmented It is a multi-structured system that includes emerging 

communication and information processing technologies such as reality (Augmented Reality 

- AR) and digital twin (Digital Twin). Creating an intelligent production system that includes 

more than one such technology brings problems such as security, system integration and 

environment independence. It is foreseen that the technologies to be used will have a flexible 

and reliable network infrastructure with the necessary hardware/software components that 

can be reconfigured, will make the current system smart and facilitate the use of the 

necessary technologies. 

There are specific strategies for smart manufacturing system transformations. Supply Chain 

Readiness Level, Manufacturing Enterprise Solutions Association (MESA), Manufacturing 

Transformation Strategy (based on ISA-95 methods) are common strategies used, but they 

do not use information and communication technologies as the main method. Using 

information and processing technologies as the main resource creates smarter business 

processes and allows the management to operate in an automated way. Combining this smart 

production process with IoT provides an environment for creating a smart production system 

by preparing an environment for creating various software, security, artificial intelligence, and 

analysis methods. They use many technologies in the smart production system;  

• Virtual Reality (VR): Helps reduce the cost of prototyping and testing any product. It also 

helps visualize and test products in a simulated environment for end customers during 

the digital manufacturing process. 

• Augmented Reality (AR): They use technology to combine the real physical environment 

with computer-generated graphics to visualize components artificially added to an 

existing real-world scenario for training, simulation, or validation of some production 

designs before going into actual production. It helps to realize the product in an existing 

environment. With the demonstration of various conditions in the augmented 

environment, training and product testing for new employees has been shown to be more 

efficient and time-saving. 

• Cyber-Physical Systems (CBS): The Cyber-Physical System (CPS) collaborates 

computational entities with the physical world and its ongoing processes using data 

processing services available directly on the Internet.  
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• Additive Manufacturing (AM): AM technology is flexible for customization, rapid 

prototyping, rapid spare parts production, and on-site production, resulting in huge cost 

savings in production time and machine tool replacement and raw materials, and facilitate 

reverse engineering of the product. 

• Big Data Analytics: Big data analytics helps the manufacturer to identify the current status 

and causes of product failures in real time, guide customers to buy their products by 

understanding their purchasing habits and needs, and also teaches the potential of data -

driven marketing. 

• Flexible and Reconfigurable Manufacturing Systems (FRMS): There are two types of 

production flexibility. Routine flexibility allows the manufacturing plant to produce new 

types of products on the same production line, while machine flexibility allows for 

programming the production routines of different processing stations, sharing processing 

activity among them. The defining features of FRMS in smart manufacturing are 

modularity, integrability, flexibility, scalability and diagnostics.  

• Artificial Intelligence (AI): Artificial intelligence system, self-decision, self-optimization and 

automatic response to physical changes such as changing production programs, stopping 

or starting any machining unit, automatic switching of machine tools and giving timely 

warning in uncontrollable situations It is used in smart production with the ability to give. 

• IoT and IIoT: IIoT focuses on the Industrial application of IoT, which connects every 

physical asset over the internet. In industries, systems such as IIoT physical sensors and 

the entire process monitoring and control system are called the internet cloud, which 

enables each device to interact and collaborate to achieve common goals. It provides the 

communication infrastructure of human-machine interaction, intelligent process control 

for welding, tools and material optimization. 

• Simulation – Digital Twin: The copy created in the Digital Twin concept, which is defined 

as a digital copy of a physical object, includes the object's model, data and the ability to 

track the object. Testing on a Digital Twin created with data from complex products that 

are costly and difficult to test in real life makes it easy to test the product before releasing 

it to the physical world. The effect of the data from the tests is processed into the models. 

Since no physical product is used in the tests, this reduces operating costs and extends 

the life of equipment and assets. In addition, thanks to the Digital Twin and simulation 

applications, complex programs are implemented more quickly, thus saving time. 

2.5. Models for Scheduling 

Scheduling is a decision-making process that seeks to optimize one or more objectives that 

deal with the allocation of available resources on a time basis to actions that need to be 

fulfilled. Examples of resources are the machines in a workshop, the actions that need to be 

performed and the work that needs to be done in the production process. In other words, 

scheduling is determining when and in what order the workpieces that make up a product will 

be processed on the machines at hand. With scheduling, problems such as using production 
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facilities in the most effective way, responding to customer demands as quickly as possible, 

completing works without delay in delivery dates, shortening the production process, 

preventing bottlenecks in production, and reducing overtime work are solved. They are two 

different methods. 

2.5.1. Simulated Annealing 

Within the scope of the task, it first reads the tasks, the operations of the task, the machine 

information, the machines suitable for the operations and the processing times of the 

operations on the machines from the excel format and reads the algorithm related 

coefficients. Algorithm phases are: 

• Initial Solution Creation: The initial solution is randomly generated. Generates a random 

value for each operation. By sorting these values, it also sorts the operations. Operations 

are assigned to machines randomly. Thus, it becomes an input to metaheuristic 

algorithms. The initial solution is ready. 

• Searching Neighborhood: The objective function is calculated by considering the initial 

solution. This value is assigned as a starting point for the current solution and the best 

solution. As better solutions are obtained in each iteration, the best solution will be 

updated and improved. Neighborhoods are generated as much as the number of 

neighbors that need to be looked at from the solution at hand. Randomly 2 operat ions 

selected and returns their index. The locations of these operations are interchanged. All 

operations are then assigned to randomly selected alternative machines. In this way, a 

new neighborhood is created. Operation sequences and machine operation sequences 

are corrected. The objective function of this neighborhood is calculated.  

• Assess Neighborhood Solutions: If the value of the neighboring solution is better or equal 

to the current solution (It will be greater or less than the objective function, this will be 

expressed as better) it is accepted as the current solution and the current solution is 

updated. If this value is better than the best solution, the best solution is also updated. If 

the value of the neighboring solution is worse than the current solution, the acceptance 

probability is calculated. It is accepted or rejected according to the probability of 

acceptance. The temperature value is used to calculate the acceptance probability. If the 

probability of acceptance is greater than the random number produced, the solution is 

accepted and the opportunity for bad solutions is given. Other iterations continue over 

the accepted neighborhood. If this neighborhood is rejected, the iteration continues by 

calculating new neighborhoods over the previously accepted neighborhood. After the 

determined number of neighborhoods are calculated, the temperature value is updated 

again at the rate of the cooling coefficient before starting a new iteration. When the 

specified number of iterations are completed, the algorithm stops. The best solution is 

the result. This solution prints the solution as a table and as a Gantt chart.  
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2.5.2. Genetic Algorithm 

The component first reads the tasks, the operations of the task, the machine information, the 

machines suitable for the operations and the processing times of the operations on the 

machines from the excel format, and reads parameter related to algorithm. Algorithm phases 

are: 

• Initial Solution Creation: The initial solution is randomly generated. This generates a 

random value for each operation. By sorting these values, it also sorts the operations. 

Operations are assigned to machines randomly. All elements of the population are 

created in this way. Thus, it becomes an input to metaheuristic algorithms. The initial 

population is ready. After the population is formed, the objective functions of all the 

elements are calculated and the best solution is assigned to the current solution and the 

best solution as a starting point. As better solutions are obtained in each iteration, the 

best solution will be updated and improved. The following operations are performed for 

the number of iterations specified at the beginning. 

• Selection process: Selection is done by roulette method. In this method, the cumulative 

probability is calculated. The ratio of the objective function value of each element in the 

population to the total objective function value becomes the probability of being selected. 

The cumulative probability of the first element is assumed to be 0 and the cumulative 

probability of that element is calculated when we add the probability of choosing each 

element with the probability of choosing the previous element. A random number is 

derived for each element in the population. Elements of random numbers falling into 

cumulative probability intervals are selected. In this way, the population is rebuilt.  

• Xover Process: The crossover ratio is calculated by multiplying the population number by 

the crossover probability. Random 2-matched children are selected from the population 

at the rate of crossover. The crossover points of each 2 children to be crossed are 

selected. Pairs are crossed at the crossover points. That is, the genes of the first child up 

to the crossover point are put into the genes of the second child after the crossover point. 

The genes of the second child after the crossover point are put into the genes of the 

second child up to the crossover point. The New Population consists of the offspring of 

the cross. If the number of populations cannot reach the required value due to the 

crossover ratio, the population number is kept constant by adding the children with the 

best value according to the objective function to the population. After the crossover, the 

locations of the repetitive genes and the missing genes are determined in children. 

Excess genes are replaced by missing genes. Then, the operation order is corrected, and 

the objective function values are calculated. 

• Mutation Process: Mutations are made in each iteration. The mutation rate is calculated 

by multiplying the mutation rate by the population number and the number of genes. 

Operations in these genes are assigned to randomly selected alternative machines. After 

the mutation, the objective function is recalculated. 
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• Evaluating: The current solution is updated with the best objective function value in the 

population. If a better solution than the best available solution is reached, the best solution 

is also updated. As the population is here, the iteration is continued. The algorithm stops 

when the specified number of iterations is reached. The best solution is the result. This 

solution prints the solution as a table and as a Gantt chart.  

2.5.3. Reinforcement learning 

The goal of reinforcement learning is to train an agent to complete a task in an uncertain 

environment. At each time interval, the agent receives observations, rewards and actions 

from the environment. The reward is a measure of the success of the previous action (taken 

from the previous state) with respect to achieving the task goal. Therefore, the agent contains  

two components: a policy and a learning algorithm. 

The policy is a correspondence between the observation of the current environment and a 

probability distribution of actions to be performed. Within an agent, the policy is implemented 

by a function approximator with adjustable parameters and a specific approximation model, 

such as a deep neural network. The learning algorithm continuously updates the policy 

parameters based on actions, observations and rewards. The goal of the learning algorithm 

is to find an optimal policy that maximizes the expected long-term cumulative reward received 

during the task. 

Depending on the learning algorithm, an agent maintains one or more parameterized function 

approximators to train the policy. The approximators can be used in two ways: 

• Critic - For a given observation and action, a critic returns the expected discounted value 

of the cumulative long-term reward. 

• Actor - For a given observation, an actor returns as output the action that (often) 

maximizes the cumulative discounted long-run reward. 

Agents that only use critical approximators to select their actions are based on an indirect 

representation of policy. These agents are also called value-based, and use an approximator 

to represent a value function (value as a function of observation) or a Q-value function (value 

as a function of observation and action). In general, these agents work best with discrete 

action spaces, but can be computationally expensive for continuous action spaces.  

Agents that use both an actor and a critic are called actor-critic agents. In these agents, 

during training, the actor learns the best action it can perform using feedback from the critic 

(rather than using the reward directly). At the same time, the critic learns the value function 

from the rewards in order to be able to properly criticize the actor. In general, these agents 

can handle both discrete and continuous action spaces. 

Q-Learning agents 

The Q-learning algorithm is a model-free, online, policy-free reinforcement learning method. 

A Q-learning agent is a value-based reinforcement learning agent that trains a critical 

approximator to estimate future performance or rewards. For a given observation, the agent 
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selects and performs the action for which the estimated performance is highest. Q-learning 

agents can be trained in environments with observation and action spaces, where observation 

can be continuous or discrete while action must be discrete. 

During training, the agent explores the action space using epsilon-greedy exploration. During 

each control interval, the agent selects a random action with probability ε; otherwise, it selects 

the action for which the value function is larger with probability 1 − 𝜀. 

To estimate the value function, a learning agent 𝑄 maintains a critic 𝑄(𝑆, 𝐴; 𝜙), which is a 

function approximator with parameters 𝜑. The critic takes the observation 𝑆 and the action 𝐴 

as inputs and returns the corresponding expectation of the long-run reward. 

For critical approximations, table-based value functions are used, the parameters in 𝜙 are 

the actual values of 𝑄(𝑆, 𝐴) in the table. 

During training, the agent refines the parameter values in 𝜙. After training, the parameters 

remain at their tuned value and the trained value function approximator is stored in the critical 

approximator 𝑄(𝑆, 𝐴). 

A deep neural network is used to approximate the Q-value function within the critique. This 

network must have two inputs: one for observation and one for action. The observation input 

must accept a four-element vector. The action input must accept a two-element vector. The 

network output must be a scalar, representing the expected cumulative long-run reward when 

the agent starts from the given observation and performs the given action. 

 

Figure 12. Neural network architecture for the parameter net 

Q-learning agents use the following training algorithm. 

First, the critical approximator 𝑄(𝑆, 𝐴; 𝜙) is initialised with random parameter values in 𝜙. For 

each training episode, the following process is performed: 
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1. The initial observation S is obtained from the environment. 

2. The following is repeated for each step of the episode until 𝑆 is a terminal state. 

a) For the current observation 𝑆, a random action 𝐴 with probability 𝜀 is selected. 

Otherwise, the action for which the critical value function is larger is selected.  

𝐴 = argmax
𝐴
𝑄(𝑆, 𝐴; 𝜙) 

To specify ε and its decay rate, the Epsilon Greedy Exploration is used.  

b) Action 𝐴 is executed, observing the reward 𝑅 and the following observation 𝑆′. 

c) If 𝑆′ is a terminal state, set the objective of the y-value function to 𝑅. Otherwise, set it 

to: 

𝑦 = R + γmax
𝐴
𝑄(𝑆′, 𝐴; 𝜙) 

d) The difference 𝛥𝑄 between the objective of the value function and the current value 

of 𝑄(𝑆, 𝐴; 𝜙) is calculated. 

𝛥𝑄 = 𝑦 − 𝑄(𝑆, 𝐴;𝜙) 

e) Update the critical approximator using the learning rate 𝛼. Specifying the learning rate 

when creating the critic by setting the LearnRate within the agent options object. 

For table-based critics, the corresponding 𝑄(𝑆, 𝐴) value is updated in the table. 

𝑄(𝑆, 𝐴) = 𝑄(𝑆, 𝐴; 𝜙) + 𝛼 ⋅ 𝛥𝑄 

For all other types of critics, the gradients 𝛥𝜙 of the loss function with respect to the 

parameters 𝜙 are calculated. Then, you update the parameters based on the 

calculated gradients. In this case, the loss function is the square of 𝛥𝑄. 

f) Finally, the observation 𝑆 is set to 𝑆′. 

This algorithm will be used in the ALBERO use case (UC3 - Spain) within production 

scheduling to decide to what extent a machine or an operator is interchangeable for others 

with similar capabilities to perform a task. In this sense, the theoretical concepts explained 

above are associated with real elements of manufacturing in UC3 as follows: 

• The operator will be the agent in the model. 

• The actions will be the work, the route and the time executed by the operator.  

• The environment will be the machinery or the function to be executed such as using a 

tool or transporting material. 

• The interpreter will be the algorithm that evaluates the output obtained from the actions 

and generates a reward for the agent. 

• The states correspond to the situation of the assembly line, i.e., the state of the product 

and the availability of the machines and operators. 

Through the Beacons and the data collection interfaces located in the shop floor, the time 

spent by an operator on the different machines will be obtained and, depending on the 

production carried out, a reward will be assigned to him. In this way, it will be possible to 
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determine whether an operator is optimizing his work or whether, on the contrary, he is 

performing an inefficient job or route. 

Operators can then be given guidelines to increase their production and performance. 

2.6. Models for Master Production Scheduling 

Master production schedule (MPS) is a plan for individual commodities to be produced in 

each time period such as production, staffing, inventory, etc. It is usually linked to 

manufacturing where the plan indicates when and how much of each product will be 

demanded. This plan quantifies significant processes, parts, and other resources in order to 

optimize production, to identify bottlenecks, and to anticipate needs and completed goods. 

Since a MPS drives much factory activity, its accuracy and viability dramatically affect 

profitability. Typical MPSs are created by software with user tweaking. 

Set 

The set of lines 𝐻 = {1,2, 𝑛}, line index = ℎ; 

The set of weeks 𝑊 = {1,2, … , 𝑟}, the week index = 𝑤 ; 

The set of finished products 𝑀 = {1,2, … , 𝑠}, the finished product index = m; 

öüp: preliminary production parameter (0, . . , 𝑧)  

b: blocking week (𝐵 = 1, . . , 𝑐) 

Parameters: 

• h. your line is W. let the 𝑤𝑒𝑒𝑘𝑙𝑦 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  𝑡_ℎ𝑤 for the week. 𝑤. ℎ per 

week. the matrix containing the total working hours of the line will be marked with 𝑇: 𝑇 =

(𝑡_ℎ𝑤);  

• m. the unit quantity of the finished product is ℎ. even the matrix containing the amounts 

of hours required for it to be labeled will be marked with 𝐴: 𝐴 = (𝑎_𝑚ℎ), 𝑚 when calculating 

this number. the unit quantity of the finished product is ℎ. even the number of workers 

(man) – hours required to be labeled can be used; 

• m. W_m of the finished product. the matrix containing the quantities (requests) that 

needed to be delivered by the end of the week would be marked with 𝐷 = (𝑑_(𝑚𝑊_𝑚 )); 

• i_r: the amount of 𝑖 content based on the r prescription 

• l: time limit for blocking 

• 〖ym〗_(i_r mw)=w. The amount of semi-finished products based on the content for the 

m product at the beginning of the week 

• 〖sf〗_(mwi_r )=w. The 𝑜𝑟𝑑𝑒𝑟 + 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 amount based on the 𝑖 content of the 𝑚 product 

at the beginning of the week 

Decision Variables 

• 𝑠𝑏𝑚 = {
 if blocking is to be done for 1 m product

0 𝑜/𝑤
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• 𝑑öü𝑝𝑚 = {
if there is a preliminary production parameter for 1 m product

0 𝑜/𝑤
 

• 𝑣𝑚𝑤𝑖 = {
1, ∑ 𝑠𝑓𝑚𝑤𝑖𝑟 − 𝑦𝑚𝑖𝑟𝑚𝑤𝑖𝑟 ≤ 0

0, 𝑜/𝑤
 the amount of semi-finished products based on the 

content for the m product at the beginning of the week, 𝑤. if the 𝑖 content of the 𝑚 product 

at the beginning of the week is greater than the 𝑜𝑟𝑑𝑒𝑟 +  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 amount, it will receive 

a value of 1. 

• 𝑓 = {
1, ∑ 𝑎𝑚ℎ𝑥𝑚ℎ𝑤ℎ < 𝑙

0 𝑜/𝑤
 if the total production time of the 𝑚 product per week is less than 

the blocking limit, 𝑓 = 1. 

• 𝑗 = {
1, 𝑓𝑠𝑏𝑚 = 1  

0, 𝑓𝑠𝑏𝑚 = 0 𝑜/𝑤
 product is made and the justification for that week production time 

the product is smaller than 𝐿, if 1 takes the appropriate value 𝑥𝑚ℎ𝑤 = 𝑚. of the product 

𝑤. ℎ per week. even the amount produced. 𝑦𝑚𝑤 = 1, if 𝑚. manufactured 𝑤. if it will be 

produced per week, = 0 if it will not be produced 

 

Model 

 𝑚𝑖𝑛 𝑧 =∑(𝑡ℎ𝑤 −∑𝑎𝑚ℎ𝑥𝑚ℎ𝑤
𝑚ℎ,𝑤

) (1) 

 

 
(1 − 𝑗) ∑ ∑ 𝑥𝑚ℎ(𝑤−öü𝑝) + 𝑗 ∑ ∑ 𝑥𝑚ℎ(𝑤+𝑏)𝑏ℎ  ≤ (1 − 𝑗)dmWm

+∑ 𝑗dmWm+b𝑏öü𝑝ℎ  

(h=1,..,n) 
(2) 

 

 ∑ 𝑎𝑚ℎ𝑥𝑚ℎ𝑤𝑚 ≤ 𝑡ℎ𝑤, ∀ ℎ, ∀ 𝑤   (3) 

 

 

𝑣𝑚𝑤𝑖 ≤∑𝑥𝑚ℎ𝑤
ℎ

≤ (1 − 𝑣𝑚𝑤𝑖)max (𝑠𝑓𝑚𝑤𝑖𝑟 − 𝑦𝑚𝑖𝑟𝑚𝑤)dmWm
+ 𝑣𝑚𝑤𝑖dmWm

 ,

∀ 𝑚, ∀ 𝑤, ∀ 𝑖 

(4) 

 

 𝑦𝑚𝑤 ≤ 𝑥𝑚ℎ𝑤 ≤ 𝑀𝑦𝑚𝑤 (5) 

 

 𝑥𝑚ℎ𝑤 ≥ 0 (6) 

 

(1) The objective function expresses the remaining free time by subtracting the total duration 

of the products produced on that line from the total weekly production time on a line. 

Then, by summing this function from the line and week basis, it is aimed to find all the 
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free time. By minimizing the objective function, the objective is to minimize the total free 

time. 

(2) The purpose of the restriction is to produce a product by ignoring the preliminary 

production parameter if a product can be blocked and the weekly  production time of the 

product is less than the maximum time required for the blocking Decommissioning. 

Otherwise, if necessary, production will be carried out by considering the preliminary 

production parameter. 

(3) It prevents the total duration of the products to be produced on the weekly line from 

exceeding the weekly line-based production time. 

(4) W. The m product produced per week will be produced as much as the order + forecast 

if the semi-finished product is sufficient, and if it is insufficient, the number of semi-

finished products that can be produced will be produced. 

(5) w of the product m. In order for the production to be made per week, the relevant product 

is defined that week 

2.7. Models for KPI Monitoring 

The aim is to digitize the process on the shop floor and to better visualize the software 

development process. Users can define their own KPI in the system, select from related KPIs 

and open them easily on a monitoring screen. Related to the formulas of KPIs or meaningful 

criteria for the KPI can be selected. A general monitoring screen will be designed according 

to KPI groups. On this screen, the current KPI value of the facility, the KPI value of the last 

week and the last month will be displayed numerically and graphically.  

In addition to the KPIs defined in the system, the user can add his own KPI. While defining 

the KPI, the name of the KPI is written. Level selection is made. There are 3 levels: tactical, 

operational and strategic. The unit of the calculated value of the KPI is selected. The user 

can select the unit they want to see differently. The KPI trend is selected as either ascending 

or descending. The measurement frequency should be specified to indicate how often the 

KPI will be measured. The KPI source must be selected. The value ranges of  the KPI should 

be defined. Significant ranges of the KPI should be specified. There are 3 ranges of values, 

minimum, normal and maximum. Warning messages to be displayed in the system when 

values are received in these intervals are determined according to this interval. When it falls 

below the minimum value, when it is between the minimum value and the normal value, when 

it is above the normal but below the maximum value, and when it exceeds the maximum 

value, 4 messages are entered into the system. 

A meaningful formula is specified for anyone reading it in the KPI description. In the formula 

field, the formula to be calculated by the system should be written by selecting the appropriate 

parameter and dragging it. It is necessary for the proper creation of the query in order to pull 

the correct data from the database. The KPI resource is selected. By using this KPI value, 
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the area to be improved is entered. Necessary notes are written. When calculating the KPI, 

they are selected from which tables are fed data. 

Monitoring screens of KPIs will be derived from the same form and different KPI monitoring 

screens will be created and added to the menu. The menu name is entered, one or more KPIs 

to be followed in the form are selected, the appropriate filters for this KPI are selected and 

saved. 

On the KPI monitoring screen, the date selection can be selected on a daily, weekly and 

monthly basis. Increases and decreases can be followed by visualizing them with graphics. 

Data is also presented as a table. Appropriate criteria can be listed for filtering the data. These 

criteria should also filter each other when necessary. For example, when a fault type is 

selected, only faults belonging to this fault type are listed. 

On the KPI general monitoring screen, the current value of the most important KPIs selected 

according to the KPI levels, the last 1 week, month or year value and a general graphic screen 

are displayed. 

KPI definitions are made through the interface and some KPIs are given in the table below.  

KPI Name Note Unit Frequency Explanation Range 

OEERate 

Ratio of Fully 

Productive Time 

to Planned 

Production Time 

Ratio 
Day/Week/

Month 

(∑ Fully Productive 

Time) / (∑ Planned 

Production Time) * 100 

0-100-

Ratio 

Range 

Performanc

eRate 

Ratio of Net Shift 

Time to Working 

Time 

Ratio 
Day/Week/

Month 

(∑ Net Shift Time) / (∑ 

Working Time) * 100 

0-100-

Ratio 

Range 

QualityRate 

Ratio of Fully 

Productive Time 

to Net Working 

Time 

Ratio 
Day/Week/

Month 

(∑ Fully Efficient Time) 

/ (∑ Net Working Time) 

* 100 

0-100-

Ratio 

Range 

Mean time 

between 

failure 

(MTBF) 

Mean time 

between failures 
Minute 

Day/Week/

Month 

(∑ uptime) / (Total 

number of failures) 

2-50-

Minute 

Intervals 

Mean time 

to repair 

(MTTR) 

Average time 

between repairs 
Minute 

Day/Week/

Month 

(∑ repair time) / (Total 

number of failures) 

0-100-

Ratio 

Range 
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KPI Name Note Unit Frequency Explanation Range 

Percentage 

reduction in 

defect rates 

Error rates Piece 
Day/Week/

Month 

(∑ number of defective 

products) / (Total 

number of products) 

*100 

0-100-

Ratio 

Range 

PPM Parts per million Piece 
Day/Week/

Month 

(∑ Number of Scrap) / 

(Net Production) * 

1000000 

0-

10000-

Product 

Quantity 

 

2.8. Models for Production Line Optimization to Minimize Total 

Cost and Maximize Machine Longevity 

The production line scheduling system for total cost and machine longevity optimization, 

developed by ISEP, is divided into three main components: data processing character ized by 

the cell balancing; genetic algorithm represented by the initial population, crossover, 

mutation, and selection; and finally, the deterministic optimizations defined by the cost and 

shift optimizations. Figure 13 represents the flowchart of the ISEP production line scheduling 

system for total cost and machine longevity optimization. 

 

Figure 13. Flowchart of the ISEP production line scheduling system for total cost and machine longevity 
optimization. 

2.8.1. Cell Balancing 

The proposed algorithm starts by balancing the requests by the different cells available for 

manufacturing. This phase begins with the creation of a product request list, sorted by 

descending order of energy consumption needed to complete a product request. Because the 

tasks needed to complete a product request can be executed using different task modes with 

different energy profiles, an average is made considering all the possible task modes. An 

average of all the possible task modes is considered, above any other type of measure, since 

it better represents the overall processing time that a task can take. 
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Afterward, following the product request list, each request is assigned to the cell that has the 

lowest overall energy consumption, being the product request consumption added to the cell’s 

overall energy consumption. Moreover, the cell assignment process also takes into account 

if a cell is able to produce the requested product and if it has enough periods to execute the 

product tasks. 

Finally, after each request is assigned to a cell, each cell is executed by a genetic algorithm, 

followed by deterministic-based optimizations. However, the cell optimizations are connected 

among them by the general data and comply with general constraints, such as the availability 

of renewable energy sources that are shared among cells, and energy limit constraints that 

are applied to the plant floor (i.e., the sum of cells). 

The cell balancing optimization focuses on maximizing energy distribution among cells, thus 

allowing more flexible request management, which in turn reduces the overall energy cost.  

2.8.2. Initial Population 

The ISEP Genetic Algorithm (GA) starts by initially creating an initial random population, 

respecting all the imposed constraints. To facilitate the creation of an individual and decrease 

the rate of not feasible individuals, the algorithm takes into account the compatible machines 

for each task and prioritizes tasks with a lower number of compatible machines and with a 

higher processing time. It is noteworthy that, in this stage of the algorithm, maintenance 

activities and machine setups are treated as tasks with imposed constraints, such as when a 

maintenance activity could begin and end, and that setups must precede a certain task. After 

knowing the list of tasks associated with each machine, a two-dimensional matrix is created, 

which represents the work plan of the job shop, where each line represents the plan of a 

machine, and each column represents a period. Figure 14 shows an example of such a matrix, 

where tasks, which some of them can represent a maintenance activity or a machine setup, 

are identified by colors and their identifiers. 

 

Figure 14. Example of an individual matrix (machine/period), from the ISEP genetic algorithm, where tasks 
are identified by colors and their identifiers. 

After an individual matrix is generated and at least one constraint is not respected, there are 

implemented methods that try to repair the generated individual (i.e., by shifting tasks left or 

right, swapping tasks). In case the repair is not successful, another individual is generated.  
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Since the number of columns (i.e., time period) corresponds to the time window of the 

schedule, every matrix from each cell will have the same number of columns but may differ 

in the number of rows, as cells can have a different number of machines associated.  

2.8.3. Crossover 

A new generation begins with the crossover of the population of the previous generation. The 

crossover performed is done between two individuals randomly chosen, which have not yet 

been crossed; this is guaranteed through a permutation of the population before the crossover 

is done. The crossover is a two-dimensional type, which will try to balance the tasks coming 

from each parent (individual). The crossover between two individuals (parents) begins with 

the formation of the list of tasks for the entire plan, ordered in decreasing order of processing 

time, and if they have equal times, it is ordered in ascending order of the number of machines 

compatible with the task. This, therefore, allows reducing the rate of invalid crosses between 

two individuals. In order of the task list, each task is taken and inserted in the child according 

to the parents’ coordinates; first, it starts with parent 1, then it changes to parent 2, then 

parent 1 again, and in general, follows this sequence. Another child is made from the same 

parents but starts with parent 2 coordinates. Figure 15a represents the first four steps in a 

crossover, starting from parent 1. 
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Figure 15. Individuals’ crossover and mutation from the ISEP genetic algorithm. (a) Example of the first 4 
steps in a crossover, starting from parent 1; (b) example of a swapping tasks mutation; (c) example of a 

swapping the task mode on a task mutation. 

After each crossover, where there are no incompatibilities between parent 1 coordinates and 

parent 2 coordinates, the resulted child is evaluated in terms of respecting all the imposed 

constraints. If at least one of the imposed constraints is not respected, the crossover is 

considered invalid. 

In case of an invalid crossover, a perfect copy of either parent 1 or parent 2 is done to the 

child. This is done since afterward, in the selection phase, all the repeating individuals are 

eliminated, thus removing the child from the population pool. In short, if an invalid crossover 

occurs the child is never added to the population. 

The most common approach to a crossover in a matrix is separating the parents based on a 

cutting point(s), in either a column or row manner, in other words, a probabilistic strategy. 

However, due to the problem at hand, many problems would arise such as task splitting, a 

high overlap of tasks, between the parents, and inconsistencies (i.e., tasks can have different 

processing times on each parent, due to task modes). Therefore, it was necessary to use a 

more deterministic approach to solve these issues. 
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2.8.4. Mutation 

Using the population obtained from the crossover, a mutation is performed. In this procedure, 

the algorithm takes each individual, and according to the percentage of mutation defined in 

the input data, it decides whether or not the mutation will be applied to a given individual. 

However, if the mutation is applied, one of three different types, using equal probabilities, is 

randomly chosen: 

• Swapping tasks, changing two tasks in order of execution and/or machine. Figure 15b 

represents an example of a swapping tasks mutation; 

• Swapping the task mode on a task, affecting energy consumption and processing 

time. Figure 15c represents an example of swapping the task mode on a task 

mutation; 

• The combination of both swapping tasks and task mode. 

If a mutation leads to an invalid individual (i.e., not respecting a certain constraint) then the 

mutation is reversed and another mutation, affecting different tasks in the schedule, is tried. 

Nevertheless, if no valid individual can be reached with a mutation, after a short number of 

tries, no mutation is done. 

2.8.5. Selection 

The selection phase begins with the union of the new and the old populations, that is, the 

crossed and mutated population with the initial population of the previous generation. 

Additionally, repetitions of individuals are eliminated.  

Afterward, each individual is evaluated according to their fitness score, which follows a multi -

objective function that minimizes the overall total costs, maximizes profit from selling energy, 

and minimizes machine occupancy deviation. 

The first two objectives (i.e., minimize costs and maximize profit) can be joined into a single 

function which is divided into four fundamental equations: period energy consumption, period 

energy to pay, period maintenance to pay, and total cost. 

The Period Energy Consumption (𝑃𝐸𝐶), represented by 𝑃𝐸𝐶𝐷𝑒𝑚𝑎𝑛𝑑(𝑝), gives the total energy 

consumed by the tasks in a given period 𝑝, it can be described by eq. (7). 

𝑃𝐸𝐶𝐷𝑒𝑚𝑎𝑛𝑑(𝑝) = ∑ 𝐸𝐷𝑒𝑚𝑎𝑛𝑑(𝑝,𝑚)  × 𝑃𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑝,𝑚)

𝑀

𝑚=1

 (7) 

 

The variable 𝑝 portrays a specific period, 𝑚 describes a machine index, and 𝑀 the total 

number of available machines for production. Variables 𝑝 and 𝑚 can be compared to the 𝑥 

(i.e., column) and 𝑦 (i.e., row) cartesian coordinates, respectively, in order to navigate in the 

individual matrix. The energy consumption of a machine 𝑚 in period 𝑝 is described by 

𝐸𝐷𝑒𝑚𝑎𝑛𝑑(𝑝,𝑚). Furthermore, if a machine priority constraint is applied, variable 

𝑃𝑀𝑎𝑐ℎ𝑖𝑛𝑒(𝑝,𝑚) represents the priority of machine 𝑚 in period 𝑝. For 𝑃𝑀𝑎𝑐ℎ𝑖𝑛𝑒 values above 1, the 
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priority is decreased, while below 1 it is increased, as a result, neutral priority (i.e., no priority 

associated) is represented by the value 1. 

Regarding the Period Energy to Pay (𝑃𝐸𝑃), portrayed as 𝑃𝐸𝑃𝐷𝑒𝑚𝑎𝑛𝑑(𝑝), it represents the 

energy to pay (i.e., energy cost) in a given period 𝑝, it is represented by eq. (8). 

𝑃𝐸𝑃𝐷𝑒𝑚𝑎𝑛𝑑(𝑝)

=

{
 
 

 
 

𝑃𝐸𝑃𝐷𝑒𝑚𝑎𝑛𝑑(𝑝) = 0, 𝑖𝑓 𝐸𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑝) = 𝑃𝐸𝐶𝐷𝑒𝑚𝑎𝑛𝑑(𝑝)

𝑃𝐸𝑃𝐷𝑒𝑚𝑎𝑛𝑑(𝑝) = (𝐸𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑝) − 𝑃𝐸𝐶𝐷𝑒𝑚𝑎𝑛𝑑(𝑝)) × 𝐸𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒(𝑝),

  𝑖𝑓 𝐸𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑝) > 𝑃𝐸𝐶𝐷𝑒𝑚𝑎𝑛𝑑(𝑝)

𝑃𝐸𝑃𝐷𝑒𝑚𝑎𝑛𝑑(𝑝) = (𝑃𝐸𝐶𝐷𝑒𝑚𝑎𝑛𝑑(𝑝) − 𝐸𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑝)) × 𝐸𝐵𝑢𝑦𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒(𝑝)

 
(8) 

 

Variable 𝐸𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑝) portrays available locally generated energy that is free of charge (e.g., 

PV generation) in period 𝑝, 𝐸𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒(𝑝) describes the price for selling energy in period 𝑝, 

and 𝐸𝐵𝑢𝑦𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒(𝑝) represents the price for buying energy in period 𝑝. In case 𝑃𝐸𝑃𝐷𝑒𝑚𝑎𝑛𝑑 

results in a positive value (i.e., above zero), it indicates that there are energy costs to be paid, 

while negative values (i.e., below zero) indicate that profit was made by selling generated 

energy in excess (i.e., all the 𝑃𝐸𝐶𝐷𝑒𝑚𝑎𝑛𝑑  was covered by 𝐸𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 and the rest sold to energy 

buyers). Subsequently, zero indicates that there are no energy costs to be paid and no profit 

was obtained from generated energy in excess. 

To calculate the maintenance costs, it is used the Period Maintenance to Pay (𝑃𝑀𝑃), 

represented by 𝑃𝑀𝑃𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒(𝑝) it portrays the maintenance costs to pay in a given period 𝑝, 

it is represented by eq. (9). 

𝑃𝑀𝑃𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒(𝑝)

=

{
 

 
𝑃𝑀𝑃𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒(𝑝) = 0, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑐𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 

𝑃𝑀𝑃𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒(𝑝) = 𝑀𝐼𝑛 𝐻𝑜𝑢𝑟𝑠 𝑃𝑟𝑖𝑐𝑒(𝑝),

  𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑐𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑖𝑛 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 ℎ𝑜𝑢𝑟𝑠
𝑃𝑀𝑃𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒(𝑝) = 𝑀𝑂𝑢𝑡 𝐻𝑜𝑢𝑟𝑠 𝑃𝑟𝑖𝑐𝑒(𝑝)

 
(9) 

 

Maintenances can be scheduled either in maintenance hours (i.e., the interval of periods in 

which the maintenance must/can be done) or out of maintenance hours (i.e., not in the 

stipuled interval of periods, normally has a monetary penalty). Accordingly, variable 

𝑀𝐼𝑛 𝐻𝑜𝑢𝑟𝑠 𝑃𝑟𝑖𝑐𝑒(𝑝) describes the price of a maintenance activity done in maintenance hours in 

period 𝑝, while 𝑀𝑂𝑢𝑡 𝐻𝑜𝑢𝑟𝑠 𝑃𝑟𝑖𝑐𝑒(𝑝) represents the maintenance price of a maintenance activity 

done out of maintenance hours in period 𝑝. 

Finally, the Total Cost (𝑇𝐶) of an individual can be obtained through eq. (10). 

𝑇𝐶 =∑ 𝑃𝐸𝑃𝐷𝑒𝑚𝑎𝑛𝑑(𝑝) + (∑ 𝑃𝑀𝑃𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒(𝑝)

𝑀

𝑚=1

)
𝑃

𝑝=1
 (10) 
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The total number of available periods in the time window of the schedule is represented by 

the variable 𝑃. Also, eq. (10) can be seen as the sum of the energy cost of each individual, 

determined as a result of the energy balance (𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 − 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) multiplied by the 

respective energy price, and the maintenances cost according to their respective 

maintenance hours price. 

It is noteworthy that, variable 𝑃𝐸𝑃𝐷𝑒𝑚𝑎𝑛𝑑(𝑝) already includes the energy costs from all the 

machines in a given period 𝑝. However, variable 𝑃𝑀𝑃𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒(𝑝) does not include all the 

maintenance costs from period 𝑝, thus the need to incorporate, in eq. (10), the sum of all 

maintenance costs from all the machines in period 𝑝. 

To minimize machine occupancy deviation (i.e., machine occupation rates standard 

deviation), and thus maximize machine longevity by reducing overload and usage of single 

machines, it is employed a function that can be divided into the following three equations: 

machine degradation classifier, machine occupation rate, and occupation standard deviation. 

To calculate the machine occupancy deviation, only tasks and setups are considered to 

influence the degradation of a machine, since they require the machine to be working. 

Therefore, the classification of factors that contribute to the degradation of a machine is done 

using the Machine Degradation Classifier (𝑀𝐷𝐶), represented in eq. (11) as 𝑀𝐷𝐶𝐹𝑎𝑐𝑡𝑜𝑟(𝑝,𝑚), 

which classifies a factor contributing to the degradation of a machine 𝑚 in period 𝑝 with the 

value 1, otherwise, it classifies it with 0. 

𝑀𝐷𝐶𝐹𝑎𝑐𝑡𝑜𝑟(𝑝,𝑚)

= {
𝑀𝐷𝐶𝐹𝑎𝑐𝑡𝑜𝑟(𝑝,𝑚) = 1, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑡𝑎𝑠𝑘 𝑜𝑟 𝑠𝑒𝑡𝑢𝑝 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 

𝑀𝐷𝐶𝐹𝑎𝑐𝑡𝑜𝑟(𝑝,𝑚) = 0
 

(11) 

 

The Machine Occupation Rate (𝑀𝑂𝑅), portrayed by 𝑀𝑂𝑅𝐹𝑎𝑐𝑡𝑜𝑟𝑠(𝑚), gives the occupation rate 

of factors that contribute to the degradation in a given machine 𝑚, it can be described by eq. 

(12). 

𝑀𝑂𝑅𝐹𝑎𝑐𝑡𝑜𝑟𝑠(𝑚) =
∑ 𝑀𝐷𝐶𝐹𝑎𝑐𝑡𝑜𝑟(𝑝,𝑚)
𝑃
𝑝=1

𝑃
 (12) 

 

Lastly, the Occupation Standard Deviation (𝑂𝑆𝐷) of an individual can be determined by 

calculating the population standard deviation (i.e., not the sample standard deviation), as 

represented in eq. (13). 

𝑂𝑆𝐷 =
√
∑ (𝑀𝑂𝑅𝐹𝑎𝑐𝑡𝑜𝑟𝑠(𝑚) − (

∑ 𝑀𝑂𝑅𝐹𝑎𝑐𝑡𝑜𝑟𝑠(𝑚)
𝑀
𝑚=1

𝑀 )

2

)𝑀
𝑚=1

𝑀
 

(13) 

 

After obtaining both the 𝑇𝐶 and 𝑂𝑆𝐷 for each individual a Min-Max normalization approach is 

taken, using the results obtained from the individuals in the population, to normalize the 𝑇𝐶 
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and 𝑂𝑆𝐷 values of each individual in the population. Then, each individual is evaluated 

according to the Fitness Score (𝐹𝑆), described by eq. (14). 

𝐹𝑆 = 𝑇𝐶𝑁𝑜𝑟𝑚 ×𝑊𝑇𝐶 + 𝑂𝑆𝐷𝑁𝑜𝑟𝑚 ×𝑊𝑂𝑆𝐷 (14) 

 

Variables 𝑇𝐶𝑁𝑜𝑟𝑚 and 𝑂𝑆𝐷𝑁𝑜𝑟𝑚 describe the normalized 𝑇𝐶 and 𝑂𝑆𝐷 values, respectively, of 

an individual. The optimization weights, defined by the user in the input data, for the overall 

costs (i.e., 𝑇𝐶) and machine occupancy deviation (i.e., 𝑂𝑆𝐷) are represented by variables 𝑊𝑇𝐶 

and 𝑊𝑂𝑆𝐷, respectively. The sum of variables 𝑊𝑇𝐶 and 𝑊𝑂𝑆𝐷 must always be 1, and they must 

assume a value from 0 to 1, inclusive. 

The selection of the n best individuals is made according to the input parameter of the 

algorithm, chosen by the user. The remaining individuals (i.e., population size less n) are 

obtained from non-elite tournaments. Each tournament consists of two individuals randomly 

chosen, where they compete based on their fitness scores (i.e., 𝐹𝑆). The algorithm calculates 

the chance of individual 1 winning the tournament using eq. (15). 

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑐ℎ𝑎𝑛𝑐𝑒
1 = 1 −

𝑓𝑖𝑡1

𝑓𝑖𝑡1 + 𝑓𝑖𝑡2
 (15) 

 

where 𝑓𝑖𝑡1 and 𝑓𝑖𝑡2 represent the fitness of individual 1 and individual 2, respectively. Then, 

a random decimal number between 0 and 1 is generated. If the generated decimal is lower 

than the chance of individual 1 winning, eq. (15), then individual 1 is declared the winner. 

Otherwise, individual 2 leaves victorious. Therefore, the individual with the lowest fitness, 

which in turn has the lowest combination of overall cost and machine occupancy deviation, is 

the one most likely to be chosen. 

2.8.6. Extract Best Individual 

At the end of the selection phase, the next generation begins with the population obtained 

from this selection, and all the procedures mentioned above are repeated. Finally, after a stop 

condition is met, the best individual is extracted from the last population of  the genetic, that 

is, the lowest balance of cost and machine occupancy deviation job shop schedule, generated 

by the ISEP GA. Thus, in general, the ISEP GA, through eq. (14), which represents the multi-

objective function, tries to minimize the overall cost and machine occupancy deviation of the 

elaborated job shop schedule as much as possible, taking into consideration constraints, such 

as task orders, task collisions, energy limits, request deadlines, PV generation, etc.  

2.8.7. Cost Optimization 

After the execution of the ISEP GA, a post-processing phase is required to adjust/further 

optimize the result given by the ISEP GA through a deterministic approach. 
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The cost optimization function will analyze the result of the ISEP GA, and it will identify 

periods with lower energy costs that do not have an assigned task, then it will try to place the 

tasks with higher energy consumption to the lower energy cost time slots. If tasks can be 

exchanged while resulting in a cost reduction and respecting all the constraints, the exchange 

is carried out. This optimization function uses the energy cost resulted from the prices of all 

energy sources available, including local renewable energy sources. 

It is worth noting that this deterministic optimization only affects tasks schedu led in the same 

machine, and as such, tasks are never swamped between machines. Therefore, this 

optimization does not interfere with the machine occupancy deviation optimization done by 

the ISEP GA. 

2.8.8. Shift Optimization 

Shift optimization is made by sliding tasks and/or maintenance activities in time to reduce the 

time between them. This optimization differs from the cost optimization because no 

task/maintenance will be changed, only slide to near periods. Its main purpose is to join tasks 

and maintenances, reducing the time between them, and increase space for future 

unexpected product requests and maintenance activities. For each isolated task/maintenance 

(i.e., with empty periods on the left or on the right), the shift optimization will try to shift it to 

the left, and if all constraints are valid and the overall costs decrease or are maintained within 

the shift margin constraint level, the shift is performed. If the left shifting is not possible, then 

the shift optimization tries to shift the task/maintenance to the right, applying the same 

conditions described before. Figure 16 shows an example of the shift optimization performed 

to a machine work plan, from the ISEP production line scheduling system. 

This optimization also only swaps scheduled tasks/maintenances in the same machine, thus 

it does not interfere with the machine occupancy deviation optimization done by the ISEP GA. 

 

Figure 16. Example of the shift optimization for a machine work plan, from the ISEP production line 
scheduling system. 
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3. Conclusions 

With the information presented in the previous sections, we can conclude that there is no 

single model to achieve the objectives set out in the project, but that there are different ways 

of doing so. In fact, different methods are used in the different use cases, for example, to plan 

production. 

While in UC2 (Turkey) two mathematical models - a genetic algorithm and a simulated 

annealing model - have been used to read the tasks to be performed, determine which 

machine is the most suitable to perform them, and combine the results of the two algorithms 

based on the results obtained in the simulations, in UC3 (Spain) this will be done with a Q-

learning algorithm that will determine the optimal machine - operator - priority configuration 

to determine how a task is to be performed. However, UC1 (Portugal) proposes the 

combination of cell balancing, a genetic algorithm and deterministic optimizations to maximize 

the energy distribution in the cells, determine the task distribution and optimize the results 

both in terms of cost and task distribution. In addition, UC1 presents a different pers pective 

as to which parameters are taken into account to optimize production, the priority here being 

energy, costs and time spent on both production and maintenance tasks.  

Although it may seem counterproductive that in each use case a different combination of 

algorithms is used despite pursuing the same objective, this plans the possibility of being able 

to compare which combination provides better results or is more suitable depending on the 

type of production involved.  
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