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Abstract 

One of the main premises of the ASIMOV project is that optimal settings and behavioural policies of 
cyber-physical systems can be found through Artificial intelligence (AI) techniques that leverage digital 
twins (DTs). DTs generate artificial data to feed the training of AI data-hungry algorithms, dramatically 
reducing the needed data from system trials. In this setting, it is crucial to define the interface between 
the DT/real-system and the AI agent or algorithm. This interface establishes how the DT generates 
training data for the AI algorithms so that the behaviour and optimization possibilities of the system can 
be understood by the AI algorithms. The present document defines this interface with generality and 
shows that it is broad enough to capture the two main use cases, namely the Electron microscope and 
the Unmanned Utility Vehicle. The proposed interface relies on three main components: pre-processing, 
post-processing and variations. Pre-processing matches high-level actions/decisions to be taken by the 
AI agent to proper low-level inputs of the system. Post-processing translates real observations generated 
by the system and/or simulated observations generated by the DT into suitable information for the AI 
agent to respond to, e.g., the State and the Reward in Reinforcement Learning (RL). Variations pertain 
to informative data generation, namely by considering sufficiently rich variations or scenarios to provide 
a suitable training set. Related literature associated with these three main components of the interface is 
surveyed. For each of the two main use cases of the project, the Electron Microscope, and the Unmanned 
Utility Vehicle, the three main components are instantiated, and use-case-specific training features are 
discussed. 
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1 Introduction 

Cyber-physical systems (CPSs) are increasing in complexity and number, which emphasises the need 
for more advanced methods to control how they behave. The goal of the ASIMOV-project is to optimise 
the process of determining optimal settings or behavioural policies for these systems. Due to the 
complexity of such systems, Artificial Intelligence (AI), especially reinforcement learning (RL), is 
considered a promising direction for controlling CPSs. In RL, an AI agent learns to perform desired 
behaviour by interacting with an environment (Sutton & Barto, 2018). By exploring the complete domain 
of the environment, namely from all-encompassing experiences, an optimal policy can be discovered.  
 
A challenge within RL is the need for a huge amount of experience to eventually discover the optimal 
policy. It is often impractical to gather the needed amount of experience from the actual 
system/environment. Consider for example the two CPSs under consideration in the ASIMOV-project: 
the electron microscope (EM) and the unmanned utility vehicle (UUV). These systems have a highly 
complex structure with many inputs. Using these systems for collecting the needed experience is 
unfeasible. Furthermore, training time is very costly on these real systems (RS’s). To overcome these 
two drawbacks, digital twins (DTs) are used in the ASIMOV-project. In fact, synthetic data generated by 
the DT can replace or complement the actual environment data. Moreover, DTs allow faster than real-
time training, in a cost-efficient digital environment.  
 
A crucial aspect in a DT-supported training environment, is the interface between the AI agent and the 
DT. This interface will be created in this task. In particular, the central question addressed in T2.2 is: 
 

How can a DT create corresponding training data for an AI, so that behaviour and optimisation 
characteristics of the modelled product can be understood by the AI? 

 
The interface between the AI agent and the DT should be applicable to the RS as well. The structure of 
the interface between DT/RS and AI agent can be seen in Figure 1. The interface consists of three blocks: 
pre-processing, post-processing and variations. Pre-processing matches (high-level) actions/decisions to 
be taken by the AI agent to proper (low-level) inputs of the system. Post-processing translates real 
observations generated by the RS and/or simulated observations generated by the DT into suitable 
information for the AI agent to respond to, e.g., the State and the Reward in RL. The block variations 
pertain to informative data generation. It considers sufficiently rich variations or scenarios to provide a 
good training set. In particular, the DT-based training setting in ASIMOV allows to introduce more 
“exceptional/rare” cases in the variation of the training set, to properly prepare the AI agent for these 
scenarios. This is in contrast with the generation of data based on the RS, in which such rare cases are 
often not (sufficiently) encountered. Hence, the trained AI agent is typically not trained for choosing proper 
actions in these cases. This is a potentially strong benefit of DT-based training (certainly for safety-critical 
applications or when calibrating fragile expensive equipment).   
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Figure 1 Overview of Task 2.2 contents 

In this task these three blocks are elaborated in detail and eventually mapped to the use-cases.  
 
The remainder of the chapter is organized as follows. Chapter 2 presents definitions of terms that will be 
used throughout the deliverable. Chapter 3 gives the current state of the art of the interface; in particular 
is provides an overview on the methods corresponding to pre-processing, post-processing and variations 
that can be found in literature. Chapters 4 and 5 give the view on the interface from the perspective of 
the EM and UUV use-case, respectively. Chapter 6 discusses the generic solution of the interface by 
comparing the use-cases of Chapters 4 and 5. In particular, it finds commonalities and differences 
between the interface of the EM and UUV. In Chapter 7, the conclusions and a summary the most 
important results and achievements are given.  
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2 Definitions 

This chapter provides an overview of the definitions of terms that will be used throughout the remainder 
of this document. Since two fields are combined in this chapter (the control and the machine learning 
fields), there are discrepancies between the terms, see, e.g., (Busoniu, de Bruin, Tolic, Kober, & Palunko, 
2018). These discrepancies motivate the present chapter. A total of nine main terms are listed in this 
chapter: State, Reward, Observation, Action, Input, Internal state, Pre-processing, Post-processing, and 
Variations. The underlying relation between these terms can be seen in Figure 1. The first five terms are 
briefly mentioned, since they are discussed in detail in D2.1. Internal state is an important term as will 
turn out later in the document, related to the Markov property. The last three terms are the main focus of 
this deliverable. The definitions are as follows: 
 

State  State (s) is the signal that is used by the AI agent and forms a representation of 

the current environment. This choice of State is user-determined. The state is 

obtained or estimated from the Observation. 

Reward Reward (r) is the signal that represents the goal. The Reward is also user-

determined from the Observation. It is used by the AI agent to update its policy. 

Observation Observation (y) is the signal that the system (DT or CPS) outputs from receiving 

an input. This signal is then post-processed to generate the State and the 

Reward. 

Action Action (a) is the signal that the AI agent generates, based on the State and 

Reward. 

Input Input (u) is the signal that is entered into the system after pre-processing of the 

Action. 

Internal state The internal state (x) characterizes the current environment completely. This 

means that history is implicitly embedded in the internal state. In a Markov 

Decision Process (Ghavamzadeh, Mannor, Pineau, & Tamar, 2015) , we can give 

the probability of ending in a new internal state from the current internal state and 

the current input using a state transition function. The internal state satisfies the 

Markov Property by definition. The Observation is usually a function of the 

Internal state and often has reduced dimensionality (partial observability). 

Pre-processing In this document and in the ASIMOV project in general, pre-processing refers to 

the manipulation of the signals that the AI agent produces before they are put 

into the DT or RS. Note that this definition is different from the definition of pre-

processing in most literature on data analysis. There, pre-processing refers to 

the process of manipulating data before it is used for analysis.   

Post-processing Post-Processing refers to the manipulation of the Observations produced by the 

system in order to create the State and the Reward to be used for the AI agent. 

Note, this is also different from the definition of post-processing in data analysis 

literature. In data analysis, post-processing concerns the manipulation of data 

after the main analysis has been performed. In this document, the ‘post’ refers to 

the fact that the signals have been produced by the system. 

Variations The system on which the training of the AI agent is being done is one instance of 

the digital prototype, which corresponds to one intended purpose. Variation can 

be used: 

• To improve the AI agent's robustness by changing the DTs properties 

slightly and therefore imitating artefacts of the RS (e.g. manufacturing 

anomalies). This also can account for uncertainty in the internal state 

(partial observability). 



D2.2 
Methods and Tools for Training AI with Digital Twin 

public 
 

 
 

    

Version Status Date Page 
1.1 public 2022.10.20 10/38 

 

• To make the trained AI agent applicable in other intended purposes, in 

which the CPS behaves substantially differently. 

Training the AI agent with such variations can be seen as a way to enable a zero-

shot approach for calibration of the RS (Degrave, et al., 2022). 
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3 State of the art 

In this section, the state of the art regarding pre-processing, post-processing and variations as defined in 
Chapter 2 is presented. 
 
3.1 Pre-processing 
The goal of pre-processing for interactions with the system is to reduce the complexity of the RL problem. 
While the Inputs (u) might be required to be very complex in order to maximize the obtained Rewards (r), 
it might be possible to obtain almost the same Rewards with simple Actions (a) using smart pre-
processing. Additionally, the pre-processing block can be used to change the Inputs (u) in order to 
increase safety or satisfaction of constraints. 

3.1.1 Input Shaping 

In this section, different methods for shaping the input are detailed. In general, the dimensionality of the 
input space for typical CPSs can be very high. For example, consider the problem of generating a 
trajectory for a pen in order to replicate handwriting. This problem could be formulated as finding a 
sequence of points that, when connected, produce written text. Finding an appropriate sequence of 
positions on a 2D plane which together constitute handwritten text presents an extremely complex task. 
Using what we call input shaping, we can reduce the complexity and learn to solve the problem more 
quickly. There exist many ways of doing this, such as discretization of the action space into a finite set of 
positions, parametrizing the inputs into a reduced set of sub-trajectories, learning an encoding of possible 
moves, and smart interpolating between points or actions. An important concept to consider is whether 
the shaped input satisfies controllability of the system. 

3.1.1.1 Discretization 

The first question that arises is why the action space should be discretized in the first place. Firstly, the 
theoretical analysis behind discrete action space problems is more developed than that of continuous 
action spaces. However, many CPSs have a continuous input space by design, which results in an infinite 
set of possible inputs at every timestep (Tang & Agrawal, 2020). 
 
There are multiple ways in which the action space can be discretized. The simplest is to consider a 
continuous input space and to simply divide the space into many discrete parts. This method causes a 
problem however, as for a high dimensional input space, the number of discrete actions quickly rises. An 
alternative approach is to factorize the joint distribution over discrete actions, which achieves the same 
discretization but reduces the amount combinations which are possible  (Tang & Agrawal, 2020). These 
considerations reveal a trade-off between lowering the dimensionality of the actions and maintaining the 
accuracy of the inputs, as the methods that result in lower dimensionality also compromise on the possible 
inputs that can be given. 
 
Another consideration to make when discretizing actions is whether the actions should be relative or 
absolute. This concept is best illustrated with an example. Consider UC1, the electron microscope. In this 
use case, the objective is to calibrate the instrument by tuning knob values which improve the resulting 
image quality. For instance, if the image is under-focused the focus knob should be turned until focus is 
achieved. The value of the signal that is being sent to the focus lens, which is a voltage, is not necessarily 
relevant to the calibration solution and might have an offset in between different attempts. Additionally, 
using relative actions can improve numerical conditions, and can turn static problems into dynamic 
problems by creating trajectory through the input space. Note that when there are input constraints, the 
relative actions should be canceled when they would result in violation of the constraint. 
The concept of discretization can be generalized into parametrized inputs, which are introduced in the 
next section. 

3.1.1.2 Parametrized inputs 

In order to simplify the AI training problem, we can reduce the complexity of the Action space compared 
to the Input space that is used in the environment through parametrization. In general, a parametrized 
input looks as follows: 

𝑢𝑘 = 𝜙(𝑎𝑘) 
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where 𝜙  is the parametrization function. Note that for multi-dimensional actions and inputs, the 
parametrization becomes a matrix of functions. Note that discretization is a special case of 
parametrization where we restrict the AI Agent to choose from a finite set of (indexed) actions 𝑎𝑘, after 

which a corresponding 𝑢𝑘 from the input set is fed into the system. 
 
Additionally, the input can be parametrized using basis functions which makes use of aspects of the 
actions generated by the AI agent. A general basis function parametrization looks as follows: 
 

𝑢𝑘 = ∑ 𝜃𝑘[𝑖]
𝑛
𝑖=0 ⋅ 𝜙𝑖(𝑎𝑘), 

 
in which 𝜃𝑘[𝑖],  ∀ 𝑖 ∈ {1, … , 𝑛}  are the parameters and 𝜙𝑖 ,  ∀ 𝑖 ∈ {1, … , 𝑛}  are the basis functions 
(Yamaguchi, Takamatsu, & Ogasawara, 2009). Examples of basis functions include radial basis 
functions, derivative approximations, etc. It is important to note that appropriate selection of the basis 
functions is inherently dependent on the system. Also note that 𝑎𝑘  can be discrete or continuous. In 
Reinforcement learning, the AI Agent selects the values for both the parameters and the actions 
simultaneously. This can be viewed as making a high-level choice between different actions, and then 
supplying this choice with parameter values. 
 
Examples of RL with parametrized inputs can be found in literature. For instance, in (Hausknecht & Stone, 
2015), Deep RL is applied to a soccer robot. In the paper, the actions that the AI agent can perform 
operate on a higher level than the soccer robot's input signals. The AI agent can choose between different 
discrete actions such as moving on the field or shooting the soccer ball, and has to assign continuous 
parameters such as the movement distance or shooting direction to complete the command. (Masson, 
Ranchod, & Konidaris, 2016) analyzes RL with an input parametrization similar to (Hausknecht & Stone, 
2015). The paper focuses on analyzing the learning problem under this parametrized structure. As an 
extension, the set of discrete high-level commands can be chosen by the AI agent itself. This method is 
called encoding/decoding. 

3.1.1.3 Encoding/Decoding 

Often, the inputs required to be performed by the AI agent in order to achieve the objectives for the system 
are very complex in nature. However, it is also true that these same complex signals can often be grouped 
into families with similar characteristics. These groups operate on a higher level and are usually of lower 
dimension and less complex. This helps the overall AI training problem by reducing the complexity of the 
action space. 
 
An encoder can use AI techniques in order to learn a mapping from complex input signals to a set of 
higher-level commands to choose from. For instance, in an EM, a sample manipulation platform can be 
controlled using commands such as ‘higher focus’ or ‘lower focus’. These commands can then be 
decoded back into lower-level signals, i.e., trajectories of currents to a motor driving the stage to desired 
point using low-level feedback controllers 
 
As an example, consider openings in chess. Rather than interpreting every move as an action, an AI 
agent might instead be able to choose from a catalogue of known valid openings which are sequences 
of multiple moves. This way, there are fewer options to choose from which enables faster training. 
 
The state of the art regarding action encoding learns these higher-level commands using supervised 
learning. In (Chandak, Theocharous, Kostas, Jordan, & Thomas, 2019), an “embedding” is inserted as 
an intermediate step of the RL policy and represents the high-level commands. The high-level policy 
(state-to-embedding) can be learned by the AI agent simultaneously with the set of high-level 
commands (embedding-to-input mapping). This can be seen in Figure 2. 
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Figure 2 structure of “action representation” in (Chandak, Theocharous, Kostas, Jordan, & Thomas, 
2019). The AI agent learns to map states (s) and rewards (r) to inputs (a) by separating into a state-to-
embedding mapping and an embedding-to-action mapping. The embeddings are a reduced 
dimensionality abstraction of the possibly high dimensional input space. 
 
In (Kim, Yamada, Miyoshi, Iwata, & Yamakawa, 2020), the same type of idea is employed except using 
an autoencoder. This autoencoder learns different high-level (called “latent space”) commands based on 
a set of expert demonstrations. Afterwards, the AI agent learns a policy network that outputs the encoded 
actions in the latent space rather than the system inputs. 

3.1.1.4 Interpolating input signals 

Most real-world applications operate in continuous time, while their digital controllers operate in discrete 
time. This poses the question: what input should the physical system use in between discrete timesteps 
of the controller? Answers to this question come in the form of interpolation. In control applications, there 
are many common interpolation strategies such as zero-order-hold (Aström, Hagander, & Sternby, 1984), 
generalized hold (Chou, Bruell, Jones, & Zhang, 756-761; Bai & Dasgupta, 1990). The theory behind 
these methods, as well as analysis of benefits and shortcomings, are quite mature (Aström, Hagander, & 
Sternby, 1984). Special attention should be paid to ensure that the continuous-time system still behaves 
as desired, for instance with stability or without inter-sample behavior. 

3.1.1.5 Reachability 

Reachability is a classical concept in the field of control theory, which becomes relevant for RL when pre-
processing the system inputs. The reachability of a system is the ability to bring the system from a specific 
initial state to any other state. By shaping the input, we might lose reachability of the system, potentially 
making it impossible to reach high-rewarding states. This is illustrated in a simple example. Consider the 
following nonlinear state-space which describes a dynamic system, which we want to control to 𝑥𝑘 = 0: 
 

𝑥𝑘+1 = 𝑥𝑘
2 + 𝑢𝑘. 

 
If we discretize the action space as follows: 𝑢𝑘 ∈ {−1,1}, then, for certain initial values of 𝑥𝑘, e.g., 𝑥𝑘 =
10, it is impossible to control 𝑥𝑘+1to the origin given the allowable inputs. The idea of explicitly considering 
reachability for problems with input limitations can be found in recent literature on RL. Specifically, safe 
operation through recursive constraint satisfaction can be ensured by using reachability analysis (Yu, Ma, 
Li, & Chen, 2022). Alternatively, reachability in combination with Lyapunov analysis to ensure stable 
operation within the constrained space (Huh & Yang, 2020). 
 
3.1.2 Constraint Handling 

Systems have physical limitations while operating that should be taken into account in the control 
architecture. These limitations may contain constraints on the feasible input space, or constraints on 
internal states/observations. Constraints on the inputs are for example valves that have physical 
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constraints on their positions, or voltages that only have a limited domain. Constraints on internal states 
or observations can either be physical constraints that certain positions cannot be reached, or safety 
constraints to ensure safe operation of the system. The process of dealing with all these constraints is 
called constraint handling. This section elaborates on the current state of the art on constraint handling. 
 
There are different approaches to deal with input and output constraints. (Glattfelder & Schaufelberger, 
2003) gave an extensive overview of different techniques that can be applied on controllers, mainly 
focused on classical controllers. Controllers are designed to deal with input constraints, output 
constraints, or a combination of both. The controllers in the overview are viewed from three perspectives; 
structure, transient response, and stability. This overview is useful when guarantees about stability have 
to be given. Since the overview is mainly focused on classical controllers, the proposed methods do not 
take optimality into account. 
 
A popular method that can deal with input and output constraints, as well as optimality is model-predictive 
control (MPC), see e.g. (Camacho & Alba, 2013; Kouvaritakis & Cannon, 2016; Grüne & Pannek, 2017) 
In MPC a model is used for prediction of future outputs. Based on a given cost function and constraints, 
an optimal sequence of control inputs is calculated. Only the first control input is applied, and afterwards 
the procedure is repeated again. Recent advances in MPC are focusing on combining data-driven 
techniques with MPC (Hewing, Wabersich, Menner, & Zeilinger, 2020; Berberich, Köhler, Müller, & 
Allgöwer, Data-driven model predictive control with stability and robustness guarantees, 2020; Berberich, 
Köhler, Müller, & Allgöwer, Data-driven model predictive control: closed-loop guarantees and 
experimental results, 2021). 
 
In RL, constraint handling is covered in the field of safe RL. A survey on this topic can be found in (Garcia 
& Fernández, 2015). In safe RL the goal is still to maximize the expected rewards (similar to ordinary RL) 
but also to respect safety constraints on either states or actions. (Garcia & Fernández, 2015) considered 
two types of safe RL: 

- Optimization criterion, where a safety factor is included in the reward calculation. 

- Exploration process, where the goal is to only select safe actions. 

Both types have their benefits and disadvantages. Depending on the type of problem, one type may be 
preferred over the other. 
 
One of the recent advances within safe RL is the use of a predictive safety filter (PSF), see Figure 3 
(Wabersich & Zeilinger, 2021). The idea behind the PSF is that the RL controller still has all the freedom 
to give actions, while the PSF verifies whether the actions are allowed with respect to the pre-determined 
constraints. (Wabersich & Zeilinger, 2021) uses MPC techniques within the PSF, to ensure a safe system. 
 

 
Figure 3 Structure of a system with an RL controller attached, which uses a predictive safety filter to 

ensure safe operation. Figure adopted from (Wabersich & Zeilinger, 2021). 
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3.1.3 Tuning controller parameters 

To further simplify the RL problem, one can make use of an existing standard feedback controller design 
with some freedom in the form of tunable parameters. Then, the parameters of this controller can be 
tuned using the AI agent, possibly dynamically. Notions like stability and robustness can be enforced due 
to the known character of the controller. In (Qin, Zhang, Shi, & Liu, 2018), RL is used to dynamically tune 
three parameters of a proportional-integral-derivative (PID) controller. A PID controller is a widely used 
feedback controller because of its effectiveness and simplicity. The user only needs to tune three 
parameters in the form of the proportional (P), integral (I), and derivative (D) gains. By allowing the AI 
agent to tune these parameters, the controller can become adaptive to changes in the system. 
Furthermore, the properties of the feedback system can be analysed using mature theoretical tools 
available to PID feedback structures. The structure of this concept is shown in Figure 4. 

 
Figure 4 structure of RL-tuned PID controller. 

 
3.2 Post-Processing 
The system (either a RS or its DT) and the AI agent are connected to each other by the post-processing 
step. Post-processing converts the information available from the system in such a way that it can be 
used by the AI agent. The post-processing can be divided into several categories: 

1. Information preparation  

2. State shaping 

3. Reward function formulation 

In Figure 5, a general structure of the post-processing is visualized, containing the above mentioned three 
categories. Within the post-processing, first all the available data is prepared in the information 
preparation part. Information preparation includes collecting all the available data and then making it a 
suitable, cleaned up, dataset for the next steps, without affecting the dimensionality. For preparation one 
could think of restoring corrupt data or normalization. The second part of post-processing is state-
shaping. State shaping can either add dimensions to the state or reduce it. Adding dimensions is useful 
when there is not enough information available in one observation, which can be done by adding history 
of previous states to the current state, or make use of observers. State reduction can be used when the 
dimension of the observation is very high (e.g., an image), while the usable information in it can be 
captured in a low-dimensional vector. The purpose of state reduction is to decrease the load on the AI 
agent by reducing the dimensionality of the state information. The last category is the reward function 
formulation. The goal of that part is to formulate a reward function which the AI agent should maximize. 
The reward may depend on the observations, the estimated states or the control inputs.  
 
Information preparation and state reduction are two well-known concepts in Big Data Analytics (see e.g., 
(García, Ramírez-Gallego, Luengo, Benítez, & Herrera, 2016)). Adding information by using observers is 
a concept from Control Theory to restore the Markov property, which is important in the learning process 
of an AI agent (Sutton & Barto, 2018). The remainder of this section is structured as follows: Firstly, an 
overview of methods of information preparation is given. Secondly, state shaping is explained and 
concepts are given that can help restoring the Markov property or reduce the load on the AI agent. 
Furthermore, the formal definition of the Markov property, Markov Decision Process (MDP) and Partially 
Observable Markov Decision Process (POMDP) are given.  At the end the reward function is elaborated 
in more detail. 
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Figure 5 Overview of post-processing process. 

3.2.1 Information preparation 

The first step within post-processing is information preparation, where all available data is collected and 
made suitable for the subsequent steps. In the literature there are several authors who wrote methods 
on this topic, see e.g., (García, Ramírez-Gallego, Luengo, Benítez, & Herrera, 2016; Saleem, Asif, Ali, 
Awan, & Alghamdi, 2014; Famili, Shen, Weber, & Simoudis, 1997). Among all the methods mentioned, 
there are six main methods covered in almost every overview: 

1. Integration: gather all available data and merge it. This should be done carefully to prevent, for 

example, duplicates. 

2. Noise handling: measurements that contain irrelevant high frequent noise should be treated to 

suppress that noise. 

3. Cleaning: removing and correcting bad data. Data which does not make sense, should be 

removed from the dataset. An example of cleaning is the removing of outliers. 

4. Missing data imputation: within control systems this includes the handling of different sample 

times of sensors. The AI agent operates at a particular frequency, so the state information should 

be available at the same frequency. More information regarding missing data imputation can be 

found in (Luengo, 2012). 

5. Normalization: can be used to scale the data. 

6. Transformation: convert the data such that it becomes easier for processing in the subsequent 

steps. Transformation includes changing the units of the data or the rounding of numbers. 

These six methods are visualized in Figure 5.  
 
No major recent advantages in information preparation have been made, since the mentioned methods 
are highly dependent on the specific use case and the expertise of the researcher (Mansingh, Osei-
Bryson, Rao, & McNaughton, 2016). General methods are given in (García, Ramírez-Gallego, Luengo, 
Benítez, & Herrera, 2016; Saleem, Asif, Ali, Awan, & Alghamdi, 2014; Mansingh, Osei-Bryson, Rao, & 
McNaughton, 2016), however, it is not possible to determine beforehand which methods should be used. 

3.2.2 State shaping 

A crucial part within RL is the state. The state contains all the information available to the AI agent at a 
particular time. The state can either be directly the output of either the RS or DT (solely with some 
preparation steps), or the result of some intermediate state-shaping steps. Depending on the type of 
process, different approaches have to be taken in the state-shaping part of the post-processing. An 
important process property that relates to this is the Markov property. The first part of this section is 
therefore dedicated to the Markov property with its various types.  
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When the type of process is known, the next steps within state shaping can be taken. This includes 
restoring the Markov property if that is required, extracting features from the output of the process, and/or 
building observers to estimate hidden information. These steps are elaborated in the remainder of this 
section from the second part onwards.  

3.2.2.1 Markov Property 

The goal of the ASIMOV project is to optimize the process of determining optimal control settings for 
complex high-tech systems by use of Artificial Intelligent (AI) technologies. In WP3, where the AI-agent 
is developed, RL is selected as a promising direction to achieve the goal of the ASIMOV project. The 
performance that the AI agent can achieve depends on the information (the state) that the complex high-
tech system (the process) gives to the AI agent. A property that can be assigned to a process is the so-
called Markov property. When a process is said to have the Markov property, it means that the new state  
𝑋𝑡+1 only depends on the current state 𝑋𝑡, and not on the states before. 
 
In total there are four different Markov types, which are given in Table 1. These four types can be 
distinguished based on observability and whether actions are involved or not. If the complete internal 
state of the process is available at each time instance, it is said to be fully observable. In a lot of processes, 
only a part of the internal state is available at each time instance since not every relevant property can 
be measured/observed at each time step. Therefore, these processes are said to be partially observable. 
If there are no actions involved in the process, the process is autonomous and acts independently of the 
AI agent/user. On the other hand, the process is controlled if the AI agent/user can interact with the 
process. In the remainder of this section, these four types are elaborated in more detail. 
 

Table 1 Overview of Markov types. 

 Fully Observable Partially Observable 

Autonomous Markov Chain 
 

Hidden Markov Model 
 

Controlled Markov Decision Process Partially Observable 
Markov Decision Process 

 
The first type is a Markov Chain, which is autonomous and fully observable. Formally, the Markov Chain 
can be written down as: 
 

𝑃(𝑋𝑡+1 ∥  𝑋𝑡 ,   … ,  𝑋0 )  = 𝑃(𝑋𝑡+1 ∥ 𝑋𝑡) 
 
The equation states that the transition from current state 𝑋𝑡  to new state 𝑋𝑡+1  is independent of the 
previous states. 
 
The second type is a Markov Decision Process (MDP), which is controlled and fully observable. If a 
process is an MDP, the new state 𝑋𝑡+1 only depends on current state 𝑋𝑡 and current action 𝑈𝑡. MDP is 
an extension of the Markov chain and satisfies 
 

𝑃(𝑋𝑡+1 ∥  𝑋𝑡 , 𝑈𝑡 ,   … ,  𝑋0, 𝑈0 )  = 𝑃(𝑋𝑡+1 ∥ 𝑋𝑡 , 𝑈𝑡) 
 

Since actions U are involved, this Markov type is noted as a decision process rather than a chain. 
 
The third type is a Partially Observable Markov Decision Process (POMDP), which is controlled and 
partially observable. In a POMDP, observations (𝑌 ) are typically not the same as (do not represent the 

same information as) the internal state (𝑋 ). The observations represent only a part of the information 
collected in the internal state. The underlying process however, with internal state 𝑋 , does satisfy the 
properties of an MDP. Processes which are considered from the perspective of the observations do not 
necessarily satisfy the Markov property as an MDP: 
 

𝑃(𝑌𝑡+1 ∥  𝑌𝑡 , 𝑈𝑡 ,   … ,  𝑌0, 𝑈0 )  ≠ 𝑃(𝑌𝑡+1 ∥ 𝑌𝑡 , 𝑈𝑡) 
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Since only limited information of the process internal state is considered, adding previous states could 
change the transition probabilities for the next state. 
 
The fourth type is a Hidden Markov Model (HMM), which is autonomous and partially observable. The 
difference between the HMM and POMDP is that HMM is autonomous (as the Markov Chain). Similar to 
POMDP, HMM does have observations which give only partial information rather than full state 
information. The HMM can formally be written down as: 
 

𝑃(𝑌𝑡+1 ∥  𝑌𝑡 ,   … ,  𝑌0 )  ≠ 𝑃(𝑌𝑡+1 ∥ 𝑌𝑡) 
 

In the remainder of this report, we will say that the state is Markov if state 𝑋  satisfies the conditions of an 
MDP.  

3.2.2.2 Restoring Markov property 

In many processes that have to be controlled, the output only partially represents the internal state. In 
these cases, the process is a POMDP (assuming that the internal state does satisfy the properties of an 
MDP). Therefore, using the output of a process directly as state, results in the state not being Markov. In 
RL however, all algorithms in (Sutton & Barto, 2018) assume that the state available to the AI agent is 
Markov, and satisfies the MDP properties. This assumption emphasises the need for restoring the Markov 
property to make the state for the AI agent Markov again.  
 
Two solutions are briefly discussed in order to restore the Markov property: (i) add a history of the process 
to the state; and (ii) use (state) observers. These two solutions can be understood from the following 
traditional and simple example. Suppose that we want to make decisions for the pedal of an autonomous 
car (brake or accelerate) based on positioning data (e.g. obtained from GPS). Using only the current 
position measurement to this effect is clearly not enough as it neglects velocity. In fact, braking or 
accelerating decisions will be very different if the car is still (zero velocity) or moving at high speed, while 
having the exact same position. One solution is to keep track of the history of positions. Another solution 
is to estimate the velocity based on previous position measurements. Both of these related solutions allow 
for informative pedal decisions to be taken. 
 
Adding history is one way to transform a POMDP to an MDP in certain simple cases. However, 
measurements are often noisy. In such a case, the larger the history window, the better the noise in the 
measurements can be mitigated. For such problems (which encompass most cases of interest) the 
complete process history should be stored. However, this is often infeasible. 
 
It is well-known (see (Bertsekas, 2012)) that the state probability distribution given the measurement 
history is a sufficient statistic for decision making. This means that all the information contained in the 
process history can be summarized in the state probability distribution given the previous measurements. 
 
An ideal state observer is then one that provides this state probability distribution given the 
measurements. This is known as the Bayes’ filter. A special case, under strong assumptions such as 
Gaussianity and linearity, is the Kalman filter 
 
In general, this ideal Bayes filter is hard to synthesize and run due to the curse of dimensionality and 
therefore other forms of observers are used. Such observers aim at simply recovering the internal state 
(and not the full state probability distribution) from previous measurements. Typically, an observer 
estimates the hidden internal states using the available observations in a recurrent manner. Such an 
observer turns a POMDP into an MDP when the state is replaced by the state estimation. This is not an 
optimal procedure as the information in the state probability distribution is lost, but an often used one in 
practice. Since the literature on observers is extensive, the complete next section is dedicated to them. 
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3.2.2.3 Observers 

Knowledge of a system's internal state (X) is useful for the purposes of controlling the system to exhibit 
desired behaviour. In many cases, the full internal state is not directly measured, as detailed in Section 
3.2.2.1. However, indirect effects of the internal state can be visible through observations. A state 
observer or state estimator can estimate the internal state (X) from measurements of these observations 
(Y) along with the past system inputs (U). 
 
As seen from the example, observers typically require knowledge of the underlying prescribing equations. 
In this case, the relationship between position and velocity. 
 
The simplest version of an observer is a Luenberger Observer (Luenberger, 1964). Consider a general 
linear dynamical system in state space formulation: 
 

�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝑣, 

𝑦 = 𝐶𝑥 + 𝑤 , 
 
where 𝑥  ∈ 𝑅𝑛 are the internal states, 𝑦 ∈  𝑅𝑜 are the output measurements or observations, 𝑢 ∈ 𝑅𝑚are 

the system inputs, 𝑣 ∈ 𝑅𝑛 are disturbances acting on the system, 𝑤 ∈ 𝑅𝑜 is measurement noise, and 𝐴 ∈
𝑅𝑛×𝑛, 𝐵 ∈ 𝑅𝑛×𝑚 and 𝐶 ∈ 𝑅𝑜×𝑛 describe the behaviour of the system. Now, if 𝑜 < 𝑛 , then at least one of 
the internal states is hidden (note that this condition is not sufficient or necessary). In order to estimate 
this state, we use the observer described by: 
 

�̇̂� = 𝐴�̂� + 𝐵𝑢 + 𝐿(𝑦 − �̂�), 
�̂� = 𝐶�̂�, 

 
where �̂� ∈ 𝑅𝑛 is our state estimate, �̂� ∈ 𝑅𝑜 is our output estimate and 𝐿  ∈ 𝑅𝑛×𝑜 is the observer gain. We 
update our estimate based on the difference between our output estimate and the real measured outputs. 
Under certain conditions, the state estimate x will eventually converge to the real internal state x. 
 
We can design the observer gain L using an optimization problem which minimizes the least squares 
estimation error, in which case the observer becomes a Kalman filter ( (Bertsekas, 2012), Appendix E). 
 
A Bayes’ filter generalizes the concept of a Kalman filter to application for general POMDPs, see Section 
3.2.2.1. Similarly, the Bayes’ filter uses recursive state estimate updates based on measured outputs and 
inputs. The core idea behind these updates lies in Bayesian statistics, namely Bayes’ rule: 
 

𝑃(𝑋 ∥ 𝑌) =
𝑃(𝑌∥𝑋)𝑃(𝑋)

𝑃(𝑌)
, 

 
in which we update our belief of the internal state X based on the new observations Y. 
There exist observers for nonlinear dynamical systems which also use a model of the system and 
observations to update estimated beliefs, such as the extended Kalman filter or high-gain observers 
(Khalil, 2015). 
 
Additionally, observers can be used for simultaneous state and parameter (system property) estimation, 
in which the internal state of the model is appended with a state for the parameter to be estimated. This 
concept might be of special interest to ASIMOV Task 2.1, in which the relevant parameters of the DT are 
identified. 
 
In ASIMOV, the idea of observers can be used to restore the Markov property for POMDPs. Additionally, 
Use Case 1 can potentially be reformulated as an estimation problem, in which estimation of the internal 
state of the electron microscope can result in easy calibration. Observer-like logic is key in estimation 
problems which underlines its relevance. 
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3.2.2.4 Feature extraction 

Depending on the application, the output of the system in the form of the observations can take on 
different forms and different dimensionality. Simple examples of the output are discrete with few possible 
values, or a single continuous number. A bit more complex is a vector of continuous values. However, in 
real applications, the output could be a curve (e.g., quantity-over-time) or even an image, such as in the 
EM use case. The curve is typically described by a set of points; an image consists of gray values for 
each pixel. Here we give some examples and ideas on how to extract features of the complex shape that 
are still sufficiently informative as a Markov state. Here, domain knowledge and problem experience plays 
a large role in the choice. 
 
Principal Component Analysis (PCA) is a well-known and established technique in multivariate statistics. 
In machine learning, it is considered as belonging to the class of unsupervised learning. The starting point 
is a dataset with many variables that is summarized using only a few scores belonging to the first, second, 
third, … principal components. As an example, if a dataset consists of people with many variables 
describing their height, length of arms, legs, belly size, etc., the first component might pick up on the 
general size of the person. Mathematically, the first component is a linear function of the original variables. 
In PCA, the first component is the linear combination with the most variance in the dataset. The second 
component also finds the most variance, but is “orthogonal” to the first; here it might be a score on the 
axis along fat vs thin. This way, the original possibly large number of output variables is approximated by 
a summary using a short vector of scores, all using linear expressions.  
 
There are other variants of this theme using linear expressions; Factor analysis from statistics addresses 
similar problems to PCA, but is more model-based. Linear Discriminant Analysis (LDA) can be applied if 
there are known groups in the data; it finds components that are most suitable for separating the groups, 
i.e., a multivariate dataset where each datapoint belongs to a pre-specified group. For more details on 
Factor analysis and LDA, see (StataCorp, 2007).  
 
Standard examples often use tens or hundreds of variables as a starting point. Curves and images may 
be treated as a long vector of values and could be analyzed using the same tools. However, note that 
positional information is lost here. A somewhat dated example is recognition of faces (Turk, Pentland, 
Belhumeur, & Hespanha, 1991). 
 
There are more elaborate variants of the discussed techniques as well, described in section 14.5 of 
(Hastie, Tibshirani, & Friedman, 2009). There, non-linear variants of PCA are discussed, called Kernel 
Principal Components. Section 14.6 discusses non-negative matrix factorization which is a variant for 
non-negative scores and strictly positive data, such as grey values in an image. Section 14.7 explains 
Independent Component Analysis (ICA). ICA tries to find scores in the data such that the projection 
scatterplots of the scores are as different as possible from multivariate normal as possible. In practice, 
this can give better results than PCA if some time series is the result of mixing “independent components”. 
 
Autoencoders are another technique to handle complex inputs, see (Efron & Hastie, 2021), section 18.3. 
Here, a complex input is fed into a neural network with several layers. The target output is taken to be a 
copy of the input. The middle layer has relatively few nodes. As the neural net tries to translate input to 
(identical) output, the information has to pass through the middle layer. The model therefore has to “code” 
the information using only the information corresponding to the few nodes in the middle layer. Such a 
model is considered in the UUV use case, not for defining a state but to generate a reward. The idea is 
to learn an autoencoder based on a dataset of previous simulation runs. Then, a new simulation run is 
passed as input to the trained network. The goal is to assess whether this new point is “surprising” in light 
of the earlier simulations. If the new point is more difficult to predict, i.e., the autoencoder’s error is large, 
then this new point contains new information and therefore gives a higher reward. 
 
In the EM use case, the output consists of an image on which the organization has much fundamental 
knowledge from physics and years of experience. Here, a spatial Fourier transform of the image gives a 
new image but with easier to recognize patterns. From here, it is also easier to apply filters to block certain 
frequency bands (e.g., block higher frequencies if the information is in the low frequencies). This example 
uses 2D images; a similar 1-dimensional variant is the domain of time series, signal processing, which 
finds many applications in audio signals. 
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Curves as output of some process may be parameterized or summarized by making use of the 
understanding of the problem. Here we think of an output y=f(t) for sampled points, typically equidistant. 
Examples of the predictor t could be time, angle designating a point on a round object, or location. A 
simple approach could be to work with simple summaries of f(t), such as mean, standard deviation, or 
percentile-based such as median, IQR, the 95-percentile. Also, these could be made of horizontal 
intervals. More elaborate summaries could be the (t, y) coordinate of where the curve is steepest. 
 
Alternatively, understanding of the problem could propose a parametric description of f(t), such as 
y=f(t)a+b*exp(-c*t) with parameters a,b,c. . One observation gives many points on the curve (y, f(t)+error) 
which can be fit using e.g., least squares. The resulting parameter vector (a,b,c) is then the state 
summary. Other common fits are polynomials, straight lines, and the Fourier transform for time series 
mentioned above.  
 

3.2.3 Reward function formulation 

Part of the post-processing is the reward function formulation, where a reward signal is created based on 
the systems’ outputs. The reward signal should express the performance on a predetermined task in a 
single value, 𝑅  ∈ ℝ1 . The AI agent then maximizes the total cumulative rewards, such that the 
performance of the AI agent is as good as possible in the long term. The reward function is not the place 
where the trajectory to the goal should be shaped in terms of a-priori knowledge. The reward function 
should include the overall objective and not reward intermediate steps deemed reasonable by the user. 
By doing so, we let the AI agent figure out the way to the objective itself with as much freedom as possible. 
In general, the reward function contains not how you want to achieve an objective, but only what you 
want to achieve (Sutton & Barto, 2018). In the remainder of this section several publications regarding 
reward function formulation are highlighted and discussed. 
 
In (Eschmann, 2021), an overview with the history, links to behaviour sciences and evolution, and surveys 
on reward function design is given. A distinction is made between sparse and dense reward functions: 

• Sparse reward functions: Rewards are only given to the AI agent when the final objective is 

achieved. 

• Dense reward functions: Informative intermediate rewards are given to the AI agent while 

approaching the final objective, although the final objective has not been achieved yet. 

Preference is given to dense reward functions to guide the AI agent to the final objective. Sparse rewards 
may be infeasible in terms of training time, since it could take a long time before rewards are found at all. 
If sparse reward functions are used, the training time can be decreased when curiosity-based exploration 
methods are used. Other popular methods to improve exploration when only sparse rewards are available 
are reward shaping and intrinsic motivation. The first theoretical publication on reward shaping is (Ng, 
Harada, & Russell, 1999), where potential-based reward shaping (PBRS) is formalized. In PBRS a term 
is added to the original (sparse) reward function to already achieve rewards in the vicinity of the sparse 
rewards. The disadvantage of PBRS is that a-priori knowledge is included in the reward function, 
something undesirable according to (Sutton & Barto, 2018). At intrinsic motivation rewards are given 
when new states are explored. This method encourages the exploration of new states in order to speed 
up the search for sparse rewards. The foundation for intrinsic motivation in RL is laid in (Singh, Lewis, 
Barto, & Sorg, 2010). 
 
(De Moor, Gijsbrechts, & Boute, 2022) applied PBRS in combination with deep-RL in inventory 
management. The goal of using PBRS was to improve learning behavior by using an existing policy. The 
same shaped reward function as in (Ng, Harada, & Russell, 1999) has been used: 
 

𝑅′  =  𝑅  +  𝐹 
 

where 𝐹  is the shaped reward term and 𝑅′ is the new reward function. In (De Moor, Gijsbrechts, & Boute, 

2022), 𝐹  is a feedback term from the existing policy. By using reward shaping, an important condition is 
policy invariance. Policy invariance means that reward shaping should not change the original desired 
goal. Interesting publications related to PBRS are (Wiewiora, Cottrell, & Elkan, 2003) and (Harutyunyan, 
Devlin, Vrancx, & Nowé, 2015), where different types of shaped reward functions are discussed. 



D2.2 
Methods and Tools for Training AI with Digital Twin 

public 
 

 
 

    

Version Status Date Page 
1.1 public 2022.10.20 22/38 

 

 
A completely new direction in reward function formulation is reward machines (RMs). The background of 
RMs comes from the question whether the reward function formulation should be a black-box for the AI 
agent or not (Icarte R. T., Klassen, Valenzano, & McIlraith, 2018). As mentioned before, the reward is 
expressed as a single value in ℝ1. If the AI agent could have access to the structure of the reward 
function, it could help to create subproblems to increase the learning rate. RMs consist of pre-determined 
high-level states of the environment. The language used in RMs is Linear Temporal Logic (Icarte R. T., 
Klassen, Valenzano, & McIlraith, 2018). An example of an RM is given in Figure 6. The goal is to collect 
a cup of coffee (𝑐), and reach the office (𝑜), while avoiding obstacles (∗). The corresponding reward 

machine can be seen on the right. It consists of four high-level states: 𝑢0 no coffee, not on an object; 𝑢1 
Coffee, not on an object; 𝑢2 on an object; 𝑢3 in office with coffee. This level of abstraction can be useful 
for the AI agent during training. In (Icarte R. T., Klassen, Valenzano, & McIlraith, 2018) also the algorithm 
Q-Learning for RMs is provided which explicitly uses the structure of the RM. (Camacho, Icarte, Klassen, 
Valenzano, & McIlraith, 2019) gave a formal language to the RMs, and extended RMs with shaped 
rewards. Follow up work and extensions are provided in (Icarte R. T., Klassen, Valenzano, & McIlraith, 
2022). 
 

 
Figure 6 Example of a reward machine (adopted from (Icarte R. T., Klassen, Valenzano, & McIlraith, 
2018)). 

 
3.3 Variations 

It is of great importance to generate data with the DT, that is relevant for the AI agent’s training process. 

As the AI agent will be paired with a RS in the operational phase, it is therefore not only important for the 

training data to be accurate, but also to represent imperfections in the behavior of the RS and differences 

in the configuration of multiple systems. 

 

When producing and operating CPSs, there will always be machine-to-machine differences due to, for 

instance, manufacturing inconsistencies or wear over time. Therefore, even if a perfect model of one 

instance of a machine is available, an AI agent trained on this model is not guaranteed to have good 

performance on other instances of that machine. Engineers at NASA state that in DTs “manufacturing 

anomalies that may affect the vehicle are also explicitly considered, evaluated and monitored” (Glaessgen 

& Stargel, 2012). Furthermore, it is often impossible to have a perfect model of an RS. This can lead to 

the AI agent relying on features that are only present in the simulation and not in the RS. Hence, there is 

almost always a model mismatch. Training an AI agent on a model which does not fully match the RS 

has detrimental effects on the AI agent's performance on the RS. For these reasons, we seek to train the 

AI agent in a varying environment that switches between multiple machine instances, multiple models or 

even multiple domains. Good performance on the varying environment is then much more likely to result 

in good performance on the RS. 

 

A lot of research on ensuring AI agents perform well in multiple domains is done on arcade games. This 

concept is called generalization. Arcade games are useful to this end because they are well known, 

require similar strategies (in other words small variations of high-dimensional control tasks) to win, and 
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offer widely available frameworks (e.g., Arcade Learning Environment (ALE)) and benchmarks. A method 

to evaluate the generalization of a policy is to “inject extra stochasticity to the environments during the 

evaluation process”  (Zhang, Vinyals, Munos, & Bengio, 2018). This and other techniques can be used 

as a regulizer to prevent overfitting or as an evaluation to detect overfitting. Generalization of the AI agent 

to perform well in other environments can be seen as the AI agents being invariant to changes in the 

observation space (Farebrother, Machado, & Bowling, 2018).  The authors in (Cobbe, Klimov, Hesse, 

Kim, & Schulman, 1282-1289) address the issue of an AI agent overfitting to a specific environment 

(which is the DT in the case of ASIMOV) and find, that “deeper convolutional architectures improve 

generalization, as do methods traditionally found in supervised learning, including L2 regularization, 

dropout, data augmentation and batch normalization.” More general-purpose features are learned, which 

can be adapted to similar problems via fine-tuning. On a similar note, the authors in (Farebrother, 

Machado, & Bowling, 2018) show that Deep Q-Networks (DQN) overspecialize to the training 

environment. They offer the solution to reuse learned representations to improve the generalization 

capabilities of DQN. Further, the approach to fine-tune the weights of a learned neural network is 

discussed, where the authors found that “reusing a regularized representation in deep RL might allow 

[them] to learn more general features which can be more successfully fine-tuned.” In our use cases, the 

trained policy can ideally also be applied, or at least be the training basis for the application, on slightly 

different physical systems, to cover the product family aspects. 

 

Independent of which of the above-mentioned problems, variation needs to be applied at some point 

during the training process. In (Moos, et al., 2022), possible ways of handling this variation are discussed. 

Depending on how the variation is included, the authors distinguish between different types of robustness 

that can be achieved. 

 

A system is Transition Robust when it can cope well with every - even with the least likely - state 

transition. 

 

It is Disturbance Robust when it can cope with a system that is influenced by parameter changes or 

modeling errors not in control of the AI agent. 

 

Action Robust describes a system that can be controlled, even though the AI agents' actions are 

manipulated by an adversary. 

 

Lastly, an Observation robust system is characterized by the fact that the system is robust against 

adversarial attacks that try to generate observation data, that is indistinguishable from real data, but 

influences the RL agents’ output to a great extent. 

 

We can further distinguish which type of parameters are changed during variation. For a common 

understanding of the different parameter types, the nomenclature used in the ASIMOV T2.1 document 

shall be used. In this scheme, 𝑢  is introduced as the input into the system, which is controlled by the AI 

agent. Typically, these inputs can be set independently and are the means for optimizing the system in 

ASIMOV. 

 

Disturbances 𝑑  are another input type that influences the system. Disturbances can be seen as external 

signals acting on the system, that cannot be controlled by the AI agent. There are however ways to 

include them in the simulation. 

 

The system parameters 𝑐 are not inputs, but rather a set of parameters that define the behavior of the 

system itself. They are, besides the internal model structure, the main influence on how a system 

translates its inputs to outputs. 

 

The output of each system is described as 𝑦 . 



D2.2 
Methods and Tools for Training AI with Digital Twin 

public 
 

 
 

    

Version Status Date Page 
1.1 public 2022.10.20 24/38 

 

3.3.1 Three Kinds of Variations 

Variation can be introduced in different ways in the DT. Depending on where the variation is introduced 
and which parameters are varied, we distinguish between different variation types in ASIMOV, that are 
explained below. For a wider view on the consequences for the use cases, the Use Case Mapping 
sections provide further details. 

3.3.1.1 Disturbance Variation 

The disturbance variation targets the disturbances 𝑑 . . As they are varied, small changes of the system 
can be introduced for improved robustness of the AI agent. It forces the AI agent to cope with varying 
responses of the CPS. 
 
Disturbance Variation can vary after each action of the AI agent. 
 
In the STEM use case, such disturbance variation could include effects that cannot be influenced by the 
configuration or control of the microscope. This could be room temperature, camera noise, electron 
source noise, vibrations, etc. 
 
In the UUV use case, such effects could be noise in camera or Radar images, as well as gusts of wind in 
the virtual environment. 

3.3.1.2 System Configuration Variation 

Digital Models used in traditional simulations represent a typical instance of the physical counterpart. Due 
to manufacturing inaccuracies, wear and slightly different operating configurations, multiple systems of 
the same type can behave differently. These effects are captured by system parameters 𝑐 , which 
generates different CPS instances when varied. Ideally, the AI agent should be able to perform well for 
all common CPS instances, be it new or worn-out, for instance. Furthermore, this can help to overcome 
the inadequacies of the simulation due to insufficient parameter choices. In other words, we want to avoid 
that the model overfits one some specific parameters choices, that do not reflect the actual behavior that 
shall be learned.  
 
This type of variation can also include a switch to a different model of the same system, as proposed in 
(Khairy & Balaprakash, 2022), which could be first-principles-based or purely data-driven. If the RL loop 
switches between these models in between episodes, the optimal policy is one that performs well for both 
models. Hence, bias to one type of modeling error is reduced.  
 
As it is unnatural for a system to change its behavior in terms of system configuration during an 
optimization process, this variation can only be applied in-between episodes. 
 
System Configuration Variation can also be realized in two different ways, both of which are compatible 
with the concept explained in Figure 5. One way is to create arbitrary system parameter combinations to 
build a virtual fleet of fictional systems without a link to RSs. The other way is to create a real fleet of 
multiple RSs, linked to their DTs. The diversity in the fleet and the resulting differences in the system 
configuration parameters of their DTs defines the system configuration variation. 
 
Examples of the System Configuration Variation in the STEM use case could be the high-tension voltage, 
the magnification, targeted resolution, sample type, sample thickness, aperture dimension, position, etc. 
 
The UUV use case offers such possibilities in the form of varying the properties of Vehicle, Sensor and 
Driving Function. 

3.3.1.3 Domain Variation 

This is the type of variation which typically results in the largest differences in the environment. It is 
represented by a major change in the interaction of the system with the AI agent. This can include different 
outputs 𝑦  and actions 𝑢 . 
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The idea is to switch to a completely different system which is required to perform the same type of task. 
This way, the optimal policy of the AI agent is more generalized in the sense that it can solve the whole 
task type, rather than only the specific system. This idea is employed in the RL benchmark AlphaZero. 
 
AlphaZero by Google DeepMind (Silver, et al., 2017) is able to play multiple different games (chess, go, 
shogi) at an extremely high level using a single AI agent. It is able to do so by exploiting commonalities 
in high-performing playing strategies in these games. To understand this, consider the games it is able 
to play. The games are all examples of combinatorial games, where both players have perfect information 
and make moves in sequence. These games can typically be represented as decision trees, in which the 
different choices that players can make are different branching paths of the tree. The difficulty in solving 
such games typically stems from the fact that these trees can grow very large, resulting in many possible 
ways a game can play out, too many to compare explicitly. 
 
AlphaZero makes use of a neural network to perform tree searches more efficiently, drastically reducing 
the time to evaluate the tree. The key lies in the fact that certain tree branches should be given more 
attention than others. This is also how human players approach these games. Rather than evaluating 
and comparing every possible option, often only a few promising candidate moves are considered. For 
example, in chess, if one of the move choices leads to a forced checkmate by the opponent, the entire 
branch following this move choice can be disregarded. This idea generalizes to alpha-beta pruning (Knuth 
& Moore, 1975), in which any move that can lead to a worse position than the current best candidate is 
disregarded. Using neural networks, AlphaZero is able to learn an advanced tree-search algorithm with 
many tricks similar to alpha-beta pruning, making the search even faster. But because tree-search 
generalizes, AlphaZero is able to perform well for not just chess, but any combinatorial game.  
 
AlphaZero learns the tree-search algorithm through self-play on increasingly complex games. By starting 
with a simple combinatorial game, the solution to the game can be found by the AI agent in relatively little 
time. By switching to a new game which is more complicated, the lessons from the simple game can still 
apply so long as both are combinatorial games. This concept is called curriculum learning (Soviany, 
Ionescu, Rota, & Sebe, 2022). Since the structure of the inputs and the outputs of the system may change 
with the variation of the domain, a wider view of the consequences is necessary. It also typically 
introduces manual intervention and happens after successful complete training of the AI agent for one 
type of system. 
 
Examples in the STEM use case could be the application of the AI agent on a new type of microscope 
with other controls, or estimating aberrations from a different type of output image, e.g., a STEM image 
rather than a diffraction pattern. 
 
In the UUV use case, the change of Operational Design Domain (ODD) would be an example for such a 
variation. 

3.3.2 How to introduce variations 

There are several techniques to introduce variations. In this section, a selection of these techniques is 
summarized. 

3.3.2.1 Random 

The first, and easiest approach is to have variations at random. To be able to select variations at random 
with a uniform distribution, bounds on the variation domain should be provided. If the random values are 
selected by means of a normal distribution, the mean and standard deviation should be provided. Normal 
distributions can be very useful when the parameter is approximately known with uncertainties if these 
uncertainties are normally distributed. If the parameter can have a value within a large domain and shows 
a uniform distribution on that domain, random values with a uniform distribution are useful. The advantage 
of random variations is that no bias is introduced. The disadvantage, however, is that this method is 
extremely time-consuming, as covering every possible combination of variations often results in a huge 
variation space. Furthermore, there is no preference for specific variations. That results in “common” 
variations having the same probability as “uncommon” variations. 
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3.3.2.2 3.3.2.2 Space-Filling 

The second approach, that deals with the disadvantage of the variations at random that there is no equal 
distribution, is to use a space-filling Latin-hypercube design, see e.g. (Gramacy, 2020). In (Eriksson, 
Johansson, Kettaneh-Wold, Wikström, & Wold, 2000), more techniques are given when experiments 
have to be chosen from fixed ranges. All the aforementioned techniques still have no preference for 
specific variations; all these techniques are determining the variations beforehand, without any interaction 
with the system.  

3.3.2.3 Neural Networks 

A technique that introduces variations that became of great interest in the last couple of years within the 
field of neural network, is the variational auto-encoder (Doersch, 2016). As a consequence of a low-
dimensional hidden layer in the neural network, which forces the reproduction of the input to be 
summarized in a low-dimensional projection. The idea is to remove the encoder part, and only sample 
from the low-dimensional layer, to produce a high-dimensional layer. The advantage is that a lot of 
feasible variations can be created, based on real data. Also, anomaly detection can be executed to find 
rare cases, see e.g., (An & Cho, 2015). Furthermore, techniques such as Generative Adversarial 
Networks (GANs) may be of interest to introduce variations (Creswell, et al., 2018). GAN’s also aim to 
create “fake” situations that are useful to train a network. 

3.3.2.4 Curriculum Learning 

Within curriculum learning, variations are introduced by task generation. In task generation, sub-targets 
are determined that the AI agent should solve. Ideally, these tasks have an increased difficulty. The tasks 
are created manually. Automated task-generation is still an open-research question (Narvekar, et al., 
2020). 

3.3.3 How to convert DT performance to RS performance? 

The goal when training an AI agent with a DT should be that the learned policy can be applied to the RS 
directly. In accordance with (Degrave, et al., 2022), this can be seen as a zero-shot approach. If the 
performance of the policy is not satisfactory, the AI agent can be fine-tuned on the DT of the RS. Here, 
DT is to be understood as an instance of the DT Prototype, that is linked to one physical twin (PT) and 
therefore contains all details about it (Glaessgen & Stargel, 2012). In (Nichol, Pfau, Hesse, Klimov, & 
Schulman, 2018) the authors mention a trend in RL to “train on the test set”. They introduce a meta-
learning dataset, consisting of many similar tasks sampled from a single task distribution, to construct a 
suitable benchmark. This dataset can be used to evaluate few-shot RL algorithms.  
 
By not having realistic variations of the digital environment, it is unlikely for the AI agent to perform well 
on the RS. Like detailed above, three kinds of variations were considered when training the AI agent. 
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Figure 7 This Figure introduces an interpretation, in which System Configuration Variations are seen as 
instances of a DT Prototype (further details about the differences to the DTs in the text). The boxes 
indicate the different entities and the arrows indicate either dataflow, an instantiation from a generic entity, 
or (in the case of a double arrow) a twinning process. The dotted arrow indicates that the action can in 
principle be applied to the RS instance directly, but this is not the preferred option, at least not during 
training. The two stacks of RL Agent (RLA) instances are in theory the same, but hint at the difference 
between the DTs and the System Configuration Variations. 
 
In the architecture described in Figure 7, a reference RL Agent is trained on a centralized experience 
storage that was fed by all the instances of the DT Prototype. Those have in turn been used to train the 
instances of the RL Agents. This option requires the experiences to be stored locally, which might not 
always be desired.  
 
Constructing the policy of the Reference AI agent can be seen as an application of federated learning 
(FL), which “is an approach to machine learning, in which the training data is not managed centrally.” 
(Ludwig & Baracaldo, 2022) While the biggest motivation to apply federated learning might be in 
applications in which data privacy and data ownership are paramount, there are also more practical 
reasons. Especially with big datasets in settings where the bandwidth is not great, it can be very practical 
not having to send the data to a central storage. In FL the parties performing the local training are called 
clients, and the instance that orchestrates the training is called aggregator. In our case the Generic AI 
agent can serve as aggregator and the instances are the clients. Each client is trained on an environment 
(which is the instantiated and twinned DT), which contains all the manufacturing anomalies of the RS 
(Glaessgen & Stargel, 2012). The aggregator receives the trained models from the clients and performs 
model fusion. In the case artificial neural nets, this could be realized in averaging the weights. This 
merged model will then be deployed either to all the existing instances, where the next iteration of this 
process can start, or to a completely new instance, where it serves as the starting point for the local 
instance. If the performance is not satisfactory, the fine tuning with the instantiated DT happens. Since 
the instance of the DT shall be connected to, and twinned with the RS, this translates into a good 
performance on the RS. Note, that there may be multiple aggregators, each commanding a party of 
clients. This is relevant for our domain variations, where the structure of the models may vary significantly. 
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4 Mapping UC1 (STEM)  

The first ASIMOV use case (UC1) concerns transmission electron microscopy. To achieve state-of-the-
art resolution, Transmission Electron Microscopes (TEM) require a tuning procedure, often by an expert 
user. Such a procedure is crucial to bringing TEM to its lowest aberration state. Aberrations cause 
deviations in electron trajectories, or, equivalently, in the electron wavefront, thus deteriorating the 
imaging resolution. Our aim in the ASIMOV project is to automate the aberration correction process using 
a new method which takes advantage of an AI agent, trained on the data simulated by a DT of a TEM.  
 
To estimate and correct aberrations different output images can be used. Here we use so-called 
Ronchigram images, of an amorphous sample in Scanning Transmission Electron Microscope (STEM) 
mode. We initially aim at controlling 1st order aberrations, namely, 2-fold astigmatism, and defocus and 
assume that all higher-order aberrations are controlled to be near-zero by methods already available in 
the TEM software. A Ronchigram is a convergent-beam electron diffraction pattern (CBED) that carries 
information both about the properties of the specimen and the properties of an electron beam, such as 
aberrations. Depending on the amount and type of aberrations present in the electron beam, different 
patterns emerge in the Ronchigram image. For instance, if 2-fold astigmatism is present, the Ronchigram 
of an amorphous sample shows stretched patterns in the presence of defocus (see Figure 8).  
 

 
Figure 8 Response of Ronchigram image to 1st order aberrations, defocus and 2-fold Astigmatism: In 
presence of 2-fold astigmatism, Ronchigram pattern rotates by 90 degrees while changing focus settings. 
 
For the objective of ASIMOV, the AI agent should learn how to move the state of the TEM system, via 
control knobs for defocus and astigmatism, towards a state with zero aberrations (zero defocus and 2-
fold astigmatism in this case). Table 2 shows how the concepts explained in this document map to the 
TEM use case (UC1). The remainder of this section is dedicated to pre-processing, post-processing, and 
variation methods used in the UC1. 
 

Table 2 Mapping of concepts used in this document to the TEM use case (UC1). 

Concept Definition in UC1 
Observation Ronchigram images 

State Aberration values accessible via Ronchigram images 

Internal state Full state of the electron microscopy system, including, but not limited to, 
aberrations of the electron beam (due to imperfections in optical 
components, such as lenses), electron beam energy, the detection device 
and the specimen. The system is only partially observable.  

Reward A function representing the lower or zero aberration values.  

Action The signal that the AI agent generates from which the aberration controller 
values (input) is inferred. 

Input The value of the controller knobs for defocus and 2-fold astigmatism 
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4.1 Pre-processing  
The AI agent used in UC1 defines the actions in the form of the step size and the direction for a change 
in the aberration values, namely, the defocus, and the 2-fold astigmatism in 2 directions (real and 
imaginary part of the astigmatism). On a TEM system the change in aberration is, in practice, achieved 
via a lower-level control which is the change in the current of the magnetic lens coils. Therefore, the action 
set by the AI agent needs to be translated to the lower-level control parameters. However, assuming a 
linear relation between the lens current and the aberration values, the relative changes set by the AI 
agent can be directly used for controller knobs of a TEM. The accuracy of this assumption will be further 
investigated in future experiments.  
 
Additionally, the TEM controller knobs impose limitations on the range of input values, to ensure the 
operator remains in the reasonable working regime of the TEM. Therefore, constraint handling is also 
relevant for UC1. Currently, the AI agent is aware of the boundaries of the possible actions via the 
environment. The environment is limited to aberration values that are within the boundaries of allowed 
values for the controller knobs. 
  
4.2 Post-processing  

4.2.1 Information preparation 

Currently, we apply the following transformations to prepare the images for the RL algorithm: 
1. Cropping the image, so that it only includes the diffraction pattern within the disk (the so-called 

bright field disk)  

2. Normalizing the image  

3. Applying a window function (e.g., Kaiser window)   

4. Applying the 2d Fourier transform 

The above steps result in an image that shows the presence of aberrations in a more obvious way, at 
least to the human eyes. Although, one can start with the Ronchigram image itself as the input to the RL 
algorithm, from experience we have noticed that using these post processing steps makes the AI training 
more efficient.  
 
In the post-processed image in the case of zero aberration, the Ronchigram image corresponds to a small 
circle. As defocus increases, the disk radius increases, and with large 2-fold astigmatism an ellipse-like 
shape appears. Figure 9 shows two examples of Ronchigram images and their transformed form after 
the 4 steps described above. 

 

 
 Figure 9 A Ronchigram image and its transformed form for two cases with different aberrations. Left: 
Only defocus is present, right: Both defocus and 2-fold astigmatism are present. 

4.2.2 Reward function formulation 

In UC1, the reward should represent the level of aberration, which should be as small as possible, ideally 
zero. Aberrations, i.e., the deviation of the electron wavefront from an ideal spherical shape, are caused 
by imperfections in an optical system. Theoretically, knowing the exact geometry and location of the 
optical elements in an electron microscope, one can calculate the deviations in the electron wavefront, to 
which an aberration function is fitted and the aberration coefficient values are calculated. However, the 
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exact geometry and locations are usually unavailable and also not in the scope of the current DT. In 
electron microscopy it is more common to estimate the values of the aberration coefficients from the 
effects it has on the captured image. This is also the method that we use here. The image we use for 
estimating the aberration level is Ronchigram image of an amorphous specimen and from there we further 
define a reward function.  
 
Using the domain knowledge, a reward function, representing the level of aberration, was carefully 
formulated. This was done, firstly, by feature reduction on the post-processed image (the Fourier 
transform image) and, secondly, by defining reward as a function of the reduced features. The process 
is as follows. The prepared (post-processed) image is smoothed with a Gaussian kernel. Subsequently, 
the shape appearing in the smoothed image is quantified. This is done by interpreting the spectra as an 
unknown realization of a 2-dimensional bivariate Gaussian distribution. We then determine the 
eigenvalues of its covariance matrix. For an ellipse this gives 2 non-equal values. A scaled ratio of these 
numbers was used as the reward function in the proof-of-concept case. In this proof of concept, the 
reward is now a direct function of the state, next to being near convex and an example of a so-called 
shaping reward. Finally, it is not sparse, which can make learning more efficient.  
 
Additionally, a new method for defining a state & reward is being developed. The goal is to achieve a 
reward that is more general in terms of extendibility to other types of aberrations and needs less human 
involvement in defining the reward function. In this method, the state is ascertained using a neural network 
(currently a resnet18 encoder) which uses the entire prepared image, rather than the image with reduced 
features, as the input. The AI agent, in short, needs to take a decision based on an image alone, 
outputting new knob values every turn. The reward can be sparse, simply zero everywhere except for the 
goal state, or inverse shaping based on the distance the knob settings are from an ideal value. 

4.2.3 State shaping 

In general, the full internal state of the physical TEM system is unknown. The aberration level of the 
system is inferred via the observation, the Ronchigram image in our case. The full internal state of the 
system is only partially observable. This is also the case for the DT of the system. Although several parts 
of the physical system are abstracted by simple models in the DT, there are some parameters of the 
system which are hard to estimate using only one image. 
 
A few cases for which the internal state cannot be inferred from one observation (one Ronchigram image) 
are as follows. One Ronchigram does not necessarily provide sufficient information to infer both first order 
aberration coefficients, namely, the 2-fold astigmatism and the defocus values. For instance, a large 
astigmatism and no defocus can result in an almost identical image as a large defocus and no 
astigmatism. Another case is when the accurate parameters describing the performance of the camera 
are not available and they cannot be estimated from one Ronchigram. In this case a pre-estimation 
process is most likely required. Another example is if a magnetic lens in an electron microscope shows 
significant hysteresis effect. This means that using the coils’ current value as a control parameter will 
result in different magnetic fields and thus different beam quality, depending on whether the preceding 
change in current was in decreasing or increasing direction. The hysteresis effect is not currently covered 
in the DT, and due to its complexity, it should be investigated whether this effect is significant enough to 
merit a further modelling step. 
 
To restore the Markov property for the system one approach is to use the system’s history, i.e., use a 
sequence of images over time, or use a different parameter estimation process before running the DT 
simulations. This can provide the Markov property, which is important for the AI agent. This means that 
an AI agent bases its decision solely on the state that the system is currently in.  

4.2.4 Offline vs. online RL 

Note that in the current setting the DT generates an image dataset with sampling over the control 
parameters and small variations over the rest of parameters, accompanied by a metadata file describing 
the parameter values for each image. The AI agent then starts the learning and interacts with this already 
prepared dataset, rather than with the DT itself. This is known as offline RL. This has been convenient 
for proof-of-concept. However, this approach has limitations. For instance, the AI agent is limited by the 
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sampling resolution in the dataset. Moreover, it will become increasingly difficult to generate an offline 
dataset once the number of control parameters increases. Therefore, the preferred method for the future 
is for the AI agent to directly interact with the DT.  
 
4.3 Variations  
In addition to parameters controlled by the AI agent there are other parameters in the DT that are varied 
to provide a more realistic scenario for training the RL algorithm. Below is a list of variations considered 
in the system according to three types described in Section 3.3. 
 
Disturbance Variation: Effects that cannot be influenced by the configuration or control of the 
microscope. For example, when controlling first order aberrations (defocus and 2-fold astigmatism) it is 
possible that higher order aberrations still have small, nonzero, values. Therefore, small random values 
of higher order aberrations are added to produce variations in the DT outputs. Moreover, sources of noise, 
such as camera noise, are added to the DT to create variations.  
 
System Configuration Variation: Another source of variations can be the parameters, which are 

unknown in the physical measurements. For instance, when the thickness of the sample is unknown, the 

DT can produce outputs with several thickness values so that the AI agent can learn to become robust to 

it. 

 

Domain Variation: An example of domain variations is in the STEM use case where the AI agent could 

be applied on a different microscope type with different inputs or outputs, e.g., a STEM image rather than 

a diffraction pattern (Ronchigram). However, this type of variation so far has not been used in the RL 

training. 
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5 Mapping UC2 (UUV) 

The following chapter will explain how the concepts of the previous chapters can be mapped to the 
Unmanned Utility Vehicle (UUV) use case. 
 
5.1 Pre-processing 
In the pre-processing step, the actions provided by the AI agent need to be transformed into a file that 
describes the environment variations. For that, it is currently planned to use a JSON file as data structure. 
In this JSON file, information about the density of trees in certain areas, as well as the positioning of 
vehicles on the roadside, will be stored. To eliminate false combinations (like vehicles overlapping each 
other) a correction needs to be incorporated in this block as well, while keeping in mind that error 
correction might lead to the AI agent not being able to learn correctly. After this, the Variation JSON file 
is used to create the varied Unreal Environment, which can then be loaded together with the respective 
OpenDRIVE and OpenSCENARIO files, to run an instance of the simulation. Figure 10 shows the pre-
processing pipeline from the JSON file to the Unreal engine. The JSON file is passed to a variant process 
that evaluates the variation information contained in the JSON file and creates a Triangraphics (TG) 
project file. The TG project file contains all the variants specified in the JSON file. Since the TG project 
file cannot be processed directly by Unreal, the next process generates data that can be imported by 
Unreal. After the import, the data is then available for simulation. 
 

 
Figure 10 Pre-processing pipeline 

 
5.2 Post-processing 
Post-processing takes all the measurement data collected during the simulation runs and calculates 
relevant states and rewards out of that. In the UUV.1 use case, this will contain two aspects, representing 
the goals of the optimization process. On one hand, an anomaly detection, based on an autoencoder 
neural network, will be used to measure the information gain of every simulated scenario. On the other 
hand, criticality metrics will be used. 
 
An Autoencoder is a neural network, which has the same number of neurons in the input and output layer. 
Its main purpose is to reconstruct the input data in the output layer, with as little error as possible. The 
easiest way to do this would be to learn the identity function, meaning that every input is passed through 
the network without any modifications to it. To suppress this behavior, the hidden layers in-between input 
and output layer, have less neurons. This ensures compression of the input data and therefore an 
automatic extraction of relevant features of the input vector. This also means that the autoencoder can 
cope with data of similar type better than when confronted with completely new data. This makes it 
applicable for use as anomaly detection, by measuring how good the autoencoder can reconstruct the 
data, it is confronted with. 
 
The Anomaly Detection will be using the entire set of measurement data, gathered during one simulation 
run, and will calculate the reconstruction error of every signal by providing it as input to the autoencoder 
network. The overall reconstruction error will be used to measure the anomaly value and therefore the 
information density of the dataset. A high reconstruction error represents a high information value. This 
will be part of the reward function. After calculating the information value, the neural network will be 
retrained, also incorporating the just seen dataset as additional training data. That way, when confronted 
with similar data, a low reconstruction error and therefore low information value will be determined by the 
anomaly detection. The individual contributions of every signal to the overall anomaly score will represent 
part of the state. 
 
The criticality metrics will be scenario specific and will be evaluated for every simulated scenario as well. 
It is planned to use an ensemble of different key performance indicators (KPIs) to measure the criticality 
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of scenarios based on different aspects. The selection process for the KPIs can be found in (Westhofen, 
et al., 2022). 
 
In Figure 11, the entire post-processing workflow for reward calculation can be seen. 

 
Figure 11 Reward shaping for UC2. 

 
5.3 Variations 
Variations are needed to make the AI agent more robust during training. Slight variations in the vehicle's 
response to actions lead to the AI agent proposing more general actions, which avoids overfitting to the 
DT. This allows for an easier transfer of the learned actions to the RS, which slightly differs from the DT. 
For the variation to work as intended and to yield an advantage, it has to be ensured that the actual 
physical twin lies in-between the boundaries of the variation. The variation can therefore include experts' 
knowledge about typical parameter ranges of certain vehicle types. 
 
Variation will happen in between different episodes of learning as part of resetting the environment from 
the AI agent's perspective. During an episode, i.e., a sequence of actions that include requests for test 
cases, the vehicle will not be varied, as it has to be ensured, that each varied vehicle offers a consistent 
response across its test sequence. 
 
Variation itself can happen either by randomly changing certain parameters of the vehicle inside some 
limiting boundaries, or by systematically changing parameters to ensure an evenly covered space of 
vehicle properties. 
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6 Generic solution 

Based on the described methods in the state of the art in chapter 3, combined with the use case mapping 
to these methods in chapter 4 and 5, a generic solution can be formulated that fits within the ASIMOV 
context. In the next version of this report, this generic solution is being formulated.   
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7 Conclusions 

This document puts forward the proposed interface between the DT and the AI agent to be used in the 
ASIMOV project. The proposed interface relies on three main ingredients: pre-processing, post-
processing and variations. In the context of pre-processing, existing solutions include input shaping 
through discretization or, more generally, input parameterization, encoding and decoding, and input 
interpolation. Pre-processing solutions must ensure constraint handling. Post-processing can be divided 
into the following categories: information preparation, state shaping, and reward function formulation. 
Information preparation encompasses integration, noise handling, cleaning, missing data imputation, 
normalization and transformation. State shaping techniques include restoring the Markov property, 
extracting features from the output of the process, and building observers to estimate hidden information. 
Solutions for formulating reward functions include reward shaping and reward machines. Variations can 
be introduced in different places in the model, including disturbance variations, system configuration 
variations and domain variations, and can be introduced randomly, via space-filling, or via neural 
networks. For each of the two main use cases of the project, the Electron microscope and the Unmanned 
Utility Vehicle pre-processing, post-processing and variations were instantiated, and use-case-specific 
training features were discussed. 
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