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1. Executive Summary 

Work package 2 is the first of the work packages to deal with the distributed AI concepts. Of the 4 
tasks comprising the work package, Task 2.1 focuses on the investigation and design of machine 
learning and data mining techniques applicable in IoT/edge computing.   

The significance of Task 2.1 is several fold: First, T3.1 on the reference architecture takes as input the 
identified machine learning techniques in T2.1.  Next, also based on the result of Task 2.1, Task 2.2 will 
later aim to develop unsupervised and semi-supervised methods in order to automate knowledge 
extraction and learning in data stream scenarios. Also, Task 2.3, distributed/composable data mining 
models will be developed based on the state-of-the-art of Task 2.1. Furthermore, Task 2.4 will attempt 
to provide preliminary results of the implementation of the algorithms emerging also from Task 2.1. 
Finally, Task 3.1 on the reference architecture takes as input the identified machine learning 
techniques in Task 2.1. 

Hence, the fast paced reader who wants to get a good grip on the project concepts is therefore advised 
to consider reading Deliverable 2.1 (and possibly also Deliverable 1.1) before moving on to further 
deliverables. 

The deliverable starts off with a summary of the distributed intelligence use case requirements for 
each of the 5 use case scenarios in the project. It then puts the current techniques into perspective, 
conveying to the reader the state-of-the-art in all its nicety. 
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2. Introduction 

The scope of the second work package to consider “Distributed AI Toolbox”. The work is expected to 
contribute to the establishment of AI techniques that model knowledge from IoT/edge information 
links and that will support the deployment of distributed AI applications. Its main activities consist of  

(i) adaptation of machine learning and data mining methods to dataflows in IoT/edge 
computing,  

(ii) design of AI algorithms and techniques for continual and evolving learning, and  

(iii) design of distributed data mining and machine learning models and collaborative decision 
analysis methods. 

Thus, the work is expected to provide the AI and ML building blocks for deployment in the designed 
WP3 MIRAI reference framework and MFBB. 

As the first task under the work package, Task 2.1 attempts to capture the investigation and design of 
machine learning and data mining techniques applicable in IoT/edge computing. Here the work takes 
the requirements results of Task 1.1 and the application domains defined in work package 4. It then 
attempts to study the distributed AI techniques. While doing do, a summary of the distributed AI use 
case requirements are first studied (Section 3).  The selected techniques will further be adapted to 
distributed data stream environments. Guidelines on how to fit the algorithms specifically to the 
problem domain will be developed and specified in detail. The result of the study is such that the next 
section, Section 4, can build on further by providing an up-to-date information on the technological 
state-of-the-art.  The result here is a classification and analysis of the state of the art, specification and 
high-level design of the new techniques and algorithms. 

MIRAI, despite its moderately sized consortium, is relatively use case rich. Hence, it is important to 
adequately identify and refer to each of the 5 use cases. Based off of the outcome of D1.1, the 
following numbering and naming convention is adopted throughout the text: 

Numbering and naming convention: 

 Use case 1: Distributed renewable energy systems (UC owner: 3E) 

 Use case 2: Secure Internet provisioning (UC owner: NOS) 

 Use case 3: Traffic management (UC owner: Macq) 

 Use case 4: Water management (UC owner: Shayp) 

 Use case 5: Continuous auto configuration of industrial controllers at edge (UC owner: Eliar & 
Enforma) 
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3. Summary of the distributed intelligence use case requirements 

In this section we first summarize, per use case, the relevant distributed intelligence requirements, as 
they will have an impact on the machine learning and data mining techniques to be considered in 
WP2. These requirements are subsequently consolidated in view of identifying the relevant state-of-
the-art areas (or themes) for which specific techniques will be described in Section 4. 

3.1. UC1: Distributed renewable energy systems (UC owner: 3E) 

3E provides consultancy and software solutions for monitoring and improving the performance of 
sustainable energy installations (such as photovoltaic and windmill plants) and for optimizing energy 
consumption. Through MIRAI, 3E aims at providing real-time status updates of plant assets and at 
offering asset control features (such as switching off plants when energy prices are negative, and 
charging and discharging battery systems to help stabilize the grid). 

3E would like to execute (part of) the grid optimization service locally, on a prosumer's infrastructure. 
For this, the production and consumption need to be forecasted at the edge, while leveraging the 
knowledge from other edge devices and customer infrastructure. Being able to distribute the service 
in that way would enable a faster response to changes in the grid status, as well as to changes in the 
local energy production and consumption, and hence reduce latency. In addition, 3E would like to 
minimize bandwidth and communication costs when transferring data to a cloud backend. 

The corresponding distributed intelligence requirements for this use case are: 

 Forecast the future energy production, consumption, and market prices at the edge and 
execute (part of) the grid optimization service locally 

 Leverage knowledge from other edge devices for improving forecasts 

 Compress real-time (time series) data locally, with minimal information loss 

 Provide a secure data sharing solution between edge devices and edge and cloud in view of 
competitive prosumer information 

3.2. UC2: Secure Internet provisioning (UC owner: NOS) 

NOS wants to provide a security solution allowing the detection and mitigation of DDoS attacks 
involving customer IoT devices. In addition, the solution will provide various levels of defence against 
such threats. To detect potential attacks, the incoming and outgoing network traffic of the customer’s 
network will be analysed. Therefore, the solution should integrate with the Internet access points 
deployed at the customer’s premises, the Customer-Premises Equipment (CPE), the edge node in this 
UC. The solution should also integrate intelligence in the cloud, for the training phase and to 
complement the inference phase, as the CPE’s computational power is insufficient in sight of typical 
requirements for model training. The trained ML models will capture the typical legitimate traffic in 
the customer’s network, so care must be taken to protect the customer’s privacy both during the 
training phase and during run-time. Other elements besides the CPE and a cloud component may host 
components of this solution (e.g., middleboxes), leading to potential distribution of the inference 
process. The use of a transfer learning approach can be considered in case synergies between 
data/models produced by/for different customers can be explored to produce a global model (at the 
cloud) that is then transferred to the CPEs. 

The intelligent system requirements for this use case are: 

 Detect anomalous network traffic, i.e., traffic that does not match typical traffic behavior 
observed at the customer’s network 

 Protect customer identity and data, during training and operation 
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 Carry out inference in a decentralized fashion, i.e., ability to run a lightweight model at the 
edge and a more elaborate one in the cloud or an ISP middlebox 

 (Train primarily at the cloud, due to the CPE’s limited computational power)  

Other requirements that may be considered in the design of a solution: 

 Data and models of many customers available at the cloud can be trained into an aggregated 
model, that is then transferred to CPE (transfer learning) 

 Pre-process raw network traffic datasets at CPE to extract features, depending on the features 
selected as inputs to the developed ML mechanism 

3.3. UC3: Traffic management (UC owner: Macq) 

In the domain of smart mobility, Macq offers products ranging from sensor solutions for traffic 
monitoring, including advanced Smart Mobility cameras (able to operate on multiple lanes, distinguish 
between different types of vehicles, detect the number of passengers, estimate driving speed, etc.), 
to controllers for traffic light management at road intersections, and software packages for managing 
mobility-related data and extracting valuable insights for different types of decision makers (such as 
police and road authorities). Through MIRAI, Macq mainly aims at extracting valuable road safety 
analytics at the edge (specifically from their Smart Mobility cameras) and at reacting quickly when a 
potentially dangerous situation is detected. 

Macq would like to extract relevant features from the image data (e.g. object identification) locally in 
order to avoid transferring bandwidth-intensive data and hence reduce latency, and to preserve road 
users' privacy. Macq would also like to leverage the computational power of other cameras potentially 
available at a given location and be able to not only reconstruct a full situational picture at that 
location (note that a camera might only capture a limited part of the location) but also to distribute 
computations horizontally at the edge based on the processing capabilities, current load, and 
connection link to the other neighboring cameras available. Finally, the cameras being deployed 
outdoors, the image preprocessing needs to be able to deal with noisy data (due to poor or 
unfavorable lighting conditions) and with missing data (as in the event of high image processing loads, 
cameras drop frames). 

The corresponding distributed intelligence requirements for this use case are: 

 Fuse locally data from different cameras capturing the same scene using different spectra and 
technologies (black and white, near infrared, color, thermal, time-of-flight) and from 
additional non-visual technologies (radar, sound) 

 Extract optimal features locally from the fused data for further processing and distribution to 
other edge devices 

 Build locally an accurate situational picture of a road location 

 Leverage knowledge from other edge devices for dealing with noise and missing data, 
improving feature extraction, and building of an accurate situational picture 

 Distribute computations among edge devices to reduce load on the single devices 

 Minimize the sharing of road users' private data outside edge devices and, when needed, 
preserve their privacy 

3.4. UC4: Water management (UC owner: Shayp) 

Shayp provides solutions for the monitoring and management of water leakages for different types of 
buildings, ranging from small buildings such as individual homes to larger buildings such as schools, 
hospitals and office and administration buildings. Through MIRAI, Shayp aims at (1) reducing and 
optimizing communication bandwidth, as message transmission drains most of the battery power, (2) 
reducing the time it currently takes to detect a leakage and hence reacting quicker when a potentially 
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damaging leakage is detected, and (3) adding remote control features to its meters, enabling future 
updates and remote calibration. 

Shayp would like to perform part of the leakage detection reasoning locally on the smart water meters, 
and at least detect anomalous data water consumption at the edge. Full (or most) water consumption 
data should still be transferred to a cloud backend in order to confirm the occurrence of a leakage and 
determine its severity. As water consumption data is privacy-sensitive, computations and data 
transfers should be performed in a privacy-preserving fashion. 

The corresponding distributed intelligence requirements for this use case are: 

 Compress (time series) data locally, with minimal information loss and computation power 

 Detect anomalies in water consumption data locally, by leveraging location/building specific 
information and in a battery-preserving fashion 

 Preserve customers' privacy when manipulating and transferring water consumption data 

3.5. UC5: Continuous auto configuration of industrial controllers at edge 
(UC owner: Eliar & Enforma) 

Eliar produces textile machine process control devices and PLCs (Programmable Logic Controllers), 
which control the machines according to the desired recipe and process steps. Enforma provides data 
analysis in a plethora of areas from telecommunications records to fleet GPS data, from IoT, health 
and financial data to data emerging from IP networks and energy grids. Through MIRAI, the goal is to 
tune PID parameters adaptively with the output of the AI algorithm working on the process controllers 
and PLCs, which are IoT devices operating at the edge. 

The textile dyeing process is a batch process which takes 5-12 hours depending on various process 
parameters such as fabric to be dyed, desired color, chemicals and dye. In the textile dyeing process, 
one of the important criteria that will ensure “right first time” is the correct temperature control of 
the machine. Currently, PID parameters are tuned by technicians according to their personal 
experience during installation of the dyeing machine. This may cause inconsistency in the process 
control and sustainability issues due to inefficient use of resources such as energy, steam, water, 
chemical, dye, and time. 

The corresponding distributed intelligence requirements for this use case are: 

• Generating time series data set, pre-processing (data cleaning, normalization, 
standardization, etc.) and labelling operations on time series in real time at edge 

• Rule-based determination of process priorities that change according to the stage in the 
process /in MES 

• Auto-tuning of PID parameters, namely kp and ki parameters (which refer to the coefficients 
of the so called proportional gain and integral gain, respectively) using Control Engineering 
approaches as well as ML techniques at edge, at certain intervals, whilst ensuring the PID 
continues to minimise process errors in real-time 

• Ensuring that both the PID control within the machine itself and the steam usage on the basis 
of the enterprise can be given to the priority processes with the Federated Learning 
techniques 

• Performing some of computations within MES to reduce the load on the edge devices 
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3.6. Consolidation of distributed AI requirements into relevant state-of-the-
art areas 

The following table provides a consolidation of the distributed AI requirements identified individually 
for each use case in the previous subsections, split into relevant state-of-the-art areas to be further 
explored in Section 4. Related use case specific requirements are grouped together in the third column 
of this table. The second column provides the state-of-the-art area linked to these requirements. 
Finally, to ease readability, these areas are further grouped together, when relevant, into higher-level 
domains. 

 

Domain State-of-the-art area Relevant individual UC requirements 

Data 
preprocessing 

Distributed and multi-
modal data fusion at the 
edge 

 (UC2) Pre-process raw network traffic 
datasets at CPE to extract features, 
depending on the features selected as inputs 
to the developed ML mechanism 

 (UC3) Fuse locally data from different 
cameras capturing the same scene using 
different spectra and technologies (black and 
white, near infrared, color, thermal, time-of-
flight) and from additional non-visual 
technologies (radar, sound) 

 (UC3) Leverage knowledge from 
other/nearby edge devices (cameras) for 
dealing with noise and missing data, 
improving feature extraction, and building of 
an accurate situational picture 

 (UC5) Generating time series data set, pre-
processing (data cleaning, normalization, 
standardization, etc.) and labelling 
operations on time series in real time , at the 
edge 

Computations 
at the edge 

Prediction at the edge  (UC1) Forecast the future energy production, 
consumption, and market prices at the edge 
and execute (part of) the grid optimization 
service locally 

(Distributed) feature 
extraction at the edge 

 (UC3) Extract optimal features locally from 
the fused data for further processing and 
distribution to other edge devices (cameras) 

 (UC5) Rule-based determination of process 
priorities that change according to the stage 
in the process 

Anomaly detection at the 
edge 

 (UC2) Detect anomalous network traffic, i.e., 
traffic that does not match typical traffic 
behavior observed at the customer’s 
network 

 (UC4) Detect anomalies in water 
consumption data locally, by leveraging 
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Domain State-of-the-art area Relevant individual UC requirements 

location/building specific information and in 
a battery-preserving fashion 

Context understanding at 
the edge 

 (UC3) Build locally an accurate situational 
picture of a road location 

Compression of time 
series data at the edge 

 (UC1) Compress real-time (time series) data 
locally, with minimal information loss 

 (UC4) Compress (time series) data locally, 
with minimal information loss and 
computation power 

Distributed AI Federated learning  (UC1) Leverage knowledge from other edge 
devices for improving forecasts 

 (UC2) Carry out inference in a decentralized 
fashion, i.e., ability to run a lightweight 
model at the edge and a more elaborate one 
in the cloud or an ISP middlebox 

 (UC3) Leverage knowledge from other edge 
devices for dealing with noise and missing 
data, improving feature extraction, and 
building of an accurate situational picture 

 (UC5) Ensuring that both the PID control 
within the machine itself and the steam 
usage on the basis of the enterprise can be 
given to the priority processes  

Transfer learning  (UC2) Data and models of many customers 
available at the cloud can be trained into an 
aggregated model, that is then transferred to 
the CPE (transfer learning) 

Distributing 
computations among 
edge nodes 

 (UC3) Distribute computations among edge 
devices to reduce load on the single devices 

 (UC5) Performing some of the computations 
within MES to reduce the load on the edge 
devices 

Security and 
privacy 

Privacy-preserving 
learning techniques 

 (UC2) Protect customer identity and data, 
both when training and during operation 

 (UC3) Minimize the sharing of road users' 
private data outside edge devices and, when 
needed, preserve their privacy 

 (UC4) Preserve customers' privacy when 
manipulating and transferring water 
consumption data 

Secure data sharing  (UC1) Provide a secure data sharing solution 
between edge devices and edge and cloud in 
view of competitive prosumer information 
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4. Review of the relevant state-of-the-art 

This section provides an overview of the relevant state-of-the-art areas identified in Section 3.6, where 
subsections and subsubsections correspond respectively to the higher-level domains and state-of-the-
art areas identified previously. The references are listed in Section 6. 

4.1. Data preprocessing 

In ML we can distinguish two processes: training (learning) and inference. The goal of the first process 
is to develop a model that will be later used to perform inference, i.e. to make predictions given input 
data. 

Training of a model is driven by data. During the training process, data is fed to the model, and, based 
on the model output, and possibly other information, the model parameters are adjusted. 
Preprocessing of data is important for model training because the data collected from the application 
domain is often incomplete or is not encoded in a way to make training efficient or accurate. 

Data is also fed to an ML model during the inference process. Because the ML model may take as input 
data that is derived from the collected raw data, data preprocessing may also take place during the 
inference process. 

We can identify four steps in data preprocessing: data cleaning, integration, transformation and 
reduction. 

The main purpose of data cleaning is to handle missing, noisy, inconsistent and redundant data, all of 
which reduce the quality of the training data and consequently of the model. 

Data integration is needed to merge data from multiple sources into a single data set. Issues that may 
arise in this process are the use of different formats or attributes by the different sources and 
redundant data. 

Data transformation allows to improve the performance and the accuracy of the training of the ML 
models. Indeed, the raw cleaned data may not be encoded properly for an efficient and accurate 
training. Commonly used data transformation techniques include normalization of numerical 
attributes and attribute selection. 

If the data set is very large, it may be helpful to use data reduction to improve the performance of the 
learning process without affecting its accuracy. Some techniques commonly used are attribute subset 
selection, discretization and dimensionality reduction. 

4.1.1. Distributed and multi-modal data fusion at the edge 

Distributed and multi-modal data fusion at the edge level can significantly improve the data quality in 
a distributed environment. On the one hand, information from different homogenous edge devices 
can be leveraged, especially when it comes to missing or noisy data. On the other hand, it is possible 
to combine information from heterogeneous sources. For example, in UC3, it is possible to merge 
information from the traffic video cameras with the information received from non-visual sensors like 
a speed measurement via radar [DF1]. Additionally, data fusion can happen at different levels: at the 
level of raw data, at feature level or decision level [DF2]. 

One question to answer for both cases is on the actual exchange of data: is the solution cloud-centric, 
meaning that the raw data is uploaded to a cloud environment and from there pushed towards other 
edge devices, or is there direct communication between the single edge devices. The cloud-centric 
model can lead to several problems, like latency in communication especially if a huge amount of data 
is exchanged. In [DF3], a hierarchical automated data fusion architecture was introduced. With this 
hierarchical fusion process, the importance of different layers of information is considered such that 
results are available accurately and in a short time. This is especially important if decisions must be 
taken within a very short time, as for UC3. Further, for UC3, most of the state-of-the-art models are 
computation-intensive deep learning models. The training efficiency of these models on single-
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modality data has made great progress. However, reducing the number of used weights in data fusion 
deep learning models along with training efficiency improvements in multi-modal setup is still an 
active research direction [DF4]. 

Data from multiple sensors come with different representations and structures (e.g. traffic video 
cameras and speed sensors). The information from one sensor (one mode) can act as a soft label for 
another (intermodality). This information from multiple sensors might have different statistical 
properties making relational discovery challenging. However, such interrelationships are useful while 
dealing with noisy and missing data as they act as supplementary information. In addition, there will 
be complementary information available from these different modes (crossmodality) that should also 
be exploited for decision making. Intermodal and crossmodal information are abundant in various use 
cases (e.g. UC3, same road junction monitored at various angles/using different camera types). 
Current models capture features specific to each modality and further use a combination of these 
features during the fusion step to improve the final goal, which might not help in capturing the entire 
semantic relationships properly. A few semantic fusion strategies such as multiview fusion and 
transfer learning fusion have made some progress in this direction [DF5, DF6]. However, pushing the 
state-of-the-art in this direction will be critical for UC3. Data fusion methods for both homogeneous 
and heterogeneous devices should be revisited to take these problems into account. 

Data fusion for homogeneous devices: In the case of homogeneous edge devices (e.g. two infrared 
cameras that cover the same area but from two different points of view) missing data in one device 
can be replaced by information from the other. This can be very helpful, especially when the chance 
of incomplete data is high, e.g. something was blocking the camera or due to the angle of sunlight. 
But also here, it has to be decided on how to fuse data in case of contradictions. 

Data fusion for heterogeneous devices: One of the major problems when it comes to the fusion of 
information from different sensors is synchronization: Is the time exactly configured in each device? 
At what times do the different sensors provide information? And if the temporal resolution of one 
sensor is much higher than for another one, it must be decided whether data between two time events 
should be linearly or constantly interpolated. Questions like these must be answered together with 
the domain experts of the single use cases. 

Further challenges exist in terms of the nature of the data collected from dynamic environments. Non-
stationary nature in single modal data is currently solved using transfer learning techniques, which 
reduces training time requirements of these complex models. However, addressing distribution 
changes to multi-modal inputs is quite challenging. Online and incremental multi-modal fusion models 
should be explored to detect input distribution changes and adapt to the new environmental 
conditions [DF7, DF8]. 

In textiles process control, currently, very small amount of descriptive analytics (such as for generation 
of basic operational reports) is performed at the factory MES level. No analytics is taking place at the 
edge level. What is more, most of the locally generated data is dismissed without ever being analyzed 
even for basic statistical purposes. PID controllers are implemented on the edge device and their 
tuning at the moment is performed 100% manually and during installation stages of the factory 
production line. This situation is also representative of the industry’s state-of-the-art level. 

4.2. Computations at the edge 

4.2.1. Prediction at the edge 

Tuning describes the steps taken to ensure that for an input signal the output signal (response) of a 
process plant is as close to a desired response as possible (this closeness is measured by minimizing a 
cost function possibly subject to constraints) in order to determine the parameters of a controller that 
usually sits in the feedback loop of a process control schema [PE5, PE6]. Thus, the plant (i.e. process) 
response has to be calculated into the future (hence the predictions) for a number of time units (could 
be counted in seconds or discrete time steps), and the best predicted response will then be back 
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propagated into the estimation of the controller parameters [PE3, PE4]. While this is called optimal 
controller tuning in the process industries, its steps resemble AI prediction steps in certain ways. In 
the textiles industry worldwide, controller tuning is performed during the first installation manually. 
Edge nodes from there on remain as dummy controllers with no capability to self-adapt [PE1, PE5]. 
What could be considered as "lightweight" data analytics (such as descriptive analytics, basic alarms) 
then takes place at the MES level. All calculations taking place at MES and practically no calculations 
taking place at the edge is the current situation in the industry worldwide. This limits the process to 
optimally adapt to changing conditions, which could be due to mistuning in the first place, drifting 
process parameters, or changing operating points [PE2]. Potential improvements are likely to improve 
optimality, process visibility, as well as reduce energy use, depending on the critically of process. 

4.2.2. (Distributed) feature extraction at the edge 

Optimal feature extraction is unavoidable for vision-based traffic analysis systems, operating at the 
edge, for two main reasons: privacy preservation of sensitive image data, and bandwidth reduction 
for collaborative situational awareness and decision making. The best performing vehicle detection 
and classification models make use of state-of-the-art deep learning models that are both 
computationally expensive and extract higher-dimensional features. The normal approach to address 
this problem is to enable edge devices with quick initial feature extraction and classification if the edge 
model is confident and fall back to the large neural network (NN) model in the cloud to perform final 
classification. This kind of distributed approach is challenging mainly due to: (i) issues in fitting high 
accuracy deep models on the edge devices, (ii) large communication costs because of partitioning of 
deep learning models and (iii) difficulty in coordinated decision making between edge devices and the 
cloud. 

In [FE1] the authors proposed a novel distributed deep neural network (DDNN) with a joint training 
that minimizes communication overhead and maximizes the usefulness of the extracted features. 
They make use of an early exit strategy to distribute the load between the edge devices and the cloud. 
Further, the authors also considered various feature aggregation techniques to select the optimal 
features and proposed a confidence measure at various exit points based on a normalized entropy 
measure. A brief survey of the early exit strategies can be found in [FE2]. Even with these available 
techniques, it is quite challenging to come up with an optimal distributed feature extraction algorithm 
due to the lack of maturity of the available techniques. 

The applicability of the available algorithms for optimal feature extraction will be investigated during 
the initial stages of MIRAI. Further improvements over the state-of-the-art will be made to enhance 
the capabilities of multi-exit neural networks taking the network architecture, communication costs 
and accuracy into consideration. In addition, optimal training, and inference strategies for a subset of 
edge devices (for example, a couple of cameras monitoring an intersection) will be explored. Adaptive 
neural network exit strategies based on the inference confidence measure for an edge device subset 
is also an interesting direction to be investigated. 

Within the textiles industry, it is not uncommon to see edge devices holding sufficient amounts of 
memory and computational power to perform certain ‘advanced’ work, if this is what was expected 
of them. However, in the current state-of-the-art, local devices are usually not tasked with performing 
various stages of data analytics such as data preprocessing (including feature extraction), modelling, 
and etc. UC5’s devices are also on par with the state-of-the-art, meaning that the local devices, 
although having ‘some’ capabilities to perform some of the advanced analytics, do not perform any 
feature extraction in the sense of true artificial intelligence. 

4.2.3. Anomaly detection at the edge 

Anomalies can be caused by errors in the data but can also be indicative of a new, previously unknown, 
underlying process [AD1]. [AD2] defines an outlier as an observation that deviates so significantly from 
other observations as to arouse suspicion that it was generated by a different mechanism. Outliers 
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are both rare and unusual: rarity suggests that they have a low frequency relative to non-outlier data, 
and unusual suggests that they do not fit neatly into the data distribution. In turn, novelties are newly 
occurring unobserved patterns in the data, that were not considered as anomalous data points. A 
novelty score may be assigned for these previously unseen data points, using a decision threshold 
score. The points which significantly deviate from this decision threshold may be considered as 
anomalies or outliers. Techniques used for anomaly detection are often used for novelty detection 
and vice versa. 

Anomalies can take different forms [AD3]: 

 Point anomalies: Point anomalies often represent an irregularity or deviation that happens 
randomly and may have no particular interpretation. For example, a big credit transaction 
which differs from other transactions is a point anomaly. 

 Contextual or Conditional Anomalies: Some points can be normal in a certain context, while 
detected as anomaly in another context. Having a daily temperature of 25°C in summer in 
Germany is normal, while the same temperature in winter is regarded as an anomaly. 

 Collective or Group Anomalies: There are cases where individual points are not anomalous, 
but a sequence of points is labeled as an anomaly. For example, a bank customer withdraws 
$500 from her bank account every day of a week. Although withdrawing $500 occasionally is 
normal for the customer, a sequence of withdrawals is an anomalous behavior. 

Labeled data availability conditions the type of training that can be done. Anomalies are rare 
occurrences, so having labeled datasets is often hard. Also, anomalous behavior may change over 
time, for instance, the nature of the anomaly can change so significantly and that it remains unnoticed. 
We discuss the various options of labeled data availability in the perspective of learning modes; Table 
1 provides an overview of the trade-offs. 

Supervised: Presumes existence of annotated dataset with labels of both normal and anomalous data 
instances. Problem maps into ‘traditional’ binary / multi-class classification problem; as such, well-
established classification methods can be used. 

Semi-supervised: In practice, datasets of (labeled) normal instances can be obtained with some ease, 
whereas it is the anomalous data points that are harder to obtain. These techniques leverage existing 
labels of single (normally positive class) to separate outliers. Semi-supervised or one-class 
classification anomaly detection (AD) techniques assume that all training instances have only one class 
label. 

 Operating Principle: Semi-supervised techniques learn a discriminative boundary around the 
normal instances, and test instances that do not belong to the majority class are flagged as 
anomalous. 

 Assumptions: (i) proximity and continuity: points which are close to each other both in input 
space and learned feature space are more likely to share the same label; (ii) robust features 
can be learned to separating normal from outlier data points. 

Unsupervised: Labeled data is hard to obtain in the first place. Unsupervised deep anomaly detection 
techniques detect outliers solely based on intrinsic properties of the data instances. 

 Operating Principle: Unsupervised anomaly detection algorithm produces an outlier score of 
the data instances based on intrinsic properties of the dataset, such as distances or densities. 

 Assumptions: (i) “normal” regions in the original or latent feature space can be distinguished 
from “anomalous” regions in the original or latent feature space; (ii) the majority of the data 
instances are normal compared to the remainder of the data set. 

 

Table 1. Trade-offs of semi-supervised and unsupervised techniques for anomaly detection. 

 Advantages Disadvantages 
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Semi-Supervised 

Use of labeled data (usually of one 
class) can produce considerable 
performance improvement over 
unsupervised techniques. 

The features extracted may not be 
representative of fewer anomalous instances 
and hence prone to the over-fitting problem. 

Unsupervised 

 Learns the inherent data 
characteristics to separate normal 
from an anomalous data point. 

 Cost-effective technique to find 
the anomalies since it does not 
require annotated data for 
training the algorithms. 

 Often challenging to learn commonalities 
within data in a complex and high 
dimensional space. 

 Sensitive to noise and data corruptions. 

 Less accurate than supervised or semi-
supervised techniques. 

 

Anomaly detection is often also viewed as an instance of the one-class classification (OCC) 
problem [AD4]. OCC tries to identify objects of a specific class amongst all objects, by primarily 
learning from a training set containing only the objects of that class. This is different from and more 
difficult than the traditional classification problem, which tries to distinguish between two or more 
classes with the training set containing objects from all the classes. 

We will now discuss five selected techniques: 

Density-Based Clustering [AD5] is an unsupervised clustering technique, often called as DBSCAN that 
can double to identify outliers. Given a set of points over a space, DBSCAN creates clusters by assessing 
if a point p is a cluster point (in DBSCAN, a ‘core’ point) if at least minPts points are within distance d 
of it. Unclustered points can be interpreted as anomalies. 

Autoencoders [AD6] are an architecture of neural networks that implement semi-supervised learning. 
Autoencoders represent data within multiple hidden layers by reconstructing the input data, 
effectively learning an identity function. The autoencoder learns a representation (encoding) for a set 
of data, typically for dimensionality reduction, by training the network to ignore insignificant data 
(“noise”). Autoencoders can be used for anomaly detection as, when trained solely on normal data 
instances (which are the majority in anomaly detection tasks), fail to reconstruct the anomalous data 
samples. The data samples which produce high residual errors are considered outliers. The choice of 
autoencoder architecture depends on the nature of the data. Convolution networks are preferred for 
image datasets. Long short-term memory (LSTM) based models tend to produce good results for 
sequential data. The choice of right degree of compression, i.e., dimensionality reduction is often a 
hyper-parameter that requires tuning for optimal results. 

Sometimes, NN can be concatenated. The second NN is an autoencoder, to learn a representation of 
the input features (for dimensionality reduction or anomaly detection). The first NN is dedicated to 
feature extraction, being selected as a function of the nature of the data. Examples: Convolution 
networks are preferred for image datasets. LSTM based models tend to produce good results for 
sequential data. An example can be found in [AD7] for the goal of anomaly traffic detection 
mechanism named D-PACK. As the authors describe, it “consists of a convolutional neural network 
(CNN) and an unsupervised deep learning model (e.g., Autoencoder) for auto-profiling the traffic 
patterns and filtering abnormal traffic (…) Notably, D-PACK inspects only the first few bytes of the first 
few packets in each ow for early detection.” 

Principal Component Analysis (PCA) [AD8] is an unsupervised mechanism used most often for 
dimensionality reduction. Assumption: data lies on or near a low d-dimensional linear subspace. Axes 
of this subspace are an effective representation of the data. Identifying those axes is known as 
Principal Component Analysis, and can be obtained by Eigen or Singular Value Decomposition. In other 
words, PCA finds the directions of maximal variance in the training data. 

One-Class Support Vector Machines are boundary-based mechanisms for semi-supervised learning. 
Traditional Support Vector Machines (SVM) select a decision boundary for which the margin between 
data points of different classes is maximized. Other interpretation is that SVMs maximize the distance 
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between the convex hulls of points belonging to each class. One-Class SVM (OC-SVM) [AD9] uses a 
hypersphere to encompass all of the instances (as opposed to using a hyperplane to separate two 
classes of instances). Data points outside the hypersphere are classified as anomalies. 

Isolation forests [AD10] is an unsupervised mechanism that, as presented by the authors, while 
“existing model-based approaches to anomaly detection construct a profile of normal instances, then 
identify instances that do not conform to the normal profile as anomalies”, isolation forests “explicitly 
isolate anomalies instead of profiles normal points.” The core assumption is that fewer partitioning 
steps are required in order to isolate an anomalous sample in a dedicated partition. Recursively 
generate partitions on the sample by randomly selecting an attribute Randomly selecting a split value 
for the attribute, between the minimum and maximum values allowed for that attribute. Anomalies 
will usually require less partitions to be isolated, i.e., have smaller path lengths. 

 

Table 2 offers a summary comparison of the above five methods and their suitability for deployment 
on edge devices. Semi-supervised methods typically demand training to be done outside the edge 
device. 

Table 2. Comparison of selected anomaly detection techniques. 

 Type Advantages Disadvantages 
Suitability for edge 
devices 

Density-
based 
Clustering 

Unsupervised 
Low computational 
cost 

Selecting best parameter 
values (and minPts) for 
normal-class membership 

Appropriate for edge 
devices, including search 
for best parameter 
values 

Auto-
encoder 

Semi-
supervised 

Architectures for 
different types of 
data (images, time-
series, etc.) 

Computationally 
expensive (both training 
and inference) 

Possible if suited 
libraries/compiling 
strategies are used 

PCA Unsupervised 
Reasonable 
computational cost 
on training 

Selecting best threshold 
value (distance to lower-d 
hyperplane) 

Trained model can be 
easily implemented on 
edge 

OC-SVM 
Semi-
supervised 

Minimizes convex 
set of normal data 

Computationally 
expensive on training 

Trained model can be 
easily implemented on 
edge 

Isolation 
Forests 

Unsupervised 
Low computational 
cost 

Selecting best threshold 
value for path length 
value (used to classify as 
normal or anomalous) 

Appropriate for edge 
devices 

Anomaly Detection in Univariate Time Series 

The main assumption about spatial data is that the data points are independent from each 
other [AD3]. Therefore, anomaly detection happens by either: (i) measuring the deviation of the 
abnormal points to the rest of the data; (ii) clustering the whole dataset and mark all points as 
anomalies that lie in less dense regions. In time-series data, it is presumed that data points are not 
completely independent. It is assumed that the latest data points in the sequence influence their 
following timestamps. Following this, values of the sequence change smoothly or show a regular 
pattern. Sudden changes in the sequence can be regarded as an anomaly. 

There are a number of time-series patterns to take into consideration: (i) trend: if its mean is not 
constant but increases or decreases over time; (ii) seasonality: periodic recurrence of fluctuations. 
Stationarity: stationary time-series is a time-series having the same characteristics over every time 
interval. A stationary time-series will have: (i) constant mean (thus no trend exists in the time-series); 
constant variance; (iii) constant autocorrelation over time; and (iv) no seasonality, i.e., no periodic 
fluctuations. Anomaly detection methods for time-series can be broken down into two main 
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categories [AD11]: (i) anomaly detection based on prediction of the time series and (ii) anomaly 
detection based on unusual shapes of the time series. 

Machine Learning on Edge Devices 

The execution of ML models in resource-constrained IoT/edge devices, specifically on 
microcontrollers, finds use in a variety of applications such as image processing [AD12], gesture-based 
interaction for cane users [AD13], temperature forecasting [AD14], activity classification [AD15] and 
room occupancy estimation [AD16]. It is challenging due to the reduced RAM and flash memory 
available and reduced computing frequency that is typical of such devices. Specific solutions have been 
proposed, such as: ProtoNN [AD17], a compressed and accurate k-nearest neighbors (kNN) for 
resource-scarce devices; CMSIS [AD12], optimized software kernels for deploying NNs on Arm Cortex-
M CPUs; and SeeDot [AD18], a domain-specific language to express ML algorithms and a compiler of 
fixed-point code that can efficiently run on constrained IoT devices. Reviewing application-driven 
works, neural networks tend to be the most targeted ML model for deployment [AD12, AD14, AD16] 
and kNN [AD13, AD15]. Most works in the field tackle ARM Cortex processors ([AD12, AD13, AD15, 
AD16]), whereas other works target even smaller microcontrollers such as the MCU 8051 [AD14]. 

4.2.4. Context understanding at the edge 

Context understanding is a general problem in most industrial AI use cases. If the context is unknown 
or not modelled, this can lead to misleading results. As an example, think about the estimation of risk 
at a road intersection. Imagine, a bike approaches the intersection from east and a car from south. 
And now, the risk whether the bike rider and the car driver see each other, and brake early enough, is 
of interest. This risk varies drastically in case the sun is shining compared to when it is raining. First, 
the view is worse when it is raining, and, second, on a wet street the braking distance is much longer. 
Hence, in this example the humidity changes the context for a machine learning model. 

On the edge, different approaches can lead to a context-awareness. In the example above, the easiest 
solution is to add a humidity sensor that provides information to the edge device and define a Boolean 
variable whether it is either raining or not. This Boolean variable can be considered in the machine 
learning model that estimates the risk. 

Often though, the context cannot be expressed in this binary way but is a continuously and slowly 
changing variable. In the literature, this refers to concept drift [CU1]. While there are several well-
established algorithms for unconstrained devices, on the edge, it is harder to detect concept drift as 
usually less historical data is available. In the study of [CU2], an evaluation of different well-known 
online – hence for a continuous data stream – drift detection techniques were performed for different 
kinds of context changes (abrupt and gradual) and their influence on different machine learning 
models for time series data. They mainly focused on Page-Hinkley Test [CU3], the adaptive windowing 
approach (ADWIN) [CU4], Drift Detection Method [CU5] and Early Drift Detection Method [CU6]. They 
showed that taking the context into account when forecasting electricity flow between different states 
in Australia, especially using the Page-Hinkley Test, drastically improved the results. 

Other points to consider when detecting context at the edge level are missing, noisy, and unbalanced 
data and further, the level of complexity of the context. In the publication of [CU7], an adversarial 
autoencoder was implemented that was able to detect the context of human activities. The model the 
authors  introduce can further synthesize and restore missing sensory data to facilitate user context 
detection. Note though that (re-)training of such a model at the edge can lead to computational 
problems as data memory and computational power are usually limited. 

4.2.5. Compression of time series data 

With more and more sensors being installed and collecting data with high temporal resolution, a huge 
amount of raw data would need to be transferred to a central device to be collected. In industrial use 
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cases, this is challenging but most of the time doable. As soon as devices are in the field though, 
sending all data in real-time via a mobile connection becomes at least very challenging and expensive. 

One way to facilitate data transfer from the edge to a central device is to compress the data before 
sending. Recently, several algorithms were proposed to handle compression of time series on 
constrained devices [CTS1, CTS2, CTS3, CTS4, CTS5]. In general, we can distinguish whether: 

 all information should be retrieved during decoding (in which case a lossless compression is 
needed) or not (lossy compression would be acceptable). 

 a training phase on existing data is needed (and the compression should be adaptive) or not 
(non-adaptive compression). 

 the same algorithm is used for encoding and decoding (symmetric compression) or not 
(asymmetric compression). 

 the data is compressed using a fixed or variable number of bits/bytes (bit-/byte-level 
compression). 

The decision on which compression algorithm is the best therewith strongly depends on the use case. 
Furthermore, especially in constrained devices, the best balance between different quality measures 
has to be found: 

 Is a higher compression ratio more important than the computational cost? In this case, if 
the field device is connected to the electricity network and has sufficient storage this is 
probably the case. In contrast, if the device is stationary, such that a stable connection 
bandwidth can be guaranteed, but runs on a battery, the computational cost or limited 
storage capacity would be rather more decisive. 

 Is the accuracy (or distortion) more important than the compression speed? In this case, if 
the decision has to be taken very quickly or in near real-time, it might be preferable to lose 
some information during a lossy compression but therefore have a high speed, while the 
contrary is true for data where small deviations are important, but the decision has some 
more time to be taken, resulting in lossless compression as the preferred option. 

For time series data compression on constrained devices, the most important classes of compression 
algorithms are: 

 Dictionary-based algorithms, where common sequences in the data are encoded using a 
dictionary. This dictionary is stored in the edge device as well as in the central device. The 
streaming data on the edge will be encoded by matching pre-defined sequences in the 
dictionary values, e.g. the subsequence 056010 can be a dictionary value with key “a”. In this 
case, only the dictionary key “a” is sent from the edge to the central device where it can be 
decoded again into the sequence. The compression rate depends on the length of the defined 
sequences and on the dictionary size, as with more dictionary entries, also the dictionary keys 
increase in size. Note, that with increasing dictionary size, also the computation cost increases 
on the edge device to find the corresponding sequence. Well-known dictionary-based 
algorithms are TRISTAN [CTS6] and CONRAD [CTS7]. 

 Function Approximation algorithms, where the idea is to approximate the data stream by a 
function. As this is usually not feasible over the full data stream, the data is segmented in time 
and a piece-wise approximation is performed. The functions in use are often linear 
functions [CTS8], polynomials [CTS9] and discrete wavelets [CTS10]. 

 Sequential algorithms, which consist of easy compression techniques used sequentially. 
Often, they use delta or run-length encoding. The first encodes a time series by storing the 
difference between the current and the last value instead of sending the actual value, which 
can be beneficial for large values that only slightly change over time. The second stores how 
often a single value occurs and saves the value and the number of repetitions, which is 
beneficial for long sequences of constant values. Additionally, Huffman encoding is often used 
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to further decrease the size of stored data. The encoder creates a dictionary that associates 
each symbol to a binary representation and replace each symbol of the original data with the 
corresponding representation [CTS1]. One sequential algorithm that is designed for IoT 
scenarios is the so-called Sprintz algorithm [CTS11]. It focuses on energy-efficiency and speed 
by combining forecasting, bit packing, run-length encoding and entropy coding. In case 
forecasting is too expensive, either due to computational or memory cost, Run-Length Binary 
Encoding (RLBE) [CTS5] is a lossless technique that combines different encodings in five 
consecutive steps. It was first used for smart meter data and therewith is designed for 
constrained devices. Another way to reduce the size of a single value is given by transforming 
them to binary code words. One example for this is the so-called Fibonacci encoding that can 
be used as one step in the sequential algorithms with the nice advantage that single values do 
not need an explicit separator but a series of values can be encoded as one long string [CTS12]. 

 

In the context of MIRAI, compression of time series data is considered in two use cases, namely in 
UC1, where real-time data is collected locally and should be transferred with minimal information loss, 
and in UC4, where the time series data is also being compressed locally with minimal information loss 
and minimal computation power. 

In UC4 data compression should lead to fewer messages to be sent in order to increase battery lifetime 
of the field devices. As the devices are stationary, we can assume that the bandwidth is stable. Further, 
we know that small deviations in the data can make a big difference to detect water leakages. 
Therefore, Function Approximation algorithms are not suitable for UC4 as they often smooth minor 
changes. 

Dictionary-based algorithms could be used and trained on a central device. This could lead to the 
identification of common patterns either for a single device or for groups of devices. Keep in mind 
though, that in this case the dictionary (and possibly dictionary updates) would need to be sent to the 
edge device, either once or periodically. This could lead to high energy consumption and storage 
requirements on the device, which is counter-productive for increasing the battery lifetime in UC4. 

Most suitable for UC4 are Sequential algorithms. They are usually very efficient in terms of 
computation power and memory, and are lossless. Furthermore, in case of small but persistent value 
changes in the data, which often indicate a leakage in UC4, more messages would be sent, which 
directly leads to improvements in the detection time. 

4.3. Distributed AI 

4.3.1. Federated learning 

Federated Learning (FL) [FL1, FL2] aims at the development of a high-quality centralized model by 
aggregating updates provided by multiple edge nodes. While some learning takes place at the edge 
nodes, the requirement on the quality of training at the edge is alleviated, allowing to benefit of 
techniques for operation in resource-constrained platforms. In turn, and leveraging a transfer learning 
approach, the high-quality centralized model can be transferred back to the edge nodes for inference 
operation. However, this option requires identifying and developing an ML algorithm that can learn a 
shared model from local updates. Also, edge-specific aspects captured in the edge updates may be 
eroded when computing the global model. 

The iterative nature of FL requires massive communication between the central server and edge 
devices to train a global model [FL2]. The communication overhead at each iteration is not negligible, 
especially for complex models, large scale applications, and high frequency updates, and becomes a 
challenge to be addressed [FL1, FL2, FL3]. Many studies that aim at reducing communication costs 
have been recently proposed. For example, [FL4] use models of different sizes to address 
heterogeneous clients equipped with different computation and communication capabilities, while 
the work in [FL5] uses collaborative decentralized learning in combination with the master-slave 
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model. Majority solutions that address the problem of reducing network overhead in FL can be 
classified in two main categories. The first category incorporates works that reduce the total number 
of bits transferred for each local update, by means of data compression. Studies that aim at reducing 
the number of local updates during the training process are included in the second category. 

FL promises to deliver model results developed and updated at the edge nodes. In UC5the goal is to 
improve the capability of the edge nodes to provide self-tuning of the PID controllers. Furthermore, 
the current device specs may at time prohibit the deployment of computationally demanding FL 
techniques. Therefore, currently the FL aspect of the developments for the textiles process control 
use case is deferred until the second half of the project, approximately when we expect to get the 
initial results of the automated PID tuning first. 

Approaches that reduce the total number of bits 

[FL6] propose an enhanced FL technique by introducing an asynchronous learning strategy on the 
clients and a temporally weighted aggregation of the local models on the server. Different layers of 
the deep neural networks are categorized into shallow and deep layers and the parameters of the 
deep layers are updated less frequently than those of the shallow layers. In addition, a temporally 
weighted aggregation strategy is applied on the server to make use of the previously trained local 
models, thereby enhancing the accuracy and convergence of the central model. [FL7] design two novel 
strategies to reduce communication costs. The first is relied on the use of lossy compression on the 
global model sent server-to-client. The second strategy uses Federated Dropout, which allows users 
to efficiently train locally on smaller subsets of the global model and also provides a reduction in both 
client-to-server communication and local computation. [FL8] propose Deep Gradient Compression 
(DGC) to greatly reduce the communication bandwidth. The authors of [FL9] introduce a new 
compression framework, entitled Sparse Ternary Compression, that is specifically designed to meet 
the requirements of the FL environment. [FL10] implement a Federated Optimisation (FedOpt) 
approach by designing a novel compression algorithm, entitled Sparse Compression Algorithm (SCA) 
for efficient communication, and then integrate the additively homomorphic encryption with 
differential privacy to prevent data from being leaked. [FL11] develop a novel framework, that 
significantly decreases the size of updates while transferring weights from the deep learning model 
between clients and their servers. A novel algorithm, namely FetchSGD, that compresses model 
updates using a Count Sketch, and takes advantage of the mergeability of sketches to combine model 
updates from many workers, is proposed in [FL12]. [FL13] present a federated trained ternary 
quantization (FTTQ) algorithm, which optimizes the quantized networks on the clients through a self-
learning quantization factor. 

Approaches that reduce the local updates 

A novel FedMed method with adaptive aggregation using topK strategy to select the top workers who 
have lower losses to update model parameters in each round is proposed in [FL14]. [FL15] have 
provided a novel filtering procedure on each local update and transfer only the important gradients 
to the server. The study proposed by Wang et al. [FL16] identifies the relevant updates of participants 
and upload them only to the server. In particular, at each round, the participants receive the global 
tendency and checks the relevancy of their local updates with the global model and upload only if they 
align. An FL protocol of two-step client selection based on their resource constraints instead of the 
random client selection is proposed in [FL17]. In addition, a global model update algorithm, namely 
FedPSO proposed to transmit the model weights only for the client that has provided the best score 
(such as accuracy or loss) to the cloud server [FL18]. However, using conventional approaches such as 
quantization and sparsification is less helpful. It is vital to find out more efficient FL schemes other 
than FedAvg which converge with the same speed as FedAvg and apply to any FL applications [FL19]. 
For example, the studies in [FL20, FL21] have explored an approach that applies clustering 
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optimization to bring efficiency and robustness in FL’s communication. The most representative 
updates are only uploaded to the central server for reducing network communication costs. 

4.3.2. Transfer learning 

In turn, Transfer Learning [TL1] aims to improve the performance of learners on target domains by 
transferring the knowledge contained in different but related source domains. In this manner, the 
dependence on a large number of target-domain data can be reduced for constructing target learners. 
In the context of distributed edge/cloud learning, transfer learning can refer to process of leveraging 
a centralized collection of datasets of similar source processes to create generic models, that are later 
fine-tuned to each edge node by complementing training at the node. This modular training that some 
ML algorithms can perform allows to ease the training requirements on the edge node. For example, 
in UC2 neural networks can be trained by the operator using large datasets from multiple households 
with similar traffic patterns [TL2]. At each household, the generic model can be refined by just 
retraining the last layer of neurons. 

4.3.3. Distributing computations among edge nodes 

In textiles process control, local controllers control the assigned processes with knowledge of their 
setpoints and output errors, as well as an initial prescription from the MES system. However, they 
have no ongoing AI computation at the edges nor do they incorporate important external data such 
as steam availability or the batch priority. This leads to each node currently acting totally 
independently of one another, leading to suboptimal control consequences especially in the case of 
insufficient steam resources or poorly tuned PID controller parameters. A decentralized control 
structure where thermal regulation in buildings is controlled in a predictive manner is presented 
in [DC1]. How PID control can benefit from smart actuator and fieldbus technologies for a distributed 
system is explored in [DC2]. A real-time decentralized and distributed control schemes for Heating 
Ventilation and Air Conditioning (HVAC) systems in energy efficient buildings where a thermal dynamic 
model of building systems and a steady-state resource allocation problem are also introduced is 
designed in [DC3]. A scalable control method for multizone HVAC systems with the objective to reduce 
energy cost while satisfying thermal comfort and indoor air quality simultaneously is studied in [DC4]. 

4.4. Security and privacy 

4.4.1. Privacy-preserving learning techniques 

Privacy Threat Model and Attack Taxonomy 

Looking concretely at privacy threat models, the following actors and their scope of operation are 
involved [PP1]: (i) data owners, whose data may be sensitive, (ii) model owners, which may or may 
not own the data and may or may not want to share information about their models, (iii) model 
consumers, that use the services that the model owner exposes, usually via some sort of programming 
or user interface, and (iv) adversaries, that may also have access to the model’s interfaces as a normal 
consumer does, e.g. feeding new input data for inference. If the model owner allows, they may have 
access to the model itself. 

The following types of attacks on data privacy can be identified [PP1]: Membership inference attacks 
and related Shadow models attacks, Reconstruction attacks, Property inference attacks, andModel 
extraction attacks. 

Membership Inference Attacks: Membership inference tries to determine whether an input sample x 
was used as part of the training set D. This attack only assumes knowledge of the model’s output 
prediction vector (typically a black-box attack), and targets supervised machine learning models (and 
generative models such as GANs and VAEs). In the case of a white-box attack, i.e., if attacker has access 
to the model parameters and gradients, results may be more accurate. 
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Implementation of Membership inference attacks is done through Shadow Model Attacks, explained 
in the next section. Finally, the following defenses can be explored: (i) Differential Privacy: if two 
databases differ only by one record and are used by the same algorithm (or mechanism), the output 
of that algorithm should be similar. Differential privacy offers a trade-off between privacy protection 
and utility or model accuracy; (ii) Regularization techniques: aim to reduce overfitting and increase 
model generalization performance; (iii) Prediction vector tampering: as many models assume access 
to the prediction vector during inference, one can restrict the output to the top k classes or predictions 
of a model. 

Shadow Models Attacks: Some supervised learning attacks use shadow models and meta-models to 
infer membership from target datasets / target models [PP2]. The main intuition behind such attacks 
is that models behave differently when they see data that does not belong to the training dataset. The 
objective of the attacker is to construct an attack model that can recognize such differences in the 
target model’s behavior, and use them to distinguish members from non-members of the target 
model’s training dataset (based solely on the target model’s output). The main idea is as follows: 

1. The adversary trains shadow models (one per output class of the target model) using shadow 
datasets 𝐷𝑠ℎ𝑎𝑑𝑜𝑤 = {𝒙𝑠ℎ𝑎𝑑𝑜𝑤,𝑖 , 𝒚𝑠ℎ𝑎𝑑𝑜𝑤,𝑖}𝑖=1

𝑛 , that are of the same format and distribution as the 
target dataset. 

2. After training the shadow models, the adversary constructs an attack dataset 𝐷𝑎𝑡𝑡𝑎𝑐𝑘 =
{𝑓𝑖(𝑥𝑠ℎ𝑎𝑑𝑜𝑤,𝑖), 𝑦𝑠ℎ𝑎𝑑𝑜𝑤,𝑖}𝑖=1

𝑛 , where 𝑓𝑖 is the respective shadow model. 

a. For all records in the training dataset of a shadow model, the model is queried and obtain 
the output. These output vectors are labeled “in” and added to the attack model’s training 
dataset. 

b. The shadow model is also queried with a test dataset disjoint from its training dataset. 
The outputs on this set are labeled “out” and also added to the attack model’s training 
dataset. 

3. The attack dataset is used to train the meta-model. As the attack dataset reflects the black-box 
behavior of the shadow models on their training and test datasets, the meta-model will be 
essentially performing inference based on the outputs of the shadow models. In fact, a collection 
of ctarget meta-models is trained, one per each output class of the target model. 

4. The trained meta-model is used for testing using the outputs of the target model. 

The results in (Shokri et al., 2017) show that learning how to infer membership in shadow models’ 
training datasets (for which we know the ground truth and can easily compute the cost function during 
supervised training) produces an attack model that successfully infers membership in the target 
model’s training dataset, too. 

Reconstruction Attacks: Reconstruction attacks try to recreate one or more training samples and/or 
their respective training labels. These are also referred to as attribute inference or model inversion: 
given output labels and partial knowledge of some features, the attacker tries to recover sensitive 
features or the full data sample. 

There are two types of such attacks: those that aim at an actual reconstruction of the data, and those 
that aim to create class representatives or probable values of sensitive features that do not necessarily 
belong to the training dataset (e.g., faces of a person). 

The implementation of reconstruction attacks assumes that the adversary has access to the model 𝑓, 
the priors of the sensitive and non-sensitive features, and the output of the model for a specific input 
𝑥. The attack is based on estimating the values of sensitive features, given the values of non-sensitive 
features and the output label. This method uses a maximum a posteriori (MAP) estimate of the 
attribute that maximizes the probability of observing the known parameters. 
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Finally, the defense against such attacks leverages the fact reconstruction attacks often require access 
to the loss gradients during training. Hence, most proposed defenses against these attacks propose 
techniques that affect the information retrieved from these gradients. 

Property Inference Attacks: Property inference is the ability to extract dataset properties which were 
not explicitly encoded as features or were not correlated to the learning task. Property inference aims 
to extract information that was learned from the model unintentionally – even well generalized 
models may learn properties that are relevant to the whole input data distribution and sometimes 
this is unavoidable or even necessary for the learning process – or that may be used to gain insights 
about the training dataset. 

Some examples are extraction of information about the ratio of women and men in a patient dataset, 
when this information was not an encoded attribute or a label of the dataset, or a neural network that 
performs gender classification and can be used to infer if people in the training dataset wear glasses 
or not. Property inference target either dataset-wide properties or emergence of properties within a 
batch of data (on the collaborative training of a model). 

Model Extraction Attacks: Model extraction is a class of black-box attacks where the adversary tries 
to extract information and potentially fully reconstruct a model by creating a substitute model 𝑓’ that 
behaves very similarly to the model under attack 𝑓. There are two types of model extraction attacks: 

 Task accuracy extraction: Create models that match the accuracy of target model 𝑓 in a test 
set that is drawn from the input data distribution and related to the learning task. The 
adversary is interested in creating a substitute that learns the same task as the target model 
equally well. 

 Fidelity extraction: Create a substitute model 𝑓’ that matches 𝑓 at a set of input points that 
are not necessarily related to the learning task. The adversary aims to create a substitute that 
replicates the decision boundary of 𝑓 as faithfully as possible. 

In both cases, it is assumed that the adversary wants to use as few queries as possible. Knowledge of 
the target model architecture is not strictly necessary, if the adversary’s substitute model of same or 
higher complexity than model under attack. Some works focus on recovering information from the 
target model, e.g., hyper-parameters in the objective function; in neural networks: activation types, 
optimization algorithm, number of layers, etc. 

Privacy-preserving learning techniques 

Ensemble of Teacher Models [PP3]: The motivation for this proposal is that models may inadvertently 
or implicitly store some of its training data; careful analysis of the model may reveal sensitive data. 
Enter Private Aggregation of Teacher Ensembles (PATE), an approach to providing strong privacy 
guarantees for training data. PATE combines, in a black-box fashion, multiple models trained with 
disjoint datasets (e.g., records of different subsets of users). As the models rely directly on sensitive 
data, they are not published, but instead used as “teachers” for a “student” model. The student learns 
to predict an output chosen by noisy voting among all of the teachers, and cannot directly access an 
individual teacher or the underlying data or parameters. 

The student’s privacy properties can be understood both intuitively (since no single teacher and thus 
no single dataset dictates the student’s training) and formally, in terms of differential privacy. These 
properties hold even if an adversary can not only query the student but also inspect its internal 
workings. Compared with previous work, the approach imposes only weak assumptions on how 
teachers are trained: it applies to any model, including non-convex models like DNNs. 

Differential Privacy [PP4]: Differential privacy constitutes a strong standard for privacy guarantees for 
algorithms on aggregate databases. It is defined in terms of the application-specific concept of 
adjacent databases. Consider each training dataset is a set of image-label pairs: two of these sets are 
adjacent if they differ in a single entry, i.e., if one image-label pair is present in one set and absent in 
the other. 
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Definition: A randomized mechanism M: D → R with domain D and range R satisfies (ε, δ)-differential 
privacy if for any two adjacent inputs d, d0 ∈ D and for any subset of outputs S ⊆ R it holds that 

Pr[𝑀(𝑑) ∈  𝑆] ≤ 𝑒𝜀 Pr[𝑀(𝑑′) ∈  𝑆] +  𝛿 

A common paradigm for approximating a deterministic real-valued function f: D  R with a 
differentially private mechanism is by adding noise calibrated to f's sensitivity Sf , which is defined as 
the maximum of the absolute distance |f(d) - f(d’)| where d and d’ are adjacent inputs. Consider the 

Gaussian noise mechanism defined by 𝑀(𝑑) ≜ 𝑓(𝑑) + 𝑁(0, 𝑆𝑓
2𝜎2). A single application of the 

Gaussian mechanism to function f of sensitivity Sf satisfies (휀,𝛿)-differential privacy if 𝛿 ≥
4

5
exp(−(𝜎휀)2/2) and 휀 > 1. 

Differential privacy for repeated applications of additive noise mechanisms follows from composition 
theorems. The task of keeping track of the accumulated privacy loss in the course of execution of a 
composite mechanism, and enforcing the applicable privacy policy, can be performed by the privacy 
accountant. 

As a concrete example, consider the Differentially Private Stochastic Gradient Descent Algorithm. A 
method for training a model with parameters by minimizing empirical loss function ℒ(𝜃). At each step 

of the SGD: (i) compute the gradient 𝛻𝜃ℒ(𝜃, 𝑥𝑖) for a random subset of examples; (ii) clip the ℓ2 norm 
of each gradient; (iii) compute the average; (iv) add noise in order to protect privacy; (v) take a step in 
the opposite direction of this average noisy gradient; and (vi) compute privacy loss of the mechanism 
(based on the information maintained by the privacy accountant). 

Distributed Learning [PP5]: In distributed or federated learning: (i) nodes train with local data and 
produce model updates; (ii) model updates are leveraged to train a global model; and (iii) nodes 
download globally-improved models or parameters. Distributed/federated learning offers an inherent 
level of privacy, as local data does not leave the respective node. The work of [PP5] leverages and 
applies this architecture to enable multiple parties to jointly learn an accurate neural network model 
for a given objective, without sharing their input datasets. The training of neural networks relies to a 
great extent on Gradient Descent; the authors propose Selective Stochastic Gradient Descent (SSGD). 
The main intuition behind selective parameter update is that during SGD, some parameters contribute 
much more to the neural network’s objective function and thus undergo much bigger updates during 
a given iteration of training. 

Classification over Encrypted Data [PP6]: Computations can be performed over encrypted data – this 
is referred to as Homomorphic computing. Authors design and present three private classifiers that 
satisfy this privacy constraint: hyperplane decision, Naïve Bayes, and decision trees. To enable their 
operation, the authors define a library of building blocks with which the classifiers are implemented: 
(i) comparison with unencrypted inputs; (ii) comparison with encrypted inputs; (iii) reversed 
comparison over encrypted data; (iv) negative integers comparison and sign determination; (v) 
argmax (an operation that finds the argument that gives the maximum value from a target function) 
over encrypted data; (vi) computing dot products; and (vii) dealing with floating point numbers. After 
describing the building blocks, the authors present protocols to implement the 3 classifiers: 

(i) Private hyperplane decision: this classifier computes. The protocol proposed by the authors 
requires k - 1 encrypted comparisons of L bits integers, 7(k - 1) homomorphic operations (refreshes, 
multiplications, subtractions), and k - 1 roundtrips to the comparison protocol. 

(ii) Secure Naïve Bayes classifier: also based on argmax. 

(iii) Private decision trees: decision trees can be described by polynomials, and the building blocks can 
be used to create a protocol to execute decision trees. 

Trusted Execution [PP7]: In Machine Learning-as-a-Service (MLaaS) contexts, the service provider is 
free to choose the type of the model to train, how to configure and train it, and what transformations, 
if any, to apply to the inputs into the model. These choices can adaptively depend on the user’s data 
and ML task. The user obtains API access to the trained model but no other information about it. 
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Chiron is a proposal of a privacy-preserving architecture for MLaaS. It conceals the training data from 
the service operator, as: 

 Service provider provides enclaves to user. Code in an enclave can safely operate on secret 
data without fear of unintentional disclosure to the platform. A commercial example of 
enclaves is Intel Software Guard Extensions (SGX). 

 User establishes secure communication channels with enclaves to transfer data directly. 
Chiron reveals neither the training algorithm nor the model structure to the user, providing 
only black-box access to the trained model. 

The operation of the training enclave is the following: 

1. Untrusted service provider code examines data, generates model spec and passes it to the ML 
toolchain. 

2. ML toolchain uses the spec to generate model-training code. 

3. Service provider code transforms data and breaks it into batches for training. 

4. Model-training code is invoked for each batch, updating the model. 

To enforce data confidentiality while allowing the provider to select, configure, and train a model any 
way they want, Chiron employs a Ryoan sandbox (itself based on the hardware-protected enclave). 
An enclave alone is insufficient because it only protects trusted code executing on an untrusted 
platform. Code can only be trusted if it is public and thus can be checked by users. In Chiron, however, 
the ML service provider’s code is untrusted, thus users must be assured that this code is not stealing 
their data even though they cannot inspect it. Ryoan [PP8] enables service providers to keep 
proprietary code secret while simultaneously ensuring users that the confined code cannot leak their 
data. Instead of asking users to trust the provider’s code, Ryoan asks them to trust the sandbox that 
confines this code. Users can audit Ryoan to gain confidence in its correctness. 

4.4.2. Secure data sharing 

To be able to provide end-to-end secure data sharing, three important points need to be considered: 
(1) an end-to-end secure communication channel, (2) protection of data in transit, and (3) access 
control to data at rest by users and/or applications. 

There are many existing protocols and mechanisms available to be used for assuring secure end-to-
end communication channel, such as TLS/SSL running on TCP protocol and DTLS running on UDP 
protocol. However, these transport layer security protocols are designed to be used in general 
purpose systems with unconstrained devices in mind. When it comes to constrained devices, they 
become inadequate. This is because these traditional protocols require too many processing steps and 
rely on advanced encryption algorithms, involving significant computing power and memory. On a 
device where resources such as power (e.g., battery) are scarce and need to be optimized, such 
protocols cannot be used. Given that, there is a need for alternative lightweight protocols adapted to 
constrained environments such as the one proposed in [DS1], iTLS. However, the key challenge is to 
combine different security algorithms and make them suitable for constrained environments in the 
scope of the MIRAI project, taking into account the energy (battery), computing power and memory 
scarcity as the evaluation criteria. 

Having a secure communication channel is only a first step in realizing secure data sharing, as data 
needs also to be protected before sending. Many existing encryption algorithms/protocols such as 
AES, triple DES, RSA, HMAC [DS2] and homomorphic encryption [DS3] allowing encrypted data to be 
processed without decrypting it, are not designed to be used in constrained devices. They target the 
general-purpose systems where there is no limitation on computing power, memory, and energy. 
Reduced versions of these protocols, such as power-efficient AES [DS4] and some other security 
algorithms in [DS5, DS6] designed for constrained devices, exist. However, the challenge is to combine 
a security algorithm with the communication security protocol and tailor these to fit with the 
requirements in MIRAI. 
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The final step in the process of secure data sharing is to ensure that only authorised entities (physical 
users or apps) are allowed to access the data both in transit and at rest. To do so, fine-grained data 
access control for data sharing, reliable data access control and enforcement solutions are required. 
The envisioned access control mechanism must be lightweight and able to run on very resource-
constrained edge devices, while also being able to meet the corresponding security requirements. As 
of today, most access control systems, such as OAuth [DS7], OpenID [DS8], run on high-performance 
devices with complex processing steps. There are many attempts to extend Oauth for use on resource 
constrained devices, such as in a IoT system [DS9, DS10]. However, looking into their processing steps 
that involve heavy encryption algorithms, they are still considered as heavy schemes. Our goal is to 
investigate new lightweight access control and enforcement mechanisms for data sharing in 
distributed edge analytics for very resource-constrained devices, devices with limited power and 
memory, and that require long battery lifespan. We will take the following requirements into account 
when designing these mechanisms: (1) fine-grained and privacy-aware access control, (2) low 
computing power, and (3) few processing steps. 
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5. Conclusion 

This deliverable was the outcome of the work carried out under Task 2.1 of work package 2. Being the 
first in a line of tasks in the work package, a consortium-wide contribution was placed in the 
preparation, and it is expected to help lay the groundwork for numerous tasks to be undertaken in the 
remainder of the project. 
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