

Restricted

D2.4: Requirements with KPI for REVaMP² 2.0

2

Restricted Page
2 of 48

Executive summary

This document describes for each use case, the requirements and KPIs updated by the REVaMP²

project partners, for version 2.0 of the tool chain.

The access of the information contained in this document is public.

The organization of each use case description and requirements is based on templates created or

updated by members of the work package 2 to fit the needs of the REVaMP² project.

3

Restricted Page
3 of 48

Table of Contents

EXECUTIVE SUMMARY .. 2

TABLE OF CONTENTS .. 3

ACRONYMS .. 5

1. INTRODUCTION ... 6

2. ABB ... 7

2.1. Use case Description .. 7
2.2. Goals.. 7
2.3. KPIs ... 7

2.4. Requirements ... 8

3. ROBERT BOSCH .. 13

3.1. Use Case Description ... 13
3.2. Goals.. 14

3.3. KPIs ... 15
3.4. Requirements ... 16

4. MACQ .. 20

4.1. Use case Description .. 20
4.2. Goals.. 20

4.3. KPIs ... 21
4.4. Requirements ... 21

5. SAAB ... 23

5.1. Use case Description .. 23
5.2. Goals.. 23
5.3. KPIs ... 23
5.4. Requirements ... 24

6. SCANIA .. 25

6.1. Use case Description .. 25
6.2. Baseline ... 25
6.3. KPIs ... 25
6.4. Requirements ... 26

7. SIEMENS ... 27

7.1. Use case Description .. 27
7.2. Goals.. 27

7.3. KPIs ... 28
7.4. Requirements ... 28

8. SOFTEAM .. 29

8.1. Use case Description .. 29
8.2. Goals.. 29
8.3. KPIs ... 30

8.4. Requirements ... 32

4

Restricted Page
4 of 48

9. THALES ... 33

9.1. Use case Description .. 33
9.2. Goals.. 33
9.3. KPIs ... 34
9.4. Requirements ... 36

10. THE REUSE COMPANY .. 38

10.1. Use case Description ... 38
10.2. Goals ... 38

10.3. KPIs ... 39
10.4. Requirements .. 39

11. OVERALL PROJECT KPIS .. 43

11.1. Karlstad University ... 43
11.2. THE REUSE COMPANY (Knowledge Centric Solutions) .. 43
11.3. KTH (Royal Institute of Technology) ... 44

11.4. Model Engineering Solutions GmbH ... 44
11.5. Scania ... 44
11.6. University of Hildesheim... 45

11.7. Partner A ... 45
11.8. Partner B ... 46

11.9. Partner C ... 46
11.10. Partner D .. 46

11.11. Partner E .. 46
11.12. Partner F .. 47

11.13. Partner G.. 47

REFERENCES ... 48

5

Restricted Page
5 of 48

Acronyms

BU Business unit

IIoT Industrial Internet of Things

LV Low voltage

MV Medium voltage

HV High voltage

LoC Lines of code

6

Restricted Page
6 of 48

1. Introduction

The present deliverable marks the second stage in developing the project use cases. It follows the

definition of the use cases presented in deliverable D2.1 - Use case textual description & legacy

and product line asset base, Requirements with KPI for REVaMP² 1.0, and the findings presented

in deliverable 2.3 - REVaMP² 1.0 evaluation report, updating the Requirements & KPI parts, for

REVaMP² 2.0.

The original D2.1 deliverable content is complemented with details here, the (partner specific)

KPIs are more elaborated and linked to goals of the partners or of the project.

Structure of the Document

The subsequent sections describe the Use Cases, following this structure:

• §x.1: Use case Description

• §x.2: Goals

• §x.3: KPIs

• §x.4: Requirements

Finally, the last section (chapter 11) gives the overall project KPIs.

7

Restricted Page
7 of 48

2. ABB

2.1. Use case Description

The ABB use case is a software platform for smart motor controller (so called drives) for electric

motors (LV, MV and HV). These motor controllers are used in mining, ski lifts, big industry

automation processes as well as in solar and wind turbines. Due to this wide range of applications

there are a lot of variants, configurations and other variability aspects to handle with. So far, they

are managed in a clone-and-own manner with a not very modular software architecture. The

platform consists of about 1.2 MLoC and have more than 50 repositories representing different

product families (LV, MV and HV). Each of these repositories was created in a clone-and-own

manner. In order to follow the trend of digitalization and IIoT makes it necessary to move the

current platform to a more flexible and variable architecture. Especially if you think on going to

multi-core, digitalization or adding even more features to the platform.

2.2. Goals

Deliverable 2.1 presented a first version of the goals of ABB within ReVAMP². Here, the goals are

slightly extended and adjusted compared to Deliverable 2.1 due to the learning of SPL in praxis

as well as discussions with the BU and presenting the first results of ReVAMP² to them.

Overall goals:

• Support development of methods to integrate legacy C/C++ code semi-automatically in a

SPL

• Support development of methods for merging several clone-and-own repositories in a

common SPL

• Identify features and components in legacy code

• Get a first beta version of a possible tool chain supporting feature identification,

documentation and tracing

• Quantify the effort and costs for introducing an SPL in a present code base

Iteration 1:

• Identify and document features and components in legacy code

• Provide methods for (semi)automatically merging similar features

• Get a first draft of a process how to build up an SPL from a legacy code base , especially

identify features and locate them in the code base

• Provide a lightweight method to document features in a code base

• Get first tools supporting this process

Iteration 2:

• Quantify the effort and costs for introducing an SPL in a present code base

• Get first feature trees or feature models from a present C/C++ code base

• Get methods for merging clone-and-own repositories

• Get methods for merging feature models

• Extend feature identification and documentation by adding feature dependencies and

express their dependencies in constraints

2.3. KPIs

Due to the review of the KPIs and feedback from the BU receivers on the first intermediate

results, we adjusted the KPIs. For all KPIs we estimate 0% as baseline reflecting the status before

8

Restricted Page
8 of 48

ReVAMP². The reason for that is just the fact that ABB started to investigate in the direction of

SPLE with this specific use case at the project begin of ReVAMP². Hence, there was no

awareness for SPLE in that special use case.

KPI 1 Feature Identification and Location in small code base

In “M24” identifying and locate 8 features (50%) in the smart motor controller example provided by

ABB. In “M36” identify and locate all features = 15 (100%).

KPI 2 Feature Model generation

 “M24” run on a small code base (~ 20K LoC) and produce its feature model with 30% of feature

dependencies.

“M36” run on a large code base (1.2M LoC) and produce a feature model with 70% of the feature

dependencies.

KPI 3 Feature Identification and Location in production code

 “M24” identify 25% of the features with a scattering degree (SD) > 65 in a large code base (1.2
MLoC). “M36” identify 50% features with a SD > 65 in a large code base (1.2 MLoC). The
scattering degree of 65 was chosen due to Passos et. Al. [1], where the recommendation is given

for optimal feature properties, like scattering degree or tangling degree. Due to that we chose 65°

as a challenge for identifying “real” scattered features in the code .

KPI 4 Feature Visualization

”M24” visualize 50% of the features on large set (1.2M LoC) in an appropriate (understandable

and easy) way so that the feature dependencies can be analysed “M36” visualize 100% of the

features on large set (1.2M LoC)

2.4. Requirements

Req.

ID

Object Text Priority

1 The toolchain shall extract variability information from SCON files, see: High

9

Restricted Page
9 of 48

2 The toolchain shall provide methods to localize and extract scattered

features from different source code repositories. Example for scattered

features are features with scattering degree of >65.

Medium

3 The toolchain shall provide methods or at least guideline how to merge

localized features in different clone-and-own repositories.

High

4 The toolchain shall be designed in a way so that existing build systems can

be used with the extracted variants. In particular it shall be possible to use

the REVaMP² toolchain for extracting a SPL and managing a SPL but

integrate seamlessly in a present build environment to avoid the "not yet

another tool discussion".

High

5 The toolchain shall provide a visualization of the SPL. The challenge here

is to provide a proper way to visualize hundreds/thousands of features and

variants.

Medium

6 Beside software, the toolchain shall integrate also system variability

aspects like having features implemented in SW or HW and how such a

setup can be managed.

Low

7 The toolchain shall support Windows / Linux. Medium

8 The toolchain shall provide a lightweight method to document features

within source code, files and folders. Especially documentation and tracing

of features over the code should be realized with a small overhead.

Low

9 The toolchain should provide late binding for parametrization Medium

10 The toolchain shall provide possibilities for requirements analysis in order

to decide if it is more beneficial to extend a current variant or create new

one. Hence dependencies between features and requirements shall be

supported.

High

11 The toolchain shall not increase the test effort. It shall reduce or keep the

test effort stable in comparison to the test effort before introducing an SPL.

Low

10

Restricted Page
10 of 48

12 The feature extraction methods integrated in the toolchain shall be able to

handle global variables and their dependencies.

High

13 The toolchain shall be able to extract and handle more than 2500 global

variables and to classify them to different features.

High

14 The toolchain shall be able to analyse 1 MLoC-Code and to extract

features from it in < 10 min.

Medium

15 The toolchain shall be able to identify dependencies between CPP defines

which are not documented

Medium

16 The toolchain shall be lightweight and used with small training effort. High

17 The toolchain shall be able to trace features over the code and generate

documentation out of it (e.g. combination with Doxygen)

Medium

18 The toolchain shall be able to identify defines in build f iles (scons files) and

track their dependencies to avoid generating invalid variants or help to

track the reason (or illegal cppdefine dependency) why a variant cannot be

build

High

19 Toolchain shall have eclipse cdt and visual studio integration Medium

20 Toolchain shall be able to handle variability at different variation points,

build time, configuration time, boot time (licenses), runtime

High

11

Restricted Page
11 of 48

21 Toolchain shall consider and be able to handle a variable system which

consists of two subsystems, a common platform and a product specific

system. Each of these subsystems are variable but it has to be managed

that some variants of the common platform are not valid with some SW

variants at the product level. The managing between these systems should

be loosely coupled because the common platform will also be used by

other product systems. --> In particular for both subsystem a SPL exist and

should be handled but they are somehow related. Similar to git

submodules. Such a mechanism should be reflected within REVaMP²

toolchain.

Medium

22 The toolchain shall provide some feedback mechanism so that identified

and localized features can be iterated by domain experts or developers

Medium

23 The toolchain shall be able to handle variability add different abstraction

levels as well as the representation of it. That means not for all level of

variant management a feature tree is a suitable solution for managing

variants. There should be an option for also lightweight variant

management.

High

24 The toolchain shall provide methods, guidelines and support for merging

features from different repositories.

High

25 The toolchain shall be able to extract/identify features which are only

referenced by jump tables, e.g. const FNC_TYPE callback_array[2] =

{callback_implementation3, callback_implementation4}; Often implemented

in embedded or hard real time critical environments.

High

26 The toolchain shall be able to intercept the build process in order to

identify also linked libraries to particular features, etc.

Medium

27 The toolchain shall be able to fully extract at least 90% of all features

hidden in ABB use case.

High

12

Restricted Page
12 of 48

26 Support of SCON build system, in particular the toolchain shall analyse

SCON (python files) and extract variability information (e.g. variation

points, …) from it and also generate SCON files for particular variants so

that they can be built with the SCON build system

High

28 The toolchain shall be able to handle .c, .h, .cpp files. Also generates

particular .c, .h, .cpp files for certain variants; remove variant information

out of the files to reduce the memory footprint of specific product variants.

Medium

30 The toolchain shall also be able to extract / identify textual but none source

code files as necessary for a feature (e.g. xml files) and add them to the

identified feature.

Medium

31 The toolchain shall provide interfaces to support exiting test environments,

like a build server, nightly test builds and test routines and Jenkins server

for test documentation.

High

13

Restricted Page
13 of 48

3. ROBERT BOSCH

3.1. Use Case Description

The Bosch use cases relate to a software product line for Automotive Engine Control Units (ECU)

developed by the business unit Powertrain Solutions - Electronic Controls (PS-EC). The

application areas for the engine control are diverse: from two-wheelers (scooters, motorbikes),

through passenger cars, delivery vehicles and trucks, up to off -road applications such as

construction machinery and stationary industrial engines. This involves supporting a huge variety

of product functionalities and an even bigger number of system and software variants to meet all

the customer needs. The PS-EC engine control software is developed as a software product line.

Use Case 1: Branching. Identify groups of similar software component branches and extract the

alternative history trees out of the configuration management system (SCM). Group the trees

following root alternatives and by customer numbers. Based on this, identify differences in

relevant pre-processor feature constants between branches, and identify features and their

constraints that differ between branches.

Use Case 2: Identification of variability dependencies in artefacts. Parse the project artefacts,

evaluate the system constant based presence condition information and extract the variability

dependencies. These presence conditions are used for selection of SW components in SCM and

for the conditional compilation in C files and configuration files.

Use Case 3: Variability analysis. Perform analyses and consistency checks on the variability

information. For example, by relating artefact variability information, SCM information, and

variability models, dead or superfluous artefact content can be identified. Past configuration data

can be used to find unused components, component branches, feature constants, feature

constant values, as well as to identify correlations between usages of components, branches,

feature constants, and feature constant values. This can in turn be used to update variability

models. Finally, a validation between the dependencies implemented in the artefacts and the

variability model can be performed.

Use Case 4: Variability visualization. Optionally, visualizations of the variability information,

supporting both modelling and configuration tasks, can be developed and evaluated.

Use Case 5: Configuration support. This use case concerns the improvement of project

configuration and the reduction of configuration effort. This includes support for creation of new

variability models and update of existing ones, based on the information provided by other use

cases. In addition, analysis of the variability model and the statistical data can improve the

configuration process by reducing the amount of needed configuration decisions through

identifying the high-impact features, and by detecting untypical configurations and showing

recommendations.

Ideally, all five use cases should be fulfilled. For use cases 1, 2, 3 and 5 Bosch knows of

potentially suitable approaches, developed by the REVAMP2 partners as well as the general

software product lines community, which can be applied and evaluated to satisfy these use cases

with high probability. In the Use Case 4 (visualization) however, Bosch does not know of an

approach that could bring benefit at the required scale (thousands of variability -related elements).

It is therefore hard to predict whether the use case can be successfully fulfilled thanks to a new

research during the project duration. This results in the classification of that use case as optional.

14

Restricted Page
14 of 48

3.2. Goals

Overall goal: Support development and evaluation of technical solutions for improving efficiency

and correctness of variability management activities (software implementation, feature modelling,

and configuration).

Detailed goals:

▪ Branching and merging (Bosch UC1). Support development and evaluation of

approaches to identify similar clone-and-own component branches, asses their merge

potential, and merge them into reusable implementations. Especially, the approaches

should be able to perform the following tasks:

Identify features which differ between branches

Identify differences in relevant pre-processor feature constants between branches

Identify differences in feature-based constraints between branches

▪ Variability realization using pre-processor (Bosch UC2, UC3). Support development

and evaluation of approaches to analyse the pre-processor variability in the source code

and other artefacts (at Bosch, non-code artefacts such as documents, data files, models

and build scripts can also be annotated with feature constants). Especially, the

approaches should be able to perform the following tasks:

Identify the pre-processor feature constants relevant to the analysed artefacts

Identify dependencies between the feature constants encoded in the artefacts

Perform validation between the dependencies implemented in the artefacts and the variability

model

Identify dead feature artefact content (e.g., source code with non-satisfiable presence condition).

The presence condition might be non-satisfiable because of variability model dependencies, or

because of dependencies existing in other artefacts and evaluated earlier (e.g., build scripts,

branch selection condition).

Ensure that the product instance-specific artefacts contain no content belonging to non-selected

features (by-catch).

▪ Statistical analysis of variability (Bosch UC3, UC4). Support development and

evaluation of approaches to statistically evaluate product line variability based on

component usage and feature configuration data. Especially, the approaches should be

able to perform the following tasks:

Identify unused variability: unused components, component branches, feature constants, feature

constant values.

Identify correlations between usages of components, branches, feature constants, feature

constant values. For example, a correlation can be that some feature constant values are only

used for some branches, or that some feature values are always configured together.

▪ Efficient configuration (Bosch UC5). Support development and evaluation of

approaches to increase the efficiency and correctness of the variability configuration

tasks. Especially, the approaches should be able to perform the following tasks:

Support the creation of accurate and comprehensive variability models and identification of

feature hierarchies (using the methods developed in the above goals)

Support configuration tasks based on the variability models, feature hierarchies and statistical

data, for example by greying out unnecessary feature constants and values, providing default or

typical values, indicating and applying dependencies, showing recommendations, detecting

untypical configurations.

In addition to the above point, reduce the amount of needed configuration decisions by identifying

the high-impact features and presenting them in the beginning of the configuration process. The

15

Restricted Page
15 of 48

high-impact feature identification can be based on the variability models, feature hierarchies and

the statistical data.

▪ Visualization (Bosch UC4). Optionally, visualizations of the variability information,

supporting both modelling and configuration tasks, can be developed and evaluated.

3.3. KPIs

All the below KPIs relate to the ReVAMP2 toolchain developed to support the use cases described

in the previous section. Hence, for all KPIs the initial baseline value (before the start of the

ReVAMP2 project) is 0%.

KPI 1 Scalability: The developed toolchain should scale to the size of Bosch software. There are

two scalability metrics depending on the analysis type: code size and number of alternative

variants.

The analysis should scale to the code size of a complete product (>2 MLOC per product), to the

number of branches in the most variant-rich components (>20), or both.

Measurement: calculate the average of target level achievement percentage for the two metrics

according to the following table:

Goal

achievement
0% 20% 40% 60% 80% 100%

Product size

in LOC

Insufficient

(<50 KLOC)

Component

(50 KLOC)

Large

component

100 KLOC

Component

group

300 KLOC

Small

product

1 MLOC

Any product

> 2 MLOC

Supported

branches

1 2 5 10 15 20

Target levels:

M24 50% (concrete metric values depend on the analysis type)

M38 100% (>2 MLOC, >20 variants)

KPI 2 Integration: All tools used for the Bosch use case should be compatible with the Bosch

environment or at least Bosch input and output formats.

Measurement: amount of compatible tools / total amount of tools.

Target levels:

M24 50% tools used by Bosch UCs are compatible

M38 100% tools used by Bosch UCs are compatible

KPI 3 Automation: The preparation of an analysis using the ReVAMP2 toolchain should require at

most 10 minutes of manual effort.

Measurement according to the following table:

Goal

achievement
0% 20% 40% 60% 80% 100%

Preparation 8 h 4 h 2 h 1 h 30 min <10 min

16

Restricted Page
16 of 48

Goal

achievement
0% 20% 40% 60% 80% 100%

effort

Target levels:

M24 20% < 4 h effort

M38 100% <10 min effort

KPI 4 Result quality: Identification of system constants used by an artefact, implemented

dependencies between system constants, dead artefact fragments, unused artefacts, parameters

and values, performed by the ReVAMP2 toolchain should be correct and complete, with no false

positives and no missed elements:

- 100% precision (proportion of correct reported elements within all reported elements)

- 100% recall (proportion of correct reported elements within all relevant elements in the

artefact)

Measurement: for a given tool, average the precision and recall values. For the KPI, average the

values of all tools. If the measurement for a given tool is not possible (e.g. due to no alternate

method of determining the ground truth), the tool-specific value is an estimation.

Target levels:

M24 80% result quality calculated as above

M38 100%

Further comments

Initially, Bosch defined a further KPI 5 Productivity to assess the expected benefits of applying the

ReVAMP2 toolchain results in product development. However, the KPI is currently not assessable

due to the difficulty of isolating the effect of ReVAMP2 toolchain from the effects of other

improvement measures performed in parallel.

3.4. Requirements

Req.

ID

Requirement Text Priority

1 Analysis of BC (software component) alternative branches

High

17

Restricted Page
17 of 48

Req.

ID

Requirement Text Priority

1.1 The REVAMP approach should be able to identify similar clone-and-own

component branches and asses their merge potential.

High

1.2 The approach should be able to identify features which differ between

branches.

High

1.3 The approach should be able to identify differences in relevant pre-processor

feature constants between branches.

High

1.4 The approach should be able to identify differences in feature-based

constraints between branches.

High

1.5 The approach should be able to get the BC alternative information from Bosch

SCM repositories SDOM and IBM ALM.

High

2 Extraction and analysis of pre-processor variability

High

2.1 The approach should be able to analyze the pre-processor variability in the

source code as well as other artefacts (at Bosch, non-code artefacts such as

documents, data files, models and build scripts can also be annotated with

feature constants).

High

2.2 The approach should be able to identify the pre-processor feature constants

relevant to the analysed artefacts.

High

2.3 The approach should be able to identify dependencies between the feature

constants encoded in the artefacts.

High

2.4 The approach should be able to perform validation between the dependencies

implemented in the artefacts and in the variability model.

High

2.5 The approach should be able to ensure that the product instance-specific

artefacts contain no content belonging to non-selected features (by-catch).

High

2.6 The approach shall provide a generic interface so an end user can add own

specific parsers for other file formats.

High

18

Restricted Page
18 of 48

Req.

ID

Requirement Text Priority

3 Analysis of variability over multiple sources and artefact types

High

3.1 The approach should be able to aggregate and relate the extracted constraints

over multiple sources and artefacts, for example branch selection conditions,

build scripts, source code, and runtime parameters.

High

3.2 The approach should be able to identify dead feature artefact content (e.g.,

source code with non-satisfiable presence condition). The presence condition

might be non-satisfiable because of variability model dependencies, or because

of dependencies existing in other artefacts and evaluated earlier (e.g., build

scripts, branch selection condition).

High

3.3 The approach should be able, based on the artefacts and past configuration

data, to statistically evaluate product line variability and identify unused

variability: unused components, component branches, feature constants,

feature constant values.

High

3.4 The approach should be able, based on the artefacts and past configuration

data, to statistically evaluate product line variability and identify correlations

between usages of components, branches, feature constants, feature

constant values. For example, a correlation can be that some feature

constant values are only used for some branches, or that some feature

values are always configured together.

High

4 Variability visualization High

4.1 The system shall be able to graphically represent the entire variability model,

both for modelling and configuration purposes, in an easy to use manner.

High

4.2 The system shall support the assisted manual configuration of variant switches

(BC alternatives, system constant configuration) using the visualization.

High

4.3 Further visualizations of the variability information, supporting both

modelling and configuration tasks, can be developed and evaluated.

Medium

19

Restricted Page
19 of 48

Req.

ID

Requirement Text Priority

5 Variability modelling and configuration

High

5.1 The approach should increase the efficiency and correctness of the variability

modeling and configuration tasks.

High

5.2 The approach should support the creation of accurate and comprehensive

variability models and identification of feature hierarchies (using the methods

developed in the above requirements).

High

5.3 The approach should support configuration tasks based on the variability

models, feature hierarchies and statistical data, for example by greying out

unnecessary feature constants and values, providing default or typical

values, indicating and applying dependencies, showing recommendations,

detecting untypical configurations.

High

5.4 The approach should reduce the amount of needed configuration decisions

by identifying the high-impact features and presenting them in the beginning

of the configuration process. The high-impact feature identification can be

based on the variability models, feature hierarchies and the statistical data.

High

20

Restricted Page
20 of 48

4. MACQ

4.1. Use case Description

Macq provides a use case in the road traffic control domain with four existing generations of traffic

cameras (hardware and software for license plate recognition and vehicle classification) and the

corresponding back-end systems.

Software matches the available and changing parallelism in the available hardware and will be

“revamped” into a new product line.

4.2. Goals

High-Level Project Approach:

▪ Research methodologies that allow feature and asset determination and extraction

▪ Test the tools to extract assets and features from legacy

▪ Test the tools that allow the creation of new revamped generations from legacy assets

▪ Provide a use case with different generations of embedded hard and software that have

different parallel architectures.

Goal: With the ReVAMP2 tools we will revive a lot of software for our next generation of cameras

and recombine separated backend systems into the new Smart Mobility product line.

Our contribution to WP2 (use case) will build upon WP3 (Methodologies), WP4 (Asset extraction

and visualization) and WP7 (Tool-chain integration).

21

Restricted Page
21 of 48

New generation of camera product line and Smart Mobility backend system that reuses assets

from previous generations.

Tools that support asset visualization and variability decisions for both hardware and software.

Starting from the VARIES concepts Variability drivers, Variability decisions, Variability

stakeholders, Portfolio shaping. We will develop methodologies that allow to describe the

rationale behind the decisions and their impact and methodologies to evaluate if the constraint

that lead to those decisions are still true in an evolving context or could be lifted. There will be a

focus on the interaction of the decisions and constraints.

4.3. KPIs

KPI1.1: 100% of the concerned legacy should be analyzed and documented if we can harvest

assets from them.

Since Macq in the last 20 years changed several times its versioning system we need to start with

a list of all repositories. Then for each repository list the legacy projects/modules.

For each of the modules ask the domain experts about their relevance.

KPI1.2: 70% of the legacy should be analyzed by the tools.

Try to analyze the assets that are identified relevant in KPI1.1

M24: First evaluation analysis %

M30: Intermediate evaluation analysis %

M36: Final evaluation analysis %

KPI2: At the end of the project we aim to have a value of x€ or the equivalent of y person years of

extracted assets.

Evaluate extracted assets as PMs that can be transformed into a corresponding € value

KPI3: Use the methodology tools in at least 12 meetings.

There are three kind of meetings that can be used:

• Monthly sales meeting,

• Two weekly sprint review meetings for two teams

• Two weekly stakeholder meeting

KPI4: Description of the variability rationale of the new product line with the ReVAMP2

methodologies and tools

KPI5: 30% increased efficiency in communication between stakeholders and developers.

M24: Baseline interview stakeholders and developers to score the communication efficiency

M30: Intermediate interview

M36: Final interview

4.4. Requirements

Req. ID Object Text Priority

1 Be able to capture/identify features and assets Undefined

2 Be able to (semi-)automatic extract assets. Undefined

3 Be able to combine assets into a new generation of a product

line.

Undefined

22

Restricted Page
22 of 48

4 Be able to identify the rationale behind an asset and variants

using variability drivers and decisions.

Undefined

5 Be able to quantify how the interaction between hardware and

software design decisions influence how legacy assets can be

combined into new product generations with a lot of variants.

Undefined

23

Restricted Page
23 of 48

5. SAAB

5.1. Use case Description

In the development of Gripen E/F simulators are used extensively. These range from completely

software based to simulators with hardware in the loop simulators. The scope of the SAAB use

case is to demonstrate the feasibility of automating the selection of a configuration of the Gripen

E/F aircraft and the corresponding correct configuration for instantiation in a simulator.

5.2. Goals

The objective of the use case is to automate the creation of a particular Gripen E/F aircraft

configuration tailored for a particular simulator.

Multiple simulators with different capabilities are in use in the development of Gripen E/F. Each

simulator will be part of a larger simulator product family with its own set of defined features.

Likewise, the Gripen E/F is a product family which will have its own set of features.

The aim is to build a configurator system where a user – with defined credentials - can select a

desired Gripen E/F product configuration and select the target simulator. Based on the selection

build scripts will be created automatically. Moreover, this means that models and components of

the aircraft as well as the simulators will be selected based on the credentials of the user (The

user shall not be able to build a configuration containing features that the user is not allowed to

see/explore).

5.3. KPIs

The following KPIs are defined for the SAAB use case. All KPIs are rated at 0% at the start of the

project. Assessment of progress for the KPIs is subjective as they relate to the adoption of

product family concepts within the Gripen E/F project. 0% implies no adoption and 100% does of

course mean complete adoption but setting the values in between such that they have an

objective meaning is hard. For some KPIs intermediate measures have been identified. Actual

measures that does not fully conform to the defined thresholds shall be interpreted as there is

significant progress towards a measure or that a threshold has been attained and there is

progress towards the next.

For KPI 1.1 and 1.2 there is an overarching goal to establish a unified methodology fram ework for

Product Family Management throughout the Aeronautics Business Unit.

• KPI1.1 Methodology Definition: Existence of a methodology definition within the SAAB

Aeronautics quality management system. Measure M18. This is measured as follows

o 50% means that there are basic methodology definitions in Gripen E/F working

instructions

o 80% means that methodology instructions are in existence in the Gripen E/F

SEMP (Systems Engineering Management Plan).

o 100% means that the methodology fully introduced in SAAB Aeronautics Quality

Management System.

• KPI1.2 Methodology adoption: Adoption of the methodology for Gripen E/F and

Simulator development. Measure M24. This measure is divided into two parts each

weighted at 50% of the total measure. This is measured as follows:

o 0% No adoption of the methodology within the Gripen E/F project.

24

Restricted Page
24 of 48

o 50% Complete adoption within Gripen E/F or simulator development respectively

(All aspects of the methodology is in active use).

o Values between 0-50% represents gradual adoption of the methodology within

each organisation

KPI2 Artefact identification: Demonstrate capability to identify options within a product family

based on development artefacts. Options for development artefacts will be identified for both

Simulators and the Gripen E/F products. This is measured as follows:

• 0-50% for the identification of simulator artefacts and

• 0-50% for Gripen E/F artefacts

50% for the respective group is assumed to be reached when there is a released feature model

for the group. 20-30% is awarded for mature work in progress.

KPI3 Configuration definition: Capability to define a product configuration based on selection of

options within the product family definition. This is measured as follows:

• 50% for the ability to define a configuration in a tool that is able to interact with build/PDM

systems

• 100% for the ability to define configurations when the credentials of the user defining the

configuration is used to identify the set of features that should be visible to the user.

KPI4 Configuration instantiation: Capability to instantiate of product configuration based on a

defined selected set of features. This is measured as follows

• 50% for the ability to create a build recipe for interaction with a build/PDM system

• 100% for the actual ability to create a correct build recipe

5.4. Requirements

Req

. ID

Object Text Priority

1 The system for enabling configuration shall only display those variation

point values that are valid for a specific user (credentials based). I.e., as a

user it shall only be possible to view those variation points, and variation

point values that the particular user should be aware of.

High

2 It shall be possible to capture confidentiality and export control constraints

and use such parameters for defining configurations for use in specific

configurations for partner/country usage.

High

3 The administrator of the Toolchain shall not automatically be granted

access to all information managed by the toolchain

High

4 It shall be possible to manage multiple product lines within the tool chain High

5 It shall be possible to capture relationships and attributes on relationships

between elements in two product lines

Medium

6 The toolchain shall be built on existing standards, e.g., OSLC (Open

Services for LifeCycle collaboration)

Medium

7 It shall be possible to obtain and synchronise user identities from a

centralised system, i.e., LDAP

Medium

25

Restricted Page
25 of 48

6. SCANIA

6.1. Use case Description

A modern Scania truck is controlled by a distributed control system consisting of 20 -80

interconnected ECUs (Electronic Control System). Each control system is built in many variants

(many configurations). As an example, even a simple fuel level indication system in a Scania truck

has 24000 variants! This means that only a very small portion of all possible variants are possible

to verify by testing in real vehicles. The goal of the whole verification process is however to cover

as many as possible of the variants. As a partial solution to this challenge, overall aims of Scania

in the ReVAMP2 project is to:

 Transform current complex variability model into a feature diagram

 Check the consistency of presence conditions against the established variability model

 Perform variability-aware C-code verification against natural language / semi-formal/formal

functional/safety requirements

6.2. Baseline

Before the beginning of ReVAMP2 WP4 and WP6, the extraction of variability models from the

implementation and analysis of PL assets with respect to variability models was manual. The input

for the work in WP4 and WP6 was a list of sources that contain the necessary information to

automate the mentioned analyses. The implementation of extractors and analysis operations was

initiated in WP4 and WP6.

6.3. KPIs

In WP4, Scania will develop tools/scripts for extracting variability models from implementation.

KPI #1: Number of different use cases for which target automation accuracy was attained. The

goal is to provide automation for the following use cases: 1) extraction of variability model from

product line management tool 2) extraction of variability model from end-of-line (EOL) tools 3)

extraction of variability model from software implementation 4) unification of the extracted data

into an overall variability model. The KPI is to be evaluated with respect to this goal, i.e. if 1/4 of

the use cases has been automated, then the goal has been reached to 25%.

In WP6, Scania will attempt to analyze and verify variability models with respect to specifications.

KPI #2: Number of different use cases for which target automation accuracy was attained. The

goal is to: 1) analyze completeness and consistency of requirements 2) analyze correctness of

automotive safety integrity levels (ASIL) w.r.t. requirements break-down structure 3) analyze

consistency and completeness of variability conditions for requirements 4) given C-code,

requirements and their variability conditions, automatically annotate the given C-code for

verification 5) perform variability-aware formal verification of the C-code w.r.t. annotations. The

KPI is to be evaluated with respect to this goal, i.e. if 1/5 of the use cases has been automated,

then the goal has been reached to 20%.

KPI #3: Number of different asset classes (e.g., requirements, system models, software models,

hardware models, code, tests, documentation) for which target automation accuracy was attained.

The goal is to automate analysis of: 1) requirements 2) ASILs of requirements 3) variability

conditions of requirements 4) overall variability model 5) C-code implementation. The KPI is to be

26

Restricted Page
26 of 48

evaluated with respect to this goal, i.e. if 1/5 of the use cases has been automated, then the goal

has been reached to 20%.

KPI #4: Number of different asset representation language (e.g., Simulink, SysML, C) for which

target automation accuracy was attained. The goal is to provide automatic analysis capabilities for

the following languages: 1) C code 2) Domain-specific product line management language 3)

Domain-specific language for specifying validity (variability) conditions of requirements. The KPI is

to be evaluated with respect to this goal, i.e. if 1/3 of the use cases has been automated, then the

goal has been reached to 33%.

6.4. Requirements

Req

. ID

Object Text Priority

1 The toolchain shall have the capability to manage the following information

elements

- Requirements at several levels of hierarchy

- System models and interfaces, including variability parameters

- C code

High

2 The toolchain shall support extraction of models + variability from

implementation assets

High

3 The toolchain shall support analysis of models in the form of queries, e.g.

“what components are part of this configuration"

High

4 The toolchain shall support specification of informal, semi-formal, and formal

requirements and their relation to variability (e.g. parameters)

Medium

5 The toolchain shall support semi-formal and formal variability-aware

verification of requirements

Medium

6 Where possible the toolchain shall support publishing and consuming data in

accordance with Linked Data, e.g., using OSLC (Open Services for

LifeCycle collaboration)

Medium

27

Restricted Page
27 of 48

7. SIEMENS

7.1. Use case Description

Siemens Industry Software NV (SISW) is an engineering innovation company and leading

provider of test and mechatronic simulation software and engineering services in the automotive,

aerospace and other advanced manufacturing industries. With multi-domain and mechatronic

simulation solutions, SISW addresses the complex engineering challenges associated with

intelligent system design and MBSE. In the automotive industry in particular, product lines are

common; but the design of them is not trivial and more and more challenges, due to increasing

environment regulations, are arising.

For example, the optimal design of a fully-electrical or hybrid drive train highly depends on its load

scenarios. However, in an automotive product line this is the key differentiator between the

individual products in one line. An optimal product line has therefore the right balance between

economic and environmental needs, which only can be achieved by combining multi -physic

behaviour simulation together with the configuration challenge in product lines. Additionally, an

automotive suspension is a vital system which is employed to sustain the vehicle weight, to isolate

the chassis from the apparent vibrations of the road, hence improving the comfort for the

passengers, to enhance road holding and maintain the wheels in a correct position on the road.

One challenge faced by SISW clients is to design and compare a significant number of product

suspension design variants. The goal of our use case is to develop a structured and automated

approach to extract variability models based on different automotive suspension design variants

and to use the extracted variability related models to ease the configuration process of new

products in the product family.

7.2. Goals

The aim of this use-case is to contribute towards machine-aided generative mechatronic design

and product line engineering of new products and variants.

The assets of this use case are possible logical architecture models of hybrid vehicle powertrains,

and suspension systems. There are many different architectures for such models, and the main

goal is to identify functional features which are common to the variants, and the common patterns

for variants which contain that feature. The automatically extracted features should then be

hierarchically ordered in a CVM-like diagram, and the common elements which correspond to a

feature showcased. The automatically generated CVM must support PLE for new assets by (i)

using relevant features, (ii) having a small number of features (max 50), and (iii) providing a good

hierarchical view of the features.

These are the overall goals:

• Showcase the common element in variants containing an automatically extracted feature.

• Automatically identify relevant functional features from architecture models.

• Map each identified feature to a common pattern.

• Identify dependencies among identified features and/or patterns.

• Automatically synthesise a Central Variability Model based on the identified features and

dependencies.

28

Restricted Page
28 of 48

7.3. KPIs

SISW’s KPIs are focused on the ease-of-use of the ReVAMP2 toolchain, and in the added value it

brings to our PLE approach, as perceived by our (expert) users. Because the ReVAMP2 toolchain

represents a new feature in our tools, the value of the KPIs before the project is not well-defined.

However, for the purpose of evaluation, it can be assumed to be 0, since there was no possibility

to use this feature before the project. The KPIs we are assessing are as follows:

▪ Feature to Pattern Mapping

▪ Relevance of Features

▪ Identify Dependencies

▪ Usability of the Model

Because all KPIs for Siemens are based on the usability and added value that the ReVAMP2

toolchain (BUT4Reuse in particular) brings to our tools, they are challenging to evaluate

quantitatively since they depend on the feedback of the users. At this point we are using a grade

in a scale from 1 to 10 (1 being not useful and 10 being indispensable), given by the experts who

are experimenting with the toolchain. This means that each KPI is calculated by averaging out N

user-given values as follows:

𝐾𝑃𝐼 =
1

𝑁
∑𝑢𝑠𝑒𝑟_𝑣𝑎𝑙𝑢𝑒𝑖

𝑁

𝑖=1

At a later stage, large usability tests can be conducted so as to ensure results for the KPI value

are indeed representative.

7.4. Requirements

 Object Text Priority

1 The toolchain shall extract variability information from XML files describing

topological architectures of automotive suspension systems. The particular

XML format is initially set as GraphML.

High

2 The toolchain shall locate features over the topological architectures

diagrams.

High

3 The toolchain shall discover constraints between features. High

4 The toolchain shall provide a visualization of the product line previewing the

existence of hundreds of features and variants.

High

5 The toolchain shall support Windows. High

6 The toolchain shall support Linux. Low

7 The toolchain shall be lightweight and used with small training effort. High

8 The toolchain shall synthesize feature models. High

9 The toolchain shall suggest alternative ways to synthesize a feature model. Medium

10 The toolchain shall be able to be integrated to a build server. Low

29

Restricted Page
29 of 48

8. SOFTEAM

8.1. Use case Description

Modelio is the MDE workbench, graphical model editor, with lots of functionalities for different

users and markets. For Business Architects we provide solutions based on TOGAF and

ArchiMate. For System Architects we propose SysML, MARTE and UML. For developers, we

dedicate code generation and reverse engineering tools for Java, C++, C#. All these solutions

come with templates for documentation authoring, model transformations, code generation and

GUI perspectives. The product line has more than 12 packaged solutions that are ported to 3

major operating systems (Windows, Linux and iOS) for x32 and x64 platforms.

Major challenges:

 Maintaining complex product line.

 Automating product packaging on the fly for ever-growing demand for custom solutions.

Expected benefits:

 Automated extraction of the product line model.

 Custom solution generation tool with composability constraints verification capabilities.

8.2. Goals

During the period we detailed and expressed our goal through a set of requirements needed to

successfully achieve our use case targeted results:

• "The toolchain shall extract variability model and the PL constraints from the Modelio PL

artefacts such as:

- sets of Eclipse plugins for Modelio commercial and open source solutions

- build and packaging scripts for Modelio commercial solutions and open source

version"

Through this requirement our goal is to achieve the complete automation of the use case,

since everything could be done with only a set of pre-existing versions

• The toolchain shall provide capabilities to generate / package new variants of Modelio

solutions corresponding to constraints given by users.

Through this requirement our goal is to have a way to specify constraints.

• The toolchain shall automatically verify the validity of certain composition of Modelio

solutions.

Through this requirement our goal is to check the UML model against the Feature model

• The toolchain shall provide a methodology for maintaining the PL generation pipeline.

Through this requirement our goal is to be assured that the PL generation pipeline is

maintained

• The toolchain shall provide capabilities to propagate updates and fixes to the whole

Modelio PL seamlessly.

Through this requirement our goal is that every change needs to be only made once in

one tool.

• The toolchain shall indicate the specific tests for new variants.

Through this requirement our goal is that the provided toolchain could indicate the specific

tests for ne variants

• The toolchain shall help to document the Modelio PL portfolio.

Through this requirement our goal is that within our use case the tool chain could help to

document the Modelio PL portfolio

30

Restricted Page
30 of 48

8.3. KPIs

The KPIs that we will apply to Modelio use case are:

Unique ReVAMP2
selling point

measured

Indicator

Month

M20 M32 M38

Level of variability
model extraction

automation

Proportion of variability model elements that can
be accurately and automatically extracted from

legacy input assets on available use case
benchmarks

33% 50% 66%

Level of variability
model verification

automation

Proportion of variability model defects that can be
accurately and automatically identified,

diagnosed and corrected from variability model,
either manually constructed or automatically

extracted from legacy assets on available use
case benchmarks

33% 50% 66%

Level of domain model
and product specific

synchronization
automation

Proportion of co-evolved domain model elements
and product specific model elements that can be

accurately and automatically synchronized in
available use case benchmarks

33% 50% 66%

Engineering tool
integration

Number of base commercial products integrated
into interoperable ReVAMP2 tool-chain

3 5 7

Variability management
automation tool

integration

Number of advanced variability management
PoC integrated into interoperable ReVAMP2 tool-

chain

0 2 3

The ultimate goal of Softeam is to be capable to integrate and bundle a new custom version within

1 day. As the baseline, currently, such a process takes 15 days with work done by several

engineers.

The first input comes from a management’s decision, it requires time to decide whethe r we need a

new version to suit some client’s needs or if an older build would be enough with the appropriate

modules. Then, if a new version is required, we need to define exactly what component will be

included in it.

When all the elements are ready, some time is required to fetch every needed component,

integrate them manually then make sure that it will work together and does what is needed. Then

the new version can be published with its documentation and installation instructions.

Action Estimated time

to market

Effort needed

Decision - Management decision that a

new version is needed involving various

meetings

2 weeks 4 person/day

Definition - Selection of features done by

Project Manager

2 weeks 4 person/day

Integration - Integration and Bundling 1 week 5 person/day

31

Restricted Page
31 of 48

Publication - the support team to put the

new package on-line

1 week 2 person/day

Total 6 weeks 15 person/day

With the first version of the ReVAMP2 toolchain, the steps will still be the same with some

improvement in terms of time.

The product line generated with But4Reuse’s help provides an overview of all the different

components of Modelio, it will simplify the decision-making process and the definition of the needs

for a new build.

Most requirements and dependencies will be modelled In the Feature model / 150% model and

the tool provide a way to build automatically a new version, so the integration work will be

simplified. The effort to be done here will mostly be to check that everything works as expected.

Action Estimated time to market Effort needed

Decision 1 week 1 person/day

Definition 2 days 2 person/day

Integration 3 days 3 person/day

Publication 1 week 2 person/day

Total 3 weeks 8 person/day

With this first version of the toolchain, we intend to divide per two the time and work needed to

generate a new version of Modelio.

At the end of the project, we aim at changing the way we produce new versions, the decision and

definition of the needs will be deported directly to the user via a web interface, where they can

choose the features they want in their build with a total effort of less than one day.

The integration will be automated by the product lines tools by checking the modelled constraints,

the new version is then built and can be instantly downloaded by the user.

With this toolchain, Softeam will only need to update the feature model, the components included

in the system and add new ones when they are ready.

The new PL-enabled process should drastically improve the performance and quality through the

following drivers:

• Features are directly selected by the customer

• The composition and compatibility of features is automatically verified by PL tools

• The integration and bundling are automatically done by PL tools

• The verification and testing may be automated to a certain extent

• The distribution may also be automated

That way we intend to reduce the total time to market for the new custom bundles. Thus, the

ultimate KPI is:

KPI Baseline Target

Time to market 72 hours (tbc) 24 hours or less

The PL process requires several steps including:

• Variability model extraction including the constraints

• Defining mapping of the Variability model and the PL assets

• Selecting the configuration needed for a new custom product

• Integration and bundling.

• Co-evolution of PL models with development / evolution of Modelio

32

Restricted Page
32 of 48

Not all tools are readily available at the current stage. Some will require customization and

development of specific adapters. Thus, the implementation of the validation experiments is

staged in the following way.

• December 2018

o Measuring and clarification of the baseline

o Experiments with extraction tools and manual adaptation of PL models

o Experiments with PL tools for generation of new products

• December 2019

o Development of adaptors for automated extraction

o Development of web tools for features selection by the customer

o Development of on-line engines for the packaging and verification

o Deployment of co-evolution solution

o Measuring the performance of the fully automated suite

Thus, the KPIs targets may differ at the above-mentioned stages:

Milestone Targeted KPI Expectations

December 2018 72 hours

The process is largely manual. Learning

curve will impact the performance. In the

meantime, the solution will perform as

good as the baseline

December 2019

Time to market for a new

Modelio bundle.

24 hours or less

The full automated suite will help to drop

the time to market by 300% or most

probably more.

8.4. Requirements

Req.

ID

Object Text Priority

1 The toolchain shall extract variability model and the PL constraints from the

Modelio PL artefacts such as:

- sets of Eclipse plugins for Modelio commercial and open source solutions

- build and packaging scripts for Modelio commercial solutions and open source

version

High

2 The toolchain shall provide capabilities to generate / package new variants of

Modelio solutions corresponding to constraints given by users.

High

3 The toolchain shall automatically verify the validity of certain composition of

Modelio solutions.

High

4 The toolchain shall provide a methodology for maintaining the PL generation

pipeline.

High

5 The toolchain shall provide capabilities to propagate updates and fixes to the

whole Modelio PL seamlessly.

High

6 The toolchain shall indicate the specific tests for new variants. Medium

7 The toolchain shall help to document the Modelio PL portfolio. High

8 The toolchain should support Window and Linux. High

33

Restricted Page
33 of 48

9. THALES

9.1. Use case Description

Generic need description

An initial software product PA was developed for a client A. Then it was evolved (in a

configuration management branch) to a product PB for a client B. Almost in parallel, it was

evolved (in another branch) to a product PC for a client C. Each branch introduced some new

functionalities, corrected some bugs discovered by each client, and the product was refactored

and broadly rearchitected at least in one branch. Due to industrial constraints (time, budget,

separate responsibilities, etc.), the company never had time to merge these branches into a single

product exhibiting variability, that is the goal of this use case, using ReVAMP² tools. We now want

to have a s ingle configurable product (using configuration files) or variable product line (using

generation with pure::variants) for some variabilities, potentially addressing all the functionalities

that we have developed for clients A, B, and C, and all bug corrections, but with single common

software architecture.

Specific case description

The specific case “MazeGenerator” is stored in the shared space of the ReVAMP² project, in:

https://svn.fzi.de/svn/ReVAMP2/WP2%20Industrial%20Use%20Cases/Artefacts/Thales%20artefa

cts/MazeGenerator/

Please look at the document named “mazegeneratorVersionControlHistory_README.docx” for:

• a reminder of the goals of this example;

• an explanation of the representativity of this example;

• a description of the structure of the configuration management base;

• the expected results.

9.2. Goals

We remind here the reader of the Thales requirements, that:

i) list the characteristics needed for a tool (or tool chain) to fulfil the goals of the Thales

use case;

ii) provide a suggested sequence of activities that should be supported by the tool

(chain);

iii) will be used as a reference for the KPIs in the subsequent section.

Here are these requirements:

▪ (A) Extraction and identification of the structure of the configuration management base

(branches, versions) from the Git repository.

▪ (B) Identification of evolutions (known refactoring types, and other additions,

suppressions, modifications) done between two successive versions in a same branch.

o Weighted number of refactoring types correctly identified, among:

▪ Move Method (weight 3.5)

▪ Extract Method (weight 3) / Inline Method (weight 1)

▪ Rename Method (weight 3)

▪ Move Class (weight 2.5)

▪ Rename Class (weight 1)

▪ Change Method Signature (weight 1)

▪ Move Attribute (weight 0.3)

https://svn.fzi.de/svn/revamp/WP2%20Industrial%20Use%20Cases/Artefacts/Thales%20artefacts/MazeGenerator/
https://svn.fzi.de/svn/revamp/WP2%20Industrial%20Use%20Cases/Artefacts/Thales%20artefacts/MazeGenerator/
https://svn.fzi.de/svn/revamp/WP2%20Industrial%20Use%20Cases/Artefacts/Thales%20artefacts/MazeGenerator/mazegeneratorVersionControlHistory_README.docx

34

Restricted Page
34 of 48

▪ (TBC)

o Zero false positive (evolutions badly identified as refactorings)

o Small proportion of false negative (refactoring not identified)

▪ (C) Correlation of these evolution identifications with the comments stored at commit time

in the repository.

o Ability to detect empty comments (not pertinent).

o Possibility to parse comments to detect patterns, to identify:

▪ Bug corrections

▪ New functionality implementations

▪ Reports from one branch to another

▪ (D) Synthesize clearly these unitary evolutions of (B), at the highest level of abstraction

possible, the set of differences between any 2 versions anywhere in the repository:

o using the comments retrieved by (C) when possible,

▪ grouping unitary evolutions identified by (B);

o using standard refactoring names when possible;

o expressing additions / suppressions / modifications in terms of the highest

possible level of code artefact (class, method, …).

▪ (E) Represent concise architectural differences in UML diagrams.

▪ (F) Proposition of a variability model and possible architectures for a hypothetical

version that would merge all 2 or more input versions:

o these architectures will be ones of existing versions, or possibly merges of those;

o giving an estimation of the proportion of existing code that could be automatically

merged to each new architecture possibility.

KPIs:

▪ (G) Generate a merged code base version and variability model, given:

o 2 or more input versions;

o a target architecture;

o and the Variability Implementation Technique decided for each Variation Point.

▪ (H) Launch and compare results of automatic tests.

9.3. KPIs

KPI indicators are normalized to have a 0..1 range, and to have 0 meaning no support and 1

meaning full support.

Binary KPI indicators (Abilities) are valued 0 when not supported, 1 when supported, and possibly

using intermediate value when an estimation of the support can be given.

KPI ID
Unique ReVAMP2

selling point
measured

Indicator

(A0)
Ability of the tool to extract the structure of

the configuration management base
(branches, versions) from a Git repository

(A1)
Ability of the tool to extract the contents of
the configuration management base (files)

from a Git repository

(A2) Ability of the tool to extract the metadata of

35

Restricted Page
35 of 48

the configuration management base (commit
comments, dates, authors) from a Git

repository

(B0)
Ability of the tool to identify evolutions

(see requirement (B)) between two
successive versions in a same branch

(B1)

Cumulated weight of the types of
evolutions for which the identification is

implemented, following the reference given in
requirement (B), divided by the total weight

of expected types of evolutions to be
identified

(B2)
1 - Weighted mean rate of false positives
for each type of identified evolution, on the

MazeGenerator case

(B3)
1 - Weighted mean rate of false negatives
for each type of identified evolution, on the

MazeGenerator case

(C0)
Proportion of commit comments correctly

analysed

(D0)
Proportion of synthesis elements correctly

presented by the tool

(E0)

Correctness of the generated UML model,
measured as :

n − d − m

n

where:

• n is the total number of model
elements in the expected model,

• d is the number of model elements
generated but different from the
expected ones;

• m is the number of missing model
elements in the generated model.

(F0)
Correctness of the generated Feature

Model, measured using the same principles
as (E0).

(G0)

Correctness of the generated merged code
base, measured using the same principles

as (E0), but applied to the number of source
code lines

(H0)
Ability to identify corresponding automatic

tests

(H1)
Ability to launch corresponding automatic

tests

36

Restricted Page
36 of 48

9.4. Requirements

Req. ID
or Title

Object Text Priority

Purpose This document describes needs of the THALES company for a tool or
toolchain in the REVaMP² project, that is named the Reevolution
toolchain in the rest of this document.
It is to be understood as a subpart of the global REVaMP² toolchain,
and its components and contributors are yet to be identified and
defined.
The Reevolution toolchain is not meant to be the name of a specific
tool, but rather a specification for any toolchain that would be compliant
with it.
It may be implemented in several ways, and the design of its various
possible implementations is left to the appreciation of potential
contributors.

N/A

Scope The needed tool or toolchain will help THALES to reengineer several
legacy source code bases that are main assets for several THALES
product families.

N/A

Definitions

Reevolution (standing for "Reverse & Re-evaluate Evolutions"): the
class of needs that is described in this document, and that is the
generic goal of the THALES use case in REVaMP².
Configuration Management Repository: a database storing all
Versions and Branches of Code Bases for a given Product Family,
managed by a Configuration management tool such as SVN
(Subversion) or Git, typically.
Code Base: a set of source files forming the necessary asset to
produce a Product.
Product: an artefact intended to be sold to a specific Client/Customer
(or a set of Client/Customers), being a solution for a given
Client/Customer problem. A Product is produced from a given Code
Base.
Product Family: a set of Products, belonging to the same domain, and
sharing some common characteristics (shared or similar requirements,
functionalities, architecture, etc.), but intended to different
Clients/Customers.
Product Line: a Product Family, where:
- Variability is explicitly managed using a Variability Model (typically
Feature Model);
- Software Architecture is shared between all Products of the Product
Line;
- ideally, a single Code Base serves to produce all Products of the
Product Line.
Product Family Ancestor: the original Product from which all other
Products of a Product Family derived, by branching in the Configuration
Management Repository.
Version: a frozen, well-identified (generally by a Version Number)
snapshot of a Product Code Base.
Evolution: a difference between two successive Versions of a Product,
interpreted by the Reevolution toolchain as belonging to one of these
categories:
- Architectural Evolution (Refactoring);
- Bug Correction;
- Functional Evolution.

N/A

References Refactoring: Improving the Design of Existing Code. Martin Fowler,
Kent Beck, John Brant, William Opdyke, Don Roberts. 1999.

N/A

A (A) The Reevolution toolchain shall extract and identify the structure of
a Configuration Management Repository (Branches, Versions) from a

Low

37

Restricted Page
37 of 48

Git repository.

B (B) The Reevolution toolchain shall categorize evolutions done between
two successive versions in a same branch, between these 3 categories:
- Architectural Evolution: evolution being an instance of a known
Refactoring Type, as described in the book "Refactoring" by Martin
Fowler & al., 1999;
- Functional Evolution: the evolutions that cannot be identified by the
test above.

High

C (C) The Reevolution toolchain shall correlate these evolutions with the
comments stored at commit time in the repository, to further categorize
evolutions between the 2 categories of (B) and:
- Bug Correction.

Medium

D (D) The Reevolution toolchain shall synthesize these evolutions of (B),
at the highest level of abstraction possible, the set of differences
between any 2 versions anywhere in the repository:
- using the comments retrieved by (C) when possible, grouping unitary
evolutions identified by (B);
- using standard refactoring names when possible;
- expressing additions / suppressions / modifications in terms of the
highest possible level of code artefact (class, method, …).

High

E (E) The Reevolution toolchain shall represent concise architectural
differences in UML diagrams.

Medium

F (F) The Reevolution toolchain shall propose a variability model and
possible architectures for a hypothetical version that would merge all 2
or more input versions:
- these architectures will be ones of existing versions, or possibly
merges of those;
- giving an estimation of the proportion of existing code that could be
automatically merged to each new architecture possibility.

High

G (G) The Reevolution toolchain shall generate a merged code base
version and variability model, given:
- 2 or more input versions;
- a target architecture;
- and the Variability Implementation Technique decided for each
Variation Point.

High

H (H) The Reevolution toolchain shall launch and compare results of
automatic tests, between the original set of Products from the Product
Family and the Product Line generated by (G) above.

Low

38

Restricted Page
38 of 48

10. THE REUSE COMPANY

10.1. Use case Description

One challenge faced by the different organizations is to take advantage of all the knowledge

developed among different projects, produced in many times with no management in a

disorganized way, and to reuse the existing requirements in new variations of the same systems.

With this Use Case, it is aimed to discover and manage commonality and variability inside already

existing and not organized requirements, to identify and organize the variability in product lines

and the variability models, and to create reusable requirements structures to be instantiated in

future projects. The way to proceed will be to develop a System Knowledge Repository (SKR) and

design a reusable Knowledge Base to represent commonalities among different domains which

enhance assets reusability.

10.2. Goals

The main goals of the use Case as described in Deliverable 2.1, will represent the baseline for

this first iteration within the project. The set of goals as they were described has been redefined

due to the inputs discovered during the execution of the project, which make them more accurate

and measurables.

Baseline set of goals:

1. Define a common understanding within variability management and product lines

processes according to different standards for software and systems product line

engineering

2. Define the quality priorities to ensure requirements reuse within product lines.

3. Develop a complete ontology, that enhance the reusability of systems knowledge by

following a predefined structure of a Variability Management Ontology.

First iteration set of goals:

1.1 Defining a common understanding within variability management and product lines

processes according to different standards for software and systems product line

engineering

1.2 Enabling capabilities of extracting requirements from textual documents.

1.3 Providing a common framework that enables interoperability among the different sources

of information, allowing the extraction of information from different sources.

2.1 Defining the quality priorities to ensure requirements reuse within product lines.

2.2 Defining the basic set of rules that will identify the level of quality for the information

extracted from the SPL

3.1 Developing a complete ontology, that enhance the reusability of systems knowledge by

following a predefined structure of a Variability Management Ontology.

3.2 Extracting requirements from textual documents based on textual patterns and the

identification of properties and relationships also based on applying pattern matching over

the requirements specifications.

39

Restricted Page
39 of 48

10.3. KPIs

KPI ID
Unique ReVAMP2

selling point
measured

Indicator

EXT_01
Level of variability
model extraction

automation

Proportion of variability model elements that can be
accurately and automatically extracted from legacy input

assets on available use case benchmarks

VER_01
Level of variability
model verification

automation

Proportion of variability model defects that can be
accurately and automatically identified, diagnosed and

corrected from variability model, either manually
constructed or automatically extracted from legacy assets

on available use case benchmarks

UC_01
Genericity

 of the automation
services

Proportion of different asset classes (e.g., requirements,
system models, software models, hardware models, code,

tests, documentation) for which target automation
accuracy was attained within the tool chain

UC_02
Proportion of different asset representation language (e.g.,
Simulink, SysML, C) for which target automation accuracy

was attained within the tool chain

UC_03
Proportion of different use cases for which target

automation accuracy was attained within the tool chain

INT_01
Proportion of applications that can be interconnected

within the tool chain

10.4. Requirements

Req. ID or

Title

Object Text Priority

System

purpose
The system purpose is to discover and manage commonality and

variability inside already existing and not organized requirements, to

identify and organize the variability in product lines and the variability

models, and to create reusable requirements structures to be

instantiated in future projects.

N/A

1 The system shall discover commonality within not organized

requirements.

High

2 The system shall discover variability within not organized

requirements.

High

3 The system shall manage commonality within not organized

requirements.

High

4 The system shall manage variability within not organized

requirements.

High

5 The system shall identify variability from variability models in product

lines.

High

6 The system shall identify commonality from variability models in High

40

Restricted Page
40 of 48

product lines.

System

scope
Knowledge-Based Requirements Engineering is being applied among

different industries in the market, such as aerospace, automotive,

energy or defence and space, which take advantage of the

Knowledge-Based solutions to improve the ALM and PLM processes

in the organization.

RQS has wide application in all the described industries, and

provides a way to cope with key trends in the market for system

knowledge management and analysis, with reuse and traceability as

a key opportunity to be applied into variability management and

product lines framework.

N/A

7 The system shall manage traceability from variability models in

product lines.

High

8 The system shall manage knowledge from variability models in

product lines.

High

Definitions,

acronyms,

and

abbreviations

ALM: Application Lifecycle Management.

BS: Breakdown Structure.

KM: Knowledge Manager.

OSLC: Open Services for Lifecycle Collaboration.

PDCA: Plan-Do-Check-Act.

PLM: Product Line Management.

RAT: Requirements Authoring Tool.

RQA: Requirements Quality Analyser.

RQS: Requirements Quality Suite, developed by TRC.

SCM: System Conceptual Model.

SKR: System Knowledge Repository.

TRC: The REUSE Company.

N/A

9 The system shall support different user rights. Medium

10 The system shall support PDCA process. Medium

11 The system shall manage knowledge of requirements. High

12 The system shall manage quality of requirements. High

13 The system shall be compatible with correctness quality assessment. High

14 The system shall be compatible with completeness quality

assessment.

High

15 The system shall be compatible with consistency quality assessment. High

Major system

capabilities

16 The system shall extract variability from a set of requirements. High

17 The system shall identify commonalities from a set of requirements. High

18 The system shall create reusable requirements structures. High

19 The user shall gather the system information into the SKR. Medium

20 The user shall restrict requirements reusability. High

21 The user shall perform incompleteness quality checking of the

requirements documents.

High

22 The user shall perform inconsistency quality checking of the

requirements documents.

High

23 The user shall perform correctness quality checking of the Medium

41

Restricted Page
41 of 48

requirements.

24 The quality checking shall determine the reusability of the

requirements.

Medium

25 The representative breakdown structures shall be reused. High

26 The user shall identify representative requirements structure. Medium

27 The user shall identify the main concepts within product lines

development.

28 The user shall identify the main architectures within product lines

development.

Medium

29 The system shall support controlled vocabulary management. Medium

30 The user shall define the common vocabulary of the system

knowledge.

Medium

31 The common vocabulary of the systems knowledge shall follow the

predefined structure of the Variability Management Ontology.

Medium

32 The user shall organize the common vocabulary based on the

semantic meaning.

Medium

33 The system shall support SCM breakdown structures in different

views of the xBS.

Medium

34 The variability model shall be one of the xBS views. Low

35 The user shall define the breakdown structures from the product line

without limitation.

Low

36 The system shall support requirements patterns management. High

37 The system shall support requirements grammars management. High

38 The system shall identify requirements typoplogy. High

39 The patterns shall detect commonalities from requirements

specifications.

High

40 The grammars shall detect commonalities from requirements

specifications.

High

41 The patterns shall detect variabilities from requirements

specifications.

High

42 The grammars shall detect variabilities from requirements

specifications.

High

43 The user shall design the set of patterns for varibility discovering in

requirement statements.

Medium

44 The user shall design the set of patterns for varibility discovering in

requirement statements.

Medium

45 The knowledge framework for variability management shall define

Variability Management Ontologies.

High

46 The knowledge framework for variability management shall manage

the assets from the Variability Management Ontologies.

High

47 The set of patterns shall be configurable. High

48 The knowledge framework shall support patterns configuration. High

49 The knowledge framework for variability management shall generate

Product Requirements Specifications.

High

50 The variability model shall be the source of information for the

Product Requirements Specification.

Medium

51 The feature model shall be the source of information for the Product

Requirements Specification.

Medium

42

Restricted Page
42 of 48

52 The knowledge framework for variability management shall generate

the Variability Management Ontology for the product.

High

53 The system shall be compatible with different data sources. High

54 The System shall be compatible with OSLC interoperability. High

55 The System shall interoperate with product lines data sources. High

43

Restricted Page
43 of 48

11. Overall project KPIs

Following KPIs are given as overall project KPIs, i.e. high-level non-technical KPIs.

Each partner can have one or several roles among:

- Use case provider;

- Academic partner;

- Tool provider.

When asked by partners, their name have been obfuscated by randomly assigning them a letter

(A, B, C, …).

11.1. Karlstad University

11.1.1. Academic Partner KPI

Task: PhD dissertation
Baseline: New PhD student hired
Month 24: Progress at 40% as documented in the individual study plan
Month 36: Licentiate completed
Expectation:

Task: Publish research articles
Baseline: 0 (#Articles)
Month 24: 1
Month 36: 5
Expectation:

11.2. THE REUSE COMPANY (Knowledge Centric Solutions)

11.2.1. Use Case Provider KPI

Task: Process Automation. Number of manual steps to extract commonality of req. docs. Manually vs
(/) Number of automatic steps.
Baseline: 15/4
Month 24: 15/8
Month 36:
Expectation: 15/13

11.2.2. Tool Provider KPI

Task: Process Automation. Number of implemented features to extract commonality of req. docs. To
satisfy the Number of automatic steps.
Baseline: 2
Month 24: 10
Month 36:
Expectation: 13

44

Restricted Page
44 of 48

11.3. KTH (Royal Institute of Technology)

11.3.1. Academic Partner KPI

Task: Continue research related to activities in REVAMP
Baseline: Prepare an application for a project on automated software verification
Month 24: Funding for the project AVeRT obtained from Swedish funding agency Vinnova
Month 36: Deliver a formal framework for requirement breakdown
Expectation: Deliver a toolset for specification and automated verification of sofware systems

Task: Academic theses related to activities in REVAMP
Baseline: 0
Month 24: 4 MSc theses, new PhD hired
Month 36:
Expectation: 6 Msc Theses

Task: Publications
Baseline: 0
Month 24: 5
Month 36:
Expectation: >= 12

Task: Created a course on program verification which is strongly insipred by the work in REVAMP
Baseline: Old course existed
Month 24: Completelly revamped the old course and given the first installment
Month 36: Give the second installment
Expectation: Continue giving the course on a yearly basis

11.4. Model Engineering Solutions GmbH

11.4.1. Tool Provider KPI

Task: Detection and Visualization of Simulink Model Partitions. Number of partition types
automatically detectable and visualizable by tool.
Baseline: 2
Month 24: 6
Month 36:
Expectation: 10

11.5. Scania

11.5.1. Use Case Provider KPI

Task: Provide tool support for writing variability-aware, ISO 26262 compliant specifications for
subsystems and components in the Scania PL.
Baseline: No tool support.
Month 24: Prototype of the tool Asset Editor.
Month 36: Principles from Asset Editor used to configure a well-known requirements management
tool procured by Scania.
Expectation: Use the tool to automatically produce ISO 26262 compliance argumentation.

45

Restricted Page
45 of 48

Task: Formaly verify properties of C code.
Baseline: Formal verification of production software not performed.
Month 24: 5 properties verified against 2 application level C language modules.
Month 36:
Expectation: 12 properties verified against 3 application level C language modules.

11.6. University of Hildesheim

11.6.1. Academic Partner KPI

Task: Paper Publication
Baseline: 0
Month 24: 9
Month 36: >= 12 (3 papers already accepted in/for 2019)
Expectation: >= 14

Task: Completed Theses (PhD,MSc,BSc)
Baseline: 2 PhD theses with a tight connection to REVAMP sub-topics already startet before the
project; corresponding students are working in REVAMP now
Month 24: 2 (1 MSc, 1 BSc)
Month 36: >=4 (+2 submitted PhD theses)
Expectation: >=4 (more project-related theses in progress/in discussion)

Task: Software Product Line Development Training
Baseline: 0
Month 24: 2 tutorials at SPLC 2018
Month 36: >=2 (tutorials at SPLC 2019, if accepted, or other trainings)
Expectation: >=2

11.7. Partner A

11.7.1. Use Case Provider KPI

Task: Feature Model Creation for a Legacy Component
Baseline: manual effort 160h for modeling 250 features and 250 relations
Month 24: manual effort of 80h for reviewing and extending model content proposed by the
REVaMP² toolchain (50% effort reduction)
Month 36: as in month 24
Expectation: 50% effort reduction (h)

Task: Verification of Source Code against a Variability Model
Baseline: manual effort of 20h for reviewing a component (20 KLOC of source code)
Month 24: manual effort of 8h for reviewing a report provided by the REVaMP² toolchain (60% effort
reduction)
Month 36: manual effort of 5h (75% effort reduction)
Expectation: 75% effort reduction

46

Restricted Page
46 of 48

11.8. Partner B

11.8.1. Use Case Provider KPI

Task: Extraction of features from architectures of mechatronic systems: hybrid drivetrain
classification
Baseline: 250 h for manually classifying 100,000 architectures, by an expert user
Month 24: 20 h for setting up classification problem and running automatic classification
Month 36: same as M24: performance increase of (automatic) classification but negligible time
reduction compared to (manual) problem setup
Expectation: >90% speedup of classification for given use case

11.9. Partner C

11.9.1. Use Case Provider KPI

Task: Feature Identifcation and Documentation
Baseline: manual effort 1000h for 86 features
Month 24: using REVaMP² toolchain effort is 310 h (reduction in effort of 69%)
Month 36:
Expectation: 40% reduction in effort (h)

Task: Migration of legacy code to SPL
Baseline: 36 months for 80% of the source code (Danfoss expierence)
Month 24: 30.34 months using REVaMP² (speedup of 15,72 %)
Month 36:
Expectation: 30% (speedup in moving to a SPL by using REVaMP² in months)

11.10. Partner D

11.10.1. Tool Provider KPI

Task: Business domains of application. Number of "interested in SPL" market domains.
Baseline: 2
Month 24: 2
Month 36:
Expectation: 5

11.11. Partner E

11.11.1. Use Case Provider KPI

Task: Feature model creation and variant generation automation for Modelio
Baseline: Manual generation of new variants of Modelio installation (10h)
Month 24: Creation of new variants using the feature model (3h)
Month 36: Complete automation of the variant generation process (1h)
Expectation: Reduction of time and effort needed to produce new versions of Modelio

47

Restricted Page
47 of 48

11.12. Partner F

11.12.1. Use Case Provider KPI

Task: Within partner F a large number of assets are used to build simulators and aircrafts for
simulation. The success of PLE can be measured in the number of times an asset is used within one or
more product lines.

We assign the value of an asset (asset value) used once:1 (=2^(1-1)), if a PLE approach is used and the
result of the derivation of the asset is used n times then the asset value is set to 2^(n-1).

The PLE approach is deemed successful if the summarised asset value is increasing and the mean
value (asset value)/(numberof assets) is increasing

Baseline: To be determined

Month 24: To be determined

Month 36: To be determined

Expectation: Summarised asset value and mean asset value is increasing.

Due to the comparatively slow pace within aerospace development and the large number of assets
the improvements are expected to be small to moderate - but still significant

11.13. Partner G

11.13.1. Use Case Provider KPI

Task: T3.3

Baseline:

Month 24: Questionnaire with 21 questions and overall score

Month 36:

Expectation: 30% increased efficiency in communication between stakeholders and developers.

48

Restricted Page
48 of 48

References

[1] L. Passos, et. Al. 2015. Feature scattering in the large: a longitudinal study of Linux kernel

device drivers. In Proceedings of the 14th International Conference on Modularity (MODULARITY

2015). ACM, New York, NY, USA, 81-92. DOI=http://dx.doi.org/10.1145/2724525.2724575.

