
 

 

 

D3.1.2 – Application Design – year 2 
MOS2S 
Media Orchestration from Screen to Screen 
 

 

 

 

 

 

DRAFT VERSION 

 

 

 

 

 

Edited by: J. Belpaire (Kiswe) 

Contributions from: 

- IMEC, KISWE, VRT(draft) 

- Gerade 

- Game ON 

- ETRI 

 

Version: v02 

Date: 21-12-2018 

Delivery date: 21-12-2018 

 

 

 

 

 

 

 

 

  



2 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

Project key data 

ACRONYM and full-length title 

15022 MOS2S 

Program Call ITEA 3 Call 2 

Full-length Title Media Orchestration - Sensor to Screen 

Roadmap Challenge Urbanisation 

Description 

Novel and ubiquitous consumer-priced audiovisual sensors and data in particular, represent an 

important aspect of the Smart City environment, enabling a variety of applications for citizen 

information, participation, entertainment, experience, safety and security. Every user becomes a 

potential source of information, either directly or through social media buzz and its discovery. 

Audiovisual media provide citizens with Smart City data readily accessible to human senses. With 

the MOS2S project (Media Orchestration from Sensor to Screen), an international consortium of 

partners will develop and test audiovisual Smart City technologies and solutions in the context of 

citizen needs, and embed these solutions within the Smart City Playground. 

Project duration & size 

Size Effort: 133.67 PY Costs: 13.9 M€ 

Time frame Start: 2016-10-1 End: 2019-09-30 (37 months) 

Coordinator 

Netherlands TNO 

Type Research Institute 

Contact Person Gjalt Loots 

Email Address gjalt.loots@tno.nl 



3 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

Consortium 

Belgium Nokia, iMinds, Kiswe Mobile, VRT* 

Korea, Republic of ETRI*, Mooovr 

Netherlands Amsterdam ArenA*, Bosch Security Systems B.V., Game On, 

Inmotio Object Tracking BV, Koninklijke KPN NV, TNO 

Turkey Bor Software inc.*, DİA Yazilim San. ve Tic. A.Ş., KoçSistem, 

TMOB BİLİŞİM 

  



4 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

Table of Contents 

PROJECT KEY DATA ....................................................................................................................... 2 

ACRONYM and full-length title .............................................................................................. 2 
Description ............................................................................................................................ 2 
Project duration & size .......................................................................................................... 2 

Coordinator ........................................................................................................................... 2 
Consortium ........................................................................................................................... 3 

TABLE OF CONTENTS .................................................................................................................. 4 

LIST OF FIGURES ........................................................................................................................... 5 

PROJECT ACRONYMS ..................................................................................................................... 6 

1. INTRODUCTION ................................................................................................................. 7 

2. NL APPLICATION DESIGN ................................................................................................... 8 

2.1. Companion Screen application ....................................................................................... 8 

3. BE APPLICATION DESCRIPTIONS ........................................................................................ 9 

3.1. Editorial tool for professional users (to be updated) ........................................................ 9 
3.2. Mobile app for end users (to be updated) ........................................................................ 9 
3.3. Social capturing/discovery tool (to be updated) ............................................................... 9 

3.4. MOS2S Extensions (to be updated) ................................................................................ 9 

3.5. Iterative updates during test cases (to be updated) ....................................................... 10 
3.6. KISWE CrowdStreaming ............................................................................................... 13 
3.7. IMEC RMLStreamer and DS Visualizations ................................................................... 17 

4. KR APPLICATION DESCRIPTIONS ...................................................................................... 21 

4.1. Wide Field of View Video Experience ............................................................................ 21 

5. TR APPLICATION DESCRIPTIONS ...................................................................................... 23 

5.1. Gerade Online Debate Application ................................................................................ 23 

6. CONCLUDING REMARKS................................................................................................... 27 

 

 



5 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

List of Figures 

Figure 1: KISWE Application Architecture .................................................................................. 14 

Figure 2: CrowdStreaming Moderator Interface .......................................................................... 15 

Figure 3: Music for Life Facebook Live events ............................................................................ 16 

Figure 4: Music for Life CrowdStreaming On Stage .................................................................... 16 

Figure 5: Villa Sporza WorldCup CrowdStreaming ..................................................................... 17 

Figure 6: RMLStreamer Linked Data generation ......................................................................... 18 

Figure 7: DSLab Dynamic Dashboard ........................................................................................ 20 

Figure 8: 12Kx2K capturing, stitching transmission and rendering experience in Korea.  ............. 21 

Figure 9: Initial Application plan for the 2
nd

 use event ................................................................. 21 

Figure 10: Gerade 3 Layer landscape architecture ..................................................................... 24 

Figure 11: One2Many app Serverside class Diagram ................................................................. 25 

Figure 12: The Debate Screen ................................................................................................... 25 

Figure 13: Voting Debaters ........................................................................................................ 25 

Figure 14: Photos from Netherland-Peru match .......................................................................... 26 

 



6 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

Project acronyms 

3DoF 3 degrees of freedom 

BE Belgium 

CPA 
Conformance Points A 

CPB 
Conformance Points B 

DVB 
Digital Video Broadcasting 

IM 
Instant Messaging 

IT 
Italy 

KR 
Republic of Korea 

MOS2S 
Media Orchestration Sensor To Screen 

NL 
(The) Netherlands 

OB 
Outside Broadcasting 

PTZ 
Pan-Tilt-Zoom 

TR 
Turkey 

UHD 
Ultra-High Definition 

VR 
Virtual Reality 

 

 

 

  



7 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

1. Introduction 

In Deliverable D3.1.2, the MOS2S consortium partners provide an overview of the application 

designs that have been designed, and of which some were demonstrated at the second year 

demonstration event (IBC2018). D3.1.2 is the updated deliverable from WP3 deliverable D3.1.1, 

in which we outline the design specifications for dedicated applications running on top of the 

platforms supporting the demonstrators. There have been some new application designs 

presented, but also some partners have updated their existing designs from year 1, in an 

attempt to take real life experiments feedback and market evolution into account. 

In WP3, the platform functionality and generic components researched and prototyped in WP2 

need to be combined with applications and use case specific functionality that will be designed 

and integrated in this WP. The resulting applications and the underly ing platforms will be used to 

drive the yearly MOS2S demonstrators in the respective domains.  

D3.1.2 is primarily a software deliverable. This document provides descriptions of the application 

software, as developed and being developed by partners as part of the MOS2S project. It is an 

outcome of T3.1 (Application design). 

 

 

 



8 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

2.    NL Application Design 

2.1. Companion Screen application 

Game On has extended its iPad application with a function that enables "screen mirroring" to 

RTMP endpoints. This function is similar to Apple's Airplay but supports "long distance". It allows 

the user to effortlessly share his or her iPad session with a remote audience. The mirroring 

function not only captures the user's screen but also the user's voice, which allows for a high level 

of interaction. Depending on the use case, the RTMP endpoint may be made available to a limited 

audience (such as team members) or to the public (such as fans). The user can turn on and off 

the mirroring with the touch of a switch. The stream is h264 encoded using the iOS hardware 

acceleration API, minimising resource usage during operation. 

 

The new feature was tested in a live scenario during the Holland - Peru friendly match in the 

Amsterdam Arena. An iPad was made available to an “expert TV analis t” who was able to make 

several on-the-spot analyses during the game. The session was streamed realtime to an RTMP 

endpoint provided by Kiswe, allowing a selected audience to access to the stream inside Kiwse’s 

application. This test proved successful.  

 



9 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

3. BE Application Descriptions 

3.1. Editorial tool for professional users (to be updated) 

This is the tool where editors can interact with the end users and where they can select and 

publish content which are shared from the end users. It’s also the place where they can initiate 

polls and set up automated bots which can send messages at a specific moment in time or who 

can respond to common questions. 

 

The editorial dashboard is a web app, available at a public URL. It is also developed in Angular 

and Ionic. This enables us to build the software to a mobile app if it should be interesting for 

editors. 

3.2. Mobile app for end users (to be updated) 

The mobile app is the tool that’s being used by the end users. It’s the place where end users can 

share photos and videos with the editorial team. The end user can also interact with the editors 

and participate in polls. Bots can automatically help users with common questions, lowering the 

management load for editors. 

 

The mobile app is built with web technology: Angular & Ionic as framework, combined with SASS 

based UI refinements which enables us to create a somewhat modified design for each event.  

Another software stack we use is the open source project Cordova. With it we can build the web 

based software to mobile applications which are published to the Google Play Store and Apple 

App Store through the IDE’s which are respectively Android Studio and Xcode.  

 

3.3. Social capturing/discovery tool (to be updated) 

The social capturing/discovery tool is a set of software components that enables the editor to 

search the social web for interesting content on a specific topic. The tools are being built on top 

of Firebase, Node.js, ElasticSearch, Kibana and the API’s from Instagram and Twitter.  

 

3.4. MOS2S Extensions (to be updated) 

In this project we build on top of the results made from the toolset for crowd contribution and 

interaction that we have built in the ICoSOLE project, called “Wall of Moments”. This toolset 

consists of an end-user app to contribute content and get updates from the editorial team 

(‘Moments’), and an editorial toolset to request content from end-users, to segment and interact 

with them (‘Trademark’) and an app to display content in an interactive way during an event 

(‘the Wall’). ICoSOLE was a European Union's Seventh Framework Programme (FP7/2007-2013) 



10 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

project under grant agreement n° 610370. More info about that project can be found at the 

website http://icosole.eu/. 

Our goal in MOS2S is to enhance this toolset, and more specifically, expand the editorial app. We 

rebranded it to ‘Switchboard’ and plan to add location-based functionalities, integration with the 

Kiswe Cloud Clipping service and a more advanced tagging system to segment users and content. 

The refactored software is also built as a modular system. This enables us to prototype new 

insights faster and make pieces of software or services available to partners.  

Short overview of the software platform 

The platform consists of 4 core parts: a mobile app, an editorial dashboard, several backend 

services and a social capturing/discovery tool. 

Those four core parts have been extended with 

- a tool for the creation and publishing of a living and up-to-date long form article 

- a digital signage tool, called “the Wall”, to publish selected content on big screens at an 

event 

- an automated service for the creation of personalized aftermovies 

3.5. Iterative updates during test cases (to be updated) 

In this section we want to outline software updates and refinements we did based on learnings 

during test cases. 

Music for Life (November/December 2016) 

 

This was the first test case with the refactored version of the apps used in ICoSOLE. It 

included a modular design, tagging system and a first version of the new editorial tool 

‘Switchboard’. 

Most important new features include: 

● Testing co-creation and interaction between production team and event organizers: 

contributed content was shared on third-party platforms for the first time (user 

generated photos & videos have been used on Facebook and on television as an 

overlay) 



11 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

● First test of using a chat interface as the main interaction between the end user and the 

editors 

   
● Introduction of the concept of chat bots: end-users were able to ask questions and got 

an automatic reply (if found). We also introduced time-based bots, which sent out 

personalized messages for every user on certain points in time. 

 
● End-users received a personalized aftermovie following the event, which consisted of 

their sent-in photos. This was achieved using an After Effects plugin and a rendering 

engine. 

Het Vooruitzicht 2017 (January 21, 2017) 

During this event, several simultaneous presentations of VRT News journalists and 

experts were held. During these presentations, end-users were able to send their 

questions to the speaker, as well as participate in polls. Lastly, ‘the Wall’ app was 

revived and made more interactive by adding beacons. 

Added features: 

● Asking questions: Switchboard was updated to display separate feeds of messages, 

based on tagging; these feeds were used to filter incoming messages for each speaker; 

moreover, important messages could be starred and filtered out 

● Interactive polls: the editorial team was able to send out polls (yes/no, multiple choice 

or score) to (a segment) of users, and follow the results live in Switchboard.  



12 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

● Curated generated photos and videos were shown on ‘the Wall’ (on a big LED screen); 

the app driving the screen was connected with beacons near the screen, and adapted 

what was shown based on people nearby. 

   
 

 

Ronde van Vlaanderen (April 2, 2017) 

In partnership with Sporza, we created the app “Rondereporter”, which people could 

use to send in their best moments of the cycling race by using the app. The main 

objective was to test a new way of publishing user-generated content by using a 

longform article. 

 

● The editorial team was able to curate the best content, and to accommodate it 

with a title and/or description and publish it to the article live. 

 

“Meld Nieuws” app & Trump’s visit to Belgium (May, 2017)  



13 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

For one month, users were able to report news to the VRT news department, using a dedicated 

app. At the end of the testing period, Trump’s visit to Belgium was planned, and the (location 

based feature of the) app was used to locate people nearby the places Trump visited.  

 

Enhanced and new features: 

● Push notifications and polls: we wanted to test how to best handle co-creation 

by setting up several small experiments. These were led by a small professional 

editorial team inside the news department 

○ Collecting local news, proposed by the test users (example: a raid happening 

in a city) 

○ Opinions on news events (example: second hand sale successes) 

○ Doing an experiment and submitting feedback (example: traffic experiment) 

● Location based services: we included a map in ‘Switchboard’ which showed the 

location of the users. Based on their location, the team was able to coordinate 

the people that were using the app. Especially during president Trump’s visit we 

tested this by sending out 16 reporters in the field guided by an editorial team 

located at VRT. 

 

3.6. KISWE CrowdStreaming  

UGC contributions moderation 

In our effort to seamlessly allow UGC live video contributions into professional 

productions, dialogues with VRT producers required us to introduce a moderation layer. 

This layer would allow to omit false positives, bad intent ànd bad quality contributions. 

The first approach to improving the quality of contributions was to implement not just 

moderation, but also a direct communication channel ‘off air’, so that the contributors 

could be validated but also coached by the moderator. This live video protocol was also 

then used to establish the connection between the user contributor ànd an eventual host 

of a live TV broadcast production. This is how we raised immediate interest for 

embedding the CrowdStreaming layer in the 2017 Music for Life TV broadcast 

production. 

The design features of the CrowdStreaming application are: 

- The selected implementation allows for app-independent dial in and provides huge 

potential for easy web platform single-button-dial-in integrations 

- It supports both Android and (partially) iOS 

- It provides an easy path forward to integrate into TV broadcast workflows  

- It supports multiple simultaneous live events on same backend  



14 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

- Security via moderator control authorization 

 

The KISWE Application Architecture 

 

Figure 1: KISWE Application Architecture 

Production Applications: 

- The moderator can communicate with each of the callers for manual coaching and 

gets an overview of the callers’ network and battery. He can then choose to push the 

caller forward into the live show and connect him with the presenter. 

- The presenter does a one-on-one video call with one of the callers and can switch to 

the next caller in the queue without any frame drops. 

- The client is a javascript api, which other 3th party customers can use to integrate in 

their own app like the “Warmste week” app, as the VRT team did for Music for Life.  

 

Cloud Interface and Backend: 

- The Crowdstreaming backend handles the communication and orchestration 

between clients and the Kiswe Cloud Mixers 

- WebRTC Proxy (wowza): all webrtc calls are relayed through these servers to allow 

one-to-many webrtc streaming. 

- The active Kiswe Cloud mixer listens in on webrtc calls through the webrtc proxy and 

mixes them into a live show. This can then be distributed to the Kiswe app, facebook 

live or any other channel over RTMP. The mixer also allows other types of input 

streams like RTMP, which we use for instance to replace the presenter webrtc video 

with a higher resolution RTMP stream from a broadcast camera. These streams were 

then frame accurately synced and allowed the caller to see the presenter properly. 



15 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

- The Clipping engine allows for fast clipping in the live stream to integrate with 3th 

party applications such as Wall of Moments (WoM) 

- The Kiswe quality analyser keeps track of the network stats of each client connected 

with the CrowdStreaming backend. It measures network bandwidth, latency and 

jitter and calculates a score to indicate the predictability of the users’ network. This 

Network score is based on the Mean Opinion Score (MOS): 

https://www.voipfuture.com/wordpress/wp-

content/uploads/2015/10/VPF123_WP_MOS-Calculation-And-Aggregation.pdf 

 

The CrowdStreaming Moderator interface 

 

 

Figure 2: CrowdStreaming Moderator Interface 

The CrowdStreaming moderator interface allows the moderator to manage all incoming callers, 

push them through a workflow into the queue, before pushing them into the live show. Options for 

direct chat with the presenter in the studio, pushing the output to social network livestreams ànd 

fast inspecting the caller’s connection quality are available to the moderator.  

 

Live Hangouts @ Music for Live 2017 

Below an impression of the Facebook Livestreams we performed in the lead up to Music for Life 

2017 the week before. Multiple charity fund raisers called into the Studio Brussel liveshow to talk 

about their actions and good causes. 



16 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

 

Figure 3: Music for Life Facebook Live events 

https://www.facebook.com/stubrumusicforlife/videos/10159701889145176/  

https://www.facebook.com/dewarmsteweek/videos/1616197641774294/  

During the event itself, a break-in production concept was developed to let two callers bring their 

story and show how they were raising funds for their good causes. The setup here had a mor e 

physical connection between the presenter on stage ànd the caller via a TV screen put on stage. 

The impression of a real conversation was triggered this way and added to enhancing the TV 

production experience. 

 

 

Figure 4: Music for Life CrowdStreaming On Stage 

 

Live Hangouts @ Villa Sporza covering World Cup Soccer Russia 2018 

 

During the World Cup Soccer in Russia 2018, we repeated a similar live TV broadcast production 

item in Villa Sporza, the daily pre- and post-game studio shows. A big screen in studio would 

https://www.facebook.com/stubrumusicforlife/videos/10159701889145176/
https://www.facebook.com/dewarmsteweek/videos/1616197641774294/


17 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

show the contributions, and callers from all-over the world would make their contributions. We 

had multiple contributions from a cyclist going from Belgium to Russia, a person in Panama 

travelling to the embassy for the game, a referee, a coach, a youth-friend of a Belgian team 

player, etcetera... 

  

  

Figure 5: Villa Sporza WorldCup CrowdStreaming 

 

3.7. IMEC RMLStreamer and DS Visualizations 

Imec contributes to the project with 2 tools: the RMLStreamer and the DS visualizations 

dashboard. The two tools are aligned to aligned to each other offering a complete workflow 

from the media (sensors in this case) to the screen (in the form of visualizations). The two tools 

are presented in detail. 

In this project, we originally planned to build upon the RMLMapper, a tool designed for 

generating Linked Data from heterogeneous data sources. However, MOS2S use cases that we 

are involved in, are related to streaming data whose processing is fundamentally different 

compared to static data that the RMLMapper is optimized for. In principle, generators for static 

data (files), like the RMLMapper, are limited by memory constraints, and generators for dynamic 

data (streams) are limited by the CPU speed of an individual node. Therefore, after thorough 

investigation, we concluded that we would achieve better results if we aim for a new solution 

compared to extending the existing solution. 

To achieve that, we looked into the use cases and defined the requirements that drove the 

design of the new generator, the so-called RMLStreamer. The RMLStreamer is a generator that 

parallelizes the ingestion and mapping stages of Linked Data generation across multiple 

instances. The RMLStreamer handles dynamic data of any velocity by scaling the mapping 

process to multiple nodes. Our newly proposed approach is driven by observations of workloads 

from our existing generator, i.e., the RMLMapper. Firstly, we investigated and identified aspects 

of the Linked Data generation process that can be parallelized. Then, we came up with a solution 

that parallelizes the Linked Data generation process following the analysis of the different 

identified aspects.  



18 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

The distributed and parallelized Linked Data generation process, which is designed for both 

static and dynamic data, can be divided in three main subtasks: (i) ingestion, (ii) mapping, and 

(iii) combination. These subtasks are linked to each other following the producer–consumer 

paradigm. The producer and consumer are two concurrent processes which use a common 

buffer as a queue. The producer generates data into the buffer and the consumer takes data out 

of the buffer. Multiple instances of each subtask can exist in parallel. Each instance of a subtask 

produces data in buffers in memory for consumption for the next subtask. The ingestion subtask 

consumes data from data sources and produces data records. The mapping subtask then 

consumes these data records and maps them to Linked Data according to the available rules. The 

combination subtask consumes the results from all mapping subtasks that are available and 

reduces this to a single Linked Data set as shown in the figure.  

 

 

Figure 6: RMLStreamer Linked Data generation 

Parallel Linked Data generation from dynamic data. In parallel, multiple Data Sources [DS] can be ingested, its data 

can be split in Data Chunks [DC], their Data Records [DR] can be processed, and (iv) their mapping can be performed 

to generate Linked Data. 

The RMLStreamer is a Scala implementation built on top of the distributed processing framework 

Apache Flink, for handling the parallel execution of each subtask of the generation process over 

multiple (distributed) instances. The subtasks of our proposed approach are implemented and 

put together as part of a Flink pipeline. A job is executed by a running instance, a task manager 

that orchestrates given tasks on a local node or a cluster of multiple nodes. Flink pipelines are 

defined by several operators that handle input, transformations and output. If an operator is 

parallelizable, Flink’s task managers distribute the execution of this operator over multiple 



19 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

(distributed) instances. The RMLStreamer workflow consists of three steps: Flink runtime setup, 

Mapping configuration, and RMLStreamer execution. At first, a Flink runtime is configured and 

start running. Hereafter, a set of RML rules are provided which is used by the RMLStreamer for 

execution on the Flink runtime.  

The DSLab dynamic dashboard uses semantic reasoning to suggest visualizations for sensor data. 

It automatically suggests appropriate visualization options for specific types of data and can be 

applied in different use cases by changing the underlying domain model.  The visualizations 

dashboard consists of 3 core components: (i) sensor gateway, (ii) broker, and (iii) client. The 

sensor gateway is used as a proxy for the available data services, visualization services and 

aggregation services. The broker is the core of the decision framework and has two core 

functionalities: (i) discovering sensor services and (ii) reasoning about interesting aggregations 

and visualizations matching with the available sensor services. The client  component is able to 

visualize sensors that the user has selected. 

In the frame of MOS2S, the DSLab dynamic dashboard is extended to accommodate 

visualizations suitable for the MOS2S use cases. In particular, the demonstration will take place 

at schools, therefore the visualizations were needed to be adjusted for children. In the figure 

below, we show a mockup of the visualisations which are being designed. In more details, we 

developed a colored score widget, that indicates if the data values are in the desired threshold. 

To achieve that an extra option in the dashboard is required that allows a user to specify 

“observation ranges” (e.g. number from 15 to 25 to be shown in green as indicated above) when 

creating a visualization. Moreover, we developed smiley visualizations next to the numeric 

values which allow children to easily identify if the data value is within the desired threshold or 

not. Last, we translated parts of the interface in Dutch. 



20 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

 

 

Figure 7: DSLab Dynamic Dashboard 

 



21 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

4. KR Application Descriptions 

4.1. Wide Field of View Video Experience 

 

Figure 8: 12Kx2K capturing, stitching transmission and rendering experience in Korea. 

 

Normally, wide field of view videos providing a viewing angle of more than 100 degrees can 

cover a person's viewing angle. If MOS2S provide such wide field of view without losing any 

quality degradation, users can enjoy immersive experiences like being in the field. Besides 

MOS2S project, Korea consortium tested a long-distant transmission with 12Kx2K resolution 

video which covers about 100 degree viewing angle shown in Figure 8. Based on this experience 

in Korea, MOS2S is going to have an integrated and cooperative field test in Johan Cruyff Arena 

which holds many valuable professional soccer games and public events.  

 
 

Figure 9: Initial Application plan for the 2nd use event 



22 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

 

Figure 9 presents the initial application design of the 2nd year use case. At Johan Cruyff Arena in 

Amsterdam, Netherlands, MOS2S will capture a wide field of view video with multiple 4K-grade 

cameras and a real-time stitching system will manipulate the multiple camera sources into a 

seamless stitched video. The stitched video may be transmitted to Korea and Turkey if possible 

and users can enjoy the stitched stream with multiple displays. In order to achieve an ene -to-end  

real-time consuming, a special network environment with low latency and almost lossless must 

be required.  

 



23 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

5. TR Application Descriptions 

5.1. Gerade Online Debate Application 

Online debate application is venue stream based online entertainment platform where a 

member can create a debate, invite other users and exchange their ideas, share their comments, 

publish streams  or videos relevant to debate topics, or only watch the debates and  vote the 

debater or moderator by sending notifications or emojis . They also can rate the surveys 

prepared by moderator. Adding resources, publishing surveys, banning or kicking off users are 

some main features included online debate application. 

To develop this application, software tools and technologies   will be used as mentioned below:  

1. Nginx 1.10.x 

2. Node.js 8.11.x (for backend) 

3. Sails.js Framework 0.12.14 (for backend) 

4. Kurento Media Server 6.7.1 (for webrtc) 

5. Wowza Media Server 4.7.5 (transcoder) 

6. Redis 4 (for data storage) 

7. MYSQL 5.7 (data storage) 

8. Angular.js 1.6.6 (front end) 

Upon user requirements and current technologies, three layered landscape architecture 

software will consist   of one client (angular), one signaller(Kurento  to handle media streaming 

and  videos), one node server( to handle static web content at backend). General architecture 

will be provided   according with the steps mentioned below:  

1. Only a presenter can connect to the system and create a session at client side. If more 

than one attempts to create session occur, an error message will be sent to the users.  

2. Multiple viewers can join sessions and there is no limitation with respect to how many 

viewers will be added. 

3. Viewers can leave the communication at any time. 

4. Only present can close the session and termination message will be delivered to viewers.  

 

At system design level, user login and registration will be handled at application server. The tasks 

related to adding and publishing a stream, web urls or medias will be executed via Kurento 

media server. Communication protocol between application server and kurento media server 

will be provided as JSON format.  

 



24 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

 

Figure 10: Gerade 3 Layer landscape architecture 

 

Sequence Diagram of Online Debate Application 

At server side, Java Spring Framework were used o to create  one2many application shown 

below.    

 

 



25 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

Figure 11: One2Many app Serverside class Diagram 

Based on One2Many Application after session is initiated by presenter by evoking   Spring Bean, 

presenter connects all viewer to create peer to peer network.  At server side, presenter will 

create Kurento pipeline to act on media streaming   and data exchange. Also this architecture 

allows user session storage, media exchange and streaming with ICE-on based protocol, data 

brokerage between participants, easy configuration.  

A few screenshots taken from online debating event taken place 6th september during Holland-

Peru match provide some insight into how our program look like and   how to integrate with 

external applications and tools.  

 

 

Figure 12: The Debate Screen 

 

 

Figure 13: Voting Debaters 



26 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

 

 

Figure 14: Photos from Netherland-Peru match 

Feature extension of MOS2S application developed within second term are mentioned as 

following items:   

1. Adding IPTV camera: Beyond adding  web url, youtube videos or HLS streams , the feature   all 

the records taken by IPTV camera  can be added and published during debate  event is extended 

in MOS2S application. Thereby, live streams around the place is managed to publish without 

need any external tools.  

2. Publishing RTMP: Before all RTMPs coming from different resources had to be converted in 

HLS format via WOWZA resulting in synchronization and lag problems. Thus, instead of using 

extra tools like Wowza, a plugin is developed to publish RTMPS directly to the online debate, 

provided as an enhancement. This extension reduced synchronization and latency related 

concerns during online debate, accelerated media streaming and data sharing, and bolstered 

media orchestration in the application. 

 



27 

 

Document reference:  

MOS2S 

D3.1 

 

 

 

6. Concluding Remarks 

This Deliverable D3.1.2 reports on the application designs for the 2nd year milestone. The docu ment 

outlines the various applications that the MOS2S partners develop to showcase the innovations at the 

second year demonstrator. With respect to the initial Full Project Proposal, partners have developed 

application software that focuses on their interests and market developments, and continued 

concentrating more on contributions to live (sports) events. A variety of applications have been 

developed, in which several form of integration between data and video have been explored.  

These applications will be used in upcoming year 3 demonstrator events to test-drive the made 

developments in platform functionality. 

 


