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Executive summary 

D6.2 delivers the first versions of the implementation of REVAMP’s verification automated tools 

which architectural designs were delivered in D6.1. These tools are currently stand-alone tools, not 

integrated in a tool-chain. This integration will be delivered in D6.4.  

This tool set currently include 8 tools, 5 research Proof-of-Concept (PoC) demonstrators developed 

by academic partners and 3 commercial tool prototypes developed by industrial partners. Among 

those tools 2 perform formal verification, while the others rather focus on computing various quality 

analysis metrics. One tool focuses on analysing product line variability models, while the others 

focus on analysing reusable product line artefacts such as requirements model, hardware models, 

source code and test sets as well as the relationships holding between those artefacts themselves 

and between those artefacts and variability models.  

In this deliverable we quickly present the implementation of each of these tools in turn. For each 

one we remind its objectives, the kind of input artefacts that it accepts as input to verification, the 

kinds of properties that it can verify on these artefacts and the kinds of verification results and 

quality metrics that it is able to produce as output. We also clearly identify any discrepancy that 

may exist between the functionalities and architecture of the tools as specified in the desig n model 

delivered in D6.1 and those actually implemented in the first implementation version now delivered 

in D6.2. We explain the causes of these discrepancies and whether they are planned to be resolved 

in the future D6.3 design 2.0 and D6.4 implementation 2.0 to be delivered in 2019. 

We also state what programming language, libraries and application frameworks were used to 

implement them, and what versions of these. Finally, we indicate where to find a copy of the code 

of these tools to download for testing purposes, and where to find training material to learn how to 

use them. 
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1. Overview of the deliverable 

D6.2 delivers the first versions of the implementation of REVAMP’s verification automated tools 

which architectural designs were delivered in D6.1. By verification here we mean verification in the 

broadest sense of the activities carried out in the V&V (Verification and Validation) step of a SIS 

engineering lifecycle. Its scope is thus much wider than formal verification of the SIS properties, 

including other forms of V&V such as quality analysis metric computation and testing.  

 

Table 1 below gives an overview of REVAMP’s V&V automation tools, including their name, the 

REVAMP partner providing its input, output and implementation platform. 

 

Class 
Input Asset 

kind 

Verified 

properties 
Name TRL Provider 

Implementation 

Platform 

Formal 

Verification 

Feature model 
Presence of 

defects 
VariaMos PoC UP1PS 

Java archive 

C code, formal 

requirements 

Conformity of 

C code to 

formal 

requirements 

KTH C code 

verifier 
PoC KTH 

C? 

C code, build 

information 

(e.g., make 

files), variability 

model (e.g., 

feature models) 

Consistency 

of code and 

variability 

model 

KernelHaven PoC SUH 

Java 

Quality 

metric 

computation 

Requirements 

following 

domain 

ontology 

constrained 

semi-natural 

language 

templates 

Correctness 

Consistency 

Completeness 

RQS 
Commercia

l product 

KCS-

TRC 

C#.NET 

C code, build 

information 

(e.g., make 

files), variability 

model (e.g., 

feature models) 

Smell 

detection  
KernelHaven PoC SUH 

Java 

HW legacy 

assets, 

products 

description, 

SoC, 

architecture, IP 

Consistency 

and 

completenes

s of assets 

Magillem 

Crystal Bulb 

Commercia

l product 
MDS 

 

 

Web application server 

(Spring Boot + Angular) 

Coded in Java 
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Class 
Input Asset 

kind 

Verified 

properties 
Name TRL Provider 

Implementation 

Platform 

description and 

features, 

configurability, 

memory maps 

IP-XACT and 

HDL files 

Syntactic and 

semantic 

checkers 

Magillem 

Platform 

Assembly 

Commercia

l product 
MDS 

 

Eclipse based tool 

Testing 

MATLAB 

Simulink 

model, 

software 

requirement 

specification 

Requirement 

conformity 
MTest 

Commercia

l product 
MES 

MATLAB 

Java Software 

(production 

code, test 

code, build and 

test 

environments)  

Test Quality LittleDarwin 
OpenSourc

e Product 
UA 

Python 

Virtual 

prototype 

(SystemC/C++-

Code) of the 

SPL, variability 

model (e.g., 

feature models) 

Test case 

generation 
ViTAmineE PoC FZI 

Java 

Table 1: REVAMP V&V automation tool set overview 

 

In the rest of this document, we elaborate the key properties of the first implementation of this tool 

in order. We start presenting by the research Proof-of-Concepts (PoC) tools before presenting the 

commercial tools. Within each of these categories, we start by presenting the tools that perform 

some formal verification, before presenting those performing only quality analysis metric 

computations.  
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2. Proof-of-Concept tools 

2.1. Formal verification tools 

2.1.1. VariaMos (UP1PS) 

2.1.1.1. Objectives summary 

VariaMos aims to integrate the following services: 

- Graphical edition of variability models following the built-in VariaMos product line feature model 

meta-models (abstract syntax and concrete syntax meta-models) 

- Interactive product design space exploration by iterative selection of features by the designer 

from the options represented in the variability model, followed by automatic elimination of feature 

options by cross-feature constraint propagation 

- Automated product derivation from the point selected in the design space 

- Feature model verification by detection and localization of defects in the feature model  

2.1.1.2. Input artefacts 

The verification services of VariaMos take as input a feature model (problem space) and an asset 

model (solution space) both constructed and linked together with the VariaMos feature modelling 

graphical edition service; 

2.1.1.3. Verified properties 

The properties verified are the absence of the following set of defects that can be encountered in 

feature models:  

- Void feature model, i.e, feature model for which no valid configuration exists due to over-

constrained constraint set 

- False product line, i.e., a feature model for which only a single valid configuration exists and 

therefore does not represent any genuine variability;  

- Dead features, i.e., features that due to other constraints cannot appear in any valid 

configuration; 

- False optional features: i.e., features that are defined as optional in the feature tree and yet 

due to other constraints appear in all valid configurations; 

- Wrong cardinalities, i.e., locally specified cardinality upper and lower bound for a set of sub-

features in the feature tree that, due to other constraints are incorrect, for example a locally 

specified lower bound that is lower than the minimum number of the sub-features present in any 

valid configuration or a locally specified upper bound that is higher than the maximum number 

of such sub-features present in any valid configuration 

- Multiple root feature tree 

2.1.1.4. Computed quality metrics 

The quality metrics currently computed on a feature model are: 

• Number of valid products measures the size of the valid configuration space; 

• Product line homogeneity is defined as 1 −  #𝑓 #𝑝⁄  where #𝑓 is the number of features 

appearing in a single product divided and #p is the total number of valid products derivable from 

the feature model; 

• Product line variability factor measures the degree of independence of the features it is 

defined as #𝑝 2#𝑓⁄  where #p is the total number of valid products derivable from the feature 

model and #𝑓 is its number of features 



8 

Page 8 of 25                             

 

• Extra constraint representativeness measures the density of cross-tree constraints among 

features, defined as #𝑐 #𝑓⁄  where #𝑐 is the number of features involved in a cross-feature 

constraint and  #𝑓 is the total number of features in the tree; 

2.1.1.5. Implemented elements from design model delivered in D6.1 

The current version of VariaMos 1.0.1.18 differs from the design model delivered in D6.1 in several 

subtle ways. Let us review them in turn for the three main sub-components of VariaMos: 

- The VariaMos Model Editor 

- The general VariaMos Variability Model Verification component and its specialization VariaMos 

Feature Model Verification component 

- The VariaMos Product Line (PL) Configuration component 

Concerning the VariaMos Model Editor, the main discrepancy between the designs modelled in 

figure 11 of D6.1 and the implementation delivered in D6.2 is that the latter does not separate model 

edition functionalities from the diagram edition functionalities in two different components.  

Consequently, the current User Interface (UI) does not include as idealized at design-time a model 

element hierarchy editor pane separated from the various diagram edition tabs as asset modelling 

tools such as Modelio provide. This is due to the choice of reusing the open-source JGraphX1 library 

for the UI which is a powerful diagramming UI tool but not a full-fledge modelling tool providing this 

distinction out-of-the-box. The distinction must thus be programmed around JGraphX rather than 

leveraging it. This is a major and complex implementation effort that could not be delivered for D6.2. 

It will be considered for inclusion in D6.4. As a result, the showElt and hideElt operations of the 

VariaMos Diagram Editor component of figure 11 in D6.1 are not yet implemented as distinct from 

the newElt and delElt operations.  

Others yet unimplemented operations include cloneProp and mvProp from the VariaMos Model 

Editor component, which would allow cloning and moving selected properties from one model 

element to another by a dragging action. This would require be able to show all properties of every 

element on the diagram which is also not currently supported. Some properties are only displayed 

and edited in the property editor but not in the diagram. 

In terms of diagram layout operations of the VariaMos Diagram Editor, only the translate operation 

is currently implemented. The other such operations in figure 11 of D6.1 rotate, scale, align, 

equiSpace and equiSize to respectively rotate a diagram element, scale it, align multiple elements 

along a line, and make their size or the space between them uniform will be considered for D6.4. 

They provide convenience for precise graphical layout. But they also risk of overcrowding the menu 

bar with an overwhelming number of options, so there is a usability trade-off involved. We will base 

our decision to invest the resources needed to add them or not from feedback from VariaMos users 

within the REVAMP2 consortium. 

Concerning the models of the generic VariaMos Variability Model Verification component and its 

specialized VariaMos Feature Model Verification component shown in figure 14 of D6.1, all their 

operations were implemented except for the redundant constraint verification option. This option 

was not prioritized since, in contrast to all the other verification option, it does not identify a semantic 

defect that can result in the generation of an invalid configuration. It is merely identified as a 

presentation conciseness defect, which is why its implementation was left for the next iterations.  

Concerning the model of the VariaMos PL Configuration component shown in figure 12 of D6.2, all 

operations are implemented. 

                                                      
1 https://github.com/jgraph/jgraphx. 

https://github.com/jgraph/jgraphx.
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Since the main original contribution of VariaMos in the REVAMP toolchain concerns the verification 

automation WP6 work package, we decided to prioritize implementing the verification automation 

operations of the design model of D6.1 over the completeness of the feature model UI editor 

operations. 

2.1.1.6. Implementation technologies 

Programming language: VariaMos is implemented in Java 8 and it relies on SWI-Prolog 7 as the 

underlying constraint solver. 

 

Application frameworks: VariaMos UI is implemented using the JGraphX open-source 

diagramming library which itself relies on the Java Swing GUI widget toolkit  

 

Data integration facilities: None so far. VariaMos can import and export files in formats that are 

specific to VariaMos: 

- .vmum files to import and export variability models; 

- .vmsm files to import and export variability language abstract syntax meta-models; 

- .vmom files to import and export variability language operational semantics meta-models 

- .conf to import and export a (partial or complete) configuration of a variability model  

 

.vnum, .vmsm and .vmom files are XML files following the convention of the JGraphX to serialize a 

JGraphX graph into an XML file. The most nested levels in these XML files contain XML elements 

that correspond to the meta-classes and meta-attributes of the meta-models of a VariaMos 

variability model, a VariaMos syntactic meta-model or a VariaMos operational semantics meta-

models tree schemas. This approach was the simplest to implement but present the drawback of 

not separating these meta-models from their graphical representation as a JGraphX graph. The 

.conf file is a JSON flle with one value for each option in the variability model.  

 

Control integration facilities: None so far. VariaMos is currently a monolithic program that can 

only be used through it graphical UI. Overcoming this limitation to allow VariaMos services to be 

called programmatically from outside should be the main focus of D6.4. 

2.1.1.7. Implementation and documentation location 

The source code of the current implementation. VariaMos 1.0.1.20 can be downloaded at the 

following URL: https://variamos.com/home/variamos/configuration/ 

 

A short video tutorial of the feature model verification and configuration can be found at the 

following URL: https://www.youtube.com/watch?time_continue=34&v=VEvROmikSnY 

 

  

https://variamos.com/home/variamos/configuration/
https://www.youtube.com/watch?time_continue=34&v=VEvROmikSnY
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2.1.2. Kernel Haven (SUH) 

2.1.2.1. Objective summary 

KernelHaven is an open infrastructure for Software Product Line (SPL) analysis. It is intended both 

as a production-quality analysis tool set as well as a research support tool, e.g., to support 

researchers in systematically exploring research hypothesis. For flexibi lity and ease of 

experimentation KernelHaven components are plug-ins for extracting certain information from SPL 

artefacts and processing this information, e.g., to check the correctness and consistency of 

variability information or to apply metrics. A configuration-based setup along with automatic 

documentation functionality allows different experiments and supports their easy reproduction.  

2.1.2.2. Input artefacts 

The core components of KernelHaven are three extraction pipelines, the data processing, and a 

pipeline configurator as illustrated in Figure 1 and described in this section. 

 

 

Figure 1: KernelHaven architecture. 

 

Each extraction pipeline extracts and provides information of a particular type of artefact typically 

considered in variability-based analyses: 

• The code pipeline in the upper part of Figure 1 extracts information from code files or files 

used for code generation. The result is a set of element trees. An element tree represents 

a single code file and provides information about the available code elements on different 

levels of abstraction.  

• The build pipeline in the middle of Figure 1 extracts and provides information from build 

files. The result of this extraction is a map of files and their presence condit ions (PC in 

Figure 1). These conditions define constraints, which must be satisfied to compile and link 

or, in general, build a specific (set of) file(s). 

• The (variability) model pipeline in the lower part of Figure 1 translates information from 

variability model files into a list of features and propositional formulas. They repres ent the 

features and constraints, which define the planned products of the SPL. 
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2.1.2.3. Verified properties 

The basic infrastructure of KernelHaven does not provide any verification capabilities. Instead, its 

plug-in architecture allows extending KernelHaven by static analysis and verification concepts. The 

following verification plug-ins are currently publicly available: 

• DeadCode Analysis: This is a re-implementation of the dead code analysis as published 

by Tartler et al. (Tartler, et al., 2011) and realized in the Undertaker tool (Undertaker, 2018). 

The DeadCode Analysis verifies whether configurable code blocks are indeed configurable 

with respect to the underlying variability model. 

• Configuration Mismatch Analysis: This is a more general analysis than the DeadCode 

Analysis as it verifies whether configurable code is always intended by the variability model 

or whether it becomes unconfigurable in some configurations (El-Sharkawy, et al., 2017). 

• Incremental Verification: This is a commit-wise DeadCode Analysis, which analyses the 

delta to a previous commit to determine which parts require a new analysis. The result is a 

much faster DeadCode Analysis (~10x speed up) suitable to be integrated into a continuous 

integration environment. 

• Code Metrics: This is an extension to KernelHaven, which currently provides seven code 

metrics in over 7.300 different variations. The novel combination of information from 

variability model artefacts with dependency information from code artefacts allows detecting 

complex variability structures, which cannot be detected with existing approaches (El-

Sharkawy, et al., 2018). 

2.1.2.4. Computed quality metrics 

KernelHaven supports seven variability-aware code metrics (MetricHaven, 2018). Most of this 

metrics may be applied to non-variable code parts, variations points only, or to both kinds of code 

elements at once to analyse the impact of variability information: 

• Number of Internal/External Variables per Function (Ferreira, et al., 2016): This metric 

measures the number of variables or features, which are used to configure a code function. 

Variations of the metric are to analyse how many variables are used outside of the function, 

e.g., to include the code file or the function within a code file, or how many variables are 

used inside the function for fine-grained customizations. 

• Cyclomatic Complexity (McCabe, 1976): This metric measure the complexity of control 

structures used in the programming language, variation points, or the combination of both.  

• DLoC: This metric measures the delivered lines of code used for implementing a function, 

the delivered lines of code surrounded by variation points, or the fraction of both.  

• Nesting Depth: This metric measures the maximum and average nesting depth of 

statements within control structures, variation points or the combination of both. 

• Fan-In/Out: This metric measures the number of function calls within a function or how 

often a function is called by other functions. In addition, function calls may be weighted 

based on variables used in variations points, which are used to en-/disable the function calls 

(Ferreira, et al., 2016). 

• Tangling Degree: This metric measures tangling degree values (number of distinct feature 

variables used in variation points) for each CPP block with an expression (no else 

statements) and sums them up for each function. 

• Blocks per Function: This metric measures the number of (nested) variations points per 

function. 

In addition, each code metric, which operates on variation points, may be combined with information 

from the variability model: 



12 

Page 12 of 25                             

 

• Scattering Degree: Determines for each feature in how many variation points (i.e., c pre-

processor blocks) or code files it is used in. 

• Cross Tree Constraint Ratio: Determines for each feature in how many constraints it is 

used in. 

• Feature Definition Distance: Computes the distance in the file system between usage of 

a feature in a code file and its definition in the variability model. 

• Feature Types: Allows specifying weights for features based on their data types, for typed 

variability modelling techniques (e.g. Kconfig). 

• Feature Hierarchies: Weights features based on their hierarchy level in the feature model, 

as deeply nested features are harder to maintain than top-level features (Bagheri, et al., 

2011). 

• Variability Model Structures: Considers the number of edges between features in the 

variability model, e.g., edges of nesting structures but also edges created through 

constraints. 

2.1.2.5. Implementation in D6.2 vs. Design in D6.1 

Since the D6.1 deliverable, KernelHaven was extended as follows: 

• Preparators: This interface allows applying a normalization to artefacts before their 

analyzation. For instance, for the analyzation of code artefacts of the Bosch PS-EC product 

line, a preparatory may be used to transform numerical expressions into Boolean formulas 

(El-Sharkawy, et al., 2018; Krafczyk, et al., 2018). 

• Extension of Metric Framework: Further metrics and combinations were implemented in 

order to support more than 7.300 metric combinations as described in Section 2.1.2.3. 

• DIMACS Importer: A DIMACS importer was realized to provide import capabilities for 

pure::variants models. This interface allows a formal analysis, whether modelled constraints 

of the variability model are consistent to implemented dependencies of code assets. 

• Realization of Incremental Verification Framework: A framework for supporting the 

commit-wise verification of product line assets while reusing partial analysis results from 

previous analyses was implemented. As first prototype, the DeadCode Analysis (cf. Section 

2.1.2.3) was ported to run as incremental analysis. 

• Oberserver Interface for External Tools: This extension allows third party tools to use 

KernelHaven as library and to receive directly desired analysis results via an observer 

interface. 

• Export to SQLite: This export capability was implemented to provide additional integration 

capabilities. This is currently used by ScopeSET to visualize analysis results of 

KernelHaven. 

2.1.2.6. Implementation technologies  

 

Programming language: 

KernelHaven is implemented in Java 8 and may be configured through property-files. 

 

Application frameworks: 

The KernelHaven infrastructure does not use any third party library, but some of the plug -ins may 

use third party content: 

• KconfigReaderExtractor: This extractor make use of the kconfigreader tool2. 

                                                      
2 https://github.com/ckaestne/kconfigreader  
 

https://github.com/ckaestne/kconfigreader
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• UndertakerExtractor: This extractor make use of the Undertaker tool3. 

• TypeChefExtractor: This extractor make use of the TypeChef tool4. 

• srcMLExtractor: This extractor make use of the srcML tool5. 

• KbuildMinerExtractor: This tool make use of the KbuildMiner tool6. 

• CnfUtils: This utility framework uses the following libraries: Apache Commons Lang (v. 2.6), 

Google Guava (v. 14), Jbool Expressions (v. 1.13), Sat4J (v 2.3.5) 

• IOUtils: This utility framework uses the following libraries: Apache Commons IO (v. 2.5), 

Apache Commons Lang 3 (v. 3.6), Apache POI (v. 3.17) 

 

Data integration facilities: 

The following data formats can be handled by KernelHaven: 

• Comma Separated Values (CSV): CSV-files can be used for importing and exporting data. 

• Excel Spreadsheets (XLS, XLSX): Excel documents can be used for importing and 

exporting data. 

• SQLite: SQLite can be used for exporting data. 

• DIMACS: Feature models expressed in the DIMACS format may be imported into 

KernelHaven. This includes pure::variants feature models, which can be converted to the 

DIMACS format using the DIMACS Exporter tool7 developed by. 

 

Control integration facilities: 

KernelHaven may be used as a library by other Java-based programs. In this case, the calling 

application may register itself as a processing unit to receive analysis results.  

2.1.2.7. Implementation and documentation location 

• Sources, the infrastructure, plug-ins as well as pre-packed bundles of KernelHaven may be 

obtained from its repository: https://github.com/KernelHaven/KernelHaven 

• The pre-packed bundles are shipped with a manual, which is also online available as a wiki 

here: https://github.com/KernelHaven/KernelHaven/wiki 

In addition, the following video tutorials are available: 

• A short tutorial about its concepts (~5 Minutes): https://www.youtube.com/watch?v=IbNc-

H1NoZU 

• A more detailed video explaining how to use KernelHaven (~23 Minutes): 

https://www.youtube.com/watch?v=xKde6tPY_jA  

2.1.3. KTH C Code Verifier 

2.1.3.1. Objective summary 

The purpose of the tool is to take as input a C implementation file already annotated with 

contracts for the functional requirements, and produce as output the same annotated C file but 

also annotated with auxiliary annotations needed for successful verification. The tool can also 

then automatically verify this file using VCC as backend. 

 

                                                      
3 https://vamos.informatik.uni-erlangen.de/trac/undertaker/  
4 https://ckaestne.github.io/TypeChef/  
5 https://www.srcml.org/  
6 https://github.com/ckaestne/KBuildMiner  
7 Available in the REVAMP SVN folder 
https://svn.fzi.de/svn/revamp/WP4%20PL%20extraction/tools/PV2DIMACS 

https://github.com/KernelHaven/KernelHaven
https://github.com/KernelHaven/KernelHaven/wiki
https://www.youtube.com/watch?v=IbNc-H1NoZU
https://www.youtube.com/watch?v=IbNc-H1NoZU
https://www.youtube.com/watch?v=xKde6tPY_jA
https://vamos.informatik.uni-erlangen.de/trac/undertaker/
https://ckaestne.github.io/TypeChef/
https://www.srcml.org/
https://github.com/ckaestne/KBuildMiner
https://svn.fzi.de/svn/revamp/WP4%20PL%20extraction/tools/PV2DIMACS
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2.1.3.2. Input artefacts 

A C implementation file already annotated with functional requirements (in the annotation 

language of VCC). 

2.1.3.3. Verified properties 

The tool can verify that a C implementation adheres to its contract, which includes functional 

requirements and absence of run-time exceptions. 

The result of verification is that either the contract is fulfilled or it is not. 

 

2.1.3.4. Computed quality metrics 

Correctness (w.r.t functional requirements) 

Termination (in most cases) 

Absence of run-time exceptions 

 

2.1.3.5. Implementation in D6.2 vs. Design in D6.1 

The design described in D6.1. included also a design of a requirement specification tool, and a 

tool for translating requirements and generating annotations for them in the C-file. We have a 

prototype implementation for this, but it is highly domain-specific, and in an early stage of 

development. We plan to generalize and further improve this implementation.     

 

2.1.3.6. Implementation technologies  

 

Programming language: 

C# (version 7.0) 

F# (version 4.1) 

 

Application frameworks: 

VCC  

Standard libraries for C# and F# 

 

Data integration facilities: 

Input: C source files (with or without VCC annotations) 

Output: C source files (with VCC annotations) 

 

Control integration facilities: 

Used from the command line and takes a C source filename as input.  

There are flags for whether annotation and/or verification should be performed, as well as for 

specifying an output filename (optional). 

 

2.1.3.7. Implementation and documentation location 

For information on how to use the tool, there is a help flag available from the CLI (command line 

interface). For information on how to specify functional properties, see the VCC user manual. Tool 

implementation can be found in the ReVaMP repository together with D6.2 deliverable.   
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2.2. Quality metric computation tools 

2.2.1. ViTAminE/Dragonfly (FZI) 

2.2.1.1. Objective summary 

Beside formal verification, simulation-based testing is an important part in the qualification of SIS 

PLs. The main difference between both approaches is that simulation need an input vector to 

stimulate the system under test (SUT). This can be viewed as verifying a single point of the input 

space of the SUT. If the SUT is an instance of a PL, the problem is aggravated, because the 

simulation verifies only one single point/instance of the PL. Summarizing, running one simulation 

verifies one SIS PL instance with one dedicated input. For an efficient testing, a strategy for 

selecting these instances (PL and input space) is required. With regard to SIS PL testing, 

nowadays a set of input vectors is applied to each SIS PL instance separately, resulting in many 

unnecessarily execution of test cases.  

The objective of this PoC is to provide an iterative algorithm to select feasible instances from the 

input and PL space for testing. With the help of simulations, a quality metric or more precise, an 

objective function, such as the execution delay of a SIS, is determined. The mapping of the 

objective function over the search space is called fitness landscape. Based on this sampling of 

the fitness landscape, the PoC selects new test vectors. The assumption is that the fitness 

landscape is partial continuous, enabling the derivation of the most critical and therefore the 

subset of representative test cases for the SIS PL, with regard to the objective function. By taking 

both the input space and the PL space into account, we assume that the overall test effort for the 

complete SIS PL can be reduced, by iteratively narrowing down the representative test cases.   

The PoC consists of an editor to specify the simulation model of the SIS PL, code generators, a 

simulation framework, to support the execution of multiple simulations as well as the exploration 

algorithm for simulation instance selection.  

2.2.1.2. Input artefacts 

The main input is the simulation model of the SIS PL. The PoC focuses on simulation models 

based on SystemC/C++. To support the user and reduce the effort for executing a single 

simulation, the PoC provides mechanism such as a runtime configuration approach and code 

generation steps. Nevertheless, the simulation models are application specific and have to be 

provided for each SIS PL. The framework supports the user in the creation and managing of the 

simulation models.  

The second input is the variability specification of the SIS PL, more precise the variability of the 

simulation model. The variability specification covers the variation points, the possible values of 

configuration parameters as well as dependencies between variation points. This specification is 

used to describe the valid search space used for test case generation. The PoC uses the same 

format to specify the variability of the SIS PL as well as the variability of the input space.  

Technically there is no differentiation between input variability and PL variability.   

2.2.1.3. Verified properties 

The verified properties are based on the simulation models. In current studies, the focus is on 

timing evaluation of PLs. This is possible if the simulation models contain annotations about the 

expected execution time of the software. Approaches for timing prediction in the context of PLs 

are researched in WP5.   
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2.2.1.4. Computed quality metrics 

The PoC generates test cases that can be executed to verify the specified properties, such as 

timing. To support the easy execution of multiple simulation runs, the PoC generates a 

configuration file that can be read by the simulation during runtime. The configuration file is based 

on IP-XACT.  

2.2.1.5. Implementation in D6.2 vs. Design in D6.1 

The model of deliverable D6.1 sketches the overall structure of the PoC. In D6.2 a running version 

of the editor, to specify the simulation model and a configuration file are provided. The required 

code generators for the SystemC/C++ simulation models as well as for the IP-XACT based 

configuration files are integrated. With the current version of the PoC it is possible to specify t he 

simulation model of a SIS PL with the help of UML diagrams. Code generators derive structural 

code, with mock up functions. Additionally, the configuration file can be specified with an UML 

diagram and the required IP-XACT file can be generated.  

Figure 2 specifies the ViTAminE/Dragonfly framework. On top, the graphical UML-based editor is 

shown. The UML diagrams specify the simulation model and the simulation instance. The 

annotation of variability information is subject for future work. Code generation steps are used to 

derive the simulation model with extensions for runtime configuration. The functional 

implementation has to be done manually by the user. After the manual extension, the model is 

compiled, resulting in the so-called simulation library. It is an executable that can be configured 

with a configuration file during runtime to execute a simulation instance. This simulation library 

covers all instances of the SIS PL, which can be instantiated with the configuration file. The 

current focus is on runtime variability, because this can be easily mapped to the simulation library 

approach. Compile time variability can be used too, but in this case, multiple executables have to 

be provided or the variation point has to be mapped to runtime variability. There are case, where 

this re-mapping fails.   

For future versions (> D6.3) the variability specification is integrated into the UML editor. Current 

discussions within the project consortia indicate the usage of VEL for the specification of 

variability. Future work will focus on the integration of VEL and the cooperation with the 

exploration algorithm, which was developed in parallel.   

2.2.1.6. Implementation technologies  

 

Programming language: 

Figure 2: Structure of the ViTAminE/Dragonfly framework 
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The PoC is implemented as Eclipse plug-ins that extend the Eclipse Papyrus editor. The Plug-Ins 

and code generators are implemented in Java. 

 

Application frameworks: 

SystemC/C++ for the simulation models (currently used 2.2.3)  

Eclipse Modeling Tools Luna 4.4.2 

Papyrus 1.0.2 

Xtext 2.8.1 

 

Data integration facilities: 

- IP-XACT compatible configuration file 

- Eclipse UML importer/exporter 

 

Control integration facilities: 

No public interfaces. Integration via Eclipse Plug-Ins is possible. 

2.2.1.7. Implementation and documentation location 

For more information and access to the tool contact sreiter@fzi.de.  

 

2.2.2. LittleDarwin (UA) 

2.2.2.1. Objective summary 

Mutation testing is a well-studied method for increasing the quality of a test suite. Lit tleDarwin is 

designed as a mutation testing framework able to cope with large and complex Java software 

systems, while still being easily extensible with new experimental components. LittleDarwin 

addresses two existing problems in the domain of mutation testing: having a tool able to work 

within an industrial setting, and yet, be open to extension for cutting edge techniques provided by 

academia. LittleDarwin already offers higher-order mutation, null type mutants, mutant sampling, 

manual mutation, and mutant subsumption analysis. There is no tool today available with all these 

features that is able to work with typical industrial software systems. 

2.2.2.2. Input artefacts 

LittleDarwin takes as input a complete Java Software Environment. This includes production code , 

test code, test harnesses, build system, and the required external libraries.  

2.2.2.3. Verified properties 

LittleDarwin assesses the quality of a test suite using mutation testing. Mutation testing is the 

process of injecting faults into a software system to veri fy whether the test suite detects the 

injected fault. Mutation testing starts with a green test suite — a test suite in which all the tests 

pass. First, a faulty version of the software is created by introducing faults into the system 

(Mutation). This is done by applying a known transformation (Mutation Operator) on a certain part 

of the code. After generating the faulty version of the software (Mutant), it is passed onto the test 

suite. If there is an error or failure during the execution of the test suite , the mutant is marked as 

killed (Killed Mutant). If all tests pass, it means that the test suite could not catch the fault, and the 

mutant has survived (Survived Mutant). By discovering the survived mutants, mutation testing 

provides a method to find the weaknesses in a test suite, and provides targets for the test 

developer to address.  

mailto:sreiter@fzi.de
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2.2.2.4. Computed quality metrics 

Mutation testing allows software engineers to monitor the fault detection capability of a test suite 

by means of mutation coverage. Mutation coverage is the percentage of the survived non-

equivalent mutants to all non-equivalent mutants. A test suite is said to achieve full mutation test 

adequacy whenever it can kill all the non-equivalent mutants, thus reaching a mutation coverage 

of 100%. Such test suite is called a mutation-adequate test suite. 

2.2.2.5. Implementation in D6.2 vs. Design in D6.1 

2.2.2.6. Implementation technologies  

 

Programming language: 

LittleDarwin is written in Python version 2.7. 

 

Application frameworks: 

LittleDarwin is mainly self-reliant, however, it requires the existence of an underlying local 

database technology in Python to support Shelve. 

 

Data integration facilities: 

 

Control integration facilities: 

2.2.2.7. Implementation and documentation location 

LittleDarwin’s source code and manual can be found at https://littledarwin.parsai.net/ 

 

 

https://littledarwin.parsai.net/


19 

Page 19 of 25                             

 

3. Commercial tools 

3.1. Quality metric computation tools 

3.1.1. Magillem Crystal Bulb & EDA tools (Magillem) 

3.1.1.1. Objective summary 

Crystal Bulb is a platform running on a central server, providing access to information that has to 

be exchanged daily between the various stakeholders (architects, designers, verification 

engineers, marketing, SW & tools developer, etc.), through a lightweight client in a web br owser.  

The information is structured in catalogs for products, SoC and IP. Links between objects are 

automatically created during the population of the database, to check the coherency between data 

and to allow the navigation inside the catalogs.  

The specific information regarding the hardware description of SoC or IP objects is extracted from 

the IP-XACT description and/or legacy assets in other formats (e.g. Excel, csv, …), for which 

verification are performed. From Magillem Crystal Bulb, the authorized user will be able to 

checkout, edit and modify IP-XACT information in the appropriate EDA tools associated with the 

dedicated API and generators (e.g. “diff and merge” operation with other IPXACT files is realized 

within the EDA tool environment). 

3.1.1.2. Verified properties 

• Verification of extracted assets 

o Correctness and completeness of the HW assets (Products, SoC, IP) 

o Consistency of assets to with regards to the defined referential  

o Availability of features in the extracted products 

o Pinout consistency checkers 

• IP-XACT compliance 

o Syntactic and semantic checkers 

3.1.1.3. Computed quality metrics 

Number and type of assets extracted (Products, SoC, IP) 

Number of errors & warnings detected during import 

Number of inconsistencies detected 

3.1.1.4. Implementation in D6.2 vs. Design in D6.1 

Regarding the design in D6.1, the implementation has been focused on Magillem Crystal Bulb  

3.1.1.5. Implementation technologies  

Programming language: 

The Magillem tool suite is developed in Java. 

 

Application frameworks: 

Magillem Platform Assembly and Magillem Content Publisher are Eclipse-based tools. 

Magillem Crystal Bulb is a web application server, based on Spring Boot & Angular frameworks.  

 

Data integration facilities: 

Inputs that can be imported: 

- IP-XACT files for description of IP and SoC 
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- CMSIS for description of SoC and register maps 

- Legacy of assets and their features can be imported as Excel or csv files  

- Word documentation related to HW assets can be imported in MCP 

 

Control integration facilities: 

• Magillem Crystal Bulb (MCB) (web application server) includes an API to get information 

related to HW assets. At present it only allows to read information. The API will be 

extended to be able to write information while ensuring consistency of assets as a whole. 

• Magillem Content Publisher (MCB) (Eclipse based tool) embeds an API that enables to 

trigger the actions allowed by the tool i.e. creation, verification and consolidation of 

documentation. 

▪ Magillem Platform Assembly (MPA) (Eclipse based tool) includes an API to handle IP-

XACT items, named Tight Generator Interface and  

3.1.1.6. Implementation and documentation location 

Information about the tools can be found on Magillem website at the following locations:  

• Magillem Crystal Bulb 

www.magillem.com/products-areas/magillem-crystal-bulb 

• Magillem Content Publisher 

www.magillem.com/products-areas/magillem-content-publisher 

• Magillem Platform Assembly 

www.magillem.com/products-areas/magillem-platform-assembly 

 

The Magillem tools involved in REVaMP² are available to partners for use within the context of the 

project. Tools and the corresponding licences can be requested by email to 

pfeiffer@magillem.com and license@magillem.com 

3.1.2. RQS (KCS-TRC) 

3.1.2.1. Objective summary 

The purpose of the verification process implemented in VERIFICATION Studio is to provide 

evidence that a work-product or set of them fulfils its specification and characteristics. 

 

The verification process can be done at work-product level and at specification level. These two 

levels match the two levels of quality computing that VERIFICATION Studio has:  

 

▪ Correctness: it’s performed at work-product level. Verifications at this level can be 

implemented as new type of correctness metric and will be named Correctness Checklist  

▪ Completeness: it’s performed at specification level. Verifications at this level can be 

implemented as new type of completeness metric and will be named Completeness 

Checklist 

 

This verification process must be defined manually by filling a quiz composed of checks or 

checklists. Every correctness checklist will verify a single work-product, meanwhile every 

completeness checklist will verify a set of work-products by means of completing a checklist 

related to a specification. 

 

http://www.magillem.com/products-areas/magillem-crystal-bulb
http://www.magillem.com/products-areas/magillem-content-publisher/
http://www.magillem.com/products-areas/magillem-platform-assembly
mailto:pfeiffer@magillem.com
mailto:license@magillem.com
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As a result, a verification action is intended to serve as a mean to provide objective evidence that 

a work-product has (or not) been verified. The verification action is a case of process to be 

defined at work-product level that don’t have to be applied to all items in a specification.  

 

During the whole process, a scoreboard with the results and statistics will be available.  

 

 

Figure 3. Mockup dashboard for Verification Actions 

 

3.1.2.2. Input artefacts 

Requirements, Models, Simulations, Feature Models, OSLC-based sources 

3.1.2.3. Verified properties 

VERIFICATION Studio analyses work-products from two different perspectives: 

▪ Correctness: it’s performed at work-product level. Verifications at this level can be 

implemented as new type of correctness metric and will be named Correctness Checklist  

▪ Completeness: it’s performed at specification level. Verifications at this level can be 

implemented as new type of completeness metric and will be named Completeness 

Checklist 

 

3.1.2.4. Computed quality metrics 

The Checklist evaluation process will summarize a checklist in a single value depending on the 

ranges defined. 

 

The results for a correctness checklist metric will be composed by several tabs: 

▪ Statistics:  

- Pie chart about the number of requirement per quality level  

- List question in the checklist and num. of requirements answered (yes, no, n/a & 

empty) with detail of the requirements in each answer. 

▪ Requirements: the quality for every requirement along with the issues and summary 

▪ Filtering: the graphics and lists of requirements matching and not matching the filters 

given in the metric configuration 

The results for a completeness checklist metric will be composed by several tabs: 
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▪ Metric result: Pie chart  

▪ Checklist: list of questions and answers 

 

VERIFICATION Studio will be able to generate Verification Actions (at work-product level) out of 

the result of all the checklists. Every single verification action is intended to  serve as a mean to 

provide objective evidence that a work-product has (or not) been verified. The verification action 

has the following attributes: 

 

▪ Verifiable item: the work-product that is being verified and in which the verification action 

is being defined 

▪ Source items: A selection of work-products 

▪ Verification technique: One of the following: Inspection, analysis, demonstration, test, 

analogy or similarity, simulation, sampling, V&V Studio Quality Analysis, other 

▪ Decomposition Level: One of the following: SOI, Subsystem, component 

▪ Objective: Free text 

▪ Activity to perform: Free text 

▪ Expected evidence: The expected results as free text 

▪ Expected numeric result: Number 

▪ Obtained evidence: The obtained results as free text 

▪ Obtained numeric result: Number 

▪ Performed by: The organization of responsible for the verification activity as free text  

▪ Starting date: date  

▪ Ending date: date 

▪ Estimated Time (Days) 

▪ Time (Days) 

▪ Estimated Time (hours/person) 

▪ Labour (hours/person) 

▪ Estimated Funds (€/$) 

▪ Funds (€/$)  

▪ Facility resources: free text 

▪ Verified: Penta-state (YES, NO, SUGGESTED YES, SUGGESTED NO, EMPTY, N/A) 

▪ Verified date: date 

▪ Verified agent: Free text 

▪ Automatic verification rule: a function able to compare the expected and the obtained 

numeric result in case of guide suggestion for the “Verified” attribute 

- One of the list: <, <=, =, >, >=, !=>=,!= 

▪ Or manual verification using a checklist 

▪ Specific attributes list: a list of names and values 

 

3.1.2.5. Implementation in D6.2 vs. Design in D6.1 

From the implementation point of view, D6.1 stands for RQS (Requirements Quality Suite) to 

analyse correctness properties out of requirements. In D6.2, the input artefacts have been 

redefined, so that the tool becomes VERIFICATION Studio to analyse not only requirements but 

also another artefact types (enumerated in a previous section). Also, the properties to analyse are 

redefined in D6.2 to include completeness and consistency checklists.  

3.1.2.6. Implementation technologies  
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Programming language: 

The whole tool suite is developed in .NET Environment (C# and VB.NET) under the .NET 

Framework 4.6.1 

 

Application frameworks: 

.NET Framework 4.6.1 

DevExpress v17.2 for the UI 

 

Data integration facilities: 

▪ ReqIF for requirements import/export 

▪ MS Excel for requirements and ontology import/export 

▪ MS Access, MySQL and SQL Server for the assessment results 

 

Control integration facilities: 

VERIFICATION Studio can be used as a native library for other .NET tools.  

Interoperability: 

▪ OSLC-KM based services to import/export work-products 

▪ REST service for ontology management 

▪ REST service for quality assessment 

3.1.2.7. Implementation and documentation location 

VERIFICATION Studio is not released yet. The former RQS v15.1 together with documentation 

can be found at www.reusecompany.com 

 

 

  

http://www.reusecompany.com/


24 

Page 24 of 25                             

 

3.1.3. MTest (MES) 

3.1.3.1. Objective summary 

The MES Test Manager® (MTest) is a model test management framework that supports ISO 

26262-compliant, requirements-based unit testing of Simulink®, Embedded Coder®, and 

TargetLink® models. The tool supports MiL, SiL, PiL, back-to-back and regression testing, and 

test case definition methods using measured data, classification trees in CTE/TESTONA, and 

MTCD (a test specification language for model testing developed by MES).  

Beside a precise test stimuli definition, the assessment of the simulation outputs is a key criterion 

of the test quality. MTest provides the possibility to define both separately. Thus, the test oracle 

(requirement observers) can be derived directly from the requirements and will be used 

automatically for the evaluation of the system behaviour in each test case. When using the 

formalized natural-language requirement language MARS (MTest Assessable Requirement 

Syntax), these observers are generated automatically. A set of system variants typically shares a 

lot of requirements, so all derived artefacts from these can be reused easily. By contrast, the 

variant-specific requirements need to be handled separately. In a first development stage, the 

variations in the requirement specification are transferred into a MARS specific requirement 

definition which then can be used in universal requirements valid for all variations of the system. 

For a specific variant, the corresponding requirement definitions are applied to specialize the 

requirement observers. The specialized requirement observers then are used for the evaluation  of 

the SUT’s behaviour. 

3.1.3.2. Input artefacts 

The main input artefact for MTest is the SUT (system under test) in form of a Simulink model. 

Additionally, requirement specifications are the base for deriving test cases as well as 

requirement observers. Test cases are the stimulus for the SUT, requirement observers model the 

expected behaviour of the SUT and evaluate the correctness of the execution outputs according 

to the respective requirements.  

Requirement-based testing assesses the conformity of the system’s behaviour to the 

corresponding requirement specification. For system variations, variation-specific evaluations are 

needed to assess the conformity of the selected variant. Computed quality metrics 

MTest provides important metrics concerning the test quality. These include particularly the 

requirements coverage. For each requirement, it is determined whether the simulation of each 

test stimuli leads to the expected behaviour, represented by the evaluation of the corresponding 

generated requirement observers. If only one requirement observer fails the requirement is 

marked as violated. Additionally, coverage metrics on model and code measure the broadness of 

the test stimuli. In combination, these metrics are a measure for the quality of the executed tests 

regarding the requirement base. 

3.1.3.3. Implementation in D6.2 vs. Design in D6.1 

3.1.3.4. Implementation technologies  

Programming language: 

MTest is mainly implemented using MATLAB’s programming language in combination with 

different in-house Java libraries. It supports MATLAB from version 7.5 up to the current version.  

Application frameworks: 

 

Data integration facilities: 
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Requirements can be imported from Excel. If they are not compliant to MARS, they need to be 

transformed into valid MARS requirements first in order to be able to generate the expected 

output of the SUT (requirement observers) automatically. 

Test cases can be defined as classification trees, MTCD scripts as well as MATLAB-specific mat-

files containing signal curves. Each will be used to generate test data for simulating the SUT. The 

simulation outputs and evaluation results are documented in an HTML report and can as well be 

exported in a Test XML. 

 

Control integration facilities: 

3.1.3.5. Implementation and documentation location 

If you need further information or require access to MTest please contact linda.schmuhl@model-

engineers.com. 
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