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Executive summary 

This document presents the state-of-the-art related to round-trip engineering in the context of 

variability management projects. It covers general variability management topics and it elaborates 

on methodologies for round-trip engineering including product line extraction, product line 

verification, and product line co-evolution. It also presents several tool integration methods that 

can help achieving a holistic solution to these interconnected challenges. This public document, 

courtesy of the REVaMP² consortium, discusses also other projects that have dealt with similar or 

related challenges. 
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Glossary and acronyms 

  Definition Examples 

Artefact Any intermediate ‘work product’ or 

‘by-product’ from the software 

development lifecycle 

A requirements document is an 

artefact. The implementation of a 

software component is also an 

artefact.  

Annotative 

approach 

A technique to enable the 

derivation process of variants in 

software product lines consisting in 

annotating the implementation parts 

with features or feature 

combinations. This way, they will be 

kept during derivation if the desired 

feature configuration satisfies the 

annotation or removed otherwise. 

See also compositional approach 

as an alternative. 

Pre-processor directives like #ifdef in 

C or C++ source code. 

Asset Any entity or artefact that has 

potential or actual value to a 

person or organization. 

Domain features, domain models, 

domain requirements specification, 

domain architecture, domain 

components, domain test cases, 

domain process description, use 

cases, logical principles, 

environmental behavioural data, 

design, specifications, algorithms, 

source code, function libraries, 

documentation, test suites, test 

reports, manual procedures, usage 

data, or maintenance data. In general, 

from a risk analysis perspective, asset 

is something that a stakeholder wants 

to protect. An asset is important to 

that stakeholder for whom the risk 

analysis is done. 

Binding Time The time at which a variation point 

is resolved. After this time this 

variation can no longer be 

changed. 

Examples in SPL Engineering: 

programming time, pre-processor 

time, compile time, link time (when the 

compiler assembles the executable 

file), load time, execution time. 
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  Definition Examples 

Compositional 

approach 

A technique to enable the 

derivation process of variants in 

software product lines consisting in 

a core where we can 

compose/include implementation 

parts associated to each feature or 

feature combinations. 

See also annotative approach as 

an alternative. 

Aspect-oriented programming (e.g., 

AspectJ [Andrade et al. 2013]) or the 

Feature-oriented approach (e.g., 

FeatureHouse approach [Apel et al. 

2013]). 

(Product) 

Configuration 

The output of a configuration 

process where the product 

variability is resolved to satisfy the 

specific needs of a customer or 

market. 

A selection of features from a feature 

model. 

Legacy 

Assets 

An asset which maintenance and 

further development presents 

issues. 

A software component that has been in 

a company for a long time and that any 

of the initial developers are still in the 

company or it was developed using old 

techniques. It might still have value but 

a modernization will be needed to 

increase its quality or maintainability. 

Problem 

space 

The problem space is constituted 

by the domain analysis and 

requirements engineering phases 

in software product line 

engineering. 

See also solution space. 

The variability model and the product 

configurations are part of the problem 

space. 

(Software) 

Product Line 

(SPL) 

A set of software-intensive systems 

that share a common, managed set 

of features satisfying the specific 

needs of a particular market 

segment or mission and that are 

developed from a common set of 

core assets in a prescribed way. 

[Northrop et al. 2009] 

Examples of economically successful 

Software Product Lines can be found at 

http://splc.net/fame.html 

 

Reengineering Reengineering is the examination 

and alteration of a subject system 

to reconstitute it in a new form and 

the subsequent implementation of 

the new form.  

A semi-autonomous aircraft system 

can be reengineered into a fully-

autonomous system. See for example  

F-4 target drones. 

Refactoring A disciplined technique for 

restructuring an existing body of 

software code, altering its internal 

structure without changing its 

external behaviour. 

Adding, removing, replacing, 

introducing, hiding, extracting, 

encapsulating, of methods, classes, 

variables, parameters, modules. See 

refactoring.com for more examples. 

http://splc.net/fame.html
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  Definition Examples 

Reverse 

Engineering 

Reverse Engineering is the 

process of analysing a system to 

identify the system’s components 

and their interrelationships and 

create representations of the 

system in another form or at a 

higher level of abstraction. The 

objectives are re-documenting 

software and identifying potential 

problems, in preparation for 

reengineering. 

Extraction of UML class diagrams 

from source code of a undocumented 

software system. 

Round-Trip 

Engineering 

(RTE) 

A functionality of software 

development tools that aligns and 

synchronizes related software 

artefacts, such as source code, 

models, configuration files, and 

even documentation, in a cycle and 

in different abstraction levels. The 

need for round-trip engineering 

arises when the same information 

is present in multiple artefacts and 

therefore an inconsistency may 

occur if not all artefacts are 

consistently updated to reflect a 

given change. 

  

The synchronisation and co-evolution 

between code artefacts and UML 

models.  

Solution 

space 

The solution space in software 

product line engineering is 

constituted by the phase for the 

design and implementation of the 

architecture that enable the 

derivation of the family of products 

from a set of reusable assets. 

See also problem space. 

The implementation of a component 

associated to a feature and its 

inclusion in the product derivation 

system is part of the solution space. 

Variability 

Management 

Variability Management is an 

organizational competence/activity 

to adapt a product to several 

different customer requirements. 

The different variants constitute the 

product family. 

A company that creates smartphones 

can provide different variants of the 

same model for different markets due 

to regulatory or customer 

requirements.  

Variability 

Modelling 

The process of describing more 

than one variant of a system. 

Variability expressed by feature 

models, variability expressed in 

relation to a base model, COVAMOF 

[Sinnema et al. 2004] 
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  Definition Examples 

(Product) 

Variant 

A product resulting from the 

realization of a set of variation 

points derived from a product 

configuration. 

From a portfolio perspective a product 

variant is a particular form or state of 

a product that differs in some respect 

from other versions or from a 

standard. 

Variation 

Point 

A variation point represents a 

decision leading to different 

variants. At the system 

implementation level, variation 

points are parts of the assets that 

are made variable, referring to the 

Variability Model. A variation point 

can be associated with a specific 

binding time. 

A variation point that adds the 

functionality of credit card payments in 

a vending machine. In the vending 

machine source code, this 

functionality is included at design time 

through pre-processor directives.  

Version 

(asset) 

A version of an asset is the 

recorded state of that asset at a 

given point in time. 

Two versions of an asset may 

represent same or different content of 

that asset. Thus versions reflect the 

same asset at different points in time. 
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1. Introduction 

Software-Intensive Systems and Services raise new engineering challenges. They require more 

agile, round-trip engineering processes to better leverage legacy assets while adopting and 

applying more systematic variability management. 

 

This public document presents the state-of-the-art on the different parts of this challenging round-

trip engineering process that is at the heart of the REVaMP² project and that can drastically 

improve the competitiveness of software-intensive companies. Thus, this document covers topics 

ranging from variability management and methodologies for round-trip engineering including 

product line extraction, product line verification and product line co-evolution. We complement it 

with the state-of-the-art on tool integration as it is important for proposing a holistic solution to 

these interconnected challenges. We also present other projects that have dealt with topics 

related to REVaMP² to acknowledge them as the sources of contributions that improved the state -

of-the-art. 

 

This document is written as a guide to and reference material for any person interested in 

variability management, extraction, verification and/or co-evolution. It will also serve as one of the 

pillars of the REVaMP² project where the idea is to build on top of the state-of-the-art and on top 

of a common understanding shared among all the partners (both researchers and practitioners). 

The tool integration section is also representative of the state-of-the-art regarding tool 

interoperability. 

 

The structure of the document is as follows: Section 2 introduces relevant concepts and 

background information about the state-of-the-art on variability management and product line 

engineering. Section 3 presents and discusses Round-trip engineering as a holistic approach to 

deal with variability management. To go in-depth in this round-trip engineering process, Section 4, 

5, and 6 present the state-of-the-art on product line extraction, verification, and co-evolution 

respectively. Each of these sections are structured in the form of an introduction, a presentation of 

the characteristics of the existing approaches, a description of methodologies and tools (with a 

tool comparison), and a list of open challenges. Section 7 follows the same structure as the 

previous chapters but focusing on tool integration. Section 8 presents previous projects with a 

discussion about its relation with round-trip engineering and their contributions to the state-of-the-

art. Finally, Section 8 presents the conclusions of this document that the REVaMP² consortium is 

proud to publicly share.  
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2. Variability management and product line engineering 

Software Product Line Engineering (SPLE) aims at effectively reusing software in a systematic way. 

Instead of developing individual systems, SPLE proposes to develop a family of many similar systems 

based on a variability-enabled platform. SPLE leverages commonalities and helps to manage and 

model variability. Software artefacts are the foundation of this approach. These artefacts contain 

variability information, where each such piece of information represents a variation point that enables 

a decision about the behaviour of the software part it represents, and thus, about the behaviour of the 

final product. During a configuration process, these variation points are bound with concrete variants, 

essentially deriving a concrete product instance. 

There are several seminal works about SPLE, first and foremost the book published by the 

Software Engineering Institute (SEI, CMU Pittsburgh) [Clements et al. 2001]. Subsequent works 

describe SPLE on the abstract level of a course book [Pohl et al. 2005], or close to industrial 

practice using case studies [Van Der Linden et al. 2007]. The book on Generative Programming 

[Czarnecki et al. 2000] is of particular interest since it combines product line concepts with model-

based engineering. It also offers a good introduction to variability modelling with feature models. 

The most recent book is probably the one by Apel et al. [Apel et al. 2016], providing concepts 

around product-line engineering focused around the notion of features as the prime artefacts, 

together with various variability mechanisms, such as annotative (e.g., preprocessor-based) 

variation points or compositional techniques (e.g., artefact fragments related to features). 

 

This chapter will describe the most important concepts of SPLE in Section 2.1.  

2.1. SPLE in a nutshell 

SPLE is based on three important foundations. Variability Management ensures that the manifold 

variants of a product family are correctly managed and is usually based on a variability model. 

Domain Engineering and Application Engineering during the development process ensures that 

the requirements of the entire product family can be met. 

 

Process. The distinction of domain engineering and application engineering is reflected in a two-

lifecycle model as depicted in Figure 2.1. The goal is to clearly separate the development of 

reusable assets and the development of product-specific ones. During domain engineering 

activities, common and variable artefacts of the application domain are developed as part of the 

product line platform. These artefacts are used during application engineering activities to create 

the required software products. Domain engineering is thus the development phase that prepares 

for targeted reuse. In contrast, the development steps during application engineering exploit this 

preparation by reusing the prepared assets. 
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Figure 2.1: Software Product Line Engineering 

 

Architecture. To implement a product line, an architecture that describes the basic organisation 

and structure of the product line is necessary. It thus constitutes the common framework for all 

products. The variability mechanisms in the architecture will be used to realise the diversity of 

variants.  

2.2. Practical Approaches to Product Line Engineering 

Approaches to realise product lines in practice can be roughly distinguished in three different 

categories (clone-and-own, configurators, and DSLs). The clone-and-own approach is to develop 

a single system whose code is copied and adapted for different products. Often, version control 

systems such as SVN and Git and their branch- and merge-functionality are used for this purpose. 

A study about code-cloning practices in the industry shows that this approach is still used, but 

scales poorly [Dubinsky et al. 2013]. The study also shows that clone-and-own can work for up to 

twenty individual products if it is strictly regulated and controlled.  

 

The approach to realise product lines that is scientifically and practically best understood and 

supported by languages, notations, and tools is based on the use of configurators for the 

derivation of individual products from a variability-enhanced platform. For this purpose, variability 

needs to be actively modelled (often by using so-called features) and managed. The main benefit 

is scalability, even for configuration spaces (i.e., the space of possible products that can be 

derived) that exceed ten thousand individual products. It is worth noting that abstraction and 

modelling of variability as features comprises a major part of the development process in such 

cases. 

 

A more flexible, but less standardised and often more involved approach is to develop a domain -

specific language (DSL) [Voelter et al. 2013]. A product is represented as one description in the 

DSL that is realised by transformations and code-generation. 

2.3. Variability modelling 

Modelling variability is essential for approaches based on configurations. Variability models are 

the input for configurators and describe variability, meta-information, and dependencies within the 

product line. From the perspective of variability, it is useful to distinguish the following four c lasses 

of artefacts: 
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 Variability elements such as features, variation points, decisions, and decision rationales 

 Configurations describing the relevant feature selections 

 Assets such as requirements, source code and documentation 

 Products resulting from the assembly/transformation of reusable assets 

 

Several tools have been proposed for variability modelling and management in SPLs.  thorough 

overview of variability modelling approaches was presented by Sinnema et al. [Sinnema et al. 

2007]. They classify five academic (CBFM [Czarnecki et al. 2005c], COVAMOF [Sinnema et al. 

2004], VSL [Becker et al. 2003], ConIPF [Hotz et al. 2006], Koalish [Asikainen et al. 2003]), and 

one commercial (pure::variants [PureVariants 2006]) variability modelling language. Each 

represents a different modelling style: CBFM, ConIPF, and pure::variants model variability in 

terms of features, COVAMOF and VSL in terms of variation points, and Koalish is embedded in 

the architecture description language (ADL) Koala [Van Ommering et al. 2000]. The study by 

Sinnema et al. employs a small exemplary product line to classify each approach based on their 

modelling facilities and tool support. However, the authors emphasise the lack of defined 

modelling processes, in particular for the extraction and maintenance of variability information.  A 

recent survey of CASE tools shows the diversity of solutions [Bashroush et al. 2017]. We refer to 

this paper for a more updated view of the existing approaches. 

 

It is worth noting that out of a total of 91 approaches for variability management that are described 

in the literature (according to a study by Chen and Babar [Chen et al. 2011]), 33 are based on 

feature models, thus our focus in the following will be on feature-based approaches. 

 

Feature-based approaches to software product line engineering in general and variability 

modelling in particular, use features as units of capability. In this context, the concept of features 

is used in requirement specification, product configuration and configuration management, 

development and delivery to customers, parameterization for reusable assets, product 

management for different market segments etc. [Kang et al. 2013]. The dependencies and 

constraints among features are represented in a tree-like menu of the configurations options or 

features called a feature model. 

 

Almost all feature models are based on the FODA (Feature-Oriented Domain Analysis) notation 

introduced by Kang et al. [Kang et al. 1990] An overview of successors of FODA is, e.g., 

presented by the same authors [Kang et al. 2009] and also provides an outline of feature 

modelling research between the beginning of the nineties up to 2009. An additional notable 

systematic review on feature modelling focuses on formal semantics of feature models [Bontemps 

et al. 2004].  

 

Figure 2.2 presents an example feature model in the FODA notation. The model illus trates core 

concepts shared by many variability modelling languages that use the concept of features. In this 

example, the variability of the Journaling Flash File System—one of the numerous files systems 

supported in open-source operating systems, is modelled. 
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Figure 2.2: Feature model of the JFFS2 file system. 

 

Features in a feature diagram are represented by boxes, and dependencies among them are 

depicted by the hierarchy; for instance, the Compress Data feature allows a further choice of sub 

features: Support ZLIB, or Default Compression. Filled dots indicate mandatory features (like 

Debug Level), which must be selected in all cases where the parent is selected and hollow dots 

represent optional features, which may or may not be included in product configurations where 

the parent is selected. In addition, features can be related by a group constraint such as XOR 

(a.k.a., alternative)—exactly one sub-feature is selected, or OR—one or more sub-features can be 

selected. The XOR-constraint is represented by an arc as shown in Figure 2.2 in the case of sub-

features of Default Compression whereas the OR-constraint would be represented by a filled arc. 

Other dependencies among features could be defined such as which features need to be selected 

together, i.e., one feature requires another, and which feature are mutually exclusive, i.e., the 

selection of one feature excludes another. Such constraints are referred to as cross-tree 

constraints. An example of a requires-constraint would be: Support ZLIB requires ZLIB inflate, 

represented textually as Support ZLIB  ZLIB inflate. More complex constraints can be modelled 

using constraint modelling languages like the Object-Constraint Language (OCL). 

 

Schobbens et al. [Schobbens et al. 2007] investigate seven feature modelling languages, all of 

them FODA variations. Based on the argument that most of them are not sufficiently formalised to 

avoid ambiguities, they develop a common abstract syntax (“Free Feature Diagrams”) and define 

a formal semantics for each language. They use this abstract syntax as the foundation for a new 

language and semantics (“Varied Feature Diagrams”) that is as expressive as the existing ones , 

but syntactically more concise. Interestingly, the authors make the argument that their work 

excludes the possibility to argue for extensions of variability modelling languages based on 

missing expressiveness. Some newer work [Berger et al. 2010b, Berger and She 2010, She et al. 

2010, Eichelberger et al. 2013], however, challenges this argument.  

 

Besides graphical ways of representing variability, more recently also textual techniques are 

increasingly used. A survey of such techniques is given in [Eichelberger et al. 2015b]. 

 

Languages and Tools. The following list comprises existing and usable variability modelling 

approaches and notations. The list is sorted by how often the approaches are used in practice 

based on a study on variability modelling. Decision models, mentioned below, are an additional 

well-known modelling technique. However, studies [Czarnecki et al. 2012] show that they are 

conceptually very similar to feature models. 
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Language or Tool Description 

Feature models Formal way of describing variability by defining features and their 

dependencies 

UML-based 

representations [Clauß et 

al. 2001] 

Use of UML extensions (stereotypes) to define feature diagrams 

by adding elements describing variability using UML diagrams 

(e.g., <<optional>>, <<mandatory>> in UML classes with the 

names of features) 

Spreadsheets [Berger et 

al. 2013] 

Some companies that have highly configurable systems (software 

product lines) may not use feature models but keep an overview of 

their features or configuration options in a spreadsheet 

Key-value pairs (in XML 

or text-based 

configuration files) 

[Berger et al. 2013] 

Configuration files used to specify the parameters and initial 

settings for individual products 

Product matrices [Berger 

et al. 2013] 

Non formal representation of variability information by using a 

matrix of products and their respective features  

Domain Specific 

Languages 

Variability is modelled using domain specific language 

mechanisms 

Decision models 

[Dhungana et al. 2008, 

Schmid et al. 2004] 

Focuses on capturing decisions to be made in configuring products 

Aspect-oriented 

languages 

Aspect Oriented Software development deals with crosscutting 

concerns in software systems and aims at introducing ways to 

modularise these concerns and denote their relationships to other 

concerns in the software process [Stoiber et al. 2007]. This is 

similar to software product-line engineering that exploits 

commonalities and manages variabilities of software products 

Configuration 

mechanisms of 

component frameworks 

(Spring, OSGi, EJB, etc.) 

This refers to component-oriented software development and 

assembly (CODA) that is used to reduce the development effort as 

much as possible by encouraging the reuse of existing 

components to assemble new applications or products [Manickam 

et al. 2013]. The runtime program that wires components deployed 

in a particular application is called a component framework. 

Spring, OSGi and EJB are examples of component frameworks. 
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Language or Tool Description 

Architecture description 

languages [Clements et 

al. 1996] 

Architecture description languages are used to describe software 

architectures. Part of what can be described by an ADL is the 

variability of an architecture by representing the variations in the 

products that can be derived from an architecture; for instance 

structural variability such as adding or deleting components [Kogut 

et al. 1994] 

Goal models A goal model is a hierarchy of system goals that relates high-level 

goals to low-level system requirements. Modelling variability using 

goal models aims at addressing variability in requirements 

[Lapouchnian et al. 2009] 

 

Variability-modeling languages with existing open-source tooling: 

Language or Tool Description 

Kconfig (xconfig), CDL 

(configtool) [Berger et al. 

2010c] 

Kconfig is a variability modelling language for the Linux kernel that 

allows Developers to easily select the high level features of the 

project to be enabled or disabled at build time. CDL (Component 

Description Language) is part of eCos, a real-time operating 

system for embedded devices and is used for describing the 

interface and behaviour of software components.  

EASy-Producer [EASy-

Producer 2016] 

EASy-Producer is an open-source tool that supports the 

lightweight engineering of SPLs and variability-rich software 

ecosystems [Schmid et al. 2015]. It integrates both, interactive 

configuration capabilities and a DSL-based approach to variability 

modelling, configuration definition, and product derivation. The 

tool-set includes a dedicated variability modelling language 

(IVML), which supports beyond variability modelling also meta-

modelling (for model-driven engineering) and can support 

ecosystems. Ecosystems go beyond traditional SPLs as they 

might extend across many stakeholder organisations. 

Dopler Tool Suite (based 

on decision models) 

[Dhungana et al. 2010, 

Dhungana et al. 2007] 

 

The DOPLER (Decision-Oriented Product Line Engineering for 

effective Reuse) tool suite provides integrated support for diverse 

stakeholders involved in product derivation and also includes 

capabilities to manage application-specific requirements during the 

SPLE life cycle. 

TVL [Classen et al. 2011, 

Hubaux et al. 2010] 

The textual variability language (TVL) is a Feature modelling 

dialect meant for software architects and engineers to complement 

graphical notations during variability modelling. 
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Language or Tool Description 

Clafer [Bkak et al. 2010] 

 

Clafer is a lightweight language for domain modelling with support 

for variability modelling that aims at improving understanding of 

the problem domain in the early stages of software development. 

As a meta-modelling language, Clafer offers first-class support for 

feature modelling and provides concise notations for meta-models 

and feature models. 

FeatureIDE [Thüm et al. 

2014b] 

FeatureIDE is an extensible framework for feature-oriented 

software development for the development of SPLs. It is an 

Eclipse-based Integrated Development Environment that supports 

all phases of development from domain analysis, domain design, 

implementation to requirements analysis, software generation and 

quality assurance. 

AHEAD Tool Suite 

[Batory et al. 2004] 

The AHEAD tool suite is a set of tools that support Feature 

Oriented Programming which uses compositional programming. In 

compositional programming, features are implemented by 

modularised units that programs within an SPL can share and a 

specific product is defined by a composition of feature modules. 

COVAMOF [Sinnema et 

al. 2004] 

COVAMOF is a variability modelling approach that allows for 

modelling variability in all abstraction layers of a product line by 

treating variation points and dependencies as first class citizens 

and allowing to model relations between simple (one-to-one) and 

complex (n-to-m) dependencies. 

BVR (Base Variability 

Resolution) [Vasilevskiy 

et al. 2015] 

BVR is a language focused on feature modeling (vspec modeling), 

configurations (resolution modeling) and specializing of the 

derivation process (product derivation). BVR shares the principles 

of the Common Variability Language (CVL) (See Section 7.3). 

 

Commercial languages with existing tooling: 

Language or Tool Description 

Gears by BigLever 

Software, Inc. [Krueger 

et al. 2007] 

Gears allows SPLs to be managed with a single set of 

requirements and single set of source code as though it were a 

were a single system. Gears can manage configurable software 

artefacts such as source code and test cases, product feature 

profiles and can automatically assemble and configure software 

assets based on the product feature profiles 

pure::variants by 

pure::systems GmbH 

[PureVariants 2006] 

Pure::variants is a tool set that supports variant and variability 

management in all phases of the SPLE lifecycle. It integrates into 

development processes and offers requirement management, 

design and development support, configuration management and 

quality management as well as application lifecycle management.  
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Language or Tool Description 

Product Modeler by 

Configit, Inc. [Configit 

2017] 

The Configit product modeller provides modelling and runtime 

environments for developing configurator applications. 

XFeature by P&P 

Software [XFeature 

2017] 

XFeature, a tool provided as a plug-in for the eclipse platform, is a 

feature modelling tool that supports modelling SPLs and products 

that can be instantiated from them. Uses allowed to create their 

own feature meta-model. 

Table 2.1: Languages and tools for variability modelling 

 

Additional commercial, not necessarily feature-based configurators include, amongst others: 

Oracle Configurator/Modeler, SAP configurator, Camos Product Configurator, Siebel Configurator 

(Oracle), CVM, Tecnalia PLUM, Hephaestus. Studies with industrial partners show that many 

additional tools are in use, often home-grown developments based on Eclipse EMF, xtext, or IBM 

RSA. 

  

Annotative and compositional approaches for derivation: 

Regarding the variability mechanisms to derive variants, we can distinguish between annotative 

and compositional approaches. Annotative approaches generally make use of pre-processors 

such as the C/C++ pre-processor. That particular pre-processor evaluates and removes source 

code that has been annotated with the #if or #ifdef directives before compilation. These 

directives contain expressions (so called “presence conditions” [Berger  et al. 2010, Czarnecki et 

al. 2005]) for the evaluation of feature symbols from the variability model. These expressions are 

evaluated based on a concrete configuration during the build process. Source code sections 

annotated with expressions that evaluate to false are omitted. This is also the predominant 

variability mechanism in open source product lines. Compositional approaches can use 

component frameworks (such as OSGi [Alliance OSGi 2009]) or plugin mechanisms to aggregate 

products from different components based on a configuration. Such mechanisms are also used in 

software ecosystems with open platforms [Berger et al. 2014].   

 

2.4. Model-driven Product-Line Engineering 

Model-driven product line engineering is often based on the third approach outlined in Section 2.2 

in which domain-specific languages are used to model variability, enriched with domain scoping, 

i.e., defining which features a product line should support, a discussion of the concrete realisation 

of variation points, and how the overhead can be managed during the build process [Schmidt et 

al. 2005]. This combination is plausible. In particular, the applicability of DSLs for variability 

modelling has been confirmed by Völter et al. [Voelter et al. 2013] 

A generic approach to realise SPLs based on feature models and program generators is 

presented by Czarnecki and Eisenecker in their book Generative Programming [Czarnecki et al. 

2000]. In particular, the concrete application of the approach using C++ template meta-

programming is described. 
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Muthig et al. [Muthig et al. 2000] discuss the applicability of the OMG MDA standard for model-

based product lines. They argue that, while many extensions of UML to address variability have 

been introduced via the manipulation of syntactical UML elements, no concise semantical 

integration of product line concepts into the UML meta-model is possible. Nevertheless, they 

conclude that MDA is applicable to the realisation of product lines. The essence of MDA is that 

there is a division between PIM (Platform Independent Model) and PSM (Platform Specific 

Model). This distinction is not the same as that of PL between Domain and Application, but it is 

conceptually not very different. One of the main advantages is the integration of associated 

component technologies such as CORBA, EJB, XML, SOAP, and .Net.  

 

A similar argument is brought forward by Kim et al. [Kim et al. 2005] who emphasise the platform-

independent nature of MDA. Concretely, the authors propose a nine-step process (DREAM) who 

takes both paradigms into account. An evaluation of the approaches using industrial-size projects 

is unfortunately missing in both publications. 

 

An approach for model-based product line development in the domain of mobile applications is 

presented by White et al. [White et al. 2008] The approach makes use of a configurator that is 

independent of specific infrastructure, a mapping between the features of a feature model and the 

capabilities of a mobile device, as well as a constraint solver to resolve dependencies to such 

hardware capabilities. The last aspect is particularly useful to configure products with a large 

configuration space that target devices with a highly diverse set of capabilities.  

 

Krishna et al. [Krishna et al. 2005] discuss model-based techniques to realise product lines for 

distributed embedded systems with real-time requirements. Their approach (FOCUS) aims at 

adapting generic middleware technology to the specific quality requirements of the target 

systems. The case study providing prototypical evaluation is based on the “Boeing Bold Stroke 

avionics mission computing PLA” (Product Line Architecture). It is unclear whether this preliminary 

approach has been pursued further. 

 

Wasowski et al. [Wasowski et al. 2004] present an approach for model-based development of 

product lines based on step-wise model restrictions. It is applied to state charts, a type of model 

often used to describe the behaviour of reactive embedded systems. Based on the largest and 

most complex model describing the (theoretical) product with all possible features (often also 

called 150% model), concrete products are derived by applying restrictions in a step-by-step 

process. The approach is based on the practical experience of two industrial partners.  

 

Batory et al. [Batory et al. 2003] introduce the theoretical concepts behind the Ahead Tool Suite 

(see above), in particular the algebraic structure of nested expressions and the step-wise 

refinement of products (consisting of Java files and resources) to derive a concrete product from 

the product line. The authors thus follow an approach that can be construed as the antithesis to 

what Wasowski suggests. A large military product line is used to evaluate the approach, thus 

demonstrating the scalability of the approach. 

 

Additional relevant work includes a combination of MDA and SPLE [Gonzalez et al. 2005] and the 

use of Early Aspects (i.e., aspects within requirements, similar to aspect-oriented programming) to 

realise product lines [Batista et al. 2008]. 

 

Regarding variability in models, i.e., the ability to embed variation points directly in models, has 

also been investigated in several studies. The highly generic CVL (Common Variability Language) 
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standard proposal [OMG-CVL 2012] is probably the most widely spread. A detailed explanation of 

CVL is available in Section 7.3. 

 

Czarnecki et al. [Czarnecki et al. 2005, Czarnecki et al. 2005b] present and approach to realise 

variability in models by using model templates. Model elements are extended with presence 

conditions (logical expressions about features) and a generator removes those parts of the 

model’s abstract syntax tree whose presence conditions are not fulfilled in a specific 

configuration. Such an approach can cause the derived model to become syntactically or 

semantically incorrect. For instance, transitions in UML state charts might become disconnected 

from start or end states. Such errors have to be prevented by introducing additional constraints. 

Therefore, an approach to verify constraints in models templates using a modified OCL semantics 

is proposed [Czarnecki et al. 2006].  

 

FeatureMapper [Heidenreich et al. 200] is one approach based on Czarnecki’s model templates. 

The implementation in this case is based on Eclipse EMF and is freely available and used in 

projects. Developers specify the mapping between features and model elements in a graphical 

editor. The notation of the target models can be arbitrary, as long as it is based on ECore. 

Concrete instance models are derived based on a feature configuration. 
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3. Round-trip variability management 

3.1. Introduction 

Traditionally, top-down approaches have been proposed to establish a SIS PLE solution. The PLE 

paradigm separates two processes; domain engineering (where the commonalities are identified 

and realized as reusable assets) and application engineering (where specific software products 

are derived by reusing the assets of the SPL) [Clements et al. 2001]. However, following those 

approaches requires a significant investment before any product is derived from the SPL and is 

only followed by a minority of the companies. In fact, a recent survey [Berger et al. 2013] reveals 

that around 50% of the SPLs are built taking into account existing products which are re-

engineered into an SPL. The extractive approach to SPLs [Krueger 2001] capitalizes on existing 

systems to initiate a product line, formalizing variability among a set of similar products into a 

variability model and extracting the reusable assets directly from the initial set of products. The 

resulting SPL can generate the products used as input (among others) with the benefit of having 

the variability among the products formalized, enabling a systematic reuse.  

 

Purely top-down model-driven approaches for integrating modelling technologies have failed to 

gain widespread adoption in the SIS industry. For more than ten years the Object Management 

Group (OMG) has been promoting the Model-Driven Architecture (MDA) as a solution to deal with 

systems portability and evolution issues.  In the MDA paradigm, the model is the centre of the 

development, while code is automatically generated for any target programming language (e.g., 

Java, C++, C#) or target platform. While these ideas have proliferated and created an ecosystem 

of state of the art modelling tools, e.g. based on OMG specifications such as UML, SysML, and 

MARTE, the general acceptance of MDA tools, however, is rather weak. This is due, in part, to 

lack of support for scalability of tools in engineering large industrial systems.  

 

State of the art modelling tools do no longer focus on top-down generation, but introduce a 

different approach: round-trip modelling. The idea here is that, even if models are not at the 

centre of the development process, they can be intimately connected to the code level artefacts , 

allowing teams to navigate more or less freely between both worlds. Round-trip modelling 

requires three kinds of technology:  

 Reverse engineering (i.e., model generation from code)  

 Code generation (i.e., code generation from models) 

 Code-model-synchronization (applying modifications on one side incrementally to the 

other side). 

However, there is a lack of open source system modelling tools supporting round-trip model 

engineering, making such support one of the most important differentiators in the modelling tools’ 

market. The tools supporting round-trip modelling only support a very limited number of 

programming languages. The most important CASE tools in the market (IBM Rational, Enterprise 

Architect, Visual Paradigm and MagicDraw) all support round-trip engineering with varying support 

for object-oriented languages such as Java, C++, C#, and PHP. 

 

3.2. The tasks and challenges of round-trip variability management 

The goal to enable round-trip variability management will support more agile and automated SIS 

PLE with a reduction of costs. Its starting point will be the currently available tools for Manual 
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Variability Modelling and Product Variant Configuration Automation from such manually created 

models (described in this document).  

Then, existing tools will be complemented by new classes of innovative tools and services for:  

 PL Asset Extraction Automation: addresses the need to automate the extraction and 

visualization of product lines from legacy assets. This is needed because the extraction, 

verification and refactoring tools will not simultaneously reach 100% automation and quality. 

Human expertise will always be needed to adjust their parameters to trade-off automation for 

quality, evaluate their results and manually edit them. The realistic goal of REVaMP² is to 

minimize such manual edition steps, not to entirely eliminate them  

 PL Asset Verification Automation: addresses the need to automate the verification of the 

quality of product line variability models and assets. These constraints can be for example , 

inter-feature consistency constraints, safety and real-time constraints that must hold for the 

whole configuration space or the existence of a non-empty intersection of this space with 

some business configuration goal  

 PL Asset Co-Evolution Automation: addresses the need for PL refactoring automation, 

needed for the synchronization between the different elements that conforms the PL (e.g ., 

changes performed into the products can be spread to the reusable assets and vice versa; 

changes performed into the variability model can be spread to the products and vice versa).  

 

To achieve this, there are several challenges that need to be addressed, such as the different 

types of artefacts that must be considered; the level of granularity at which we consider the 

variability; to give support for the different approach that exists for specifying the variability; the 

lack of information when reverse engineering from an artefact from a higher level of abstraction to 

an artefact from a lower level of abstraction or the integration into a tool-chain where the order of 

operations is unknown beforehand.  
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4. Product Line Extraction 

4.1. Introduction 

More than fifty percent of industrial practitioners formally implement an SPL only after the 

instantiation of several similar product variants using ad-hoc reuse techniques [Berger et al. 

2013]. An example of ad-hoc techniques is to “copy-paste-modify” the complete project of an 

existing product to adjust it to the needs of a new requested product, or the “clone -and-own” that 

refers to the practice of creating a new variant by cloning a copy of the complete product 

implementation into a separate branch and treat the copy as a new product from thereon 

[Dubinsky et al. 2013]. For the adoption of SPL practices, having legacy product variants can be 

considered as an enabler for a quick adoption using an extractive approach [Krueger 2001]. 

However, in practice, extractive SPL adoption is still challenging. Mining the artefact variants to 

extract the feature model and the reusable assets gives rise to decisions which need to be made 

by domain experts as well as many technical issues to analyse and reengineer the assets.  

 

It is also a common practice to implement in-house solutions for variability management with great 

potential for improvement if state-of-the-art SPLE practices were applied. A recurrent scenario is 

the use of very late binding of the variability (e.g., “ifs” conditionals at execution time) where an 

earlier one will be desired (e.g., design time decision to include or discard a given component). 

Another recurrent scenario is a company that is completely focused on the SPL solution space 

(implementation assets and build process) while the problem space (features and feature 

constraints) is implicit (i.e., no defined formalism and knowledge scattered among the 

stakeholders). In these scenarios, reverse engineering and reengineering become primordial for 

the extraction and the transition to state-of-the-art SPLs with a better management of the 

variability. 

 

The goal of extraction is to input legacy assets with implicit commonalities and output a variability 

model and assets factorized into a target SPL representation. In other words, in extractive SPL 

adoption, an organization capitalizes on existing custom software systems by extracting the 

common and varying implementation parts into a single SPL [Krueger 2001]. SPL extraction from 

legacy assets has received a lot of attention in recent years: A literature study on reengineering 

legacy applications has shown the diversity of proposed approaches to deal with this challenge 

[Assunção et al. 2017] and more than one hundred case studies are catalogued showing great 

interest from industry and research [Martinez et al. 2017b]. 

 

The extractive SPL adoption approach is compatible with both reactive and proactive approaches 

[Krueger 2001]. For the reactive approach, the company can use an extractive approach to create 

an SPL that focuses on exactly the same products that they had in the existing variants, or they 

can only consider a subset of the features of the variants (e.g., those with higher payoff). For the 

proactive approach, the features in the existing variants can be leveraged while the envisioned 

ones will have to be created from scratch. In both cases, reactive or proactive, capitalizing on 

existing assets is an option that must be considered to reuse previous development efforts 

[Krüger et al. 2016]. 
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4.2. Characteristics to comparatively evaluate extraction approaches 

Extraction approaches present several challenges at a technical level. In this document we focus 

on those technical aspects, but we acknowledge other important factors in SPL adoption such as 

organizational change [Bosch 2001], economic models [Ali et al. 2009] or advanced scoping 

[Schmid 2000] that are not considered in this state-of-the-art overview. 

 

Artefact types: The first characteristic to compare extraction approaches is to determine whether 

the approach is targeting specific types of artefacts or whether there is an intention to provide a 

generic solution to the challenge. The potential of reuse is not only restricted to source code given 

that documentation, designs, models or components are examples of software artefacts that are 

being reused too. Therefore, we consider that the artefact types that are supported as input  is a 

relevant characteristic of extraction approaches. The ESPLA catalogue for Extractive SPL 

Adoption case studies [Martinez et al. 2017b] showcases the diversity of artefact types found in 

the case studies in the literatures as we can observe in Figure 4.1.  

 

 

Figure 4.1: Types of artefacts for the extraction of SPL assets 

 

Analysis: The second characteristics to compare are related to the activities that it supports. 

Dealing with legacy artefacts is not straightforward and requires approaches and tools  facilitating 

their analysis. We need to support the task to analyse the variants for knowledge extraction and 

program comprehension. 

 

Beyond analysis, there are approaches specifically related to SPL extraction. Given the 

complexity of the products, complete upfront knowledge of the existing features throughout the 

artefact variants is not always available. Several domains of expertise are often required to build a 

product and different stakeholders are responsible for different functionalities. In this co ntext, we 

can assume that domain knowledge about the features of legacy variants is scattered across the 

organization. In some cases, it may not be properly documented or in a worse scenario, part of 

the knowledge could even be lost. 

 

The following Figure 4.2 illustrates relevant activities [Martinez et al. 2015] to transition from a set 

of variants (on the left) to an SPL representation (on the right). We will briefly introduce these 

activities below. 
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Figure 4.2: Activities of extraction approaches 

 

Feature identification and location: In a scenario of incomplete information, feature 

identification should be performed. As discussed by Northrop [Northrop 2004], “if an organization 

will rely heavily on legacy assets, it should begin the inventorying part o f the mining existing 

assets”, a practice area which consists in “creating an inventory of candidate legacy components 

together with a list of the relevant characteristics of those components” [Northrop et al. 2009]. In 

feature identification, we aim to obtain the list of features within the scope of the input variants as 

well as the implementation elements related to each feature. During the identification of features 

there is the feature naming sub-activity to define the names that will be used in the feature model. 

 

In another scenario, if the features are known in advance, feature location can be performed 

directly to identify the implementation elements associated to each feature.  

 

Feature constraints discovery: The activity feature constraints discovery is important to 

guarantee the validity of configurations in the envisioned FM. Feature constraints such as the 

basic “requires” and “excludes” relations between features are identified among more complex 

relations that can involve more than two features. 

 

Feature model synthesis: FM synthesis consists in defining the structure of the FM to be as 

comprehensible for the SPL stakeholders as possible. This is because the same configuration 

space can be expressed in very different ways in a FM (e.g., feature h ierarchy). 

 

Reusable assets construction: The implementation elements associated with each feature 

obtained during feature identification or location, are important for the reusable assets 

construction which prepares the assets targeting a predefined SPL derivation mechanism. 

 

4.3. Extraction automation approaches 

4.3.1. Methodologies 

Reverse engineering as defined in the Horseshoe model 

The Horseshoe process for Reengineering gives a framework for positioning the various activities 

when working on legacy software including reverse engineering, reengineering and forward 

engineering. Figure 4.3 illustrates the Horseshoe model.  
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Figure 4.3: Forward, reverse and reengineering 

 

Reverse Engineering is the process of analysing a subject system to identify the system’s 

components and their interrelationships and create representations of the system in another form 

or at a higher level of abstraction. The objectives are re-documenting software and identifying 

potential problems, in preparation for reengineering. Reengineering is the examination and 

alteration of a subject system to reconstitute it in a new form and the subsequent implementation 

of the new form. Forward Engineering is the traditional process of moving from high-level 

abstractions and logical, implementation-independent designs to the physical implementation of a 

system.” [Demeyer et al. 2002]. 

 

Most tools for Reengineering focus in fact only on reverse engineering, that is, generally, some 

form(s) of static analysis of the code base, and some form(s) of representation of the results of 

these analyses. They generally provide no means for re-structuring nor forward engineering, and 

consider that these actions, when necessary, will be accomplished outside of the tool, using other 

external tools or manually. 

 

For tools that cover the full horseshoe cycle (the 3 sub-processes), in general reverse engineering 

produces models that are then processed by re-structuring, and then the transformed models are 

generally used by Forward Engineering to generate target code. There are a lot of technical 

choices that may distinguish these tools: 

- The level of abstraction: 

o Directly at the code level, with few or no abstraction: in this case, the re-structuring 

phase may be named more specifically refactoring; 

o Structural/architectural level, representing and transforming the software architecture: 

in this case, the re-structuring phase may be named more specifically re-architecture; 

o Specification level: in this case, the re-structuring phase may be named more 

specifically re-specification; 

- The nature of technical artefacts on which the tools may apply:  

o Those working at code level may work directly on textual representations of the code, 

or use Abstract Syntax Trees (AST), or even (meta)models of the code – to mitigate a 

possible strong dependency of the tool to supported languages, some tools even use 

a unified (meta)model common to several (generally object-oriented) programming 

languages. 
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o Those working at architectural level may use standardized formal or semiformal 

architecture representation using concepts such as Classes and Components (UML, 

ADL, …) or less formalized and non-standardized representations using simpler 

concepts such as Blocks and Dependencies among blocks. 

- The kinds of transformations that can be supported by re-structuring: 

o Those working at code level may, typically: a) translate from a programming language 

to another (or another version of the same language); b) replace the usage of an 

obsolete library by the usage of another (more recent) library (typically functional ly 

equivalent but with different interfaces); c) more generally produce mass 

transformations that are relatively easy to automate but that would be costly and risky 

to do manually. 

o Those working at an architectural level may, typically: a) replace an obsolete 

middleware (typically covering both communications and a notion of modules / 

components) by a more recent one; b) target the usage of a Component Framework 

(like OMG, CCM, or UCM). 

- The level of user implication during transformations of re-structuring: 

o Those working at code level typically support fully (or almost fully) automatic 

transformations (refactorings are a kind of such transformations); 

o Those working at architectural level typically support less automated transformations, 

and need explicit user actions to guide the process. 

- The completeness of the generation that can be produced by phase forward engineering: 

o Those working at code level typically can fully generate the transformed code; 

o Typically, those working at architectural level cannot directly generate fully correct and 

directly compilable code, and need user interaction to complete the automated 

generation done by the tool. 

Knowledge extraction and program comprehension 

When adopting an extractive product line approach, one must start the extraction process from 

the two dominant approaches that practitioners use to mimic true product line architectures: 1) 

clone-and-own; 2) build configurations (or other means to introduce variability in a single system). 

The first was explained in the introduction and the latter refers to build configuration tools —

KBuild is a well-known example for Linux— used to manage the numerous configuration options 

for generating the appropriate build files [Lofuto et al. 2010]. For clone-and-own, Fischer et al. 

support the transition from clone-and-own to actual SPLs by offering extraction and composition 

tools embedded within Eclipse [Fischer et al. 2015]. Other researchers investigated ways to offer 

support integrated within the version control system [Montalvillo and Díaz 2015, Linsbauer et al. 

2016, Schwägerl et al. 2017]. Regarding build Systems, once the feature models scale up it is 

worthwhile to investigate potential conflicts. Nadi et al. reverse engineered anomalies in the build 

systems and how the software engineers dealt with them [Nadi et al. 2013]. Abal et al. performed 

a qualitative analysis of bugs caused by defective product derivations [Abal et al. 2014]. Al -Kofahi 

et al. proposed a static analysis tool to detect configuration-dependent bugs [Al-Kofahi et al. 

2015]. Dintzner et al. reverse engineered changes in the feature models [Dintzner et al. 2014].  

 

4.3.2. Tools 

We find here a list of tools used during product line extraction. To complement this reading, we 

recommend the systematic mapping study of Assunção et al. [Assunção et al. 2017] which 

presents some tools described here and others that exist in the literature.  
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Pure::variants variability extractor 

For pure::variants, prototypical extractors are available, which extract existing variability from 

legacy source code files. They search for language-specific artefacts, like #ifdef C/C++ 

preprocessor directives to find the contained variation points. To separate variation points from 

other switches (e.g., #ifdef _WIN32_ in C/C++) the extractors only take switch identifiers that 

match a user-specific pattern (e.g., having a prefix VP_). Beside C/C++ #ifdef directives the 

extractors also support Java conditions and annotations, and assembler directives.  

The results of the extraction process are VEL models [Schulze et al. 2015] containing the 

concrete location of the variation points. The extracted information about the variation points can 

be used for example to remove variation points in the source code, which are not relevant for a 

specific variant and which should be hidden from other users [Beuche et al. 2016].  

 

BUT4Reuse: Bottom-Up Technologies for Reuse 

BUT4Reuse [Martinez et al. 2017] is a tool-supported framework dedicated to automate relevant 

tasks for extractive SPL adoption (i.e., feature identification, feature location, mining feature 

constraints, extraction of reusable assets, feature model synthesis and visualisations). The tool 

targets two different users: 

 SPL Adopters: Companies with existing similar software products that aim to get the 

benefits claimed by SPLE. 

 SPL Integrators: Researchers or practitioners that aim to evaluate concrete techniques for 

the different steps of extractive SPL adoption. The software engineering research 

community can integrate innovative techniques for comparison and benchmarking. 

 

BUT4Reuse is designed to be generic and extensible [Martinez et al. 2015].  

 Generic by enabling its use in different scenarios with product variants of different 

software artefact types (e.g., source code in Java, C, MOF-based models, requirements 

in ReqIf or plugin-based architectures). Currently it supports more than fifteen different 

artefact types and formats. 

 Extensible by allowing to add different concrete techniques or algorithms for the relevant 

activities of extractive SPL adoption. Several validation studies using BUT4Reuse for 

different extensions have already been published [Martinez et al. 2014, 2014b, 2015b, 

2016, 2016b, 2016c]. 

 

BUT4Reuse tool is built on Eclipse and the source code and documentation are publicly available 

under the EPL license. More information is presented in Section 7.3.3.4 as it can be used as a 

tool integration framework. 

Website: http://but4reuse.github.io 

 

ECCO: Extraction and composition for clone-and-own 

ECCO is a tool to enhance clone-and-own that actively supports the development and 

maintenance of software product variants [Fischer et al. 2015]. A software engineer selects the 

desired features and ECCO finds the proper software artefacts to reuse and then provides 

guidance during the manual completion by hinting which software artefacts may need adaptation.  

Website: http://jku-isse.github.io/ecco/ 

 

FLiMEA: Feature Location in Models through Evolutionary Algorithms  

FLiMEA [Font et al. 2016, Font et al. 2017] is a software engineering approach for Feature 

Location in Models that relies on an Evolutionary Algorithm to locate features in product models 

and formalize them as model fragments. FLiMEA is specifically designed to target product models 
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created with a DSL conforming to MOF as the artefact for locating the features. To do so, FLiMEA 

performs a search (guided by an interchangeable fitness function) over alternative model 

fragment realizations for the feature being located (generated through genetic operations). In 

addition, FLiMEA can be tailored to work under different domains. Particularly, FLiMEA provides 

different ways of embedding the domain knowledge from the engineers depending on the nature 

of the family of models and the type of information available (such as describing the feature to be 

located using natural language).  

 

  

Figure 4.4: Activity diagram for FLiMEA 

 
Figure 4.4 shows an activity diagram for FLiMEA; the left side shows the activities performed by 

the domain expert while the right side shows the activities automatically performed by the 

approach. The middle side shows the objects generated in the process. First, the domain expert 

gathers domain knowledge relevant for the feature that is going to be located. This knowledg e is 

formalized as the model artefact where the feature is going to be located and the feature 

knowledge (that holds all the knowledge that the domain experts can gather and produce about 

the feature that is going to be located). Both, the artefact and the knowledge are provided to 

FLiMEA and this results in a ranking of feature realizations. The ranking will be presented to the 

domain experts and they will use their domain knowledge again to decide (with the information 

provided by the approach) which of the realization better fits their needs. 

FLiMEA comes in the form of an evolutionary algorithm, a population of individuals (candidate 

solutions for the problem) is evolved and assessed through several iterations in the search for the 

best possible individual. When applied to model artefacts, the population of individuals will be in 

the form of model fragments. These individuals need to be properly encoded (see Encoding in 

Figure 4.4), enabling the evolutionary algorithm to work efficiently with them. Next, each 

candidate solution from the population is evaluated using a fitness function (a formalization of the 

overall quality goal) to determine how well it performs as a solution to the problem (see 

Assessment). As a result, the population of solutions is ranked depending on their fitness value 

and, based on the ranked population, some genetic manipulations are performed over the 

individuals (see Genetic Manipulation). This cycle of genetic manipulations and assessment will 

be repeated until some stop criteria is met (e.g., fixed number of generations or time). 

 

SciTools Understand 

Understand is a static analysis tool focused on source code comprehension, metrics, and 

standards testing. It is designed to help maintain and understand large amounts of legacy or 

newly created source code. It provides a cross-platform, multi-language, maintenance-oriented 

IDE (interactive development environment). The source code may include C, C++, C#, Objective 

C/Objective C++, Ada, Assembly, Visual Basic, COBOL, Fortran, Java, JOVIAL, Pascal/Delphi, 

PL/M, Python, VHDL, and Web (PHP, HTML, CSS, JavaScript, and XML). It offers code 



 

Page 31 of 109                               

 

navigation using a detailed cross-referencing, a syntax-colorizing “smart” editor, and a variety of 

graphical reverse engineering views. 

Website: https://scitools.com/documents/manuals/pdf/understand.pdf  

 

FETCh: Fact Extraction Tool Chain 

FETCh (Fact Extraction Tool Chain) is a tool chain consisting of 100% open-source tools. It 

bundles and unifies a set of open-source tools supporting key issues in reverse engineering.  The 

target of FETCh is to explore large C/C++/Java software systems for dependency analysis, 

pattern detection, visualization, metric calculation, and other types of static analysis. It consists of 

the following tools: 

 SourceNavigator: SourceNavigator is a multilanguage IDE with parsing support. It parses 

the source code for structural programming constructs through robust lexical analysis ; 

making it tolerant towards variants of C and C++. The results of parsing are stored in 

database tables together with location and scoping information. Subsequently, relations 

between structural constructs such as method invocations and attribute accesses are 

obtained via a cross-referencing step. 

 pmccabe: pmccabe calculates McCabe-style cyclomatic complexity of C and C++ source 

code. It includes a non-commented line counter; a program to only removes comments 

from source code; a program to calculate the amount of change which has occurred 

between two source trees or files; and a program to invoke vi given a function name rather 

than a file name. pmccabe attempts to calculate the apparent complexity rather than the 

complexity after the preprocessing is done. Two types of cyclomatic complexity are 

generated: first type counts each C switch statement as 1 regardless of the number of 

cases included, and second type counts each case within the switch. pmccabe also 

calculates the starting line for each function, the number of lines consumed b y the 

function, and the number of C statements within the function. 

 JavaNCSS: JavaNCSS is a simple command line utility which measures two standard 

source code metrics for the Java programming language: Non-Commenting Source 

Statements (NCSS), and McCabe Cyclomatic Complexity. The metrics are collected 

globally, for each class, and for each method. 

 IEMetrics: IEMetrics is a metrics engine for functions/methods.  

 namespaceScript: namespaceScript is a script to track namespaces and their scopes. It 

has been extended to also track usage declarations (both for namespaces and classes), 

as well as the scope of classes. 

 snavtofamix: snavtofamix mines the output of the above tools, combined with home-made 

parser extensions, and generates a FAMIX model in Case Data Interchange Format. 

 Crocopat: Crocopat is a graph query engine which supports the querying of large software 

models in Rigi Standard Format using Prolog-like Relation Manipulation Language (RML) 

scripts. In contrast to typical binary relation query languages as Grok, Crocopat’s support 

for n-ary relations is particularly expressive for software patterns. Moreover, the highly 

efficient internal data structure enables superior performance to Prolog for calculating 

closures (e.g., a call-graph) and patterns with multiple roles (e.g., design patterns). 

 Guess: A graph exploration system which uses as its input graphs that are described in 

ASCII format (GDF). These input graphs specify various properties of nodes and edges as 

required for polymetric views. Various layout algorithms are provided. 

 CDIF2RSF: translation scripts from CDIF to a Rigi Standard Format style fact base. 

 RSF2MSE and RSF2GXL: a translation script from our RSF format to the MSE exchange 

format of the Moose environment and another one to the GXL exchange format. 

Website: http://lore.ua.ac.be/fetchWiki  

https://scitools.com/documents/manuals/pdf/understand.pdf
http://lore.ua.ac.be/fetchWiki
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HeadWay Structure101 

Structure101 is an ‘agile architecture development environment’. This tool builds a structural 

representation of the architecture of a legacy software, firstly based on its physical organization in 

folders and files. Structure101 is essentially a static analysis and visualization environment. 

However, it does not allow the user to directly proceed to refactor the code. Structure101 i s to be 

used by software architects, who will reason on the current architecture, model the future 

architecture, and give instructions for refactoring to the development team. Once these 

refactorings are done, Structure101 will reanalyze the source base, compute complexities and 

dependencies, and a new cycle can start where the software architect reasons on the 

architecture. 

 

From a static analysis of the dependencies in the code, Structure101 can display, on the working 

architectural representation, essentially 1) the cyclomatic complexity of various software parts and 

2) the dependencies among software parts, at all levels. Both properties give a score to the 

software on a two-dimensional plan. One can consider that the global goal of an architect working 

on a legacy software is to improve its score on both dimensions: reducing complexity, and 

reducing dependencies. More pragmatically, complexity in this tool is given as a hint to locate 

software parts that may be the most interesting to simplify. And dependencies are used to infer 

the architecture of the software, in particular Structure101 promotes layered architectures, where 

layers are deduced from dependencies. For example, cross dependencies are generally 

considered a bad design, and users of Structure101 are guided and encouraged to reduce their 

number. 

Website: https://structure101.com  

 

Inventive Toolkit 

Inventive toolkit is a platform for software analysis providing multiple tools dedicated to optimise 

operational processes (creation, evolution, transformation and migration of software).  Beyond the 

code, any type of data from various sources and in various formats (logs, bugs history, authors, 

test coverage, cost analyses) can be imported and stored in a model, correlated in an iterative 

way in order to produce results usable for additional researches. Figure 4.5 illustrates this 

process. 

 

 

Figure 4.5: Inventive toolkit management of the data 

 

This tool helps software architects to understand and be able to manage old, complex or 

business-critical software involving multiple programming languages. It aims to recover los t 

https://structure101.com/
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knowledge or to deliver dedicated tools to address problems like complexity, scalability, 

modularization or reengineering. It helps simplifying complex interactions among components, 

automatically identifying patterns through a machine learning process and proposing 

modifications if needed. It analyses the overall system quality, checks architecture consistency, 

manages design evolutions and provides a real-time management of the projects allowing the 

search on any information contained in the model. It computes any pertinent metric and 

consolidates this information into a global system of high-level indicators. 

Website: http://synectique.eu  

 

Mia-Software tool suite 

The Mia-Software tool suite provides a set of tools addressing to the whole Horseshoe process.  

Source code analysers and Mia-Discovery cover 1) Reverse Engineering, giving a coarse-grain 

view on the code base, with its general architecture, cross references, and first level impact 

analysis. Source code analysers can also create conceptual models from the code, and Mia -

Studio (containing Mia-Transformation and Mia-Generation) covers 2) Re-Structuring and 3) 

Forward Engineering, providing an Integrated Development Environment for querying and 

transforming models created from the analysis of the code base, and automatically generating 

code from conceptual models. 

Using these tools, one can address the goals of: Retro-engineering (abstracting an existing code 

base by a model), Componentisation (for example identifying and separating the business 

processes from the human-machine interface within the existing system or systems), and Re-

conception (transforming the retro-engineering model into a UML conceptual model). The tool is 

provided with a methodology including the study of existing code base, pilot migration and 

industrialized migration. 

Website: http://www.mia-software.com  

 

KconfigReader 

The KconfigReader tool [KconfigReader 2017] extracts variability model information from the raw 

data of Kconfig-files [Kconfig 2017] and converts this data into propositional formulas either as 

files with the model extension or as CNF formula in DIMACS-format [SAT 2015]. Based on this 

conversion, the variability model can be checked for validity and consistency using a SAT -solver. 

 

TypeChef 

TypeChef [TypeChef 2017, Kenner et al. 2010, Kästner et al. 2011] is a variability-aware C-code 

parser that parses the entire source code, performs macro-expansion, includes all variability 

information, and produces a variability-augmented Abstract Syntax Tree (AST). In particular, this 

AST contains detailed information about the conditional (#if*) blocks, like their position in the code 

and the corresponding logical expression, which has to be satisfied in order to enable the 

respective block as part of a specific product. Based on this AST, the main goal of TypeChef is to 

find variability-related bugs but different analyses can be performed, such as variability-aware 

type checking or data-flow analysis. 

 

Undertaker 

The Undertaker tool [Undertaker 2017, Tartler et al. 2011] extracts and analyzes variability 

information from C source code files and Kconfig-based variability models to detect 

inconsistencies between the variability definitions in both types of artefacts. In contrast to 

TypeChef, the variability information extraction for source code files only provides a list of 

conditional blocks (#if* ... #endif) for each file input to Undertaker, while no analysis of the content 

of the block happens. In particular, it is not checked whether the blocks actually contain valid C -

http://synectique.eu/
http://www.mia-software.com/
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code. The benefit of TypeChef is that it is much faster. Each Under taker-block further provides its 

location in the file (line numbers) and a propositional formula defining the condition under which 

the respective block will be part of the final product. The extraction of the variability is similar to 

the one performed by KconfigReader resulting in a propositional formula. The propositional 

formulas from code blocks and from the variability are than input to a SAT solver to check, e.g., 

for identifying dead or undead code blocks [Tartler et al. 2011].  Undertaker can extract conditions 

from C-preprocessor statements (e.g., #if(A && B), but this indicate “local” conditions and not 

global constraints (if there is always a relationship between both features).  

 

Makex, Golem and KbuildMiner 

Makex [Nadi et al. 2011, Nadi et al. 2012], Golem [Dietrich et al. 2012], and KBuildMiner 

[KBuildMiner 2017, Berger et al. 2010] extract variability information from Kbuild [Kbuild  2017] 

files, which define the build rules and processes. This variability information consists of presence 

conditions encoded as propositional formulas, which have to be satisfied to include a specific (set 

of) source file(s) into a final product’s build. The tools realize two different strategies for extracting 

presence conditions from Kbuild-files. 1) Golem queries the build system to probe which files are 

controlled by which variables of the variability model and relates these variables to formulas. In 

contrast, 2) Makex and KBuildMiner use a text-based analysis of all available build files. A 

comparison of all three implementations show, that Golem and KBuildMiner have the highest 

accuracy in extracting presence conditions from build files, while Makex is the fastest of these 

tools [Dietrich et al. 2012]. 

 

KernelHaven 

The tools introduced above (KconfigReader, Undertaker, TypeChef, and KbuildMiner) are 

designed for specific purposes, like specific types of analyses. In order to reuse their extraction 

capabilities in a generalized way, KernelHaven [KernelHaven 2017] is an experimentation 

workbench for SPL analysis. This workbench allows the exchange of such tools wrapped as plug-

ins to extract variability information from different asset types and discover variability related 

constraints. More information is presented in Section 7.3.3.5 as it can be a mean for tool 

integration. 
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4.3.3. Tool comparison 

Table 4.1 compares the tools based on the criteria presented in Section 4.2. 

 

 
Artefact 
types 

Analysis 
Feature 
identification 
and location 

Feature 
constraints 
discovery 

Feature 
model 
synthesis 

Reusable 
assets 
extraction 

Pure::variants 
var. extractor  

Java, 
C/C++ 

Yes Partially Partially Partially Yes 

BUT4Reuse Generic  Yes Yes Yes Yes Yes 

ECCO Generic Yes Yes No No No 

FLiMEA MOF 
Models 

No Yes Partially Partially Yes 

SciTools 
Understand 

Generic Yes No No No No 

FETCh Java, 
C/C++ 

Yes No No No No 

HeadWay 
Structure101 

Generic Yes No No No No 

Inventive 
Toolkit 

Generic Yes No No No No 

Mia-Software 
tool suite 

Generic, 
Java, 
Cobol 

Yes No No No No 

KconfigReader KConfig 
files 

Yes No No No No 

TypeChef C Yes Partially No No No 

Undertaker C and 
KConfig 

Yes Yes No No No 

Makex, Golem 
and 

KbuildMiner 

KBuild 
files 

Yes Yes No No No 

KernelHaven Generic Yes Yes Yes No No 

Table 4.1: Tool comparison for extraction 

4.4. Open challenges in product line extraction 

4.4.1. The diversity of artefact types 

PL extraction requires applicability to a broad range of different artefact types to account for the 

diversity of assets used in development. The use of a general or standard approach based on 

asset language adapters is an interoperability solution already explored by tools such as the 

mentioned BUT4Reuse, ECCO or KernelHaven. The idea is to decompose the input assets as 

sets of atomic elements that will be manipulated by the different algorithms. The definition of this 

generic approaches is still an open challenge and it will be required to analyse legacy assets not 

only at an abstract syntactic level, but also at a richer semantic one. 

In addition, as we observed in Table 4.1, source code has received most of the attention while 

other artefact types, such as requirement specifications or models, have been addressed less. 
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4.4.2. Identification and assessment of the available assets 

When dealing with legacy artefacts, it is not easy to “harvest” and identify the boundaries o f 

potentially reusable assets. It is also challenging the assessment of the reuse potential of an 

identified asset, given that bringing it to a reusable state can be expensive. Regarding 

assessment for reuse, the version control systems can be a source of information that should be 

mined as it keeps not only the versions of its evolution but also other important meta-data like the 

involved developers and timestamps. 

4.4.3. Increase the quality of automatic approaches 

Despite the interest of automation of extraction tasks, full automation is not always feasible. In 

automatic approaches, false positives or negatives represents a lot of manual effort to be fixed, 

and the results use to be obtained in a single automatic step creating results difficult for human 

comprehension. There is a need to continue improving the quality of the automatic approaches to 

be more reliable or to investigate in guided ones. 

4.4.4. Visualisation support for domain experts 

Several works in the context of SPL addresses visualization ranging from product configuration 

(e.g., [Nestor et al. 2008]) to SPL testing (e.g., Lopez-Herrejon et al. [Lopez-Herrejon et al. 2013] 

proposed the use of visualization techniques to display features for pairwise testing). Less work 

has been targeting visualisation techniques for SPL extraction. Martinez et al. [Martinez et al. 

2014b] proposed radial ego network visualisations to reason about feature relations and 

eventually discover feature constraints. In another work [Martinez et al. 2014], they reused 

visualisation techniques to analyse the identified commonality and variability that were already 

used in clone detection approaches. The extraction of an SPL requires domain experts to take 

part in the process and visualisations to support this process is still an impor tant open challenge. 

4.4.5. Extraction from variants that evolved in parallel 

Variants used for extraction may have evolved in parallel with bug fixes, refactoring or other types 

of changes making it difficult to apply existing extraction techniques.  Existing techniques will have 

to be extended to work with the “noise” created by variants that evolved in parallel. 

4.4.6. Benchmarking support 

Realistic, non-trivial, comparable, and reproducible settings are needed to compare techniques for 

extractive SPL adoption. Some efforts already exist for feature location using variants of open 

source systems such as the Linux Kernel [Xing et al. 2013] or Eclipse integrated development 

environments [Martinez et al. 2016b]. However, more are desired covering all the activities of 

extractive SPL adoption. 
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5. Product Line Co-Evolution 

5.1. Introduction 

We define co-evolution as the process where at least two evolution streams evolve independently, 

but are connected and can depend on each other. Changes in one evolution stream can also 

require changes in the other streams. Doing these changes manually is time-consuming and 

error-prone. So, the needed synchronization of evolution streams should be (semi-)automatized 

as far as possible. 

 

In product lines there are different co-evolution scenarios. In this document we cover the following 

scenarios: 

 

1. Co-evolution between problem space and solution space 

Changing of variability in problem space (e.g., adding/removing of features in feature models) 

usually requires also changes in the solution space (e.g., adding/removing of feature specific 

source code) and vice versa. 

 

2. Co-evolution between product lines and derived variants 

In the ideal case, independent evolution will only occur in the product line itself. Variants will be 

derived from the product line and if the product line is changed, a newly derived variant will 

replace the old variant. So, there is no co-evolution at all. However, in practice, the variant itself 

will be also adapted. For example, project-specific changes are done, which should not be part of 

the product line; or new potential features will be developed first in a variant and introduced into 

the product line later. The variant itself may also evolve. Thus, for synchronization between 

product lines and variants, there are two challenges: 1) How to update a changed variant to apply 

changes done in the product line? 2) How to introduce changes, which can be new features or 

changes of existing features, done already in a variant into the product line? 

 

3. Co-evolution between hardware capabilities and software 

If the hardware capabilities change (e.g., more/less CPU power, memory, I/O ports) software 

should also change, especially if the hardware resource limits are reached or real time constraints 

are not met. In product lines, these limits have to be met for all valid variants. 

 

4. Co-evolution between meta-model and models 

When meta-models change, usually also the models, which are the instances of the meta-models, 

have to be adapted. For example, in MDE Domain-Specific Languages (DSLs) are described 

using a meta-model, and the variant descriptions are formulated using this DSL. Thus, when the 

DSL itself is changed also all descriptions using this DSL have to be adapted.  

 

5.2. Characteristics to comparatively evaluate evolution approaches 

This subsection is kept for maintaining the structural coherence with other sections but i n the case 

of co-evolution, for our study, we will just consider that the approaches vary in the supported 

scenarios and the types of targeted artefacts.  
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5.3. Evolution automation approaches 

5.3.1. Methodologies 

1. Co-evolution between problem space and solution space 

Neves et al. [Neves et al. 2015] introduce a safe evolution concept for compositional and 

annotative approaches for implementing Software Product Lines (SPLs). As part of this concept 

and based on an analysis of the evolution of two industrial SPLs, the authors identify a set of safe 

evolution templates (e.g., guidelines to add a new optional feature in a compositional approach) . 

These templates are safe in the sense that the corresponding changes preserve the behaviour of 

products derived from the SPL before actually applying those changes. Further, the authors claim 

that the templates also cover the evolution scenario of introducing new products to an existing  

SPL without affecting already available products in that SPL. Both scenarios are of particular 

interest, e.g., to support the co-evolution of a SPL and its related products. However, the safe 

evolution templates only cover changes, which conform to the refinement notion presented in 

[Borba et al. 2012] in order to be safe. This excludes other types of changes and evolution 

scenarios often performed in practice. 

 

In order to overcome the limitations of the safe evolution templates in [Neves et al., 2015], 

Sampaio et al. [Sampaio et al. 2016] formalize partially safe evolution templates. These templates 

cover additional types of changes to SPLs and derived products, which are considered to be 

partially safe as they do not refine all products of a SPL as defined by the initial SPL refinement 

notion in [Borba et al. 2012]. However, Sampaio et al. show the applicability of their templates 

based on an analysis of real-world evolution scenarios from the Linux kernel. 

 

Passos et al. [Passos et al., 2016] provide a set of variability co-evolution patterns by analysing a 

sample of the Linux kernel commit history. In particular, the focus of their study is on the addition 

and removal of features in the variability model and how the mapping (in terms of build files) and 

the implementation of these features (C-code files) change as a result. In contrast to the 

templates identified by Neves et al. [Neves et al., 2015] and Sampaio et al. [Sampaio et al. 2016], 

the authors do not claim their patterns to be safe, but covering more evolution scenarios. Further, 

the variability co-evolution patterns only apply to the SPL and do not cover scenarios in which a 

(new) product should be integrated into the SPL. However, these patterns provide a conceptual 

basis for the development of co-evolution services as they describe SPL co-evolution scenarios, 

which should be supported by such services. 

 

Seidl et al. [Seidl et al. 2012] provide a classification for model-based SPL evolution capturing the 

effects of variability model changes on the feature mapping and the solution space artefacts. In 

particular, the authors introduce a set of feature remapping operators to enable the co -evolution 

of the variability model and the feature mapping. While the remapping operators cover similar 

evolution scenarios as identified by the authors above, this approach assumes all artefacts to be 

models in the sense of EMOF [MOF 2017], e.g., implemented in EMF models [EMF 2017]. This 

technical restriction complicates a direct application of the operators, e.g.,  as the use cases may 

not provide such models or use different technologies for their models.  A contribution by 

Vasilevskiy et al. [Vasilevskiy et al. 2016] consisted in dealing with the problems occurring in the CVL 

variability model when the base model (unexpectedly) changes. 

 

Svahnberg et al. [Svahnberg et al. 1999] evaluate two industrial case studies and provide a set of 

evolution scenarios derived from these studies. Based on this evaluation, the authors propose a 
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set of guidelines, which support the evolution of SPLs. While these guidelines do not particularly 

address co-evolution scenarios, they are of relative importance as they describe general pitfalls in 

SPL evolution. 

 

2. Co-evolution between product lines and derived variants 

As described above, the synchronization of changes between product lines and their variants can 

be done in two directions: 

In [Schulze et al. 2016] the so-called update scenario is described. The task is to get changes 

done in the product line (and therefore changes contained in a new derived variant) into an older 

variant, which was meanwhile manually changed by the user. To identify the changes, a three-

way comparison is needed based on the originally derived variant (i.e., the variant without user 

changes), the newly derived variant (containing the product line changes), and the changed 

originally derived variant (containing the user changes). Using the work’s approach, conflict -free 

changes from the product line can be applied automatically to the variant. For conflicts, i.e., if 

different changes are done at the same point, precedence rules can be defined to resolve 

conflicts automatically. 

 

The other direction is the feedback scenario [Hellebrand et al. 2017], where changes done in a 

variant should be introduced into the product line. The authors describe different use cases, in 

which ways this introduction can be done. For example, it is not automatically decidable, whether 

a change in a variant represents a fix for a single variant, a fix for a feature or feature 

combination, or a completely new feature, which also has to be introduced to the feature model.  

 

3. Co-evolution between hardware capabilities and software 

In Product Line Co-Evolution, the concept of timing can be an important aspect and has to be 

taken into account. In fact, the analysis of the timing behaviour of a system that is subject to real -

time constraints is essential for its validation. For systems from safety-critical domains (e.g., 

avionics, automotive, medical, etc.), functional correctness needs to be assured and the expected 

timing behaviour needs to be validated. For this reason, a set of timing requirements is usually 

defined for such systems. and they are often validated by relying on some worst-case execution 

time (WCET) analysis techniques. 

 

It exists an implicit relation between the software and the hardware that build up a legacy system 

and this relation has to be preserved while moving legacy code to a new hardware platform. The 

timing analysis is also important in this case. Modern hardware platforms that are available on the 

market are more powerful and versatile compared with older ones. The efficiency of the new 

platforms also affects the timing behaviour of the whole system; in fact, it is expected that more 

computation power leads to better performance. Unfortunately, the timing behaviour due to the 

new hardware can invalidate the system consistency and, thus, the system correctness (e.g., if 

the code that reads some input data from a sensor, with a fixed sample rate, is moved to a new 

processor that executes the code twice as fast, half of the read values are inconsistent in the new 

system).  

 

Similarly, a modification of the legacy software can lead to a disruption of the implicit relation 

(e.g., addition of a line of code that forces the processor to execute a highly time-consuming 

operation, like a floating-point operation). 

 

It is possible to analyse the execution time behaviour of a system by tracing its execution via 

complex hardware tracers, like the TRACE32 tool developed by Lauterbach [Lauterbach 2017]. 
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These tracers are highly accurate most of the time, but they are extremely expensive and they 

require that both the hardware platform and the software application is available. Unfortunately, 

this is often not the case when an evaluation has to be conducted to check the validity of moving 

some legacy code to a new platform (the hardware platform is not yet available). Furthermore, it is 

inefficient to analyse the code with complex traces for every software change and for all the 

possible different input configurations. 

 

To cope with the tracers’ limitations and in particular with their limitation in predicting the timings 

for all the possible inputs of a fixed program, simulation based approaches are proposed, such as 

by Ottlik et al. [Ottlik et al. 2017]. The approach guarantees good results in terms of both accuracy 

and total amount of time necessary to predict the execution time of a program. In a first stage, the 

proposed technique builds a context-sensitive timing database (based on the basic blocks 

granularity) without modelling the hardware resources (e.g., caches, pipelines, etc.) directly. In the 

second stage, the execution of the program is simulated in a source machine that is run on a fast 

host machine. During the simulation, the simulator associates for every executed basic block an 

execution time value that is chosen from the timing database depending on the execution context 

of the basic block. Despite the accuracy provided by the analysis, this approach requires to create 

a new timing database for every single change in the executable (source code modification, 

different compiler optimizations, different compiler, etc.) and for every different hardware platform.  

 

Given that execution time is of great importance in software-hardware co-evolution, we discuss 

some state-of-the-art regarding its measurement. The group of Prof. Andreas Gerstlauer [Xinnian 

et al. 2017] presents another approach that is used to predict software execution time without 

benchmarking. The approach is more software independent and is called LACross. The LACross-

approach provides a fast and accurate performance prediction via a learning-based cross-platform 

prediction technique aimed at predicting the time-varying performance of a program on a target 

platform using hardware counter statistics obtained while running natively on a host platform. This 

technique relies on the fact that there exists a correlation between the executions of the same 

program on two different processors. It requires a learning phase, where the information 

necessary to teach a machine learning approach is extracted from both a host machine and the 

target. Then, the program is executed only on the host machine (generally faster than the target 

one) and some specific information is extracted. The new information is then used as input to the 

machine-learning algorithm that predicts the execution time for the target platform. LACross 

appears to provide good results and it introduced a revolutionary approach, but it still has some 

weak points. It is based on a machine learning approach, and as all machine-learning approaches 

its results are strongly dependent on the training set. An insufficient training set will imply highly 

inaccurate timing predictions, and no guidelines are provided to create a good training set. 

Furthermore, it is adequate for predicting the execution time of a program for different inputs, but 

it is highly dependent on the hardware configurations (both host and target platforms) and on the 

compiler optimizations (both host and target platforms). Any modification to the hardware 

configurations or to the compiler optimizations invalidates the results.  

 

The existing approaches enable the timing prediction of different software variants running on the 

same platform. Considering both the state of the art and the project objectives of REVaMP2 to 

evolve legacy software to new platforms, a new approach is necessary that is able to predict the 

execution time of a system for different hardware configurations. The new approach has to be 

able to quickly and accurately predict the execution time of a system even in case of small 

modifications of the source code (e.g., adaptation to new hardware platforms).  
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4. Co-evolution between meta-models and models 

The main problem when evolving a meta-model is that the conformance between instance models 

and the meta-model may be broken (depending on the type of changes performed in the meta-

model). Models rely on a meta-model to define the domain, but the domain needs to be evolved 

over time (for different reasons such as improvements in the domain or bug fixes). Therefore, 

when evolving the meta-model, we must assure that existing models still conform to the evolved 

meta-model. 

 

Figure 5.1: Co-evolution of model and meta-model problem 

Figure 5.1 shows an example of the co-evolution of models and meta-models problem. The left 

part shows a meta-model (Metamodel1) and a model (model1) that conforms to that meta-model. 

That is, the model is expressed following the elements and rules among elements  described in the 

meta-model. Then, the meta-model is evolved into Metamodel2 (usually evolutions are done to 

address existing issues or to extend the expressiveness of the language). Depending on the 

changes performed to evolve the meta-model, models that conform to the previous version of the 

meta-model will not conform to the new version of the meta-model. In those cases, the common 

practice is to perform a migration of the models, needing to transform them to conform to the new 

version of the meta-model. 

 

There are several approaches described in the literature to achieve the co-evolution of model and 

meta-model while maintaining consistency. Those approaches focus on the migration of the 

models to conform to the evolved meta-model. In particular, [Rose et al. 2009] organize existing 

approaches in three different categories: 

 Manual specification: a transformation is manually encoded. This is the most obvious 

solution, requiring a lot of work by the developer. There are no specific research efforts 

towards this topic. 

 Operator-based co-evolution: a library of co-evolution operators is defined. These co-

operators evolve both, the meta-model and the model (actually, the operator contributes 

to a M2M transformation that is executed when all the changes over the meta-model are 

done) [Wachsmuth et al. 2007, Herrmannsdoerfer et al. 2008, Herrmannsdoerfer et al. 

2009, Herrmannsdoerfer et al. 2009b]. 

 Meta-model-matching: a migration strategy is inferred by analyzing the evolved meta-

model and the meta-model history. It can be applied in two different ways: 

o Differencing approach: both the original and the evolved meta-model are 

compared (with a diff tool) to generate a difference model that holds the changes 

between the original and the evolved meta-model, then it is used to create a 

migration strategy [Gruschko et al. 2007, Cicchetti et al. 2008, Falleri et al. 2008, 

Sprinkle 2003, Sprinkle 2004]. 

o Change recording approach changes performed to the meta-model are monitored 

and “recorded” to be used later to generate a migration strategy [Eysholdt et al. 

2009]. 
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Garces et al. [Garces et al. 2009] propose a set of heuristics to automatically compute 

equivalences and differences between two meta-model versions in order to adapt models to 

evolving meta-models. The computed equivalences and differences act as input for a higher-order 

transformation, producing an executable adaptation transformation. 

 

[Narayanan et al 2009] present a co-evolution approach for models using the Model Change 

Language (MCL). MCL is a declarative and graphical language supporting a set of co-evolution 

idioms. The evolver defines relationships among elements of the meta-model versions. There are 

different kinds of relationships starting from simple one-to-one mappings between classes to more 

complex mappings for creating new subclasses or changing the containment hierarchy. More 

complex co-evolution rules will be defined in the context of the defined mappings as constraints 

and actions in terms of C++ code. However, the provided idioms only cover syntactical, not 

semantical co-evolution concerns. The co-evolution is achieved by a model-to-model 

transformation.  

 

[Herrmannsdoerfer et al. 2009] propose COPE, an integrated approach to specify the coupled 

evolution of meta-models and models. In their approach, the co-evolution of meta-models and 

corresponding models is realized by a set of so-called coupled transactions, composing a whole 

co-evolution problem of modular transformations. Coupled transactions are further divided into 

custom coupled transactions and reusable coupled transactions, where the latter are predefined 

and thus help to reduce the migration effort. As custom transactions can be expressed using a 

Turing-complete language the necessary expressiveness is guaranteed.  

 

[Wimmer et al. 2010] tackle the co-evolution problem from a different viewpoint. Instead of 

describing it as a transformation between two meta-models, they create an integrated meta-model 

by automatically merging the initial and the revised model. Then, they use in place 

transformations, e.g., using ATL for supporting the evolution (transformation).  

 

[Rose et al. 2010] describe Epsilon Flock, a model-to-model transformation language tailored for 

model migration. Epsilon Flock contributes several features including: a hybrid approach to 

relating source and target model elements, migration between models specified in heterogeneous 

modelling technologies, and a more concise syntax than existing approaches.  

 

[Dhungana et al. 2010b] present an approach based on model fragments. They provide tool 

support for the automated detection of changes, facilitating meta-model evolution and change 

propagation to already existing variability models.  

 

[Creff et al. 2012] propose an incremental evolution by extension of the product line. They aim to 

benefit from new development in product derivation, and re-invest them into the SPL models. 

They introduce an assisted feedback algorithm to extend the SPL to emerging p roduct derivation 

requirements. 

 

[Passos et al. 2013] develop a vision of software evolution based on a feature-oriented 

perspective. They provided a feature-oriented project management and system development 

platform supporting traceability and analyses. In this work, the SPL is specified by means of base 

models, fragment substitution and meta-model expressiveness. 
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The Variable Meta-model (VMM) [Font et al. 2017b] is an approach for co-evolving the model 

fragments realizing the features and the language of the models (meta-model), and comes in 

response to issues raised by traditional model migration. In [Font et al. 2015b] the authors 

analysed model migration techniques from the literature and identified three issues related to its 

application to co-evolve product models and meta-models: 

 Overhead: There is an increase in the number of elements used to model the same 

element of the induction hob. 

 Automation: Since the migration of the models cannot be performed automatically, an 

engineer needs to generate the M2M transformation and take decisions when applying it.  

 Trust leak: The modification of the model fragments (through the migrations) decreases 

the trust gained by those models during that generation. 

 

The VMM applies variability modelling ideas to express each evolution of the language (meta-

model) in terms of commonalities and variabilities, ensuring the conformance of all model 

fragments (old fragments and new fragments) with the VMM. In order to eliminate the need for 

migration, when a new generation (meta-model revision) is created by the engineers, a new meta-

model that supports both generations can be automatically built by the VMM. For instance, model 

fragments that conform to meta-model version 1 and model fragments that conform to meta-model 

version 2 will also conform to this VMM. A product model that has been built combining model 

fragments from both generations will conform to the VMM.  

 

The VMM is incrementally built as the meta-model used to specify the language evolves, including 

the new revisions of the meta-model in terms of commonalities and variabilities. Since the VMM 

will be enhanced each time a new generation is created, a single VMM that includes all 

generations of the product line will exist. 

 

For instance, when using the VMM to manage two meta-model revisions (mm1 and mm2), the 

approach will compare both revisions and extract the common parts into a base model and the 

variable parts into a library of model fragments. Then, three different models will be generated: 

the original mm1, the original mm2 and the combination of both (called mm1&2). Product models 

built using model fragments only from mm1 will conform to it, product models built using model 

fragments only from mm2 will conform to it, and product models that combine model fragments 

from mm1 and mm2 will conform to the mm1&2 meta-model.  

 

5.3.2. Tools 

SPLEMMA [Romero et al. 2013] supports SPL evolution by enabling SPL maintainers to define 

authorized (allowed) evolution operations on a SPL. The maintainers therefore define these 

operations by means of an evolution model, which in turn is based on an evolution meta-model 

provided by SPLEMMA. This meta-model defines abstract elements, like features, mappings, or 

source artefacts, their relations and abstract changes (addition, removal or change), which can be 

applied to these elements. In this way, a derived evolution model specifying a specific evolution 

scenario can be validated against the meta-model for correctness and consistency of the defined 

changes. SPLEMMA uses this validated evolution model to generate evolution tools, which 

automate the evolution scenario described by the model. Therefore, these evolution tools use 

generic validation services as well as SPL-specific services, which execute the actual evolution 

operations on the SPL. While in REVaMP² we share the same intent to provide individual tools 

(services) to support co-evolution scenarios, we do not aim at generating these services on 

demand. Further, the co-evolution services in REVaMP² should be self-contained such that they 
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can be applied to different SPLs, e.g. those provided by the use cases, without the need of having 

SPL-specific services in place that perform the actual changes. Further, SPLEMMA only supports 

co-evolution of different types of artefacts of the SPL. In REVaMP², we also consider scenarios, 

like the co-evolution of SPLs and derived products. 

 

The feature remapping operators introduced in [Seidl et al. 2012] are implemented as part of 

FeatureMapper [FeatureMapper 2013] along with Refactory [Reimann et al. 2010] for the 

evolution of models. This toolset enables the execution of so-called remapping plans after the 

introduction of model changes is detected and processed by Refactory. These remapping plans 

contain the necessary remapping operation(s) for the applied changes (evolution). Besides the 

limitations of the overall concepts with respect to REVaMP² described above, the evaluation was 

only performed on a fictitious SPL with two evolution steps. Hence, the application to real -world 

SPLs, like those in the REVaMP² case studies, is questionable. 

 

The approach defined in [Schulze et al. 2016] is implemented in the variant management tool 

pure::variants [PureVariants 2006] for text-based artefacts and for requirements. For text-based 

artefacts the three-way comparison and merging of Eclipse is used. For requirements a specific 

three-way-comparison and an automatic merging approach was implemented for one requirement 

tool. But the support for other artefacts is missing, mainly because of the lack of good three -way-

comparison tools for specific artefact types like graph-oriented models. 

 

Lauterbach TRACE32 tracer and debugger [Lauterbach 2017] is a tool for timing analysis that can 

be useful in software-hardware co-evolution. This approach requires that both a hardware and 

software variant is available to trace the actual software execution. The tracer provided by 

Lauterbach is a well-known tool in the embedded and real-time domain because of its high 

performance and because of its capability. It supports a large range of technologies (e.g. JTAG, 

ETM, etc.) and it allows both to trace and to debug software and hardware. The Lauterbach tool 

can be used to analyse a wide range of processor architectures (e.g. ARM, TriCore, PowerPC, 

etc.) and different operating systems. TRACE32 results to be a valid tool for the analysis because 

it permits to extract essential information (e.g., performance counters values, hardware 

information, etc.) and timing for the execution of a software in a hardware architecture and 

therefore enables the benchmarking of a legacy system instance. 

 

The VMM approach [Font et al. 2017b] mentioned in Section 5.3.1 is also a tool-based strategy 

for meta-model co-evolution. 

 

5.4. Open challenges in product line evolution 

5.4.1. Co-evolution between problem space and solution space 

The consistent co-evolution between problem and solution space requires changes applied to the 

variability model (problem space) to be in line with the variability realization in related artefacts, 

like build and code artefacts (solution space), and vice-versa. In order to detect emerging 

inconsistencies due to incomplete or conflicting changes, e.g., in only one of the two spaces, the 

variability information in both spaces is typically transformed into logical formulas and evaluated 

by external solvers. Most approaches supporting such co-evolution scenarios rely on pure 

Boolean variability representations, like in basic feature modelling approaches (cf. Section 2.3). 

However, in many cases we also need to take non-Boolean variability into account. For example, 
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instead of defining all variable characteristics as Boolean features, some characteristics may also 

be defined as a set of numerical values or even strings. Hence, a major challenge in this project is 

to extend the focus of existing approaches by non-Boolean variability, which also requires the 

integration of more powerful solvers, like SMT or CSP solvers. 

The determination of consistent co-evolution between problem and solution space requires the 

presence of variability mappings between the two spaces. For example, information about which 

feature of a feature model affects the presence or absence of certain (parts of the) code artefacts 

needs to be available. However, an explicit definition of such variability mappings is not always 

available, which demands for extraction mechanisms. While this is in general a challenge for 

asset extraction (cf. Section 4), the co-evolution scenarios may influence this extraction, e.g., by 

triggering an update of the variability mappings due to changes in the problem or solution space. 

Hence, the challenge in this project is to support, in particular, the variability (mapping) extraction, 

as a prerequisite for consistent co-evolution support. 

Some of the approaches explicitly focus on the consistent co-evolution between problem and 

solution space in the presence of artefact models, like in Model-Driven Engineering (MDE). In this 

development situation, the traditional artefacts, like build and code artefacts, will not be available, 

but will be generated based on variability-aware artefact models. Hence, a major challenge is to 

provide co-evolution support for both MDE-based and non-MDE-based product lines in a 

comprehensive manner. 

A general challenge concerning the support for co-evolution of different types of artefacts is to 

enhance existing approaches by incremental information. For example, if a change only applies to 

a subset of the available artefacts, the analysis for consistency between problem and solution 

space should only consider this changed subset instead of analysing the entire product line. In 

particular, incremental information should be used in different co-evolution scenarios including 

traditional types of artefacts as well as MDE-based product lines. 

 

5.4.2. Co-evolution between product lines and derived variants 

For the update-scenario the challenge is to support any kind of artefacts. Currently only text -

based artefacts, like source code, and structured requirements are supported. Other kinds of 

artefacts, like graph-based models should be supported as well. Mainly the challenge is to get a 

suitable three-way comparison algorithm for a certain kind of artefact. Another challenge is to add 

proper user support to minimize time-consuming user interactions, especially for the resolution of 

conflicts occurring during the merging of changes. 

The challenges in the feedback scenario are similar: Different artefact types have to be supported 

and the user interaction should be minimized. But in this scenario the comparison is more 

complex, since two variant versions have to be compared to the product line itself. Especially 

when using negative variability, i.e., if the product line assets are supersets of variant assets, the 

comparison results can be ambiguous, which increases the need for user interaction. 
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6. Product Line Verification 

6.1. Introduction 

In this section, we briefly overview the current State-of-the-Art (SotA) in SPL verification tools. As 

shown in Figure 6.1 (SISPL in the figures stands for Software-Intensive SPLs), an SPLE 

verification tool takes as input a SPL artefact and a formally defined property to verify on this 

artefact. It relies on an automated reasoning engine to produce as output a verification result. We 

thus restrict our overview to the area of SPLE formal verification and not on the much broader 

area of informal SPLE Quality Assurance (QA) or Analysis. We acknowledge the importance of 

tools based on testing for SPLE but we restrict our scope to reasoning on formal models.  We also 

exclude tools that automatically extract such formal models from source code, since they have 

been covered in Section 4, as well as tools that detect the impact of changes to one SPLE 

artefact to another since they have been covered in Section 5. 

 

 

Figure 6.1: Product line verification tool 

6.2. Characteristics to comparatively evaluate verification tools 

We provide in this sub-section, what we feel is the minimal necessary background to understand 

the overview of previous work in SPLE that we survey afterwards. We thus try to provide in what 

follows a categorization and succinct definition of: 

 the SPL properties that have been automatically verified by tools presented and empirically 

evaluated in previous published research; 

 the automated reasoning and knowledge representation concepts underlying the engines that 

were used to perform such verification tasks; 

 the possible results of such verification tasks. 

This categorization will form the basis of the list of characteristics that we will use to 

comparatively evaluate SPL verification tools. 

Categorization of SPL properties to verify 

Starting with the properties to verify, a high-level categorization of them is given in Figure 6.2 as 

an UML class diagram. The top-level of this diagram first distinguishes between four top-level 

classes of properties according to their object: the SPLE variability model, a configuration that can 

be selected from this model, the component realization artefacts to reuse as basis for product 

derivation from such configuration or the requirements of such components.  
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All properties must be expressed in some constraint modelling language. An overview of the sub-

categorization is shown in Figure 6.2 based on our initial analysis of the state-of-the-art. The most 

used constraint modelling languages to express properties to verify on a product line are the 

OMG-standard OCL. OCL has a programmer-friendly syntax inspired from hybrid strongly-typed 

object-oriented functional programming languages and a variety of formal logics with their 

mathematical syntax.  

 

Figure 6.2: Taxonomy of SPL properties to verify 

This variety is succinctly modelled at the bottom left of Figure 6.2. The formulas of all logics are 

made of at least two elements: basic constituents called atomic formulas, and logical connectives 

combining formulas into more complex ones. For example, the classical (a.k.a. Boolean) 

propositional logic formula P  Q  R is composed of propositions P, Q and R, combined with 

connectives   and . Classical logic formulas are formed by connecting atomic formulas with the 

Boolean connective set:  (classical negation),   (conjunction),  (disjunction),  

(implication) and  (equivalence).  

Propositional logic is said to be of order zero, because their atomic formulae such as P or Q are 

both logically atomic in the sense of not containing any logical connectives, but also syntactically 

atomic in the sense of properties being defined only by a symbolic name without any in ternal 

structure. In contrast, in higher order logics, the atomic formulae are only atomic in the logical 

sense. In addition, higher order logics also include quantifiers, such as  and    that add set-

theoretic semantics to the formulas. So for example, the classical High-Order Logic (HOL) 

formula P,F,X, Y (P(F(X),Y)  Q  R(F(Y)) the atomic formula P(F(X),Y) is a 

syntactic tree combining four atomic symbols, P, F, X and Y. The order of a logic is the 

maximum height in the atomic formula syntactic trees where universally quantified symbols can 

appear, hence in First-Order Logic (FOL) such symbols can only appear at the leaves of the 

tree.  

Two logics primarily differ from one another in terms of: 

 Their vocabulary of connectives and quantifiers; 

 The high-level grammar rules on how to combine them with atomic formulae to form non-

atomic formulae 

 The low-level grammar rules on how to form atomic formulae out of atomic symbols.  
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Temporal logics extend them with additional quantifiers over an implicit temporal  variable to model 

how properties of a system hold and change over time. They are thus essentially used to ver ify 

behavioural properties of SPL components. For example, Linear Temporal Logic (LTL) extends 

classical logic with two temporal quantifiers, Next (abbreviated N) and Until (abbreviated U), The 

formula NA where A is an LTL formula models that the property represented by A will hold after 

the next system state. The formula A U B models that the property represented by A will hold at 

least until the property represented by B will. LTL allows modelling state changes only over a 

single system state change path. Computational Tree Logics (CTL and CTL*) add other 

quantifiers over sets of alternatives or concurrent system state change paths. The multimodal -

calculus adds modal quantifiers that express the necessity or possibility of a property to hold 

following the execution of a given action in a given state. Its expressivity subsumes that of LTL, 

CTL and CTL*. 

Adding new connectives and quantifiers allowing the formation of more complex formulas out of 

simpler ones is not the only way to extend the expressive power of a logic. Another orthogonal 

way is to allow the formation of new classes of atomic formulas. This is done by adding new 

symbols called constraints linking variable symbols using predicates and functions from 

mathematical domains beyond the uninterpreted symbolic syntactic trees of pure logic. A 

constraint theory is a mathematical theory to interpret symbols from such a domain inside these 

new atomic formulas so as to simplify or solve them. For example, the linear integer arithmetic 

constraint theory adds equality and inequality (≤) predicates as well as the addition, sign inversion 

and multiplication functions to form atomic formulas such as 2X – 1 ≤ Y, or XY = 0. It also 

adds the axioms of integer arithmetic to solve systems of such equations and inequations. Other 

constraint theories model operations on data structures such as bit vectors, arrays, lists and trees. 

Note that classical first-order logic can be obtained by extending classical propositional logic with 

the equality theory over uninterpreted symbolic trees.  

To go back to the taxonomy of properties to verify in an SPL shown in Figure 6.2, let us define the 

most common kinds of properties to verify on a product line variability model:  

1. Whether the product line is void, i.e., whether all configurations are associated with an 

inconsistent set of inter-option constraints; 

2. Whether it is false, which is said of an SPL without any variability, i.e., only one of its option 

combinations are associated with a consistent set of inter-option constraints; 

3. Whether an option of a product line is dead, which is said of an option that cannot appear in 

any valid configuration due to the conjunction of inter-option constraints specified in the 

variability model; 

4. Whether the conjunction of multiplicity constraints associated to its options is inconsistent. 

This can be considered as special case of void model. 

5. Whether what is explicitly declared as an option in the variability model of an SPL, is in fact 

implicitly a mandatory element of any working configuration (false optional). For example, the 

option presence is directly required to make a mandatory element properly function or to make 

a falsely optional element work; 

6. Whether an element of the variability model is redundant because its subtraction from the 

model would not change the set of possible products derivable from the product line, and 

hence it expresses in another way information that is already expressed somewhere else in 

the model. 
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Concerning a configuration two main properties can be verified: 

1. Whether it is total, i.e., whether one option has been chosen for all alternatives of the 

variability model; if no choice has been made for at least one alternative, the configuration is 

then said to be partial; 

2. Whether it is valid, i.e., whether the options chosen so far do not violate any constraints of the 

variability model. 

Concerning requirement sets, it can be verified whether they are individually correct, globally 

consistent and globally complete. Such verification can only be automated if precise, objective 

criteria for correctness, consistency and completeness have been defined. This can be done for 

example if the language used to specify the requirements is only semi-natural, following strict 

syntactic templates and using a controlled vocabulary which terms are defined in an ontology.  

As shown in Figure 6.2, properties to verify for realization artefacts, be them models or code, of a 

SPLE, subcategorize along two orthogonal dimensions. The first distinguishes between, on the 

one hand, structural properties such as syntactic conformity that can be verified by static analysis 

and, on the other hand, behavioural properties such as state reachability, concurrent system 

liveness and dead behavioural code unit or model element, that can only be verified by dynamic 

analysis. The second dimension distinguishes the properties by the system requirements concern 

that motivates their verification: functional, safety, security, usability and performance, the latter 

be it in terms of time, memory or bandwidth resources.  

In Figure 6.2, the red and thick association from the Realization Artefact Prop class to the 

Variability Model Elt class highlights the fact that in this survey we only summarize 

previous research concerning verification of realization artefacts in the context of an explicit 

variability model. We thus only cover what [Thüm et al. 2014] calls family-based analysis, 

excluding what they call product-based analysis and feature-based analysis. This allows us to 

focus on the core concerns of REVaMP2, instead of considering the immense but not directly 

relevant literature on software-intensive system formal verification as a whole. 

6.2.1. Categorization of automated reasoning engines for SPL property verification  

With this well-defined focus, we can categorize the main automated reasoning engines used for 

SPLE verification in a single class diagram shown in Figure 6.3.  
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Figure 6.3: A taxonomy of automated reasoning engines used for SPLE verification 

The three top-level categories are model checkers which originated in formal verification research, 

constraint solvers which originated at the confluence of Artificial Intelligence (AI) and operation 

research and theorem provers which originated at the confluence of AI and computational 

mathematics.  

A model checking problem consists of determining whether the behavioural model M of a system 

verifies a property F. M is usually expressed in a state change modelling language such as a 

Labelled Transition System (LTS), a finite automaton, a statechart or a petri net. Featured 

Transition Systems (FTS) extend labelled transition systems with feature-based variability. They 

can thus concisely capture possible state changes of systems variants. A Modal Transition 

Systems (MTS) extend LTS by qualifying transitions with the modalities necessary, possible and 

impossible. This allows modelling required, alternative or exclusive behavioural features. F is 

usually expressed as a temporal logic formula.  

When F universally quantifies over the state change paths captured intentionally by M, the result 

of a model checking run can be either: 

 true when all paths from S have been explored and they all satisfy F; 

 a counterexample path that violates F; 

 unknown if the model checker has exhausted its computational resources before both finding a 

counterexample path or exploring all of them.   

Conversely, when F existentially quantifies over state change paths, the result can be either: 

 one path that verifies F, 

 false when all paths have been explored and none verifies F; 

 unknown if the model checker runs out of computational resources before having explored all 

the paths and found one verifying F.   

A Constraint Satisfaction Problem (CSP) consists in a logically conjunctive set of mathematical 

relations called constraints between a set of variables taking values in a given domain.  A CSP 

solution is an assignment of values to the variables that satisfies all the constraints. The 
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mathematical relations between variables are composed of functions in the variable domains and 

Boolean predicates such as equality and inequalities.  

A CSP can be overconstrained if it has no solution, exactly constrained when it has a single 

solution and underconstrained, when it has multiple solutions. For an underconstrained CSP over 

a finite domain, a constraint solver can return all the possible solutions in extension through an 

exhaustive search procedure. For an underconstrained CSP over an infinite domain, a constraint 

solver can only return an intentional representation of the solution space as a simplified CSP with 

fewer, simpler constraints and some, but not all variables assigned to a definite value. For 

example, a system of N linear equations relating N+1 real variables is underconstrained, while 

one with N+1 equations is exactly constrained.  

As input, a theorem prover for a logic L takes (a) a formula C in L representing the conjecture to 

prove and (b) another formula A in L, representing a conjunction of axioms assumed to be true 

and from which to derive C. A theorem prover implements the set of inference rules of L, together 

with a variety of strategies to search the space of possible application order of these rules to C 

and A. It outputs a proof that A logically entails C as a sequence of inference rule application 

instances. Most theorem provers output a refutation proof i.e., a sequence that yields false from 

the formula A  C. By contraposition, if A  C  false, then true  A  C, which is 

by definition equivalent to A  C and hence that A entails C. 

The first category of model checkers shown on the left of Figure 6.3 first transforms the model 

checking problem into an automaton emptiness checking problem and then solves the later by a 

state space search. It builds one automaton representing M, another representing F, and a third 

representing their intersection. It then tests the emptiness of this third automaton by searching for 

a path leading to a cycle containing an accepting state. The first such path found provides a 

counter example that M verifies F. In this approach, each system state is explicitly represented by 

an automata state.  

The second category of model checkers, takes another approach by encoding system state sets 

intentionally as bit vectors with one bit per state and system state transi tion sets as bit vectors 

with one bit per transition source state and one bit per target state. For example, the transition 

from state a to state b is defined by 1001 if the bits follow the order (current a, current b, 

next a, next b). Using such encoding, the truth value of F can then be computed in a 

compositional fashion by leveraging at each step compact, non-redundant, specialized data 

structures to compute the value of Boolean functions called Binary Decision Diagram (BDD).  

The bit vector encoding of state sets and transition can also be leveraged to reformulate the 

model checking problem as a CSP with Boolean variables.   

The middle of Figure 6.3 shows that constraint solver can be sub-categorized into two main 

subclasses:  

 Imperative solvers implementing various constraint solving algorithms in an imperative 

programming language such as C or in object-oriented imperative languages such as C++, 

C#, Java, JavaScript or Python; 

 Logic-based solvers that reformulate the CSP into a theorem proving problem. 

The algorithms implemented by these solvers are all specific to a given constraint theory. Such 

theory consists of (a) the mathematical domain in which the CSP variables can take their values, 

(b) the operations inside these domains to combine these variables into constraint expressions 

and (c) the predicates taking these expressions as arguments.  
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For example, in the linear equation system CSP: {
3𝑋 − 2𝑌 = 1
𝑋 + 2𝑌 =  2

 , 𝑋, 𝑌 ∈ 𝑅 , the variable domain is 

the set of real numbers, the operations are + and – and the predicate is =.  

The left of Figure 6.3, sub-categorizes theorem provers into Full Classical First-Order Logic 

(FCFOL) Theorem Provers, Description Logic (DL) Engines and Logic Programming (LP) Engines 

or Higher Logic (HL). DL and LP differ from the first in that they prove theorem formulated 

syntactic restriction of FCFOL for which the proving task is decidable and the worst -case 

complexity is lower, and in some sub-cases tractable. DLs restrict FCFOL to binary and ternary 

predicates useful to logically formulate taxonomic ontologies. DL are used to formalize semantic 

web language standards.  LP engine prove theorems in Horn logic, (whether zero, first or high-

order) which restricts non-atomic formulae to be formed solely of conjunctions of so-called Horn 

clauses, i.e., implications from a conjunction of atomic formulae to a single atomic formula. 

Hence, propositional formula  

(P  Q  R)  (true  P) is a Horn formula but (P  Q  R  S) is not.  

Defining an LP program consists of declaring: 

 One goal (a.k.a. query) as a Horn clause hypothesis to prove with empty conclusions (i.e., of 

the form G1  …  GN  true) 

 Known facts as Horn clauses are axioms with empty premises ( i.e., of the form, true  

fact), 

 Known rules to derive the goal from the facts as Horn clauses with neither empty premises nor 

empty conclusion.  

Horn logic has been chosen as the knowledge representation language of LP for three main 

reasons. First, Horn logic provides a direct, legible, formal logical semantics to rule bases that 

modularly decompose knowledge into a set of simple rules of the form: 

 IF (premise1 holds) AND … AND (premiseN holds) THEN (conclusion holds). 

Second, proving the satisfiability of a Horn propositional logic formula has linear worst -case 

complexity whereas that of a non-Horn propositional formula is exponential. Third, proving the 

satisfiability of a Horn first-order logic formula (without tree equality constraints) can be fully 

automated through the repeated application of a single binary inference rule with a linear search 

strategy where the output of one inference is always half the input of the next one. This makes 

their proof very easy to understand. In contrast, efficiently proving non-Horn first-order logic 

formulae requires using several inference rules in subtle order. Understanding the resulting proofs 

thus requires some expertise in both logic and search strategies.   

Orthogonally to their Horn logic restriction, LP engines differ from FCFOL logic theorem provers 

and DL engines in another important way: the former make the Closed World Assumption (CWA), 

while the two latter makes the Open-World-Assumption (OWA). From the programmer’s 

perspective the CWA means that only known positive facts (i.e., Horn clauses of the form true  

fact) must be declared in the program as axioms. From the LP reasoning engine perspective, 

this means the application of an additional implicit inference rule, the CWA, that concludes that 

any goal that is neither declared as facts nor derivable from facts using declared rules can be 

inferred as being false.  

In contrast, under the OWA the programmer must explicitly declare as axioms not only all known 

positive facts, and all known rules with positive conclusions, but also all known negative facts and 

all known rules with negative conclusions of a given domain. As a result, the set of axioms is 

much larger. This is also counterintuitive to many programmers since database systems and 

object-oriented programming and modelling languages (e.g., Java and UML) make the CWA.  In 
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the absence of sufficient positive facts and rules and negative facts and rules to either prove or 

disprove the conjecture given as a goal, an OWA theorem prover does not conclude anything 

concerning the conjecture. However, an OWA theorem prover is guaranteed to make only logically 

sound derivations, even if the modeller has forgotten some fact or rule, whereas an LP engine 

may derive unsound conclusions through the CWA if the programmer has forgotten a positive fact 

or rule. But forgetting negative facts and rules is more frequent than forgetting positive ones.  

FCFOL theorem provers can be used for model checking tasks expressed in Linear Temporal 

Logic (LTL) because any LTL formula can be reformulated into a monadic CFOL formula, i.e., a 

formula which atomic formulas all have arity one. Proving the satisfiability of a propositional logic 

formula can be reformulated as a CSP over Boolean variables. SAT solvers can also be used for 

symbolic model checking by using the encoding of system state transitions and temporal formula 

over them as a conjunction of Boolean variables used by BDD model checkers. Modern SAT 

solvers in fact scale-up better than BDD solvers for large sub-classes of model checking tasks. 

They rely on intelligent global backtracking search algorithms such as CDBJ with unit clause 

learning to find an assignment of truth value to all variables that satisfy all constraints. Very 

complex SAT problem instances for which global search is not efficient enough may be solved by 

heuristic local search.  

Using SAT solvers to solve CSP in non-Boolean domains requires encoding variables from these 

domains as bit strings. For example, strings, integer and floats can be encoded by their ASCII 

binary code. This turns the SAT formula to prove very large. It thus does not scale -up to large 

non-Boolean CSP. Satisfiability Modulo Theories (SMT) solvers address this limitation by 

integrating SAT solvers with specialized solvers for non-Boolean domains. A SMT solver 

interleaves calls to the SAT solver and the non-Boolean solvers during its search for a solution. 

Those specialized solvers can be implemented either imperatively or logic -based. SMT solvers 

incorporating solvers for constraint theories representing operations over non-primitive data 

structures such as arrays, lists and trees can be used for model checking of software 

manipulating such structures, while generally using much less memory than model checkers 

based on explicit state space search, like BDD or SAT.  

 

Constraint Logic Programming (CLP) solvers are based on the same multi-solver integration 

design pattern as SMT solvers. The difference is that a CLP engine uses an LP engine as the 

basic solver to extend, instead of a SAT solver. A CLP solver is programmed declaratively as a 

set of CLP rules. They extend LP rules by allowing constraints from other theories than first -order 

atomic formula tree and list unification theories supported by an LP engine. During search, the 

CLP engine interleaves calls to the LP engine and to solvers for other theories such as finite 

enumerations, linear integer and real arithmetic and bit vector operations. An SMT solver 

incorporating a first-order atomic formula tree unification theory and a list unification theory will 

not be equivalent to an LP engine because the former reasons under OWA while the later reasons 

under CWA.  

 

6.2.2. Categorization of SPL verification task results 

Having categorized the properties of a SPL to verify and the automated reasoning engines to use 

such verification, we conclude our presentation of the characteristics to consider when 

comparatively evaluating SPL verification tools by categorizing the results that they can provide 

as output. It is shown in the class diagram of Figure 6.4. 
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Figure 6.4: Categorization of SPLE verification results 

 

An SPL verification task result cannot be limited to a simple Boolean variable value. More 

information must be returned to be helpful to SPL engineers for them to take actions in reaction to 

the verification result, such as writing qualification documentation or correcting the system design 

flaw or implementation bug revealed by the verification result.  

When the result is positive, i.e., when the reasoning engine has established that the property is 

verified, the more informative output is a formal proof that it is. For large SPL and complex 

properties, the automated proofs can be extremely long. In addition, automated reasoners often 

do not directly reason on the formalism that the engineers used to model the system and specify 

the property to verify. For example, BDD model checkers and SAT solvers encode states, state 

transitions, strings and numbers into bit vectors. A raw proof in terms of this binary encoding wi ll 

hardly be comprehensible by the engineers. Hence, the verification proof presented to the user is 

rarely a mere log of the inference steps executed by the reasoning engine. In general, it is an 

interactive data structure with extra information allowing the user to easily browse it, summarize it 

from various perspectives, zoom in and out of details and so forth. Generating such helpful proofs 

from the raw inference log of an automated reasoning engine is a human-computer interaction 

challenge.  

When the verification result is negative, i.e., when it was proven false there are three main 

categories of complementary information that can be returned by a SPL tool, each one providing a 

richer level of help to the SPL engineers than the previous one. The first level is to provide one or 

several counterexample artefacts violating a universal quantification property over an artefact 

class. The next level of helpful information is a diagnosis that identifies to deep root cause of the 

property violation. The final level is to provide a correction suggestion, i.e., a set of changes the 

artefacts diagnosed as the root causes of the property violation.  

In the area of PL verification, a key problem is that no class of constraint solver scales well on all 

classes of PL verification problems. A practical industrial strength PL verification service must 

thus include a variety of solvers allowing its user to choose the best one for any particular class of 

problem (or even automate the selection). Thus, various solvers will be included, like a CLP solver 

or an SMT solver and their performance on the PL verification use cases provided by industrial 

partners will be compared. Further, we will also evaluate soft-constraint optimization techniques 

such as multi-objective branch and bound and bucket elimination on PL optimization use cases. 
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It is important to also address key aspects that have so far each achieved only very little interest 

in the scientific community, but are very important from a practical and industrial perspective . 

These include: incremental analysis in order to minimize the effort and time required for 

verification of a software increment and identifying variability smells, i.e., cases which are not 

errors in a formal sense like inconsistencies, but may point to software correctness issues. 

 

6.3. Verification automation approaches 

6.3.1. Verification of variability model and configuration properties 

Defects in PLE are about undesirable situations, such as anomalies or inconsistencies, both in 

product line models (PLMs) and in their configuration processes. At the level of PLMs, these 

defects are usually introduced, involuntarily, when they are being designed due to the fact that it 

is a non-trivial activity: a single product line can represent billions of products and have thousands 

of elements that can be specified in the PLM. For instance, adding or removing relations can turn 

out the whole model inconsistent. That is why quality assurance of PLMs has recently been a 

prominent topic for researchers and practitioners in the context of product lines. Identification and 

correction of PLMs defects, is vital for efficient management and exploitation of the product line. 

Defects that are not identified or not corrected will inevitably spread to the products created from 

the product line, which can drastically diminish the benefits of the product line approach [Mazo 

2011]. Besides, product line modelling is an error-prone activity. Indeed, a product line 

specification represents not one, but an undefined collection of products that may even fulfil 

contradictory requirements [Lauenroth et al. 2010]. The aforementioned problems enforce the 

urgent need of early identification and correction of defects in the context of product lines.  This 

fact implies that identifying the causes of defects and supporting corrections is of paramount 

importance for assuring quality and getting the promised benefits of PLE. Even if the defects are 

identified, if they are not corrected, they will inevitably spread to the products created from the 

product line and negatively affect the evolution of the product line, which can drastically diminish 

the benefits of the product line.  

 

Proposing repairing alternatives for defects on product line models and their configurations 

consists in (i) proposing comprehensive explanations of the causes of these defects, and (ii) 

proposing mechanisms for handling these defects like repair the defect through removal, 

insertion, and adjustment of constraints, variables or variables’ domains or control the defect.  

 

There are in literature several related works that propose automatic identification of defects in 

product line models [Benavides et al. 2005], [Classen et al. 2010], [Salinesi and Mazo 2012], 

[Felfernig et al. 2012], [Noorian et al. 2011], [Rincon et al. 2015]. However, just some verification 

criteria of some modelling languages, and some types of explanations have been studied in a 

unified manner. For instance, [Benavides et al. 2005] propose a propositional logic-based 

approach to represent and verify some criteria, like void models and false optional features, on 

feature models [Classen et al. 2010]. There are some works like the ones of [Felfernig et al. 2012] 

that focus on identification of minimal correction subsets for constraint programs that cannot be 

simultaneously satisfied; i.e. for a single type of defect on PLMs known as void models. Other 

works, such as the one of [Noorian et al. 2011], use constraint satisfaction algorithms to identify 

some minimal correction subsets for three types of defects: void models (models with no 

products), dead features (features that can never be selected in a configuration process) and 

false optional features (features that are modeled as optional ones but are part of all the products 
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of the product line) in PLMs. And there are other works, like the ones of [Rincon et al. 2015], 

where not only defects on PLMs are identified, but also some explanations about the causes and 

the possible corrections of these defects are proposed for some defect types (e.g., void feature 

models). 

 

Regarding the verification of the conformance of product line models relative to their meta -

models, [Mazo et al. 2011] propose a conformance checking approach in which they transform 

PLMs expressed as feature models into constraint logic programs and use a collection of nine 

rules to check the conformance of feature models with respects to the feature language meta -

model. However, even if the approach correctly detects non-conformity defects and detects the 

cause of these defects, the approach does not consider other languages than feature models, 

neither the explanation about why these defects occur or how to correct them, nor the defects that 

can appear in configurations of product line models. 

 

Concerning configuration verification, using the AHEAD Tool Suite, [Batory 2005] relies on 

propositional logic SAT solving.  When a user selects and unselects features, the PLM at hand is 

automatically evaluated using SAT solvers and logic truth maintenance system algorithms. This 

evaluation determines whether the selection made by the user causes inconsistencies between 

the configuration and the PLM. [Sun et al. 2005] use the Alloy Analyzer, a formal method 

workbench relying on SAT solving, to verify whether a specific configuration is consistent (with 

relation to the corresponding PLM) or not, to extract the parts of the PLM that cause the 

inconsistency, and to provide guidance to improve/fix the configuration.  [Osman et al. 2009] uses 

first order logic to represent PLMs and to define a set of rules based on constraint dependencies. 

When users select features of the PLM, this approach automatically validates the rules using 

Prolog and it detects the rules that were broken and the characteristics selected that break the 

rules. [Wang et al. 2007] translate PLMs and their constraints into the ontology language OWL 

DL. Using FaCT++ as reasoning engine, they automatically determine whether a given 

configuration, represented in OWL DL is consistent with the corresponding PLM.  [White et al. 

2010] present an approach that receives as input an inconsistent configuration and a set of 

constraints of a PLM, and they transform this input into a constraint satisfaction problem (CSP). 

Then, they use a CSP solver to obtain a minimal set of features to change, in order to make the 

inconsistent configuration consistent. These works focus on identifying inconsistencies in 

configurations created from PLMs, but without giving any explanation about the causes and 

possible corrections of these defects to users. 

 

6.3.2. Verification of SPL requirements properties 

For most systems engineering companies a major challenge is to manage and guarantee the 

quality of the system requirement specifications to deliver the final products with the desired 

quality. 

The Knowledge-Based Requirements Engineering approach [Góngora et al. 2017] has gained 

ground to address this challenge. This is achieved through the use of a domain ontology to 

provide sources of knowledge for the different stages needed to check and enhance the quality of  

a requirements specification. An ontology for Requirements Engineering purposes is formed by 

the following layers, each layer feeds from the inner ones as shown in Figure 6.5: 

 Vocabulary Layer: Valid terms, forbidden terms, other NL terms, Syntactic clustering types, 

everything as concepts. 
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 Conceptual model Layer: Relationships among concepts (hierarchies, associations, 

synonyms…) as well as semantic clusters and relationship types  

 Patterns Layer: Grammars or sequential restrictions to identify different requirements 

typologies. Aimed to producing formal representation out of requirements statements. 

 Patterns Formalization Layer: Definition of the formal representation to formalize 

requirements statements by pattern matching. 

 Inference Rules Layer: For decision making (e.g. consistency, completeness) 

 
With this structure, there are several sources of knowledge that an ontology is capable to provide 

for quality checking and improvement, for example: 

 Lexical analysis: related to the content of the vocabulary layer of the ontology in terms of 

valid vs invalid words, domain concepts… 

 Syntactic rules: to identify the proper tense or voice in the requirements. 

 Boilerplates: to identify the agreed upon structure for every different type of requirement. 

 Patterns: to provide the proper formalization for a requirement once it has been matched with 

a boilerplate. 

 

These sources of knowledge are used to assess the quality of the requirement specification based 

on the Correctness-Consistency-Completeness (CCC) approach. This approach is based on the 

following sub-items as illustrated in Figure 6.6: 

 Correctness: mainly from an individual point of view, requirement by requirement as 

isolated chunks of information. Thus, each requirement is analysed for non-ambiguity, 

uniqueness, verifiability, multiple needs in the same requirement…  

 Consistency: looking for non-consistent information among a set of requirements 

 Completeness: trying to answer the question: are all the needs properly addressed in the 

requirements specification? 

Figure 6.5: Ontology structure the SKB - System Knowledge Base 
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Figure 6.6: CCC appliance (e.g., INCOSE Guide for Writing Requirements) 

 

This approach can be applied to check that the analysed requirements specification quality is 

guaranteed regarding to any guideline or standard chosen (e.g. , tailoring for the INCOSE Guide 

for Writing Requirements). 

  

The application of the Knowledge-Based Requirements Engineering to the SPL Verification arises 

using the SPL technology at the Systems Engineering scope. This responds to the need of 

checking and enhancing the quality of the system requirement specification. Also, keeping in mind 

the GIGO concept (Garbage In, Garbage Out), the Knowledge-Based Requirement Engineering 

has an application to the SPL extraction in order to guarantee that the quality of the requirement 

specification samples, that shall be used to extract the commonality and variability, is the proper 

one. 

 

6.3.3. Verification of SPL functional properties 

This section describes state-of-the-art tools for verifying SPL functional properties, i.e. properties 

describing what a system does, abstracting from how it does it. For example, that a server always 

eventually sends a response to every request would be classified as a functional property. In 

contrast, a non-functional property could specify how fast the response will be served (within what 

time bounds), or how much memory or energy this is allowed to consume. The rest of this section 

will focus on actual tools designed to be used for verifying SPL properties and not on approaches 

that describe smaller extensions of already established verification tools not explicitly designed for 

verifying SPLs 

The work in [Thüm et al. 2014] describes an approach for variability-aware verification of Java 

programs along with a compatible tool called FeatureIDE. This tool is an extension of another tool 

called FeatureHouse [Apel et al. 2013] that supports the composition of Java and C source code 

unit assets realizing features of a variability model. FeatureIDE extends FeatureHouse with the 

ability to verify properties with respect to variability using theorem proving with KeY [Beckert et al. 

2007] and model checking with Java PathFinder (JPF) [Havelund and Pressburger 2000]. KeY 

considers dynamic logic, an extension of classical propositional and predicate logic with e.g. 

operators expressing modality, and supports both interactive (i.e. by hand) and fully automated 

https://en.wikipedia.org/wiki/Propositional_logic
https://en.wikipedia.org/wiki/Predicate_logic
https://en.wikipedia.org/wiki/Linguistic_modality
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correctness proofs. JPF is an extensional state space search model checker. A tool that further 

builds on FeatureIDE is SPLverifier, which is described in [Apel et al. 2011b]. 

 

ProVeLines, described in [Cordy et al. 2013], is another variability-aware verification tool. The 

verification approach is based on Feature Transition Systems (FTS) [Classen et al. 2010] a 

variability-aware extension of transition systems that represents the behaviour of all the products 

in a single compact model. The tool allows verification of such models against properties 

expressed in LTL. In addition to LTL, ProVeLines also allows to represent and check feature 

formulae expressed as: binary decision diagrams (BDDs), boolean formula in conjunctive normal 

form (to be solved by a SAT solver), and abstract syntax tree. Notably, in contrast to  [Thüm et al. 

2014c] and [Apel et al 2011], this tool verifies properties of an abstract model, rather than 

software code. This means that the verification approach and tool are not limited to a certain 

programming language, and to verifying software since a considered FTS can represent HW and 

also an entire system.   

 

Another approach that uses FTS to represent the behaviour of a family of products is presented in 

[Beek et al. 2017]. Unlike in [Cordy et al. 2013], the properties to be verified over the FTS are 

specified in feature µ-calculus [Beek et al. 2016], which embeds feature expressions into the logic 

thus allowing the specification of properties that should hold for specific products or a subset of all 

products. The approach is supported by the general-purpose toolset mCRL2. 

Work in [Beek et al. 2012] introduces the VMC tool for specification and ver ification of families of 

products represented as Modal Transition Systems (MTS). MTS allow expressing possible and 

required transitions while additional transition constraints, e.g. alternative or excludes, are done 

using an action-based branching-time temporal logic MHML [Asirelli et al. 2010]. The MHML can 

also be used to specify the properties to be verified over the MTS which removes the need to use 

a separate logic for property specification. 

  

The work in [Schaefer et al. 2011] addresses the problem of model checking all products of a 

software product line (SPL) against temporal properties specified in a fragment of LTL. Scalability 

of verification is achieved by exploiting hierarchical variability models (HVM) of the SPL to 

decompose the temporal property of the SPL into properties of the variation points of the HVM. 

This allows compositional verification to be applied. The work extends and adapts ProMoVer, a 

previously developed compositional model checker for program models extracted from Java 

bytecode. 

 

6.3.4. Verification of SPL safety properties 

In accordance with safety standards such as ISO 26262 and IEC 61508, a safety property of a 

system is a property that mitigates or prevents hazards, i.e. top-level system failures that 

constitute potential sources of physical injury or damage to the health of persons/environment. 

Such standards advocate that the requirements of a system, i.e. intended system properties, are 

structured in a hierarchical manner, where top-level requirements (goals) are directly linked to 

relevant hazards and lower-level requirements are linked between hierarchical levels. The 

intended relation between requirement levels is that of refinement, i.e. that the fulfilment of higher -

level requirements can be inferred from fulfilment of lower-level requirements. A top-level 

requirement is a safety requirement if it is linked to a hazard. A lower -level requirement is a safety 

requirement if it is indirectly or directly linked to a top-level safety requirement. Thus, whether a 

property is safety-related or not cannot be distinguished by its formal representation, but rather 
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how it traces to other properties. This also means that whether a property is safety-related or not 

has no direct influence on how such a property is formally verified. 

 

6.3.5. Verification of SPL performance properties 

In the area of system design, system simulation has been established as a key method for the 

validation and verification of functional and non-functional requirements. System simulation is 

utilized to economize difficult, time consuming, or impossible analyses based on physical 

prototypes. Additionally, it tackles the system verification problem from another perspective using 

an instance-oriented verification approach to verify a single product variant of the SPL. In contrast 

to formal verification, system simulation is not inherently complete but always depends on 

simulation models.  

 

Simulations models (also known as virtual prototypes (VPs)) are the basis for simulation-based 

system verification. In contrast to real physical prototypes that can be seen as early product 

variants of the SPL, VPs provide better insights into the system under test and enable a better 

controllability during verification and validation tasks.  The fields of applications of VPs cover the 

well-established register transfer level (RTL) and gate level simulations used for functional 

verification of integrated circuits (ICs). Important representatives are VHDL [IEEE1364] and 

Verilog [IEEE1076]. Another approach that gains more and more importance over the last 

decades is electronic system level (ESL) simulation. This simulation model often contains both the 

digital as well as the analog system parts. The focus is on higher abstraction levels and a model 

of the entire system, rather than isolated ICs. Instead of pure hardware description languages, 

high-level languages such as C, C++ or MATLAB are used. Additionally, there are languages that 

originate from hardware specification that evolved into ESL languages. A well know example is 

the language SystemC that provides semantic similarities to VHDL but evolved to an ESL 

language by introducing concepts of transaction level modelling (TLM). High-level modelling 

languages are often used for software development. It is possible to use actual software 

prototypes for the creation of the VP. This reduces the effort to create the VP, while also 

increasing the accuracy of the system simulation. Such VPs can be used to verify functional, 

timing or power requirements as presented in [Zimmermann et al. 2012]. 

 

The simulation is composed of the Design Under Test (DUT) and the related test bench. A virtual 

prototype based verification run covers mainly a single system instance (product variant) and a 

dedicated stimulus. Therefore, only a finite subset of all possib le inputs, system states and 

system configuration can be tested. The proof of the system correctness is therefore incomplete 

and only proof of the presence of errors is possible but not its absence. Repeated simulation runs 

with multiple stimuli and system configurations or random deviations are executed to reach a 

general assessment of the system. Simulation models often provide a modular structure to foster 

the reuse of different simulation parts. Another aspect is the use of constraint -based random 

stimulus generation to test the DUT with different inputs. Often, coverage analysis is used to get a 

quantitative measure about the completeness of the executed analyses. One metric for example, 

measures the amount of executed functionality to determine the quality of the input stimuli and 

therefore the test bench. 

 

The event-driven simulation language SystemC enables the modelling of complex, electronic 

systems at different levels of abstraction. SystemC is a class library for C++, which enables the 

modelling of concurrent hardware and software. SystemC extends C++ with mechanisms to model 

synchronization, concurrency and inter-process communication. A core concept is modelling of 



61 

Page 61 of 109                               

 

closed simulation entities (sc_module) and a hierarchical structure of these. The TLM extension 

fosters the modelling of communication without the specific protocol or hardware implementation. 

By providing a standardized interface, it increases the interoperability of simulation models. 

SystemC offers the possibility to integrate realization artefacts such as software prototypes that 

are based on C/C++ or compatible programming languages. Another benefit is the object -oriented 

structure that easily enables the creation of simulation libraries.  

 

In the context of Product Line Verification, virtual prototypes (abstraction models) provide a 

promising approach, because they enable the verification and comparison of different system 

instances (product variants). Using SystemC as a modelling language, it is possible to support 

different abstraction models to verify software and hardware properties of the whole system. In 

accordance to the models, functional, and non-functional requirements can be verified. Therefore, 

it is, besides functional verification, best suited for performance verification, such as response 

time or bus load verification. The main challenge of this methodology is the handling of the 

variability through the generation of the DUT instance and the stimulus generation.   

 

Virtual prototypes provide a good synergy with the formal verification approach described before. 

The basis of formal verification is a variability model specified with UML, SysML or other 

languages. Additionally, there are SIS Component Artefacts specified e.g., in a programming 

language such as C/C++ which are the realization artefacts and therefore the models used for 

formal verification correspond to these artefacts. These SIS Component Artefacts make up a 

simulation library that is used to generate the virtual prototype. By using this configurable set of 

artefacts to form a simulation library the correspondence between the realization artefacts and the 

simulation model is guaranteed. Using the variability model to assemble and parameterise the VP 

guarantees maximum reuse of existing models. The basis for virtual prototype-based verification 

differs from formal verification, but by reusing existing models for configuration, a good synergy is 

created. Similar to formal verification, the goal of virtual prototypes is to verify different SPL 

properties. Instead of using an automated reasoning engine, the virtual prototype is used and the 

verification is always based on dedicated execution traces. While formal verification directly works 

on system models/abstractions, the virtual prototype is used to evaluate different application 

scenarios/instances and verification is done on these traces. Execution traces of a virtual 

prototype run are verified using formal methods such as model checking. Another approach is to 

use LTL assertions to verify the expected behaviour during virtual prototype simulation (online 

verification).  

 

6.3.6. Fault / complexity analysis of SPLs: Metrics, configuration mismatches, formal 

concept analysis 

Several analysis approaches have been developed to measure the complexity of SPLs or to 

detect faults based on family-based [Thüm et al. 2012] analysis techniques. Metrics for software 

product lines can be distinguished into metrics for measuring the complexity of variability models 

and metrics for measuring the complexity of code and will be disgusted below in detail. Family-

based fault detection will be discussed in the end of this section. 

Metrics on variability models are based on the measurement of features, constraints, depth of tree 

[Bagheri et al. 2011, Mefteh et al. 2015], number of valid configurations [Bagheri et al. 2011, 

Mann et al. 2011], model complexity, and ratios between those elements. Besides the 

measurement of the total number of features [Apel et al. 2011, Bagheri et al. 2011, Berger and 

Guo 2014, Maâzoun et al. 2016, Mann et al. 2011, Mefteh et al. 2015, Nadi et al. 2014, Passos et 

al. 2011] in a feature model, there are also metrics to measure only the top level and leaf features 
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[Bagheri et al. 2011, Berger ang Guo 2014, Maâzoun et al. 2016, Mefteh et al. 2015], the number 

of configurable features [Leitner et al. 2012, Mann et al. 2011], features involved in cross -tree 

constraints [Sánchez et al. 2014], the number of independent configurable features [Mann et al. 

2011], sometimes referred to as atomic sets [Zhang et al. 2004], or the number of variation points 

in a feature model [Mann et al. 2011, Sánchez et al. 2014]. Typed configuration languages offer 

the opportunity to measure distinct values for features of a certain type [Berger and Guo 2014], 

e.g., Boolean vs. Numeric features. Besides the measurement of the total number of cross-tree 

constraints [Berger and Guo 2014, Maâzoun et al. 2016, Passos et al. 2011], there exist 

measures based on feature groups [Berger and Guo 2014] or number of constraints by 

expressiveness [Passos et al. 2011]. Complexity of feature models are typically defined through 

adoption of classical cyclomatic complexity metric to feature models [Bagheri et al. 2011, 

Maâzoun et al. 2016, Mefteh et al. 2015, Sánchez et al. 2014], cross-tree constraint ratios 

[Bagheri et al. 2011, Berger and Guo 2014, Sánchez et al. 2014], the connection density of 

features [Bagheri et al. 2011, Maâzoun et al. 2016, Mefteh et al. 2015, Sánchez et al. 2014], or 

the ratio of optional features [Bagheri et al. 2011, Maâzoun et al. 2016, Mann et al. 2011, Mefteh 

et al. 2015]. Textual configuration languages offer additionally the opportunity to measure the ratio 

of typed or attributed features [Berger and Guo 2014]. However, while there exist already a variety 

of metrics to measure characteristics of complete variability models, there exist only very few 

metrics to measure characteristics of single features [Mann et al. 2011, Sánchez et al. 2014].  

In the context of SPLs, code metrics must consider variability implementation mechanisms in 

order to operate on the complete platform instead of single instances only. Different metrics have 

been developed, which consider variability. Basic metrics are designed to measure size aspects 

of the implementation. These are lines of feature code [Bagheri et al. 2011, Couto et al. 2011, 

Hunsen et al. 2016, Liebig et al. 2010, Zhang et al. 2012, Zhang et al. 2013, Lopez-Herrejon et al. 

2008], while other metrics are specifically designed for the compositional-based approach of 

feature-oriented programming [Abílio et al. 2016, Abílio et al. 2015, Macia et al. 2010]. 

 

Even if there are a lot of variability-aware metrics designed and used to measure artefacts of 

software product lines, only few of them have been evaluated with respect to their usefulness fo r 

characterizing qualitative characteristics of an implementation. Most studies combined several 

metrics to detect code smells in feature-oriented code [Abílio et al. 2015, Macia et al. 2010, Vale 

et al. 2015, Vale et al. 2015b] or analyse whether different metrics measure independent 

characteristics [Apel et al. 2011, Bagheri et al. 2011, Berger and Guo 2014, Liebig et al. 2010]. 

Bagheri and Gasevic study the ability of metrics models to measure the maintainability of feature 

models [Bagheri et al. 2011]. Sánchez et al. use metrics on feature models for test case 

prioritization while testing with sample products [Sánchez et al. 2014]. Finally, we are aware of 

only one study, which uses variability-aware code metrics to study the correlation between 

variability and vulnerabilities in software systems [Liebig et al. 2010]. Even if first studies have 

shown the potential of metrics for asset verification in some use cases, there is more research 

needed to facilitate useful usage for practitioners and industry. 

 

Family-based approaches can be used complementary to metrics on software product line assets 

to detect failures, which may only exist in certain products. Prominent approaches are the 

analysis of dead code and unused features [Tartler et al. 2011], variabi lity-aware type checking 

and control-flow analysis [Kästner et al. 2012], the detection of configuration mismatches [El -

Sharkawy et al. 2017], or formal concept analysis [Lüdemann et al. 2016]. These techniques often 

combine the information from the feature model with variability information from code assets for 

the early detection of failures. However, especially when working with legacy systems, a feature 

model is not always explicitly available. 
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6.3.7. Evolutionary analysis 

Approaches for evolutionary SPL analysis/verification should focus, in particular, on the changes 

introduced to a SPL. For example, these changes can be related to the variability model, the 

source code, the build process, or any combination of them. Some approaches introduce 

concepts which partially address this issue: 

 For efficient feature model analysis in evolving SPLs, Schröter et al propose in [Schroeter 

et al. 2016] feature model interfaces, which only contain relevant features for a 

composition of two feature models. As the number of relevant features in an interface is 

typically smaller than in the original feature model, the effort for verifying the composed 

feature model can be reduced. In particular, if a change does not affect the features of an 

interface, there is no need to re-verify the composed feature model. Nieke et al. introduce 

in [Nieke et al. 2016] their concept of Temporal Feature Models (TFMs) and 

corresponding evolution operations to avoid changes, which will break specific 

configurations of selected features. Further, Botterweck et al. discuss in [Botterweck 2009] 

their EvoFM approach as a basis for analysing the impact of evolution on the variability 

model. While all three approaches focus on feature models, which typically consist of pure 

Boolean variability, other approaches might aim at such support for variability models of 

higher expressiveness, e.g. including numerical values and operations in constraints. 

 Ribeiro et al. present in [Ribeiro et al. 2011] an approach for the automatic impact 

detection of feature changes. We share the intent to use change information reengineered 

from code with information derived from the variability model to aid in the correct evolution 

of product lines. However, the authors mainly focus on code and code dependencies while 

the analysis of the underlying variability model is out of scope. Further, this approach 

relies on the application of emergent interfaces [Ribeiro et al. 2010], which limits the 

approach to SPLs supporting this concept. 

 The combined analysis of the impact of feature changes is the subject to the work by 

Ziegler et al. [Ziegler et al. 2016] and Tartler et al. [Tartler et al. 2014]. The former derives 

traceability links among configuration options in the variability model and the code assets. 

Their objective is to identify the affected source code files when changing an option in the 

variability model. The latter identifies all modified files of a SPL patch and derives a set of 

configurations, which have to be checked for validity of these modifications. While the 

derivation of the impact of arbitrary changes to SPL assets is important, the approach by 

Ziegler et al. targets the Linux kernel with its specific characteristics. Tartler et al. require 

the availability of a build system to check if affected configurations still yield the desired 

products. 

 

The individual capabilities of the concepts introduced above form a basis for the development of 

an integrated and comprehensive evolutionary SPL analysis approach in REVaMP². We aim at 

reusing, combining and extending these concepts for the requirements imposed by the project 

context. 
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6.4. Open challenges in product line verification 

In the area of PL verification, a key problem is that no class of constraint solver scales well on all 

classes of PL verification problems. A practical industrial strength PL verification service must 

thus include a variety of solvers allowing its user to choose the best one for any particular class of 

problem (or even automate the selection). Thus, various solvers should be included, like a CLP 

solver or an SMT solver and their performance on the PL verification use cases provided by 

industrial partners should be compared. We might be inspired by the Betty framework [Segura et 

al. 2012], Betty is a framework supporting the benchmarking and testing on the analyses of 

feature models and a similar benchmarking frameworks might be provided for SPL verification 

tasks. Further, we should also evaluate soft constraint optimization techniques such as multi -

objective branch and bound and bucket elimination on PL optimization use cases.  

Some verification aspects that have so far each achieved only very little interest in the scientific 

community, but are very important from a practical and industr ial perspective. These include: 

incremental analysis in order to minimize the effort and time required for verification of a software 

increment and identifying variability smells, i.e., cases which are not errors in a formal sense like 

inconsistencies, but may point to software (configuration) issues. For some examples of the initial 

attempts to deal with these cases, we reference to El-Sharkawy et al. 2017 [El-Sharkawy et al. 

2017]. 
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7. Tool integration 

7.1. Introduction 

Tool integration is an ongoing topic for model-based system development since the late 80s. 

According to Wassermann et al. [Wassermann 1990] five dimensions are described that need to 

be addressed for tool integration. Table 7.1 summarizes these dimensions. 

 

Integration Dimension Description 

Platform Integration A common framework and abstraction layer is 

needed in order to provide network or operating 

system transparency. 

Data Integration Data exchange between different tools or the 

definition of relationships among data objects 

produced by different tools has to be enabled and 

ensured. 

Presentation Integration To provide a common look and feel the same 

presentational elements have to be used, regardless 

of the concrete tool functionality. 

Control Integration This kind of integration allows coordinating the 

control flow between tools. It is also the ability of 

tools to perform notifications to other tools as well as 

to run other tools. 

Process Integration Process integration is concerned with the 

orchestration of the various activities and the 

coordination of the interaction with the humans 

executing the activities within the processes. 

Table 7.1: Integration Dimensions 

A general architecture addressing the various aspects of tool integration is shown in  Figure 7.1. 

 

Figure 7.1: Toaster Model [NIST 1993] 
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The toaster model introduces different types of services to addresses tool integration aspects: 

 OS Services, for Platform integration 

 Repository Services, Data integration 

 User-Interface Services, for Presentation integration 

 Communication Services, for Control and Process integration 

 

7.2. Characteristics to comparatively evaluate Tool Integration approaches 

Type: The first characteristic to compare tool integration approaches is to determine the type of 

the approach. 

 

Integration Dimension: Which kind of integration according to Wassermann et al. is addressed 

by the Methodology or Tool. 

 

Implementation: Check whether there are any restrictions regarding the implementation of an 

integration, e.g., the implementation language (C/C++, C#, Java, etc.). 

 

Core integration concept: How are new tools and services integrated in a tool-chain and how 

can existing tools and services be maintained or exchanged.  

 

Data exchange concept: How does the data exchange concept look like. 

 Internal model(s): each tool to be integrated needs to conform to the exact elements of that 

models 

 Meta-Model: each tool to be integrated needs to refine (some of) the elements of that model  

 

Restrictions/Limitations: What are the boundaries of instantiating the integration approach or 

applying the integration tool? 

 

7.3. Tool Integration approaches 

In the context of data and presentation integration for systems engineering process, it is 

necessary to provide the proper mechanisms to: 1) represent under a common and shared data 

model any piece of knowledge, and 2) provide advanced retrieval mechanisms elevating the 

meaning of information resources from text-based descriptions to concept-based ones. 

7.3.1. Generic Tool Integration standards 

7.3.1.1. OSLC  

In the context of software and system artefacts reuse, the Open Services for Lifecycle 

Collaboration (OSLC) initiative [Ryman et al. 2013] is a joint effort between academia and industry 

to boost data sharing and interoperability among applications by applying the Linked Data 

principles [Bizer et al. 2009]: “1) Use URIs as names for things. 2) Use HTTP URIs so that people 

can look up those names. 3) When someone looks up a URI, provide useful information, using the 

standards (RDF*, SPARQL) and 4) Include links to other URIs, so that they can d iscover more 

things”.  Led by the OASIS OSLC working group, OSLC is based on a set of specifications that 

take advantage of web-based standards such as the Resource Description Framework (RDF) 

(Hayes 2004) and the Hypertext Transfer Protocol (HTTP) to share data under a common data 
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model (RDF) and protocol (HTTP). Every OSLC specification defines a shape for a particular type 

of resource. For instance, requirements, changes, test cases, models (the OSLC-MBSE 

specification Model-Based Systems Engineering by the Object Management Group) or estimation 

and measurement metrics, to name a few, have already a defined shape (also called OSLC 

Resource Shape).  

 

Thus, tools for supporting Application Life-cycle Management (ALM) or Product Life-cycle 

Management (PLM) have now an agreement on what data must be shared, and how. In the 

knowledge management framework, the Assets Management and the Tracked Resource Set are 

the most convenient specifications for the purpose of managing artefacts. However, there are 

many artefacts generated during the development lifecycle, which may not fit to existing shapes or 

standard vocabularies. Simulation models, business rules or phys ical circuits are examples of 

potential artefacts whose OSLC resource shape is not defined yet. Furthermore, some common 

and useful services such as indexing, naming, retrieval, quality assessment, visualization or 

traceability must be provided by all tool vendors, creating a tangled environment of query 

languages, interfaces, formats and protocols. Figure 7.2 gives an overview about OSLC. 

 

 

Figure 7.2: OSLC Overview 

 

Therefore, one of the current trends in systems and software development lies in boosting 

interoperability and collaboration through the sharing of existing artefacts under common data 

models, formats and protocols. In this context, OSLC is becoming a collaborative software 

ecosystem [Manikas et al. 2013] for SPLs through the definition of data shapes that serve as a 

contract to get access to information resources through HTTP-based services.  

 

In particular, the Representational State Transfer (REST) software architecture style is used to 

manage information resources that are publicly represented and exchanged in RDF. Obviously, 

OSLC represents a big step towards the integration and interoperability between the agents 

involved in the development lifecycle.  

 

However, RDF has also been demonstrated [Powers 2003] to contain some restrictions to 

represent certain knowledge features such as N-ary relationships [Noy 2006], practical issues 

dealing with reification [Nguyen 2014] and blank nodes [Mallea et al. 2014]. On the other hand, 

some common services such as indexing, retrieval or quality assessment of any kind of 

information resource are restricted to the internal storage and the query capabilities offered by 

each particular tool (usually a SPARQL interface). 
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7.3.1.2. Semantic Technologies and Semantic Web 

The Semantic Web, coined by Tim Berners-Lee [Berners-Lee et al. 2001] proposed a commitment 

from both academia and industrial areas with the objective of elevating the abstraction level of 

web information resources.  The Resource Description Framework (RDF) [Hayes 2004], based on 

a graph model, and the Web Ontology Language (OWL) [Hitzler et al. 2009], designed to 

formalize, model, and share domain knowledge, are the two main ingredients to reuse information 

and data in a knowledge-based realm. Thus, data, information and knowledge can be easily 

represented, shared, exchanged and linked to other knowledge bases through the use of Uniform 

Resource Identifiers (URIs), more specifically HTTP-URIs. As a practical view of the Semantic 

Web, the Linked Data initiative emerges to create a large and distributed database on the Web by 

reusing existing and standard protocols. In order to reach this major objective, the publication of 

information and data under a common data model (RDF) with a specific formal query language 

(SPARQL) [Bizer and Cyganiak 2009, Hogan et al. 2012] provides the required building blocks to 

turn the Web of Documents into a real database or Web of Data. In this context, a large body of 

work can be found in different domains such as Geography, Bibliography, e -Government, e-

Tourism or e-Health, all of them having common needs, such as: interoperability among tools, 

different schemes or data models, or cross-cutting services (index and search).  

 

On the other hand, in recent times we have seen the deployment of service-oriented computing 

[Krafzig et al. 2005] as a new environment to enable the reuse of software in organizations 

(process integration).  In general, a service oriented architecture comprises an infrastructure (e.g. 

Enterprise Service Bus) in which services (e.g. software as web services) are deployed under a 

certain set of policies. A composite application is then implemented by means of a coordinated 

collection of invocations (e.g. Business Process Execution Language). In this context, Enterprise 

Integration Patterns (EAI) [Hohpe and Woolf 2004] have played a key role to ease the 

collaboration among services. Furthermore, existing W3C recommendations such as the Web 

Services Description Language (WSDL)1 or the Simple Object Access Protocol (SOAP)2 have 

improved interoperability through a clear definition of the input-/output-interface of a service and 

communication protocol.  

 

In order to improve the capabilities of this type of web services, semantics was applied to ease 

some tasks such as discovery, selection, composition, orchestration, grounding and automatic 

invocation of web services. The Web Services Modelling Ontology (WSMO) [Roman et al. 2005] 

represented the main effort to define and to implement semantic web services using formal 

ontologies. OWL-S (Semantic Markup for Web Services), SA-WSDL (Semantic Annotations for 

WSDL) or WSDL-S (Web Service Semantics) were other approaches to annotate web services, 

by merging ontologies and standardizing data models in the web services realm.  

 

However, these semantics-based efforts did not reach the expected outcome of automatically 

enabling enterprise services collaboration. Formal ontologies were used to model data and logical 

restrictions that were validated by formal reasoning methods implemented in semantic web 

reasoners. Although this approach was theoretically very promising since it included consistency 

checking or type inference, the reality proved that the supreme effort to create formal ontologies 

in different domains, to make them interoperable at a semantic level, and to provide functionalities 

                                                      
1 https://www.w3.org/TR/wsdl/   
2 https://www.w3.org/TR/soap/  

https://www.w3.org/TR/wsdl/
https://www.w3.org/TR/soap/
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such as data validation, was not efficient. More specifically, it was demonstrated [Rodríguez et al. 

2012] that, in most of cases, data validation, data lifting and data lowering processes were 

enough to provide an interoperable environment.  

 

That is why the approach based on the W3C recommendations, WSDL+SOAP, fulfilled most of 

these requirements with a huge industrial and technological support. However, the lack of 

agreement on the schemas to be shared (any service provider offered their own schema) and the 

use of a restricted data model such as XML was still present with the result of preventing a 

paradigm shift.  

 

In the specific case of software engineering and reuse, the application of semantics -based 

technologies has also been focused on the creation of OWL ontologies [Castañeda et al. 2010]  to 

support requirements elicitation, and to model development processes [Kossmann et al. 2008] or 

Model Driven Architecture [Gaševic et al. 2006], to name just a few. These works leverage 

ontologies to formally design a meta-model and to meet the requirements of knowledge-based 

development processes. 

 

Taking advantage of the Linked Data principles and Web standards and protocols, the OSLC 

effort (described in previous subsection) emerges to create a family of web-based specifications 

for products, services and tools that support all the phases of the software lifecycle. To do so, 

OSLC defines several specifications based on the aforementioned Linked Data principles.  Similar 

to OSLC, Agosense Symphony3 offers an integration platform for application and product lifecycle 

management, covering all stages and processes in a development lifecycle. It represents a 

service-based solution widely used in the industry due to the possibility of connecting existing 

tools. WSO24 is another middleware platform for service-oriented computing based on standards 

for business process modelling and management. However, it does not offer standard input-

/output-interfaces based on lightweight data models and software architectures such as RDF and 

REST. Other industry platforms such as PTC Integrity5, Siemens Team Center6, IBM Jazz 

Platform7 or HP PLM8 are now offering OSLC interfaces for different types of artefacts. 

 

However, data exchange does not necessarily imply knowledge management. From service 

providers to data items, a knowledge strategy is required to really represent, store and search 

software artefacts metadata and contents. In this light, the OSLC initiative is currently following 

this approach, having impact on the main players of the software and systems industry. 

Nevertheless, it only covers a restricted type of artefacts and some cross-cutting and basic 

services for reuse, such as indexing or retrieval, must be provided by all third -parties.  

 

Lastly, a system and software knowledge repository to implement a real knowledge strategy for 

software reuse should be based on the following three requirements:  

1. A language for representing any artefact’s metadata and contents. 

2. A system for indexing and retrieval. 

3. A standard input/output interface (data shape+REST+RDF) to share and exchange 

artefact metadata and contents. 

                                                      
3 http://www.agosense.com/english/products/agosensesymphony/agosensesymphony  
4 http://wso2.com/  
5 http://www.ptc.com/application-lifecycle-management/integrity  
6 http://www.plm.automation.siemens.com/en_us/products/teamcenter/  
7 https://jazz.net/  
8 http://www8.hp.com/us/en/business-services/it-services.html?compURI=1830395  

http://www.agosense.com/english/products/agosensesymphony/agosensesymphony
http://wso2.com/
http://www.ptc.com/application-lifecycle-management/integrity
http://www.plm.automation.siemens.com/en_us/products/teamcenter/
https://jazz.net/
http://www8.hp.com/us/en/business-services/it-services.html?compURI=1830395
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7.3.1.3. Formal Ontologies Vs Data Shapes 

In the early days of the Semantic Web, formal ontologies [Benjamins et al. 1998] designed in 

RDFS (Resource Description Framework Schema) or OWL were the key technologies to model 

and share knowledge. From upper ontologies such as DOLCE (Descriptive Ontology for Linguistic 

and Cognitive Engineering) or SUMO (The Suggested Upper Merged Ontology) to specific 

vocabularies such FOAF (Friend Of A Friend) or SKOS (Simple Knowledge Organization System), 

the process to share knowledge consisted in designing a formal ontology for a particular domain 

and populate data (instances) for that domain. Although the complete reuse of existing ontologies 

was expected, the reality demonstrated that every party willing to share knowledge and data 

would create its own ontologies. Thus, the main idea behind web ontologies was partially broken 

since just a few concepts were really reused.   

 

Once the Linked Data initiative emerged to unleash the power of  existing databases, a huge part 

of the Semantic Web community realized that a formal ontology was not completely necessary to 

exchange data and knowledge. Taking into account that ontologies were still present, these 

efforts were based on validating data consistency [Baclawski et al. 2002] through the execution of 

procedures such as: 1) reasoning processes to check consistency,  and 2) rules, mainly in SWRL 

(Semantic Web Rule Language) or SPARQL [Bizer and Cyganiak 2009, Hogan et al. 2012].  

These procedures are not recommended, due to performance issues, when a huge number of 

instances are available. As a new evolution, then, the community realized that ontology-based 

reasoning was not the most appropriate method for data validation.  

 

That is why in recent times the RDF community has seen an emerging interest to manage and 

validate RDF datasets according to different shapes and schemes, see Table 7.1. New 

specifications and methods for data validation are being designed to turn reasoning-based 

validation into a kind of grammar-based validation. These methods take inspiration from existing 

approaches in other contexts such as DTD (Document Type Definition), XML-Schema or Relax 

NG (REgular LAnguage for XML Next Generation) for XML, or DDL (Data Definition Language) for 

SQL (Structured Query Language). 

 

The W3C launched (2014) the RDF Data Shapes Working group and the ShEX (Shape 

Expressions) language [Boneva et al. 2014, Cyganiak and Reynolds 2014, Gayo et al. 2015]. 

Both are formal languages for expressing constraints on RDF graphs including cardinality 

constraints as well as logical connectives for disjunction and polymorphism. As other examples of 

data validation, OSLC Resource Shapes [Ryman et al. 2013], Dublin Core Description Set Profiles 

[Coyle and Baker 2013], and RDF Unit [Kontokostas et al. 2014] are also constraint languages for 

domain specific RDF resources.  

 

 Following a more classical approach for RDF data validation, the Pellet Integrity Constraints is an 

extension of the existing semantic web reasoner [Sirin et al. 2007] that interprets OWL ontologies 

under the Closed World Assumption with the aim of detecting constraint violations in RDF data. 

These restrictions are also automatically translated into SPARQL queries. This approach has 

been implemented on top of the Stardog9 database, enabling users to write constraints in 

SPARQL, SWRL or as OWL axioms. Finally, the SPIN language [Knublauch et al. 2011] also 

makes use of SPARQL (mainly its syntax) to define constraints on RDF-based data that can be 

                                                      
9 http://stardog.com/  

http://stardog.com/
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executed by systems supporting SPIN (SPARQL Inferencing Notation), such as the TopBraid’s 

tool-chain. 

 

Process Type Creation Scope References 

Consistency 

check 

Vocabulary-

based 

Semantic Web 

reasoner 

RDF datasets [Baclawski et al. 

2002] 

Data 

validation 

(integrity) 

Query-based Hand-made RDF 

templates 

RDF datasets 

 

[Bizer and 

Cyganiak 2009] 

Vocabulary-

based 

Hand-made RDF datasets [Hogan et al. 2012] 

Vocabulary-

based 

Hand-made or 

automatically 

generated by an 

OSLC API 

OSLC Resource 

Shape 

[Ryman et al. 2013] 

Vocabulary-

based 

Hand-made Dublin Core 

Description Set 

Profiles 

[Coyle and Baker 

2013] 

Query-based RDF Unit (test 

creation) 

RDF datasets [Kontokostas et al. 

2014] 

Query-based 

(generated from 

ShEX 

expressions) 

Automatic 

generation of 

SPARQL 

queries 

RDF datasets [Boneva et al. 

2014, Cyganiak 

and Reynolds 

2014, Gayo et al. 

2015, Alvarez-

Rodríguez et al. 

2013]  

Vocabulary and 

Query-based 

Automatic 

generation of 

SPARQL 

queries 

OWL and RDF 

under Closed 

World 

Assumption 

[Sirin et al. 2007] 

Query-based SPIN language 

+ SPARQL 

queries   

RDF datasets [Knublauch et al. 

2011] 

Table 7.2: Summary of the main approaches to validate RDF-encoded data 

 

In conclusion, the relevance of data validation to exchange RDF-encoded data is clear. RDF Data 

Shapes in its different flavours, such as OSLC Resource Shapes, are becoming the cornerstone 

for boosting interoperability among agents. It is also clear that ontologies are becoming less 

important although a combined approach (data shapes and a formal ontology) can provide 

important benefits in terms of data validation and knowledge inference (if needed). In the context 
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of software reuse, as it has been previously outlined, software artefacts must take advantage of 

new technologies to enable practitioners the automatic processing of exchanged data.  

 

On the other hand, one of the cornerstones to provide data and knowledge management services 

for systems development lies in the selection of an adequate knowledge representation paradigm. 

After a long time of research [Hull and King 1987], this problem still persists, since the choice of a 

suitable representation format (and syntax) can be reached in several ways.  

 

Different types of knowledge require different types of representation [Groza et al. 2009], 

including in some cases inference capabilities. In this light, expressions, rule -based systems, 

regular grammars, semantic networks, object-oriented representations, frames, intelligent agents, 

or case-based models, to name a few, are some of the main approaches to information and 

knowledge modelling. 

 

According to the current context for software reuse, the next knowledge representation paradigms 

(focusing on web-oriented technologies) have been selected for comparison: 

 

 The Resource Description Framework [Hayes 2004] (RDF) is a framework for representing 

resource information in the Web using a directed graph data model. The core structure of the 

abstract syntax is a set of triples, each consisting of a subject, a predicate and an object. A 

set of such triples is called an RDF graph. An RDF graph can be visualized as a nodes and 

directed-arcs diagram, in which each triple is represented as a node-arc-node link. RDF has 

been used as the underlying data model for building RDFS/OWL ontologies, gaining 

momentum in the web-based environment due to the explosion of the Semantic Web and 

Linked Data initiatives that aim to represent and exchange data (and knowledge) between 

agents and services under the web-based protocols. 

 RDF Schema (RDFS) [Brickley and Guha 2014] provides a data-modelling vocabulary for RDF 

data. It can be seen as a first try to support the creation of formal and simple ontologies with 

RDF syntax. RDFS is a formal and simple ontology language in which it is possible to define 

class and property hierarchies, as well as domain and range constraints for properties. One of 

the benefits of this property-centric approach is that it allows anyone to extend the description 

of existing resources.  

 OWL (Web Ontology Language) [Hitzler et al. 2009] is an ontology language for capturing 

meaningful generalizations about data in the Web. It includes additional constructors for 

building richer class and property descriptions (vocabulary) and new axioms (constraints), 

along with a formal semantics.  OWL 1.1 consists of three sub-languages with different levels 

of expressivity: 1) OWL Lite, 2) OWL DL (Description Logic) and 3) OWL Full.  

 The OWL 2.0 [Hitzler et al. 2009] family defines three different profiles: OWL 2 EL 

(Expressions Language), OWL 2 QL (Query Language) and OWL RL (Rule Language). These 

profiles can be seen as a syntactic restriction of the OWL 2 Structural Specification and more 

restrictive than OWL DL. The use of profiles is motivated by the needs of di fferent 

computational processes. OWL EL is designed for enabling reasoning tasks in polynomial 

time. The main aim of OWL 2 QL is to enable conjunctive queries to be answered in 

LogSpace using standard relational database technology. Finally, OWL 2 RL is in tended to 

provide a polynomial time reasoning algorithm using rule-extended database technologies 

operating directly on RDF triples. In conclusion, OWL 2.0 adds new functionalities regarding 

OWL 1.x. Most of them are syntactic sugar but others offer new expressivity (Hitzler et al. 

2009): keys, property chains, richer datatypes, data ranges, qualified cardinality restrictions, 

asymmetric, reflexive, and disjoint properties; and enhanced annotation capabilities.  
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 RIF Core (Rule Interchange Format) [Boley et al. 2013] comprises a set of dialects to create a 

standard for exchanging rules among rule systems, in particular among Web rule engines. RIF 

was designed for exchanging rather than developing a single one-fits-all rule language.  

- RIF dialects fall into three broad categories: first-order logic, logic-programming, and 

action rules. The family of dialects comprises: 1) logic-based dialects (RIF-BLD) 

including languages that employ some kind of logic such as First Order Logic (usually 

restricted to Horn Logic) or non-first-order logics; 2) rules-with-actions (RIF-PRD) 

dialects comprising rule systems such as Jess, Drools and JRules as well as event -

condition-action rules such as Reaction RuleML and XChange. RIF also defines 

compatibility with OWL and serialization using RDF. 

 The SRL (System Representation Language, former RSHP [Llorens et al. 2004] [Dı́az et al. 

2005]) is based on the idea that whatever information can be described as a group of 

relationships between concepts. Therefore, the leading element of an information unit is the 

relationship. For example, Entity/Relationship data models are certainly represented as 

relationships between entity types; software object models can also be represented as 

relationships among objects or classes; in the process modelling area, processes can be 

represented as causal/sequential relationships among sub-processes. Moreover, UML 

(Unified Modeling Language) or SysML (Systems Modeling Language) meta-models can also 

be modelled as a set of relationships between meta-model elements.  

- SRL also includes a repository model to store information and relationships with the 

aim of reusing all kind of knowledge chunks. Furthermore, free text information can 

certainly be represented as relationships between terms by means of the same 

structure. Indeed, to represent human language text, a set of well -constructed 

sentences, including the subject+verb+predicate (SVP) should be used. The SVP 

structure can then be considered as a relationship typed V between the S and the 

predicated P. More specifically, the SRL formal representation model is based on the 

following principles:  

- The main description element is the relationship since it is the element in charge of 

linking knowledge elements.  

- A Knowledge Element (KE) is an atomic knowledge component that appears into an 

artefact and that is linked by one or more relationships with other KEs to build 

information. It is defined by a concept, and it can also be an artefact (an information 

container found inside a wider artefact). A concept is represented by a normalized 

term (a keyword coming from a controlled vocabulary, or domain). Artefacts are 

knowledge containers of KEs and their relationships. 

- In SRL, the simple representation model for describing the content of whatever 

artefact type (requirements, risks, models, tests, maps, text docs or source code) 

should be:  

 SRL representation for artefact α = 𝑖α = {(𝑅𝑆𝐻𝑃1), (𝑅𝑆𝐻𝑃2), … , (𝑅𝑆𝐻𝑃𝑛)} , where 

every single SRL is called SRL-description and must be described using KE.  

 One important consequence of this representation model is that there is no 

restriction to represent a particular type of knowledge. Furthermore, SRL has 

been used as the underlying information model to build general-purpose 

indexing and retrieval systems, domain representation models (Dı́az et al. 

2005), approaches for quality assessment of requirements  and knowledge 

management tools such as knowledgeMANAGER [The Reuse Company Inc. 

2014] . 
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A plethora of other knowledge representation mechanisms and paradigms can be found as it is 

presented below. However, there is only a subset that satisfy: 1) a language for representing any 

artefact metadata and contents; 2) a system for indexing and retrieval and 3) a standard 

input/output interface (data shape+REST+RDF) to share and exchange artefact metadata and 

contents. 

 

 The SBVR (Semantics of Business Vocabulary and Rules). This is an OMG standard to define 

the basis for formal and detailed natural language declarative description of a complex entity. 

 The Ontology Definition Meta-model (ODM). It is an OMG standard for knowledge 

representation, conceptual modelling, formal taxonomy development and ontology definition. 

It enables the use of a variety of enterprise models as starting points for ontology 

development through mappings to UML and MOF. ODM-based ontologies can be used to 

support: 1) interchange of knowledge; 2) representation of knowledge in onto logies and 

knowledge bases; and 3) specification of expressions that are the input to, or output from, 

inference engines. 

 The Reusable Asset Specification (RAS), an OMG standard that addresses the engineering 

elements of reuse. It attempts to reduce the fr iction associated with reuse transactions 

through consistent, standard packaging.  

 

In order to select the proper mechanism for knowledge representation of system and software 

artefacts, the following points must be considered: 

 RDF is based on a directed graph and can only represent binary relationships (unless 

reification and blank nodes are used). As a representation mechanism, RDF presents some 

restrictions that have been outlined in several works [Powers 2003]. For instance, N-ary 

relationships [Noy and Rector 2006], practical issues dealing with reification [Nguyen et al. 

2014] and blank nodes [Mallea et al. 2011] are well-known RDF characteristics that do not 

match the needs of a complete framework for knowledge representation. Furthermore, RDF is 

built on two main concepts: resources and literals. However, a literal value cannot be used a s 

the subject of an RDF triple. Although this issue can be overcome using a blank node (or even 

reification) and the property rdf:value, it adds extra complexity for RDF users. Finally, RDF 

has been designed to represent logical statements, constraining also the possibility of 

representing other widely used paradigms such as objects or entity-relationships models. Due 

to these facts, it seems clear that RDF can be used for exchanging data , but it is not the best 

candidate for knowledge representation.  
 RDFS is a good candidate for modelling lightweight formal ontologies including some 

interesting capabilities close to object-oriented models. It can be serialized as RDF, but this 

issue can also be a disadvantage due to expressivity restrictions of RDF. Again,  RDFS has 

been designed for expressing logical statements that describe web resources, so its use for 

other types of information is not advisable.  

 Building on the previous discussion, OWL presents a family of logic dialects for knowledge 

representation. It is based on strong logic formalisms such as Description Logic or F-Logic. It 

was also designed for asserting facts about web resources although it can be used as a 

general logic framework for any type of knowledge. One of the main advantages of OWL is 

the possibility of performing reasoning processes to check consistency or infer types. 

However, reasoning can be considered harmful in terms of performance and most often it is 

not necessary when data is exchanged. Also, OWL is not the best candidate for data 

validation, a key process in knowledge exchange. 

http://en.wikipedia.org/wiki/Natural_language
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 RIF Core and the family of RIF dialects have been included in this comparison due to the fact 

that most domain knowledge is embedded in rules. Nevertheless, RIF was not designed for 

data validation and its acceptance is still low (just a few tools export RIF and even fewer are 

capable of importing RIF files). On the other hand, RIF makes use of the web infrastructure to 

exchange rules, which also means that this environment is a very good candidate to exchange 

data, information and knowledge. 

 SRL, based on relationships, allows domain experts to create relationships among terms, 

concepts or even artefacts (containers). It provides a framework for knowledge representation 

with capabilities for expressing any kind of cardinality and N-ary relationships. SRL is based 

on undirected property graphs, enhancing expressivity. Although it has not been directly 

designed for data validation, its meta-model allows the possibility of checking cardinality, 

value, domain and range restrictions. One of the strong points of SRL is the native support of 

a tool such as knowledgeMANAGER and the possibility of automatically providing semantic 

indexing and retrieval mechanisms. Both have generated a strong acceptance in industry fo r 

requirements authoring and quality checking [Génova et al. 2013]. As minor drawbacks, this 

tool was not conceived to be used in a web environment and it is not a standard; 

nevertheless, it can export/import RDFS and OWL ontologies. 

 Finally, as a general comment, there is also a lack of tools working natively on RDF. Generally 

speaking, RDF was conceived to exchange information over the web. Although some RDF 

repositories can provide capabilities for indexing and searching RDF resources through a 

SPARQL interface, experience has demonstrated that most often RDF is translated into the 

native data model of a tool. 

 

Since formal ontologies and reasoning processes are not completely necessary and, instead, data 

validation is a key aspect for boosting interoperability, it also seems clear that SRL fits perfectly to 

the major objective of knowledge representation. However, we note that the use of formal RDFS 

or OWL ontologies is not incompatible with SRL, but possible and enriching. RDFS and OWL are 

languages for building domain vocabularies, while SRL is already a domain vocabulary for 

knowledge representation, so that it is possible to define SRL through a formal RDFS or OWL 

ontology. 

 

7.3.2. Variability-specific Tool Integration standards 

7.3.2.1. The Common Variability Language (CVL) 

There are two different ways of specifying variability: as feature models that are independent of 

any design or implementation model; or as variability models related to a base model [Haugen et 

al. 2008]. Regarding the second option, two main approaches should be considered: (1) 

Annotating the base model by means of extensions to the modelling language (e.g. UML profiles); 

or (2) making separate variability models that apply to the base model. The Common Variability 

Language (CVL) is an example of the second approach. The history of CVL and the last version of 

the language (OMG Revised Submission) is available10 and SINTEF continued working from CVL 

into BVR (Base Variability Resolution) [Vasilevskiy et al. 2015]. 

 

The CVL provides a generic and separate approach for modelling variability in models defined by 

a Domain Specific Language (DSL). CVL can be applied to models in any DSL defined by a m eta-

model that conforms with the Meta Object Facility (MOF). Figure 7.3 shows an overview of the 

                                                      
10 http://variabilitymodeling.org 

http://variabilitymodeling.org/
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CVL. First, CVL allows to specify variants of a base model (in any DSL conforming to MOF), to 

specify resolution models (specifying the set of choices of variability that wants to be included in 

the resulting model) and to execute those resolutions to obtain resolved models by replacing 

variable parts of the base model with alternative model replacements found in a libra ry model. 

 

 

Figure 7.3: Common Variability Language as specified in the Request for Proposals [OMG-CVL 2012] 

 

Variability in CVL is specified through two conceptual layers:  

 feature specification layer where variability can be specified following a feature model syntax 

 product realization layer where variability specified in terms of features is linked to the actual 

models in terms of placements, replacements and substitutions 

 

In the context of Software Product Lines, the feature specification layer expresses high level 

features that the user would like to include, similar to feature diagrams. The concepts of CVL (e.g. 

type, composite variability, constraint and iterator) can be used to mimic feature diagrams (e.g. 

mandatory/optional feature, feature dependencies, XOR/OR cardinality) [Svendsen et al. 2010]. 

The product realization layer further defines low level operations necessary to transform the base 

model to a resolved product model, including details on how the transformation should be 

executed. 

 

The base model is a model described by a given DSL which serves as a base for different 

variants defined over it. In CVL the elements of the base model that are subject to variations are 

the placement fragments (hereinafter placements). A placement can be any element or set of 

elements that is subject to variation. To define alternatives for a placement we use a replacement 

library, which is a model described in the same DSL as the base model that will serve as basis to 

define alternatives for a placement. Each one of the alternatives for a placement is a replacement 

fragment (hereinafter replacement). Similar to placements, a replacement can be any element or 

set of elements that can be used as variation for a replacement. 

 

In CVL, variants of the base model are specified by means of fragment substitutions. Each 

substitution references to a placement and a replacement and includes the information necessary 

to substitute the placement by the replacement. In other words, each placement and replacement 
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is defined along with its boundaries, which indicate what is inside or outside each fragment 

(placement or replacement) in terms of references among other elements of the model. Then, the 

substitution is defined with the information of how to link the boundaries of the placement with the 

boundaries of the replacement. When a substitution is materialized (selected in a resolution model 

and executed), the base model (with placements substituted by replacements) continues to 

conform to the same meta-model. 

 

7.3.2.2. Variability Exchange Language (VEL) 

The purpose of the Variability Exchange Language (VEL) [Schulze et al. 2015] is to support the 

information exchange among variant management tools on the one hand and system 

development tools on the other hand. The essential tasks of a variant management tool are to 

represent and analyse the variability of a system abstractly and to define system configurations by 

selecting the desired system features. A system development tool captures information of a 

specific kind, such as requirements, architecture, component design, or tests. In order to support 

the development of variable systems, development tools either have to offer the capability to 

express and deal with variability directly, or an additional piece of software like an add -on must be 

provided that adds this capability to the development tool. 

To interconnect variant management with systems development, the information exchange among 

the corresponding tools must be established. A variant management tool must be able to read or 

extract the variability from a development tool and to pass a configuration, i.e., a set of selected 

system features, to the development tool. Up to now, the interfaces that support this information 

exchange are built for each development tool anew. With a standardized Variability Exchange 

Language, a common interface can be defined that is implemented by the development tools and 

used by the variant management tools. The integration of variant management tools with systems 

development tools via this interface enables a continuous development process for variable 

systems and supports a flexible usage of tools for this process. 

Using VEL the following types of variability information can be described: 

 Structural Variation Points: These are variation points defining structural variability, i.e., they 

point to assets which are not necessarily part of each variant. A structural variation point can 

be optional (an associated asset either exists or exists not in a variant) or alternative (one of a 

specific set of variations will be selected, each associated with an asset that can be part of a 

variant). 

 Parameter Variation Point: These are variation points defining a variable parameter value 

(e.g. a number). The value can be calculated by an expression, or there is a set of alternative 

values to choose from. 

Each variant of a variation point (one for optional variation points, many for alternative variation 

points) has an expression. Existence expressions (for variations of structural variation points and 

alternative values of parameter variation points) will return a Boolean value, defining the selection 

state. Otherwise, expressions for calculations return a specific value for a given parameter. The 

language of the expression is not defined in VEL, so any complex language can be supported. 

Variation Points support also hierarchies to represent nested asset structures and among 

variations dependencies can be defined. Next to the descriptions of the variation points, VEL can 

also describe variation point configuration, i.e., a selection of a variation for each variation point, 

defining a specific variant. 
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7.3.3. Tool Integration Frameworks 

7.3.3.1. ModelBus 

ModelBus11 is a flexible and highly customizable Open Source model driven tool integration 

framework for engineering processes that allows building a seamlessly integrated tool 

environment. ModelBus has a bus like communication architecture. Using some integrated basic 

core services, e.g. the Model Storage and Notification, it is very easy to add further tools, due to 

documented service interfaces and well establishes standards. 

It is possible to use heterogeneous tools for the whole lifecycle. Suitable adapters integrate these 

tools into ModelBus by translating the tool syntax into one understood by ModelBus. This allows 

communication between these heterogeneous tools and ModelBus. If one tool is successfully 

integrated into the ModelBus the functionality of this tool is available for other services and vice 

versa. COTS (Commercial of the shelf) tools can be integrated using these adapters. 

 

 

Figure 7.4.: ModelBus 

 
 

ModelBus is based on SOA principles and supports the automation of development tasks to 

reduce manual developer effort. For example, it is possible to create single tasks as services, 

associate them as a new service by other services as a concatenation of services and execute 

them. This could be done either by manual commands or other services.  

ModelBus is usable in any kind of development environment and is based on industrial standards 

(e.g., UML, BPMN, BPEL, MOF EMF) and has an internal model repository to document check-

ins, partial check-out, merges of models. Additionally, it has an Eclipse integration, ModelBus 

TeamProvider, to support use this technology in Eclipse based tools. Figure 7.4 shows a 

ModelBus scheme. Furthermore, ModelBus works with the concept of freedom of data. This 

means that data created in or imported into ModelBus should be suitable for the whole 

development process in the ModelBus context. 

                                                      
11 https://www.modelbus.org/  

https://www.modelbus.org/
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7.3.3.2. IBM Jazz 

The IBM Jazz platform12 is an integration based on open flexible services and internet 

architecture. The Jazz platform provides the infrastructure for the integration of several types of 

lifecycle tools. The platform consists of an architecture and set of application frameworks and 

toolkits as shown in Figure 7.5. The current Jazz platform supports a number of IBM Rational 

products (all individually licensed) with the application frameworks and toolkits used by IBM 

developers. The long-term vision is for non-IBM developers to develop tool integrations to support 

more integration services. 

  

Figure 7.5: IBM Jazz Platform 

 

The Jazz architecture uses two key concepts: 

 Linked lifecycle data. This allows data from multiple lifecycle tools (such as requirements, 

change requests, test plans, codes) to be linked in some way. 

 Integration services; providing cross-cutting capability that all lifecycle tools can use (e.g. 

user identify management, project admin, lifecycle query, dashboards); enabling a 

coherent set of tools that work well together. 

 

The Open Services for Lifecycle Collaboration (OSLC) initiative uses the linked data approach. 

OSLC supports the notions of Providers and Consumers. An OSLC Provider is a tool that "owns"  

lifecycle data and exposes that data to other tools as described in its corresponding OSLC 

                                                      
12 https://jazz.net  

https://jazz.net/
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specification. An OSLC Consumer is a tool that accesses another tool's data through its 

corresponding OSLC-specified interface. 

 

The OSLC community has published specifications for different lifecycles (such as requirements, 

change requests, test plans, codes), these identify a set of standard interfaces and methods. 

Using this data tools can establish links to data managed by other tools, possibly hosted on a 

different platform. The data is exposed using RESTful web services. 

 

The linked data approach assumes that each tool is responsible for managing its data and only 

references to fractions of the tool internal data are given to other tools via the exposed interfaces. 

Since access to the data is via web services, this has some implications on the availability of data. 

To summarize, the IBM Jazz platform is a concrete implementation of the core OSLC principles, 

with data integration central to the tool integration approach; each tool retains ownership of its 

own data. A centralized and externalized data repository is not part of the architectural design. 

Only via specific interfaces as defined by the OSLC specifications are subsets of the tool data 

made public. Control integration is not provided as a core capability of the Jazz platform, but 

could be introduced with the integration of a specific tool (e.g. Rational Build Forge). IBM Jazz 

has a particular approach to presentation integration as it allows the rendering of data located in 

remote tools within the user interface of that tool. This works for specific subsets of data. 

 

The usage of Jazz in custom-made development environments is currently not easy to achieve, 

only a limited number of tools implement one of the OSLC specifications. It is also worth noting 

that the OSLC specifications are still evolving. They are designed to be extendable so more tool 

data can be exposed if required. 

 

7.3.3.3. Eclipse 

Eclipse is a component based architecture, which is easily extensible through plugins and 

extension points. At its core, there is Equinox which is an implementation of the OSGi core 

framework specification. The Eclipse community, with the support of the Eclipse Foundation, 

provides a set of pre-packaged plugins which provide integrated development environments 

(IDEs), targeting different development or usage needs. Using the same Eclipse core, we can find 

IDEs covering the development needs of Java, C/C++, JavaEE, Scout, Domain-Specific 

Languages, Modelling, Rich Client Platforms, Remote Applications Platforms, Testing, Reporting, 

Parallel Applications or for Mobile Applications. 

 

The Eclipse community is very active, and features and plugins for different purposes extend the 

Eclipse functionalities in very different ways. For example, the Eclipse marketplace 

https://marketplace.eclipse.org/ gathers more than 26 million solutions. Being able to easily 

integrate different features and tools in the same extensible platform makes Eclipse a widely  

adopted integration platform. The integration can be just the fact that the tools run in the same 

framework or more complex relations among tools could exist if they use the pre-defined 

extension points that the plugins expose. 

 

Eclipse Lyo is a SDK to help the Eclipse community adopt OSLC and one example of the many 

plugins that are available for the Eclipse Platform. It is a model-based source code generator, 

which represents a tool-chain as a model. This way, the development can be abstracted from 

technical OSLC details. The generator produces code that bridges a source application and other 

https://marketplace.eclipse.org/
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OSLC clients/servers. The OSLC part of the generated code is fully functional, only the 

application part has to be extended manually to fit the needs. 

 

Lyo's tool-chain model is backed by the Eclipse Modeling Framework (EMF). The OSLC EMF 

model is split into three viewpoints: A Domain Specification View defines resource types with 

properties and relationships. The Toolchain View allocates a set of resources to a specific tool. 

Finally, internal details of the tool interface are modelled by the Adapter Interface View. Those 

three model views are used to generate code that is compliant to the OSLC4J SDK. Generated 

code is independent of the initial models and the Lyo platform. An incremental work process with 

multiple model refinements is supported. 

The EMF base provides Model-Driven Software Development advantages such as validation or 

model-to-model transformation (e.g. to enhance or extend a source model). Lyo gains further 

benefits from the Eclipse Platform, for instance graphical editors to  deal with OSLC models. 

 

Code generated by Lyo acts as an adapter to a source application. So, modelled resources and 

services represent business logic and data of the server application, but to actually access 

internal application data a mapping between the adapter and the source application has to be 

implemented. For this purpose, the Lyo code generator creates required method stubs.  

 

7.3.3.4. Bottom-Up Technologies for Reuse 

Bottom-Up Technologies for Reuse [Martinez et al. 2015, Martinez et al. 2017] is a built -on 

Eclipse framework where different tools, techniques and algorithms can be integrated for relevant 

activities in SPL extraction through extension points. The adapters are also an important concept 

in BUT4Reuse enabling the support of different artefact types. The adapters extension points 

define how a given artefact type can be represented in an abstraction based on elements. This 

intermediate representation is used for the different analysis of the software variants towards the 

extraction of an SPL. More information can be found in Section 4.3.2. 

 

7.3.3.5. KernelHaven 

KernelHaven [KernelHaven 2017] is developed by the University of Hildesheim to simplify the 

development of research prototypes in the domain of analyses of software product lines by 

providing a reusable platform. Its plug-in architecture facilitates the integration of new analysis 

concepts and the novel combination of existing data extractors. KernelHaven provides capabilities 

to extract three different types of information from product line assets: variability models, build 

information, and code. This is illustrated in Figure 7.6. The data extractors are based on powerful 

research prototypes like Undertaker [Undertaker 2017], TypeChef [TypeChef 2017], 

KconfigReader [KconfigReader 2017], or KbuildMiner [KBuildMiner 2017] and can be flexibly 

exchanged and combined with each other. The correct use of data extractors is specified for the 

desired analysis in human readable form through a configuration file to improve the 

understandability of conducted experiments for external reviewers and to support reproducibility. 

While KernelHaven serves as an integration platform to simplify the development of analysis 

tools, it may itself be integrated into a bigger context like an integrated tool-chain. 
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Figure 7.6: Architecture of KernelHaven 

7.4. Open challenges in Tool Integration 

7.4.1. Easy integration/exchange of algorithms, tools and services 

Some tools and services provide similar information, but differ in the details and granularity of this 

information, like extracting code blocks from C preprocessor-annotated code [Undertaker 2017] 

against an entire abstract syntax tree including macro-expansion [TypeChef 2017]; tool integration 

needs to support the re-configuration of a tool-chain, e.g., to adapt to new requirements or to 

enhance existing tool support, in an easy-to-use manner. 

 

The integration of a new algorithm or the exchange of an existing algorithm typically requires re -

compilation of the affected tool or service; such integration or exchange needs to be supported in 

a way that avoids re-compilation but utilizes the re-configuration-mechanism of the tool-chain. 

7.4.2. Development of compatible interfaces 

Existing tools and services typically provide and require their individual format for data exchange, 

like IVML [IVML 2015] in EASy-Producer [EASy-Producer 2016] and VEL [VEL 2015] in 

pure::variants [PureVariants 2006] for variability models; a common interface for different 

input/output-formats needs to be available for different types of artefacts. 

7.4.3. Development of common data models 

Existing tools and services typically rely on their individual data model fo r storing and processing 

data; tool integration needs to offer a common data model, which, in particular, allows the 

exchange of information between different tools and services. 

7.4.4. Integration needs to support the efficient computation of metrics 

Software metrics are well established in software engineering to measure properties of soft ware. 

In a study of variability-aware implementation metrics, we discovered that most suitable metrics 

are developed from scratch instead of adapting well established metrics for the needs of SPLs [El-

Sharkawy et al. 2017b]. The state of the art in variability-aware implementation metrics miss to 
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provide concepts and evaluations whether lifting classical software metrics may be beneficial to 

software product line engineering.    

 

Software metrics that have been designed to analyse software product lines usually take only a 

certain aspect of variability information into account. For instance, some metrics operate on 

variability models only [Bagheri et al. 2011, Berger and Guo 2014, Maâzoun et al. 2016, Mann et 

al. 2011], while other metrics measure different aspects of variation points and ignore the re st of 

the code [Hunsen et al. 2016, Liebig et al. 2010, Zhang et al. 2012]. We did not find any 

complexity metric combining different information sources, like variability model, variation points, 

and code [El-Sharkawy et al. 2017b]. Such metrics need the combination of different information 

sources or parsers to gather the required information. 

 

While the state of the art often makes use of metrics that have been designed to analyse software 

product lines, there exist only very few contributions that evaluate their ability to draw conclusions 

about qualitative aspects of the analysed artefacts. Positive examples are evaluated correlations 

between metrics for variability models and maintainability [Bagheri et al. 2011] and correlation 

between measures of configuration complexity in code artefacts and vulnerabilities [Ferreira et al. 

2016]. However, due to insufficient amount of evaluations, it remains unclear to what extent 

metrics can contribute to a better understanding of product line artefacts in general. 

7.4.5. Evolution 

A particular focus of round-trip SPLE is on asset co-evolution automation technologies, which will 

consider different program versions as well as their differences for the automatic support of the 

synchronized realization of changes between different asset class pairs; in round-trip SPLE the 

resulting algorithms, tools, and services need to be seamlessly integrated in the tool -chain of the 

project to provide such automatic support, like automated integration of deviating product and the 

derivation of SPLs. 

 

As part of the development of asset verification automation technologies, incremental analysis 

algorithms, tools, and services need to be seamlessly integrated in the tool -chain of round-trip 

SPLE to provide fast turnaround time in agile settings for asset verification. 
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8. Projects related to REVaMP2 

8.1. ESAPS / Café / Families 

From 1999 to 2005 there were three consecutive research projects on SPLE 13. Each project 

represented an effort from 286 to 330 person-years and they involved from 6 to 8 countries and 

from 20 to 22 partners. These projects created the comprehensive foundations of product line 

engineering as it is typically depicted today, and the series of Product -Families-Engineering 

Workshops which later evolved into the International Software Product Line Conference (SPLC). 

The research and industrial transfer results of the projects have been documented in a series of 

books [Pohl et al. 2005, Käkölä and Dueñas 2006, Van der Linden et al. 2007]. These projects 

were not formed in a vacuum, but built on the predecessor projects ARES [Jazayeri et al. 2000] 

and PRAISE and a range of previous work in companies like Philips, Siemens, Nokia, Thales, etc. 

as well as work from the US. However, they were the first projects of such significant size on 

product line engineering and enlarged the focus from pure technical topics like architectures to 

encompass all facets of the BAPO model (Business, Architecture, Process, Organization) 

[Jazayeri et al. 2000]. 

 

Within this series of projects, ESAPS had the task of laying a unified foundation on product line 

engineering research, bringing together many of the initial industrial attempts on this field. It 

established basic terminology (e.g., initially starting with the product family term, later switching to 

the term of product line), and basic methods for many problems in product line research such as 

scoping, domain analysis, architecture design, implementation methods, testing, etc.  

 

The Café-project built on these foundations and enriched the set of available methods and tools 

for supporting product line engineering. It also had a stronger focus on covering business and 

organization aspects than ESAPS had. Also, while ESAPS particularly focused on the domain 

engineering perspective, the Café-project increasingly added the application engineering 

perspective.  

 

Finally, the Families project focused on more comprehensively addressing all four BAPO 

dimensions and created outreach deliverables like [Pohl et al. 2005, Käkölä and Dueñas 2006, 

Van der Linden et al. 2007] and extensions of the CMMI for product lines (to address the process 

dimension). Overall the focus was on disseminating the product line approach to a wider 

audience. 

 

Supporting product line evolution was among the topics addressed in these projects ri ght from the 

start of ESAPS [Van der Linden 2002]. However, the main work was on establishing the 

foundations for supporting SPL adoption, less on evolution. Also, the evolution -oriented topics and 

approaches researched in these projects were mostly different from the focus of REVaMP2 as the 

research focussed mainly on methodological research and less on tooling. For example, within 

this project different practical approaches (and problems) of product line evolution were 

systematically analysed [Riva and del Rosso 2003], particularly also focussing on architecture-

level evolution problems. 

 

                                                      
13 https://itea3.org/project/esaps.html   
https://itea3.org/project/cafe.html   
https://itea3.org/project/families.html  

https://itea3.org/project/esaps.html
https://itea3.org/project/cafe.html
https://itea3.org/project/families.html
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Another avenue of research on SPL evolution that was addressed in these projects was 

supporting the traceability in SPL development. Again, this was mainly done from a 

methodological perspective, less from a tooling and implementation perspective. Even in the 

cases where reengineering was addressed, the focus was mostly on organizational aspects rather 

than supporting the human developer through the automation of tasks. 

 

8.2. MoSiS 

Model-driven development of highly configurable embedded Software-intensive Systems (MoSiS) 

is an ITEA 2 project 2007 – 2010 involving 12 partners from 5 countries14. The MoSiS project 

developed the Common Variability Language (CVL) that was the base for an ongoing 

standardization in the Object Management Group (OMG). This project is relevant as it prepared a 

variability-specific tool integration standard which we presented in Section X. 

 

8.3. VARIES (VARiability In safety-critical Embedded Systems) 

VARIES was an industry driven three-year research project (2012-2015) in the ARTEMIS 

programme on the topic of variability in safety critical embedded systems 15. 23 Organisations from 

7 countries were involved. VARIES recognizes that embedded systems are rarely conceived from 

scratch. It often is an evolving process in which variants are added and removed when variability 

drivers trigger new variability decisions.  VARIES address the following variability paradox: how 

can we ensure that the benefits of introducing more variability in the product portfolio outweighs 

the cost of more complexity caused by variability? The costs are not only engineering costs but 

also long-term maintenance costs. 

 

The VARIES project had three key objectives: 1) Enable companies to make an informed decision 

on variability use in safety-critical embedded systems. 2) Provide effective variability architectures 

and approaches for safety-critical embedded systems, and 3) Offer consistent, integrated and 

continuous variability management over the entire product life cycle. In this context, there were 

two major lines of investigation, converging into a single platform: Methodologies to handle 

variability in the product portfolio based on variability drivers and instruments that enable 

companies to manage their variability challenges.  

 

VARIES did an extensive review of the state of the art in methods for capturing and representing 

variability data and developed new methodologies based on workshops and questionnaires. 

 

Methods derived from theory:  

 The Complexity Cube  

 Typologies of variability and variability drivers 

 Business Strategies 

 Domain Framework  

 Process based methods (Stage Gate, V-Model, Engineering standards) and Supply Chain 

Management 

 

                                                      
14 https://itea3.org/project/mosis.html  
15 http://www.varies.eu  

https://itea3.org/project/mosis.html
http://www.varies.eu/
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Empirical methods:  

 VARIES Software Product Line Framework 

 The Sirris Framework for Identifying Variability Drivers in a Company 

 Variability Driver Identification Workshop, an empirical method created in the context of 

the VARIES project by Sirris, VTT, HiQ and Vlerick 

 Vlerick – Barco Questionnaire for identifying the impact of variability drivers on 

stakeholders 

 

In-depth analysis and synthesis methods:  

 Feature Value Analysis  

 Cost Effect Analysis 

 VariVal (developed by Sirris) 

 Product and Process information stored in databases (Product Live Cycle Management, 

Product Data Management, Enterprise Resource Planning) 

 Scope, Commonality and Variability (SCV) analysis 

 

The evolution of the variability inside an SPL can be described by variability drivers that enforce 

variability decisions. A taxonomy of variability drivers was made. The main categories are 

Compliance, Technology and Market. 22 Different variability drivers were identified and 

documented. For each of the drivers, it was described the typical challenges, stakeholders 

(initiating and affected), impact on the company, influence and management (can it be ignored or 

changed), effect on variability and the relations with other drivers.  

 
One of the contributions of the project was the “variability driver genome” to allow  quick 

comparison between product lines / portfolios and even across companies. This genome is a 

matrix representing the incidence of variability drivers over time (rows represent a time period and 

columns the incidence of a variability driver in that period). The impact of the product portfolio and 

the architecture behind it has an important effect on competitiveness and efficiency. There are 

trade-offs between the complexity costs and market opportunities of more or less product variety. 

It is observed that variability decisions are often taken in an informal decision process and that 

decision evolves over time. Therefore, it is important to understand the variability decision 

process well. Figure 8.1 illustrates the workflow of variability drivers.  

 

Figure 8.1 Workflow for variability drivers 
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A typology of variability decisions was made based on the following criteria: internal/external 

product variety, consequences of the decision on the portfolio, visibility, disciplines and affected 

stakeholders, impact on resources and profitability.  The interactions between variability decisions 

are described. They can be used as a tool to detect possible forgotten or missing drivers that 

affect the decisions. Figure 8.2 illustrates the defined stepwise model to coordinate the planning 

of product portfolio and roadmap. 

 

Figure 8.2: A Model to Coordinate the Planning of Product Portfolio and Roadmap 

 
 
Finally VARIES methodologies added the concept of the life cycle. Some variability drivers occur 

more often in certain parts of the life cycle. The concept is added to the variability genome. 

VARIES defined a glossary with terminology from different perspectives: Business, industrial 

engineering, Management and Software Engineering. 

 

We discuss below several topics faced in the VARIES project which are of  special interest for 

round-trip SPLE. 

 
Variability Languages: VARIES first choice for a standardized variability language was CVL. 

OMG did not continue to finalise the standardisation process after a patent threat. Since it 

became unlikely that CVL would become a standard in the course of VARIES an alternative was 

developed by SINTEF called BVR (Base Variability Resolution) [Vasilevskiy et al. 2015]. An open 

source Eclipse based tool supporting BVR has been published. BVR has a smaller and more 

concise meta-model that fits the needs of the VARIES industrial partners. A concept that cannot 

be found in CVL and BVR is that of a fixed or variable number of slots that can be occupied by 

modules that occupy one or more slots. 

 

Product Decision Methods: TECNALIA presents a cascade of Systematic Reuse Strategies. 

Reuse-Invest helps to decide if it is economically profitable to adopt systematic reuse. Reuse-

Check assesses if the organization processes are ready for adopting systematic reuse practices. 

The next step is the Reuse-Process Assessment Method to see what processes need to be 

introduced. Finally, a Reuse-Action Plan is created. 

 

VTTs Informal Decision Support Method: Changes in product development often include many 

risks and difficulties in managing the changes and consequences of significant change decisions. 

Capturing and analysing significant decisions on product development changes helps manage 

changes and the architecture of the system-of-interest. Many organisations follow an incremental 

and iterative development process in product development. Therefore, an incremental and 

iterative model is needed for managing significant change decisions. The purpose of the change 
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decision support method is to find the risks and managerial and technical consequences of 

significant change decisions and to improve the transparency of the decisions.  

 

Variability Analysis Challenges: The subjects of the challenges are: 

 Testing and quality assurance 

 Consistency between problem space and solution space 

 Automatic support for commonality and variability analysis with a challenge on Re-

Engineering of software product lines:   

o Investigate automatic mechanisms that allow extraction of variability from legacy 

systems. Different mechanisms are used in this direction, such as clone detection 

and static code analysis techniques. There is a need for the extraction of 

knowledge from code/models to aid in the identification of variability, as well as 

the impact of the complexity of existing software in the Re-engineering of the new 

product line. The former usually relies on clone detection techniques. 

o Often, software product lines are realized using the branching and merging 

facilities of version control systems. In such a scenario, VARIES aims to 

investigate analyses for migration towards explicit variability models, in order to 

use them pro-actively in version control. 

 Impact Analysis 

 

For each of the above challenges, the VARIES project investigated the state-of-the-art and they 

identified several gaps such as the importance of generation of test cases and test suite 

optimization, the limitations in handling multiple variants, or (more at technical level)  the possibility 

to use OCL (Object Constraint Language) as entities in CVL and SAT-solvers. Specific in the field 

of code extraction, the detection of implicit code constraints among features was identified as a 

problem that remains to be solved. 

 
Variability Analysis Solutions: Several solutions were proposed dealing with different topics 

that we detail below. 

A Lightweight Formal Technique for Qualifying Product Derivation Tools: Variability analysis 

[VARIES D4.7 2012] addresses the challenge of developing a formally certifiable implementation 

of variability mechanisms based on BVR and OVM variability modeling languages. A formally 

defined core language for variability modeling Featherweight VML (FwVML) was developed in the 

analysis to prove the correctness of product derivation tools for functional safety-critical systems 

using translation validation methodology.  

 

Consistency Between Problem and Solution Space: The project presents an approach to 

automatically and accurately extract constraints from existing implementations using static 

analysis techniques [VARIES D4.7 2012]. Different sources of configuration constraints, including 

build-time errors and new feature-effect heuristics, are used to automatically extract configuration 

constraints from C code. This analysis also supports systematic methods of re -engineering 

product portfolios into product lines and makes it easier to certify the product line when individual 

products were certified before re-engineering. Proposed are novel scalable extraction strategies 

based on the structural use of #IFDEF directives, on parser and type errors, and on linker checks.  

 

Clone Detection for Reengineering of Software Product Lines: This analysis developed a 

prototype tool that can extract the variability of two legacy systems, and create a common code 

base by introducing variation points in the merged code using #ifdef directives  [VARIES D4.7 
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2012]. It explored the use of clone detection techniques that work on ASTs (Abstract Syntax 

Tree). This analysis offers important tool support for the methodology of re-engineering legacy 

systems into a product line.  

 

A Methodology for Migrating a Set of Clones to a Safety Critical Product Line: This analysis 

explores a systematic approach of migrating a set of clones to a safety critical product line, 

considering all the necessary steps that are needed to successfully perform the migration 

[VARIES D4.7 2012]. A special focus is given on verifying and certifying the resulting product line. 

It also proposes a novel approach on how to manage a set of variants that are developed using 

clone-and-own in a structured way that allows at a later timer to migrate more eff iciently to a 

product line reducing overall efforts and costs. 

 
Safety-criticality: Safety-critical is one of VARIES focus domains on the variability problems. 

This was handled in VARIES D4.8 “Challenges and Potentials of Certifying Product Lines” and 

D4.9 “Approving Product Lines”. The requirements of the functional safety as well as the 

certification standards and their consequent restriction of modifications are in competition with the 

efficient handling of variability in product lines.  

There are some strategies that can be adopted to facilitate it: 

 Reassessment of the modification only. The usage of an explicit and separate variability 

model to generate all variants ensures that the description of the modifications is complete, 

isolated and explicit. 

 Concept of elements, subsystems and systems – compliant items: when the subsystems (also 

called Safety Element out of Context) are already certified there is a reduction in time to 

validate a new system that is composed of those elements. This can also be used to limit the 

reassessment of a new variant. 

 Process certification: in functional safety both the product and the development process are 

evaluated. If the process is well chosen and described it must not be reassessed for each 

variant in a product line. 

 

Requirements for the reuse of easements to facilitate approval of product variants and SPLs:  

 Early identification of the relevant standards and determination of the proposed application of 

the product. 

 Usage of already approved subsystems. 

 Separation of safety and non-safety functions. 

 Separation of variable and common part in different models can result in an easier safety 

assessment.  

 Definition of a common set of safety requirements reduces the effort to assess each variant.  

 Make the product configurable. A single certification can than cover all variants. 

 Multiple certification of variants is often needed as variability and product lines are not well 

covered in safety standards. A proper design and development process can reduce the effort 

needed. 

 

The results are the VARIES tools and platform. References can be found on the VARIES website 

to Plum (Tecnalia), the BVR Tool (SINTEF), pure::variants from pure-systems, Artisan Studio and 

the Atego Asset Library from Atego (now PTC), CTE XL and Meran from Berner and Mattner, 

Modelbus and Traceino form Fraunhofer. Public deliverables and extracts from non-public 

deliverables are made available on the VARIES website http://www.varies.eu/download-media or  

http://www.varies.eu/results. 

 

http://www.varies.eu/download-media
http://www.varies.eu/results
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8.4. EvoLine                

The EvoLine-project [EvoLine 2017] was a bilateral research project between the University of 

Bremen and the University of Hildesheim, founded by DFG (German Research Foundation) as 

part of the Priority Programme SPP1593: Design For Future – Managed Software Evolution. The 

SPP focused on research on the evolution of software. Within the SPP the EvoLine-project 

focused on the development of methods and tools to support the correct and consistent evolution 

of SPLs written in C. A particular focus was given to embedded systems and industrial automation 

systems. The work at the University of Hildesheim in the REVaMP² project can be partially seen 

as a continuation of much of the research done in EvoLine. 

 

In the embedded domain, variability is typically realized using static pre-processor directives or 

explicit configuration variables. This complicates analysis and maintenance of programs 

significantly, as it is not sufficient to perform correct evolution of a single program, but of all 

possible programs. The relation between configuration options (the so-called variability model) 

and the program code must be considered. Thus, the continuous evolution of long-living product 

lines requires to make consistent modification to the code and the variability model to avoid 

erroneous configurations or non-configurable products. The EvoLine project did research on 

family-based approaches [Thüm et al. 2012] to identify errors caused by inconsistent evolution. 

 

A central hypothesis of the EvoLine project is that an evolutionary analysis approach will lead to 

significantly more efficient decision procedures to identify any potential evolution issues in a 

software product line [Schmid et al. 2015]. The core idea of this approach is to focus on the 

changes, e.g., introduced by a commit of a software product line repository, to deduce that the 

evolved product line is consistent and correct if it was before. This idea is in line with the 

evolutionary (incremental) analysis we aim for in WP6. To provide such an approach, we need to 

understand the changes typically made to a software product line (e.g. the number of changes to 

a product line in a certain timeframe, the type and number of affected artefacts, the intensity of 

changes to variability information in affected artefacts, etc.). Started in the EvoLine project and 

already extended as part of REVaMP², a study on the evolution of open-source SPLs was 

conducted [Kroeher et al. 2017], contributing to the understanding of SPL evolution at large and, 

thus, the REVaMP² project. 

 

Lüdemann et al. studied how variability information can be used to reduce complexity in formal 

concept analysis [Lüdemann et al. 2016]. Formal concept analysis aims at  deriving a lattice that 

represents the variability of a source file, as a support in reengineering software product lines. 

However, the lattices constructed by this approach can become very large and complex. In 

EvoLine, Lüdemann et al. showed how consistency analysis, both within code variability and 

between code and a variability model, can be used to reduce the complexity of a lattice.  

 

Due to the lack of publicly available software product lines, Linux is often used as a case study in 

research. Studies have shown that its implementation is comparable with code from industry 

[Hunsen et al. 2016] and that its variability model written in Kconfig is fundamentally different to 

academic models, which were used before as case studies to evaluate scientific results [Berger et 

al. 2013, She et al. 2010]. The imprecise documentation of the variability management concepts 

and many corner cases complicate proper variability extraction and analysis. In EvoLine, an 

analysis of the Kconfig semantics was applied to uncover the real semantics of Kconfig and to 

investigate the accuracy of existing variability extractors [El-Sharkawy et al. 2015a, El-Sharkawy 

et al. 2015b]. 
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While there already exists much work that defines family-based concepts to detect syntactical 

defects in product line code, like variability-aware type checking, and control-flow analysis 

[Kästner et al. 2012], or dead code analysis [Tartler et al. 2011], there exist only little work to 

provide a semantic analysis. In Evoline, El-Sharkawy et al. provided an approach to analyse the 

consistency between modelled and coded feature dependencies [El-Sharkawy et al. 2016]. 

Divergence of them was named mismatched configuration information. As part of the REVaMP² -

project, this work might be extended based on the feature effect synthesis [Nadi et al. 2015] to 

provide a more generalized solution. An empirical study on Linux did show the importance of this 

analysis as two-thirds of the identified configuration mismatches are related to the inadequate use 

of the variability management concepts provided and may lead to semantically incorrect products 

during product derivation [El-Sharkawy et al. 2017]. 

 

8.5. AMALTHEA 

The ITEA Project 09013 AMALTHEA (2011-2014) is an open source tool platform for engineering 

embedded multi- and many-core software systems16. The platform enables the creation and 

management of complex tool chains including simulation and validation. As an open platform, 

proven in the automotive sector by Bosch and their partners, it supports interoperability and 

extensibility and unifies data exchange in cross-organizational projects. AMALTHEA allows tool 

vendors, engineering companies and other suppliers in the toolchain to efficiently integrate their 

products and expertise. 

 

The Eclipse APP4MC platform enables the creation and management of complex tool chains 

including simulation and validation. The main advantage of AMALTHEA for shared software 

development is its independence from software architecture and development methods. The 

hardware model in AMALTHEA provides the options for describing the hardware features in detail 

including the hardware access latencies, core features and memory. The dependency of a 

software function on a hardware feature can be easily modelled. Usage of AMALTHEA as a 

standard exchange format also helps in reducing the integration time. Amalthea model can be 

shared much before the integration phase, while the actual software is still being developed and 

validated. 

 

There were some investigations concerning variant handling within the AMALTHEA project. But 

currently AMALTHEA model is not supporting variant handling and there are no plans to add 

variation points to the model to avoid complexity. An AMALTHEA model is mainly to describe the 

dynamic behaviour of an already configured software version. So extracting and describing 

software variance is not currently supported by the AMALTHEA model.  

 

8.6. CRYSTAL 

CRYSTAL (CRitical sYSTem engineering AcceLeration) is an Artemis Joint undertaking project 

dealing with interoperability specification and reference technology platforms for safety-critical 

systems17. The relation of CRYSTAL to this document is the advances in the verification of 

                                                      
16 http://www.amalthea-project.org/  
17 http://www.crystal-artemis.eu/ 

http://www.amalthea-project.org/
http://www.crystal-artemis.eu/
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requirements properties (related to Section 6.3), requirements reuse, and their usage of tool 

integration approaches (Section 7) such as OSLC. 

 

8.7. iFEST 

iFEST is an Artemis project about an industrial Framework for Embedded Systems Tools 18. The 

project ran from 2010 to 2013 and its main achievements are the specification of an integration 

framework that extends OSLC and a Model Federation mechanism that can attach different roles 

to the same engineering artefact. Therefore, this project is related with Section 7 of this state -of-

the-art document. 

 

iFEST tested its approach in five industrial use cases with an emphasis on the metrics to analyse 

the benefits. By the use of integration technologies, a reduction of 20% of the development cost, 

time to market and the cost of poor quality could be shown. iFEST starts from the observation that 

engineers are confronted with a lot of unstructured information that is scattered among a lot of 

tools during the lifecycle of an embedded system. The li fe cycle can span several decades which 

increases the concern on vendor locking that in turn discourages tool adoption and usage.  

 

iFEST defines the concepts of “Tool Chain” and “Integration Platform”. The difference are the 

stakeholders: 1) the industrial organisations that build the embedded systems and 2) the platform 

vendors. Both have an interest in the combined usage of the tools. 

 

The iFEST Integration Framework consists of: 

 The Technological Space on which the tool integration implementation relies (execution 

support, communication protocols, data exchange formats, …)  

 The Adaptor Specifications that describe the data manipulated by and services specified 

by the tools of a Tool Chain. The specification relies on OSLC. 

 Guide lines supporting the writing of specifications and implementing Tool Adaptors  

 Technical and non-technical Principles to which specifications and implementations must 

adhere. 

 

iFEST tried to define a common metamodel that merged all the concepts defined in the integrated 

tools and use it is as a common format for modes in different languages. It was shown that this 

can be used as a pivot model that reduces the number of point to point connections among tools. 

It also reduces the complexity of the transformations through an abstract vocabulary. The model 

is however too abstract to support all concepts of all tools, the metamodel would become too 

abstract. The conclusion of iFEST on this topic is that a single metamodel is not manageable.  

 

To solve this issue iFEST proposes an approach based on Model Federation. The concept of 

Roles is introduced. Artefacts receive a Role based on each tool that manages them and the 

domain in which it is used. This allows an artefact to have different semantics depending on the 

context (tool) in which it is used. Depending on the tools, artefacts can refe r to multiple “real 

elements”.  

                                                      
18 http://www.artemis-ifest.eu/  

http://www.artemis-ifest.eu/
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8.8. EMC2 

EMC2 – ‘Embedded Multi-Core systems for Mixed Criticality applications in dynamic and 

changeable real-time environments’ addresses the Artem is Innovation Pilot Programme: AIPP5: 

Computing platforms for embedded systems19. The objective of EMC2 is to establish Multi-Core 

technology in all relevant Embedded Systems domains, to enable product innovations and to 

accelerate their market penetration.  

 

EMC2 is an attempt to summarize and to further develop the results from more than 20 ARTEMIS-

research projects in the fields of Safety Critical Systems and Embedded Multi-Core Technology 

with the involvement of partners of these projects in order to make progress towards market 

innovation. The project is not monolithic in itself; it also combines 12 networked subprojects.  

 

The following challenges were addressed and solutions developed to overcome: 

 Dynamic Adaptability in Open Systems 

o Variable number of control units 

o It is possible to have unknown applications 

o It is possible a full range of dynamic changes 

 Utilization of expensive system features only as Service-on-Demand in order to reduce the 

overall system cost. 

 Handling of mixed criticality applications under real-time conditions 

 Scalability and utmost flexibility 

 Full scale deployment and management of integrated tool chains, through the entire 

lifecycle 

 

As part of the results, an open tool-chain for seamless tool integration was demonstrated in an 

industrial environment as a prototype. The benefits of using the open tool-chain were: 

 Higher engineering efficiency 

 Reduced design time 

 Increased quality 

 Reduced time to look up information 

 Reduced tool switch time 

It also provides support for longer time goals such as: 

 Extending the life-cycle of system engineering tool chains 

 Easy replacement of tools 

 Avoidance of vendor “lock-in” situations 

The features by which the above results are reached can be identified as: 

 Tool transparency 

 Traceability of artefacts 

By providing a transparent use of the necessary tools (an orchestrator, notification services, 

traceability services, and version control) based on OSLC and delegated interfaces, the developer 

is mostly contained in one tool context. In addition, the approach eased the creation of traceability 

links, provided means to relate to different versions and offered the basis for increased quality 

designs. A method and a tool for supporting application deployment on either software or 

hardware technologies was also developed. 

                                                      
19 https://www.artemis-emc2.eu/  

https://www.artemis-emc2.eu/
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8.9. EternalS and HATS 

EternalS, (Trustworthy Eternal Systems via Evolving Software, Data and Knowledge) was a FP7 

Coordination and Support Action for three projects LivingKnowledge, HATS, Connect and 

SecureChange, that ran from 2010 till 2013 20. HATS was especially relevant to SPL topics. 

HATS: (Highly Adaptable and Trustworthy Software using Formal Models) formalises Software 

Product Line Engineering with a formal language called ABS (Abstract Behavioral Specification) 

to describe features, components and their instances. HATS handles variability (anticipated) and 

evolvability (not anticipated). 

8.10. INDENICA 

INDENICA, Engineering Virtual Domain-Specific Service Platforms was a 36 months SP7 project 

which started in October 2010 21. They worked on topics relevant to REVaMP2 from which we will 

highlight the proposal of variability modelling languages and variability implementation languages. 

 

                                                      
20 http://www.hats-project.eu 
21 https://sse.uni-hildesheim.de/en/research/projects/indenica/ 

http://www.hats-project.eu/
https://sse.uni-hildesheim.de/en/research/projects/indenica/
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9. Conclusion 

The widespread adoption of Software-Intensive Systems and Services in industry has transformed 

the engineering process into a more agile, round-trip process. This allows for better use of legacy 

assets by applying systematic variability management. 

 

In this document, we presented the state-of-the-art on the different aspects of this engineering 

process that is at the heart of the REVaMP² project, attempting to leverage the solutions that 

already exist in the literature to improve the competitiveness of software-intensive companies. In 

this document, we covered topics ranging from variability management and methodologies for 

round-trip engineering including product line extraction, product line verification, and product line 

co-evolution. In addition, we identified several tool integration methods that can help achieving a 

holistic solution to these interconnected challenges. We mentioned other projects that have dealt 

with similar problems to REVaMP², and recognized their contributions to the state -of-the-art. 

 

In Section 2, we introduced relevant concepts and background information about the state-of-the-

art on variability management and product line engineering. Software product line engineering 

aims at reusing software in a systematic way. This improves the process of software development 

by managing the variability of software products. In Section 3, we presented Round-trip 

engineering as a holistic approach to deal with variability management. Round-trip engineering 

uses synchronized modelling as a way to engineer the development process. This is 

accomplished by the use of reverse engineering, code-model-synchronization, and code 

generation. In Section 4, we discussed the state-of-the-art on product line extraction. Extraction 

helps to turn the legacy assets into reusable artefacts. In Section 5, we delved into the verification 

process. Formal verification of software-intensive systems ensures the quality of the final software 

products, and eases the often required product certification. In Section 6 we gave an overview  of 

the state-of-the-art related to co-evolution. Co-evolution has been discussed in several contexts 

with one common trait: it is performed on two co-evolving streams of data artefacts. This helps in 

reducing the parallel effort needed to maintain co-evolving artefacts. In Section 7, we identified 

the solutions and the challenges of tool integration. This helps us in developing a common 

integrated framework that can be used in the future to create a coherent technical solution to the 

challenges discussed in previous sections. Finally, in Section 8 we presented the related previous 

projects and their contributions to the state-of-the-art. For each of the discussed topics, we 

identified the open challenges that the community faces. By capitalizing the collabo ration of 

academic and industrial partners, we attempt to solve some of these challenges in the context of 

REVaMP² project. 
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