
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE ASSUME CONSORTIUM. NEITHER
THIS DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR
COMMUNICATED BY ANY MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR
WRITTEN CONSENT OF THE ASSUME CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR
OBLITERATED ON OR FROM THIS DOCUMENT. THE RESEARCH LEADING TO THESE RESULTS HAS RECEIVED
FUNDING FROM VARIOUS NATIONAL AUTHORITIES IN THE FRAMEWORK OF THE ITEA 3 PROGRAMME (PROJECT
NUMBER 14014).

Affordable Safe & Secure Mobility Evolution

Methodology draft

Industrial requirements analysis

Definition of desired tool extensions and tool flows

Interface definitions

Deliverable D4.1

Deliverable Information

Nature Document Dissemination
Level

Public

Project ASSUME Project Number 14014

Deliverable ID D4.1 Date 12.01.2017

Status Final Version 1.0

Contact Person Dumitru Potop-
Butucaru

Organisation Inria

Phone +33-180494010 E-Mail dumitru.potop@inria.fr

D4.1 – Methodology draft

Page 2 of 28 Public V1.0

Author Table

Name Company Email

Dumitru Potop Butucaru Inria dumitru.potop@inria.fr

Gunther Siegel ESTEREL

TECHNOLOGIES

gunther.siegel@ansys.com

Xavier Leroy Inria xavier.leroy@inria.fr

Reinhold Heckmann AbsInt heckmann@absint.com

Marco Bekooij NXP/UT marco.bekooij@nxp.com

Change and Revision History

Version Date Reason for Change
Affected

sections

0.1 05.12.2016 Initial version All

0.2 26.12.2016 ESTEREL TECHNOLOGIES Contribution 2.3.2, 2.4.2

0.3 12.01.2016 CompCert section (INRIA and AbsInt) 2.3.4

0.9 08.02.2017 Merged all contributions All

1.0 16.02.2017 Minor local updates (typos…) & minor local

updates on ESTEREL TECHNOLOGIES

contribution

All

D4.1 – Methodology draft

Page 3 of 28 Public V1.0

Table of Contents

AUTHOR TABLE .. 2

CHANGE AND REVISION HISTORY ... 2

TABLE OF CONTENTS .. 3

1. EXECUTIVE SUMMARY .. 4

2. AVIONICS CLUSTER .. 5

2.1. Analysis of industrial use cases and requirements .. 5
2.2. Methodology principles ... 5
2.3. Proposed tool flow and desired tool extensions ... 6

2.3.1. Verified Lustre ... 8
2.3.2. Scade KCG6 parallel ... 8
2.3.3. Heptagon/Lopht ... 9
2.3.4. CompCert .. 11
2.3.5. Litmus ... 11

2.4. Interface definitions .. 12
2.4.1. Common API for code generation on Kalray MPPA256 ... 12
2.4.2. Calling conventions used in SCADE code generation ... 12
2.4.2.1. Input model annotations .. 13
2.4.2.2. Communication primitives ... 13
2.4.2.3. Worker ... 14
2.4.2.4. Integration on Specific Targets .. 14
2.4.3. Non-functional annotations in Heptagon ... 14

3. FAULT TOLERANT VISION CLUSTER ... 16

3.1. Analysis of industrial use cases and requirements .. 16
3.2. Proposed tools and methods .. 16

3.2.1. HAPI dataflow simulator ... 16
3.2.2. Definition and computation of the architecture vulnerability factor (AVF).. 16
3.2.2.1. Simulation based AVF measurement: Counting Residence Times .. 17
3.2.2.2. AVF = PVF*HVF ... 18
3.2.2.3. Approximate-compute oriented PVF .. 19
3.2.3. Approximate DMR-based Reliable Vector Processor .. 21
3.2.4. Particle filter based state estimation algorithm .. 21
3.2.5. Fault-Tolerant Network-on-Chip architecture .. 21

4. SAFE VEHICLE CONTROL CLUSTER ... 23

4.1. Analysis of industrial use cases and requirements .. 23
4.2. Proposed tools and methods .. 23

4.2.1.1. Xenoclea .. 24
4.2.1.2. Dezyne ... 24

5. CONSUMER ELECTRONICS CLUSTER ... 25

5.1. Benchmark Data Structures and Synchronization Primitives ... 25
5.2. Proposed tool flow and desired tool extensions ... 26

5.2.1. Global toolflow organization ... 26
5.2.2. Tool status and needed extensions .. 27
5.2.2.1. CIVL \ Concurrent Boogie ... 27
5.2.2.2. BoogieASM .. 27

5.3. Interface definitions .. 27
5.3.1. Common Interface for CIVL and BoogieASM .. 27
In addition to the language allowed by CIVL, we require following restrictions / extensions on the input program P: 27

REFERENCES... 28

D4.1 – Methodology draft

Page 4 of 28 Public V1.0

1. Executive Summary

Work in WP4 is organized in 4 clusters, according to participation in case studies. General principles, common

to multiple clusters, have been identified, such as the reliance on formal methods, or the use of data-flow

formalisms. However, early on in the project it has been recognized by partners that the 4 classes of use cases

covered here need specific tools, and specific methodologies. This explains the clear partition of project

partners among the 4 clusters, which are:

• Avionics. WP4 participants: Inria, ENS, AbsInt, Kalray, ESTEREL TECHNOLOGIES. Use case

providers: Airbus, Safran Aircraft Engines SAS, Safran Electronics & Defense.

• Fault tolerant vision. WP4 participants: Tue, NXP, UT, Recore. Use case providers: NXP/Recore.

• Safe vehicle control: WP4 participant: Verum, UT, TNO. Use case providers: TNO, VDL.

• Consumer electronics. WP4 participants: Koç University, Koç Sistem.

This organization of the work is followed in the organization of the various parts of this deliverable. In the first

three clusters, industrial case studies and requirements have been analyzed, and comprehensive design

methodologies have been proposed. The delay in the funding of the Turkish partners means that the fourth

cluster is less advanced. However, significant results are presented in this deliverable.

D4.1 – Methodology draft

Page 5 of 28 Public V1.0

2. Avionics cluster

The development of avionics embedded applications is subject to strict certification requirements, which resu lted

in highly formalized and largely automated development processes. Our work seeks to improve these processes

by providing solutions to the following problems:

 Safe and efficient automatic parallelization of avionics applications onto multi-/many-core platforms.

 Providing formal correctness guarantees for avionics software.

2.1. Analysis of industrial use cases and requirements

For the first 18 months of the project, work of the avionics cluster has focused on three case studies:

 AIR_UC01 (from Airbus) – control/command synchronous application of high criticality

 SAF_UC01 (from Safran) – synchronous application of high criticality

 SAF_UC2 (from Safran) – mixed criticality application

These applications share key features:

 High-level data-flow functional modelling (SCADE, Simulink, or an in-house formalism).

 They are either high criticality or mixed criticality applications, meaning that code generation must aim

for high integrity implementations.

On all 3 applications the common objective is safe and efficient automatic parallelization, with Kalray MPPA as

the preferred initial execution platform. In addition to parallelization, depending on the case study, main

objectives are:

 Formal verification of the correctness of the implementation flow, either by compiler verification or by

translation validation methods. Formal correctness proofs can be useful even on sequential code

generators.

 Parallelization under real-time requirements.

 Safe interaction between software components of different criticalities.

2.2. Methodology principles

Following long-standing practice in the avionics industry, the design methodology we propose is based on the

use of synchronous languages for the high-level functional specification of applications. More specifically, we

shall be using various dialects of the Lustre synchronous data-flow language, whose industrial version SCADE

is commercialized by ESTEREL TECHNOLOGIES. The standardization of the functional specification level is

essential allowing the cost-effective construction of tools. When the industrial process requires the use of a

functional specification formalism different from Lustre/SCADE, process-specific automatic translation tools are

needed to ensure seamless integration by translation into a Lustre/SCADE dialect.

For parallel and/or real-time implementation, our methodology also requires the formalization of the non-

functional specification. Non-functional specification is formed of a description of the execution platform and a

set of non-functional requirements of various types. The content of the non-functional specification depends on

the code generation objectives. It can range from a few parallelization annotations, when the objective is to

produce multi-threaded C code, to complex descriptions of both the execution platform (topology, arbitration,

timing characterization) and the non-functional requirements (real-time, partitioning, allocation, etc.).

Starting from the high-level functional and non-functional specifications, our methodology requires the use of

high-level compilers to produce C code and, if needed, OS configuration files. Resulting C code is then

compiled, along with legacy business code and with platform libraries to produce the executable code of the

implementation.

D4.1 – Methodology draft

Page 6 of 28 Public V1.0

The result is a seamless flow of automatic transformations going all the way from high-level specification to

running implementation. Such a flow of transformations ensures the correctness of the resulting implementation

with respect to the high-level specification provided that:

- the platform description faithfully describes the behaviour of the execution platform (HW, libraries, and

possibly OS)

- the high-level compiler and C compiler are correct

- the (optional) process-specific importer tool is correct

2.3. Proposed tool flow and desired tool extensions

During the first 18 months of this project, we have integrated the tools of the various partners to fit the global

methodology defined above and to address the needs expressed through the industrial use cases. To this end,

work has advanced on several axes:

1. Formally proved compilation from Scade/Lustre to sequential executable code. The formally proved

compiler Verified Lustre from a dialect of Lustre to C has been completed and interconnected with the

CompCert C compiler.

2. Generating parallel code for the industrial use cases and the project platforms (including, but not

restricted to Kalray MPPA), for both real-time and non-real-time targets.

a. The Scade KCG compiler has been extended to allow parallel code generation and manual

allocation of the parallel threads onto the target MPPA256 platform.

b. The Heptagon/Lopht tool flow has been improved with a simpler language for specifying non-

functional requirements. A formally proved translation validation tool has been developed for a

restricted version of the Lopht tool.

In both cases, code generation targets simple APIs facilitating the retargeting of the code generator.

3. Design of run-time communication and synchronization primitives that are verified against weakly

consistent shared memory models (Kalray MPPA, Arinc 653), using the Litmus tool.

4. Construction of process-specific automatic translation tools, application to use cases, and providing

feedback to use case providers. Most notably, a first version of the Airbus-specific importer tool has

been used in the Year 1 AIR_UC01 demonstrator.

Work along these axes resulted in the tool flow whose current structure is presented in Fig. 1. The tool flow

incorporates the tools of all cluster partners.

The inputs of the tool flow, on the left, can be roughly divided in 2 categories:

- Functional specification (blue boxes) is provided in a dialect of Lustre/Scade, possibly extended to allow

a more natural modelling of multi-rate or multi-period systems. For the Velus (verified Lustre) compiler,

this language is called itself Velus, and it is a strict sub-set of Lustre. The other dialects (Scade, Lustre,

Heptagon) are quite close to one another in syntax and expressive power, to the point where some tools

(e.g. the Heptagon compiler) can already take several of them as input without changes in the internal

data structures. The ASSUME project will certainly lead to convergence between these formalisms, but

specific aspects should remain, given that Scade is designed by ESTEREL TECHNOLOGIES as part of

a commercial product, whereas Heptagon and Lustre are academic tools.

- Non-functional specification is divided between platform descriptions (in red) and non-functional

requirements (in purple). Typical non-functional requirements are real-time requirements, allocation

requirements, etc. Typical platform description features include the number and type of processors, the

memory hierarchy, the on-chip networks, etc. During the duration of ASSUME, both Scade and

Heptagon were extended with annotations allowing the specification of non-functional requirements (e.g.

parallelization, allocation, or real-time). This means that the frontier between the functional and non-

functional specifications becomes increasingly blurred. One of the expected outcomes of ASSUME is

better languages for functional and non-functional specification, adapted to the needs of the use cases.

D4.1 – Methodology draft

Page 7 of 28 Public V1.0

Figure 1 Tool flow organization of the WP4 avionics cluster

The functional and non-functional specifications are used by the three high-level compilation tools whose

development embodies efforts on the various R&D axes:

- Velus focuses on formally verified compilation

- The extended Scade v6 compiler focuses on generation of parallel code where allocation is manually

specified.

- The Heptagon and Lopht compilers are used together to allow the generation of parallel real-time code

for which allocation and real-time scheduling can be automatically synthesized.

In all 3 cases, the output of the high-level compiler is C code, and possibly some configuration information

directed to the lower-level tools (loader) and to the runtime. In addition to generated code, intermediate artefacts

can be output, such as the scheduling tables or allocation information, facilitating external verification of the

system correction.

If the objective is to provide formal correctness guarantees, then the C code output by the high-level compilation

tools must be in turn compiled using CompCert (but gcc is currently used on the Heptagon/Lopht branch, as it

allows very precise control over memory allocation and optimization).

The Litmus tool is needed to validate efficient communication/synchronization primitives against the model of

the memory sub-system. The parallel code generators will use these primitives.

The following sub-sections present the current status and desired tool extensions of the individual partners’

tools.

D4.1 – Methodology draft

Page 8 of 28 Public V1.0

2.3.1. Verified Lustre

Solid progress has been made on extending the Vélus compiler to turn it into a practical tool that can run on real

code. An overview of the current state is shown in Figure 2. Most recently, we have implemented a parser and

elaboration routine, added the scheduling pass, improved the ability to display intermediate results, and refined

the final correctness lemma. These results are explained in more detail in the following.

The parser was implemented using the menhir software which also generates proofs of completeness and

correctness in the Coq proof assistant. The elaboration routine turns an unannotated syntax tree into one

annotated with types and clocks. In the context of a verified compiler like ours, it also verifies the correctness of

these annotations and several other required invariants. That is, it formally validates assumptions used in later

passes and their proofs of correctness.

Figure 2. Velus toolchain status

The scheduling pass orders the dataflow equations based on their interdependencies. The semantics of these

equations is independent of their order, but this order is maintained in the generation of imperative code whose

semantics does depend on it. Our implementation calls an external OCaml routine to find a suitable schedule or

print an error message explaining why this is impossible. The reordering itself is done by a verified sorting

routine (from the Coq standard library) and then validated by a verified decision procedure. This approach gives

greater liberty in implementing equation scheduling and maintains the same high level of correctness

guarantees but without requiring complicated proofs. Besides satisfying the data dependencies, the scheduler

tries to place similarly activated equations together to increase the effectiveness of a later fusion optimization on

the imperative (Obc) code. Finding an optimal ordering is NP-hard, so we implement a greedy algorithm based

on simple heuristics.

We have implemented several “pretty printers” to display the results of intermediate compilation passes. This is

straightforward and standard practice, but greatly aids debugging and practical evaluation of the tool chain.

The final correctness lemma gives a guarantee that the assembly code generated by our compilation passes

coupled with the CompCert ones correctly implements the dataflow semantics of the input program. This end -to-

end proof has now been stated and proved. Arriving at this point involved solving s everal technicalities around

coinductive proofs and a change from the “big step” semantics used in the proof of correctness for the code

generation pass (from Obc to Clight) to the “small step” semantics necessary to state the final lemma.

The new results described above and those of our earlier report on the translation and generation passes have

been accepted for publication at the PLDI 2017 conference.

The current version of the compiler functions with an end-to-end correctness guarantee, but it only accepts a

subset of “normalized” Lustre programs. We are working on implementing the normalization pass (from Lustre to

N-Lustre) and proving its correctness. This task is non-trivial. It requires implementing rewriting by successive

substitutions, introducing a new semantic model for the Lustre language, and showing the correctness of the

rewriting with respect to the semantics.

2.3.2. Scade KCG6 parallel

An extension of our safety-critical qualified code SCADE Suite KCG generator has been prototyped. This

prototype allows efficient code generation for multi/many core targets. The parallelization is currently user-

driven. The user identifies parallel regions formed of operator instances that can be executed in parallel,

splitting the model into independent components well-balanced with respect to their WCET.

D4.1 – Methodology draft

Page 9 of 28 Public V1.0

This prototype generates tasks that communicate with one-to-one channels (i.e. Kahn process networks). One

task is generated for the root operator and one task for each instance of operator in a parallel subset. The

generated C code is target agnostic, macros are used for all operations (communication, synchronisation, …). A

dedicated integration step is in charge of generating the main function and the macros definition for a given

target. To verify the portability, we have developed instantiation for Pthread and Win32 API with semaphores.

We also worked with Kalray to have an instantiation for their MPPA many-core architecture.

Figure 3: Scade Multi-Core Code Generation Flow

2.3.3. Heptagon/Lopht

Heptagon is both a Lustre dialect and an open-source compiler for this language. For the scope of this section,

we shall disambiguate between the two by using the name heptc for the compiler. The heptc compiler can be

used for two types of tasks:

- Generating sequential C code from synchronous programs (nodes) written in a Lustre dialect (much like

SCADE KCG or Velus). Accepted Lustre dialects include Heptagon and Scade v4. The Scade front-end

has been added during ASSUME to allow the handling of case studies.

- Translating Heptagon programs into the non-hierarchic data-flow language taken as input by the Lopht

tool. In this case, an extension of heptc takes as input an extension of the Heptagon language, called

Heptagon+NFP, where program annotations allow the specification of non-functional requirements, as

described below, in section 2.4.3. We name this extension heptc+NFP.

The Lopht tool takes as input the non-hierarchic data-flow and the non-functional requirements output by heptc

and a description of the execution platform (topology, WCETs). It either produces parallel implementation C

code that is both functionally correct and respects the non-functional requirements, or reports why it was not

able to produce such an implementation.

Given the capabilities of the tools, we advocate their use following the methodology and tool flow of Fig. 4. The

flow starts with an importer tool that translates the industrial specification into Heptagon input. This tool is

needed, as industrial use case specifications from both Airbus and Safran do not fit directly into the synchronous

D4.1 – Methodology draft

Page 10 of 28 Public V1.0

model (both in term of format and of underlying computational model. We have developed a tool that generates

a functionally equivalent Lustre code from these specifications. This convertor tool is currently based on the

specifications provided for the AIR_UC01 use case, where specification is done in a formalism specific to the

Airbus process. This work will be extended to fit the needs of the Safran SAF_UC01 use case. This tool builds

internally a dependence graph between the different tasks of the application. We plan to use this graph to

analyse the application and to perform some transformation, such as retiming. We chose to write directly by

hand the corresponding Lustre code for the SAF_UC2 use case of Safran.

Figure 4. Heptagon/Lopht tool flow

The Heptagon code is divided in two parts: the specification of the sequential tasks and the integration

specification. A task specification consists of a synchronous component that must be separately compiled into

one piece of sequential code. It contains no non-functional annotations. Compilation can either be done using

heptc or (modulo Lustre dialect adaptations) with SCADE KCG or Velus. The integration specification is the

system-level specification that defines the dependencies between tasks and contains all non-functional

requirements (hence the mixed blue+purple color). All data-flow parallelism in the integration specification can

be exploited by Lopht during allocation and real-time scheduling.

Expected extensions of the Heptagon and Lopht tools are the following:

- Extension of Heptagon with language constructs allowing the specification of n -synchronous (Cohen et

al., 2006) behaviors, and extension of heptc to allow the compilation of n-synchronous programs. This

should facilitate the specification and implementation of multi-period systems.

- Further improvement of the Heptagon non-functional annotations

- Extension of Lopht to generate code using the Kalray MPPA 256 API defined in section 2.4.1.

- Extension of the Lopht translation validation tool to cover code generation on the Kalray MPPA 256

platform.

Comm./Sync.	
Libraries	

Task

specifications

Sequen al	flo

w

	
(Vélus,	Scade	KCG,		

or	heptc)	

Platform

description
(topology,

WCETs...)

h
ep

tc
+N

FP
	

Importer
tool

Lo
p
h
t	

Specifica on	

Parallel	flow	

.c	Func onal	
task	code	

Integra on	
code,		

real- me	or	
not	

(OS	threads,	
alloca on,	
sched,	sync)	

SW	source	

Legacy	
business	
code	

OS	config.	
(if	required)	

D4.1 – Methodology draft

Page 11 of 28 Public V1.0

2.3.4. CompCert

Since 2015, the CompCert compiler is commercially available. What sets CompCert apart from any other

production compiler is that it is formally verified, using machine-assisted mathematical proofs, to be exempt from

miscompilation issues. In other words, the executable code it produces is proved to behave exactly as specified

by the semantics of the source C program. This level of confidence in the correctness of the compilation process

is unprecedented and contributes to meeting the highest levels of software assurance. In particular, using the

CompCert C compiler is a natural complement to applying formal verification techniques (static analysis,

program proof, model checking) at the source code level: the correctness proof of CompCert C guarantees that

all safety properties verified on the source code automatically hold as well for the generated executable.

CompCert has been developed by INRIA and licensed by AbsInt for commercial exploitation. In ASSUME,

AbsInt is working at improving the usability of the compiler to make it competitive in this respect with exis ting

compilers. Since Deliverable D4.0, the following improvements have been implemented:

 The robustness of the frontend has been improved. Now more cases of invalid inputs are treated with

proper error messages.

 New command line options have been introduced that allow for better control of the diagnostic output

produced by CompCert. It is now possible to activate or suppress certain warnings and additionally to

mark them as error.

 CompCert now fully supports C11 anonymous compound types. Such types are considered as

transparent for their components so that their named parts may be accessed directly.

In ASSUME's WP4, INRIA is extending the scope of the CompCert methodology to cover the needs of the

embedded design process. Extension will concern both front-end, by considering the translation from Scade to

C, and the back-end, by considering the generation of code for the Kalray MPPA architecture. Preliminary

investigations concerning the possibility of a Kalray backend identified two main difficulties:

The first issue comes from the handling of double-precision floating-point numbers in the MPPA instruction set:

such numbers must reside in pairs of consecutively-numbered registers, with the low 32 bits of a number

residing in one register and the high 32 bits residing in the other register of the register pair. The register

allocation pass of CompCert must be extended to handle the allocation of such register pairs for double -

precision FP numbers. This is known to be non-trivial in allocators based on graph coloring such as CompCert's.

Moreover, the semantic specifications and proofs of CompCert's last intermediate languages and passes (those

occurring after register allocation) also need to be adapted to register pairs and the splitting of double -precision

FP numbers in two 32-bit halves.

The second issue is to take advantage of the instruction-level parallelism offered by the MPPA architecture, so

as to increase performance. The MPPA is a VLIW (Very Large Instruction Word) architecture, meaning that

instructions intended for parallel execution on the processor must be explicitly grouped into so-called bundles by

the compiler, while respecting logical dependencies between instructions and hardware limitations on the size

and contents of a bundle. Our starting point here is earlier work by Jean-Baptiste Tristan and Xavier Leroy on

verified instruction scheduling optimizations for superscalar architectures. The work that remains to be done is

to adapt those techniques to VLIW architectures, probably moving the instruction scheduling from the Mach to

the Asm intermediate languages of CompCert. Moreover, the techniques of Tristan and Leroy suffer from

excessive compilation times in some cases, requiring an improved implementation using hash -consing to handle

sharing of data structures.

In order to overcome these difficulties, INRIA plans to extend its workforce by hiring Gergö Barany, a post -doc

with extensive compiler back-end experience and interest in mechanized proofs.

2.3.5. Litmus

The tool litmus is part of the diy tool suite <http://diy.inria.fr>: a set of software tools for the design and testing of

weak, shared, memory models. More specifically, litmus runs test over actual hardware and collect results. Such

tests are violations of the Sequential Consistency model and can be written by hand or, more conveniently,

generated by the various generators of the diy tool suite. Those tests are usually written in assembly: supported

architectures being ARMv7, ARMv8, PowerPC, MIPS and x86. Litmus consists in a 'compiler' part th at translate

the test instructions into a specific C file, using inline assembly entangled with specific code that, for instance

D4.1 – Methodology draft

Page 12 of 28 Public V1.0

forks threads, repeat experiments etc. That specific C file is linked with other C file that provides OS support or

fixed non-changing infrastructure such as the data structure to collect results.

For exploring Kalray MPPA, we shall use tests written in C, thereby avoiding the burden of writing test

generators for the non-conventional VLIW architecture. We shall instead concentrate on the organization or

tests --- that is the techniques used for forking threads and collecting results. We have written a few tests totally

by hand and succeeded in running our tests on one cluster of the MPPA only. We now plan to use the complete

machine. As a more far reaching objective, we shall automatize test production by integrating MPPA specific

infrastructure files into litmus.

2.4. Interface definitions

2.4.1. Common API for code generation on Kalray MPPA256

While the main execution platform targeted by the avionics cluster is the Kalray MPPA256 many-core, the

ASSUME project is not meant to produce methods and tools fully tailored for only one platform. One particular

aspect of platform-independence is code generation. The Kalray MPPA 256 platform provides multiple and

complex communication, synchronization, and process management mechanisms in both hardware and

software. Following an analysis of the industrial requirements and of the proposed code generation approaches,

several partners have identified a minimal “bare metal” API that will be considered for code generation and

which:

- Is simple, and thus easy to port on other platforms of interest.

- Is close to hardware, and thus is both efficient and facilitates predictable implementation.

- Is easy to characterize semantically, thus facilitating work on the proof of correctness for parallel code

generation.

Our API currently covers code generation for single-cluster shared memory applications that communicate with

their environment (other clusters and/or the exterior of the chip). The API consists in only 8 primitives, presented

as library functions:

- Invalidation of instruction/data cache lines, and flush of data cache lines, both needed to ensure cache

coherency.

- Global synchronization barrier, needed to ensure initial time synchronization of the processors in a

cluster.

- Event-driven inter-processor synchronization using simplified binary semaphores (hardware locks).

- Time synchronization by waiting until a specific date (timer polling, not interrupt -based).

- DMA transfers between the SRAM memory of the computing cluster and its environment.

In addition to the API primitives, we also make assumptions on the form of the generated software. We shall

assume that execution is non-preemptive, each processor running a single sequential thread.

2.4.2. Calling conventions used in SCADE code generation

The developed prototype generates from an annotated Scade 6.6 model C code with tasks communicating

through one-to-one channels. The main program runs the root operator of the Scade program. It runs in parallel

with workers which repeat the following behaviour:

- await a value on the input channel,

- execute a function

- and then send the result to the output channel.

The parallelization of the Scade model is specified using special occurrences pragmas of the form #par_name.

All the operator calls with the same pragma are executed in parallel in fork -join parallelism.

C code can be generated by running:

D4.1 – Methodology draft

Page 13 of 28 Public V1.0

> kcg-task -root <root node> -target C <List of xscade/xscade files>

The code generated for the root operator is the same as usual, except that the calls to workers are replaced by

macro calls to send the inputs and await the results on communication channels.

The generated code uses macros defined in kcg_channel.h. It is thus independent from the target and from

the allocation of workers to computation resources.

2.4.2.1. Input model annotations

The purpose of the annotations is to group several operator instances in one or several parallel subsets: each

instance in a subset is executed in parallel. No dependencies are allowed between instances of the same

subset, so that they can be executed in parallel. The causality analysis has been extended to raise an error if

this is not the case.

Instances of the same subset can be put in different operators (if they end up in the same unexpanded

operator). Parallel subsets can be nested: an operator in a parallel subset can itself contain another parallel

subset.

The annotations are occurrence pragmas of the form #par_name, where name is the name of the parallel

subset. #par pragmas can also be put on map or mapi iterators. In that case, one worker will be created for

each instance of the iterated operator.

It is possible to provide the annotations from an external file (named “Partitioning Information” in Figure), given

with the -pragma_file command-line option. It can be used to provide any pragma, including par pragmas.

This file should contain lines of the form <pragmas> <model_path> where <pragmas> is a list of pragmas

and <model_path> is the path of an element in the model. The syntax of pragmas and model path is given in

ESTEREL TECHNOLOGIES SCADE KCG Tool Operational Requirements.

Example of external annotation file:

``` 

#par_1 root/(node1) 

#par_1 root/(Node2) 

``` 


Instances can also be described using their instance name (eg. (#bla)) or both the operator path and instance

name ((N#1)). The pragmas are attached to all instances matching the path.

2.4.2.2. Communication primitives

Communication is abstracted using macros, which are defined in the kcg_channel.h file, which has to be

provided by the user. A channel is a structure with several fields containing the values carried by the channel

and a field called data of type kcg_channel_data type, which should be defined in kcg_channel.h`.

User must define the KCG_CHANNEL_RECV and KCG_CHANNEL_SEND macros. The generated code first writes to

the fields of the channel and then calls KCG_CHANNEL_SEND to signal that values are ready. Conversely, it first

calls KCG_CHANNEL_RECV to await values and then reads the fields of the channel.

Example of generated code for a root operator

void root(inC_root *inC, outC_root *outC)

{

 N1_in_ch.i1 = inC->i1 - kcg_lit_int32(1);

 KCG_CHANNEL_SEND_N1_in_ch(N1_in_ch);

 F1_in_ch.i1 = inC->i2 * inC->i2;

 KCG_CHANNEL_SEND_F1_in_ch(F1_in_ch);

 KCG_CHANNEL_RECV_N1_out_ch(N1_out_ch);

 KCG_CHANNEL_RECV_F1_out_ch(F1_out_ch);

 outC->o = N1_out_ch.o1 + F1_out_ch.o1;

D4.1 – Methodology draft

Page 14 of 28 Public V1.0

}

The KCG_DECL_SENDER and KCG_DECL_RECEIVER Macros are used by the generated code to declare a

sender and a receiver on a given channel.

Note that implementations are provided in the `tools/tasks` directory for PThreads (`pthread/`), Windows threads

(`windows/`), C++11 threads and mutexes (`cxx11`) and C11 atomics (`c11`).

2.4.2.3. Worker

For each operator instance in a parallel subset, a worker called <operator>_worker is generated, which

takes as input the context of the operator (if any) and:

- awaits a value on the input channel(s)

- executes the step function of the operator

- sends the result to the output channel(s).

Note that the worker only executes one step of the operator. Like the main operator, it has to be put inside a

loop to obtain the final behaviour.

The code generated is independent from the target and from the allocation of workers to threads. A simple

integration consists in creating one thread for each worker. But it is also possible to put several workers in the

same thread.

2.4.2.4. Integration on Specific Targets

Integration to a new target platform consists in providing the code for the macros and instantiating the

application (thread creation, memory allocation, …). The main function of the program has to setup the

communication channels and run in parallel the main program and the workers .

To perform this task all required information (workers, communication channels, etc.) is stored in a

mapping.xml file which contains traceability information between the input model and the generated code . The

folder tools/mapping_file contains a Python API to access the mapping.xml file generated by ESTEREL

TECHNOLOGIES SCADE KCG. The documentation of this API can be found in tools/mapping_file/doc.

The script tools/mapping_file/examples/multicore/main_gen.py shows an example of how to

generate a main file for Pthread and Win32 API using the mapping file API. The script takes as input an

allocation of workers to threads (named “Scheduling / Target information” in Figure). This script also

implements more advanced features like:

- it checks that the order chosen for workers in each thread is correct according to the order in which the

corresponding channels are used in the root operator (see check_scheduling function). This is

necessary to avoid a deadlock at runtime.

- it generates a user_config.h file which overwrites the definition of communication macros for

channels between workers executed in the same thread. In that case, no synchronization is needed.

- …

The tools/tasks folders contains several folders providing an implementation of `kcg_channel.h` for a given

target.

2.4.3. Non-functional annotations in Heptagon

As explained above, the Heptagon language has been extended with annotations allowing the definition of non-

functional requirements. These annotations allow the definition of the system-level integration specification

introduced in section 2.3.3. We introduce annotations through the simple example of Fig. 5. In this figure, black

D4.1 – Methodology draft

Page 15 of 28 Public V1.0

program text provides the functional specification (in plain Heptagon language). Non-functional annotations use

red text.

Annotations allow the specification of the following requirements:

- Period. A single period can be currently specified, at system level. This a llows the specification of single-

period systems (multi-period systems can be specified by using a hyper-period expansion).

- Release date and deadline. Each program statement can be associated a release date and a deadline.

- Partitioning. Each program statement can be associated a partition. Partitions can later be used to

define allocation requirements.

- Preemptability. On platforms that support preemptive execution, these annotations determine which

computations can be pre-empted, and which not.

Heptagon-NFP programs are automatically translated into the input formalism of Lopht, described in (Carle,

2012).

open Externc

node main period(0x100000) () returns ()

var

 fs, hs: bool ;

 id, param: int ;

let

 partition(critical) release(0x80000)

 fs = read_bool_sensor(0x1000) ;

 partition(critical) hs = read_bool_sensor(0x2000) ;

 partition(noncriti) deadline(0x80000)

 if hs then

 preemptive id = g() ;

 else

 var x,y : int; in

 y = 15 fby x ;

 id = f1(y) ;

 x = f2(id) ;

 end ;

 partition(critical) if fs then

 param = 12345 ;

 else

 param = id ;

 end ;

 partition(critical) () = act(param) ;

tel

Figure 5. Example of Heptagon+NFP integration specification with non-functional

annotations

D4.1 – Methodology draft

Page 16 of 28 Public V1.0

3. Fault tolerant vision cluster

The participants in the fault tolerant vision cluster (Recore, NXP, UT, Tue) work on the creation of hardware

components and analysis techniques for vision systems but also car-radar systems are considered.

Concerning the hardware components the main focus is on fault tolerant processor design. The first step taken

was to determine the vulnerability of the different components in a processor. The next step will be the selective

introduction of redundancy to detect and correct errors. Furthermore, a technique based on role -back and re-

computation at the software level is considered.

To relax the temporal requirements more robust state estimation and control techniques are under development

in the cluster. Concerning state-estimation a particle-filter based approach is explored which can deal well with

the non-linear behaviour that is a result of non-periodic sampling. This particle filter based state estimation is

relevant for video and radar object detection and tracking. Furthermore, particle filters have some inherent

redundancy which makes them potentially interesting candidate to be combined with low-cost fault tolerant HW

techniques.

3.1. Analysis of industrial use cases and requirements

The use-case REC_UC01 is defined by NXP/Recore and concerns fault tolerant processing of a vision/radar

systems. Recore is especially interested in fault tolerant hardware design techniques, whereas NXP is more

interested in software techniques that improve the robustness of a radar system. This can be achieved by

making use of estimators for object tracking. These estimators should be made robust against variation in the

interval of time between subsequent samplings as well as hardware errors. Variation in the interval between

subsequent samplings can be a result of communication delay and variation in the execution time of the

estimator.

3.2. Proposed tools and methods

No overall tool flow is planned because most of the tools do not require interaction with the other tools that are

under development. Furthermore, this cluster works on hardware techniques as well.

3.2.1. HAPI dataflow simulator

HAPI is a recently introduced dataflow simulator. The novelty is that it allows to simulated shared resources

without introducing any over-approximation or under approximation in the analysis results. Therefore it can be

used to falsify analytical analysis techniques like the ones implemented in Xenoclea. Interf acing of Xenoclea

and HAPI is desirable to guarantee consistency and simplify analysis of larger test -sets. Furthermore

interfacing with the UPPAAL model checker is considered. Evaluation using practical case-studies will

potentially result in the future in requests for extensions of HAPI. Furthermore, we currently started to consider

extensions of HAPI for the simulation of hybrid systems. In these hybrid systems the continuous time -part of the

system should be evaluated besides the discrete time part of the system.

3.2.2. Definition and computation of the architecture vulnerability factor (AVF)

A PhD student at the Tu/e has been working on a simulator for the evaluation of the vulnerability for hardware

errors in processors. Unfortunately the PhD student has ended his contract. A new student will be hired to

continue this work. However, the main objective is not the development of the simulation tool but the definition

of hardware and software techniques that improve the error resilience of processors.

The summary of previous work about vulnerability modelling work is as follows:

The key to generating error-rate estimates is understanding that not all faults in a microarchitectural structure

affect the final outcome of a program. As a result, an estimate based only on raw device fault rates will be

pessimistic, leading architects to over-design their processor’s fault-handling features. We call the probability

D4.1 – Methodology draft

Page 17 of 28 Public V1.0

that a fault in a processor structure will result in a visible error in the final output of a program tha t structure’s

Architectural Vulnerability Factor (AVF). By definition, AVF is the probability that a fault (for example, induced

by a particle strike, manifested as a bit-flip) leads to a user-visible error. It is usually estimated by the average

fraction of time that a bit spends in a state that is required for Architecturally Correct Execution (ACE). Any fault

in a storage cell that contains one of these bits, which we call ACE bits, will cause a visible error in the final

output of a program in the absence of error correction techniques. We call the remaining processor state bits un-

ACE bits, as their specific values are unnecessary for architecturally correct execution. A fault that affects only

un-ACE bits will not cause an error. AVF can also be defined by Formula 1. AVF can be measured using fault

injection, but in our case, we are building a model to measure vulnerability of components, namely, simulation

based AVF measurement.

AVF =
num of ACE Bits in structure

total num of bits in structure

Formula 1

3.2.2.1. Simulation based AVF measurement: Counting Residence Times

Another commonly used method to estimate AVF is by counting the number of ACE bits in the structure every

cycle and finding the average. This method is attractive because it is easy to implement in simulations of

microarchitectures and thus gives a quick design time estimate of the AVF of a structure. With this method, RTL

files, which normally is not available during design phase, are not required. With this method, AVF is defined as

below. To make the definition more clear, there is a motivational example in Figure 6. It is a 3-entry 32-bit

register files. The bits in yellow is ACE. To calculate the AVF of this 3-entry structure in 5 cycles, it is necessary

to calculate the total bits in structure, total execution time and also residency time of all ACE bits in structure.

Based on Formula 2, AVF of this example is 43.3%.

AVF =
∑ NACE(cycle)

Ncycle

cycle=1

Nbit × Ncycle

Formula 2

Figure 6 Motivational example of performance model simulation based AVF estimation

Using simulator to estimate AVF is quicker than error injection based method, however, it requires the designers

understand all the cases the errors can be masked. How to classify ACE and un-ACE bits? It is an important

question and answered in detail in previous works. In these works, the authors listed most important cases of

error masking including hardware masks (idle bits) and software masks (dynamically dead bits & logical masked

bits).

We have evaluated AVF using SIM-SODA. All the parameters are the same except that cache is disabled in my

experiment which brings more idle and stall stages and probably makes the results different. In SIM-SODA, the

authors augment sim-alpha (Alpha version of SimpleScalar) with AVF measurement function. I ran our

reproduction simulator with GCC and MCF of SPEC2000INT and compare AVF results. The results are listed

below.

D4.1 – Methodology draft

Page 18 of 28 Public V1.0

Figure 7 AVF result comparison between SIM-SODA and our reproduction with GCC and MCF testbench.

With the simulator-based method, the target application is executed in a simulator and the ACE bit residencies

are counted. The AVF results of simulators indicate the overall reliability of the target application when it is run

in the target hardware. However, the results cannot provide the reliability information of the target hardware

separately or the target software separately. Thus, researchers are trying to divide AVF into hardware and

software parts. In the next section, a methodology to divide AVF into Hardware VF and Program VF, which is

proposed by (Sridharan and Kaeli, 2010) is introduced.

3.2.2.2. AVF = PVF*HVF

Although AVF analysis can yield an understanding of the reliability behavior of a hardware structure, no

corresponding method has yet been developed to quantify the vulnerability of a program to hardware faults.

Such a method would allow researchers to better understand the link between program code and reliability, and

could enable the development of reliability techniques at a compiler or even programming language level.

Sridharan and Kaeli (Sridharan and Kaeli, 2008) introduced the Program Vulnerability Factor (PVF) to quantify

the portion of AVF that is attributable to a user program. This allows a software designer to measure the

microarchitecture-independent vulnerability of a program during its design phase. PVF work does not, however,

provide a method to quantify the non-PVF components of AVF, nor does it provide a method to re-compute AVF

from PVF. In (Sridharan and Kaeli, 2010), the same authors introduced the Hardware Vulnerability Factor (HVF)

to address these limitations. HVF quantifies the hardware portion of AVF, independent of program-level masking

effects. AVF can then be calculated as the product of HVF and PVF. Computing HVF has three concr ete

benefits. First, using HVF analysis (in conjunction with AVF analysis) provides insight to hardware designers

beyond that gained by AVF analysis alone. Second, separating AVF analysis into HVF and PVF steps can

accelerate the AVF measurement process with a 2x reduction in simulation time with no loss of accuracy.

Finally, runtime monitoring of HVF enables runtime estimation of AVF by combining HVF measurements with

compile-time PVF estimates.

A system vulnerability stack to separate AVF into hardware and software components is shown in Figure 8. If a

bit flip on a latch or a logic gate is latched by the following latch, then it is transferred to the functional interface

and visible for Microarchitecture layer and is called a soft error. If a SE in Microarchitecture can reach ISA

interface, namely, if an SE finally change the instructions of the target program, it is visible for program layer. To

make it clear, two motivational example is discussed below. (1) if a fault is latched and stored in 1 st entry of RF

at cycle 5 which is not occupied until cycle 11, this fault reaches functional interface and visible for

microarchitecture layer, however, cannot reach ISA interface and invisible for program layer. Thus, this soft

error is masked in microarchitecture layer. (2) if a fault is latched and stored in 3 rd entry of RF which is occupied

and will be accessed afterwards as an operand of multiplication operation, this soft error is visible for both

microarchitecture and program layers, as it changes the ISA by changing the operand value. Assuming the other

multiplication operand is 0, this soft error is masked in program layer and invisible at the program output port.

The masking effect of the 1st example contributes in HVF measurement, while the 2nd one is counted in PVF

measurement. Occupancy can be used to approximate HVF. The correlation coefficient between occupancy and

HVF is greater than 0.97 across all benchmarks and provide an upper bound of HVF and AVF, after

multiplication with PVF. HVF and PVF is defined as Formula 3 & 4. In he two cited papers, there are 2

motivational examples to explain how to calculate HVF and PVF and how to calculate AVF with them. As

occupancy measurement can be very quick and program profiling which is independent of hardware can be

performed in compile time, the division of AVF into hardware and software components can not only guide

designers to improve the reliabilities of hardware and software separately and wisely, but also reduce the AVF

measurement time and thus, make accurate run-time measurement possible.

D4.1 – Methodology draft

Page 19 of 28 Public V1.0

Figure 8 A system vulnerability stack to separate AVF into hardware and software components

HVF =
∑ 𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠 𝑖𝑛 𝑡𝑎𝑟𝑔𝑒𝑡 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝐻 𝑎𝑡 𝑐𝑦𝑐𝑙𝑒 𝑛𝑁

𝑛=0

𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐻 ∗ 𝑐𝑦𝑐𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟
 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 4

Formula 3

PVF =
∑ 𝑢𝑛𝑚𝑎𝑠𝑘𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠 𝑖𝑛 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑅 𝑎𝑡 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝐼

𝑖=0

𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑅 ∗ 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝐼
 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 5

Formula 4

3.2.2.3. Approximate-compute oriented PVF

Approximate computation is very popular recently. For some applications, errors that are small enough can be

treated negligible, namely invisible. In this case, a decrease in accuracy in an acceptable range can help

improve the performance and save energy. The sizes of acceptable ranges vary depending on application

requirements. As AVF is the probability that a fault can be transferred to a visible error, the errors which are

small enough to be neglected should also be treated as masked error. We call it natural masking effect

happening in the natural layer which is on top of program layer as shown in Figure 9. Natural masking effect

should be counted during PVF measurement. In previous works, researchers only focus on the Soft Error Rate

(SER), but neglected the seriousness of the errors, namely the value of the errors. What we are going to

propose is a new term called Approximate-processing-oriented AVF (AAVF) which also takes the error

seriousness and natural masking effect into consideration.

Figure 9 Approximate-compute oriented system vulnerability stack

a) The relationship between approximate processing and fault tolerance
In this subsection, the relationship between approximate processing and fault tolerance is discussed. As

shown in the graph 1, the threshold is the value of largest negligible error and the area in shadow is the

D4.1 – Methodology draft

Page 20 of 28 Public V1.0

approximate-processing-oriented SER. Only the errors which are larger than the threshold are visible SE.

The classical SER is defined as Formula 5, with the threshold as 0. Appr.comp.SER is defined in Formula 6.

The average visible error is defined in Formula 7.

Graph 1 The relationship between approximate processing and fault tolerance

b) AAVF: Approximate-compute oriented PVF (APVF) * HVF
Firstly, we need to figure out in which cases errors can be masked in natural layer. The answer is: (1) Low

number of errors (2) Low concentration of errors (3) Small value of errors. The thresholds of these

three parameters varies depending on application requirements. A frame with errors which are below these

thresholds can be treated as correct frame.

Secondly, we need to combine natural masking effect with other masking effects in program layer and

propose a new methodology to measure APVF.

In (Shafique et al., 2010) , the authors propose an application to measure classical PVF. Instructions are

taken as nodes in a tree, namely an application and outputs are taken as leaves. The authors traverse the

tree and compute PVFs of all nodes. The algorithm 1 & 2 in this paper are used in their PVF measurement

application. We can augment this application with natural masking effect. Based on the threshold of the

largest negligible error, the tree can be traversed again and all PVFs are updated. For example, assuming

10% error is negligible, the predecessor of one leaf is an addition instruction, the error of the last 12 bits of

the addition operands can be masked by the natural masking effect. In turn, the PVF of the predecessor of

this addition node can also be updated in the same way. Considering low concentration of errors and small

number of errors can blur the errors and decrease the error serious, the updated PVFs need deratings. After

error number derating and error distribution derating to the updated PVF (e.g. Updated_PVF *

Threshhold_of_number / Threshold_of_concentration), results in the APVF.

𝑆𝐸𝑅 = ∫ 𝑃(𝑒𝑟𝑟𝑜𝑟) ∗ 𝑑𝑒𝑟𝑟𝑜𝑟
∞

0
Formula 6

𝑎𝑝𝑝𝑟. 𝑐𝑜𝑚𝑝. 𝑆𝐸𝑅 = ∫ 𝑃(𝑒𝑟𝑟𝑜𝑟) ∗ 𝑑𝑒𝑟𝑟𝑜𝑟

∞

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 7

𝐴𝑣𝑒𝑟𝑎𝑔𝑒. 𝐸𝑟𝑟𝑜𝑟 = ∫ 𝑃(𝑒𝑟𝑟𝑜𝑟) ∗ 𝑒𝑟𝑟𝑜𝑟 ∗ 𝑑𝑒𝑟𝑟𝑜𝑟

∞

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 8

Formula 5

Formula 6

Formula 7

D4.1 – Methodology draft

Page 21 of 28 Public V1.0

3.2.3. Approximate DMR-based Reliable Vector Processor

In this section, a reliable vector processor is proposed which applies approximate Double Modular Redundancy

(DMR) technology and can tolerate not only transient errors but also permanent errors . Approximate DMR is

similar to DMR. The only difference is approximate DMR take a simplified copy as redundancy, which helps

save costs. DMR and TMR are the most popular fault tolerant technologies in microarchitecture level. For error

detection, DMR is better than TMR, as it saves energy and takes smaller area. For permanent error recovery,

DMR and TMR are the same, as the broken components are always needed to be replaced. However,

considering transient error recovery, TMR is better, as with TMR, the correct value can be figu red out by the

voter and roll-forward recovery can be applied which saves time. While with TMR, rollback recovery is required,

which brings overhead in runtime. However, what if we can reduce the SER? Then, the overhead of rollback

recovery is reduced and TMR becomes an optimal selection. To reduce the SER, we can do fault prevention by

hardening the most vulnerable components of the vector processor with the guidance of AVF.

1) Transient fault
a) Detection: DMR
b) Recovery: Rollback

2) Permanent fault
a) Detection: DMR
b) Recovery: Replace with the spare PE and spare Date Memory as shown in Figure 10. Normally the

spare PE is not linked into the circular PE network. When one PE is broken, the broken PE is left out,
its two neighbor PEs are linked together and the spare PE joins the network and is linked with the first
and last PE. Memory banks recovery is in the same way.

Figure 10 Reliable vector processor

3.2.4. Particle filter based state estimation algorithm

A PhD student of the UT is looking into error resilient object detection and tracking. As a first step, he is

considering the problem of mitigating the effects of sampling uncertainty. This has resulted in the definition of a

new particle filter based state estimation algorithm. This work will likely not result in a new tool but in new robust

algorithms that are implemented on a fault tolerant vision platform and evaluated using the HAPI simulator. The

hardware of such a platform is under development. NXP looks into the use of similar estimation techniques but

then in the radar context.

3.2.5. Fault-Tolerant Network-on-Chip architecture

Recore Systems’ work concentrates on fault-tolerant hardware and software techniques in the on-chip

interconnect of multi-processor systems-on-chip (SoC) architectures. In these SoCs there are lots of processing

elements which communicate with each other. For the communication between these elements, various

interconnect architectures like simple bus, hierarchical bus, ring based bus, etc. have been in use.

However, as the number of cores increases, traditional bus based architectures face problems like bus

contention, arbitration, etc., which can be overcome with a Network -on-Chip (NoC) solution. Due to its flexible,

D4.1 – Methodology draft

Page 22 of 28 Public V1.0

computer network like architecture, a NoC can support concurrent communication between pairs of nodes in the

network, and adapt to changing data transmission requirements.

The baseline architecture of a Fault-Tolerant Network-on-Chip architecture is defined. The NoC architecture

design focuses mainly on the lower layers of the NoC, i.e. the data-link layer and the network layer. The NoC

incorporates fault mitigation techniques obtained from an exhaustive literature survey.

D4.1 – Methodology draft

Page 23 of 28 Public V1.0

4. Safe vehicle control cluster

The participants in the safe vehicle control cluster (Verum, UT, (VDL), (TNO)) work on tools for the creation of

software components and temporal analysis techniques for advanced driver assistance functionality in cars and

coaches. The main focus is on distributed systems.

Concerning analysis and synthesis of the functional behaviour in software the focus is on the use of the Dezyne

tool of Verum. This tool allows the specification of state based event driven or concurrent components; these

can be verified for hidden defects, such as deadlocks, after which code can be generated tha t is guaranteed

deadlock free. The main activity has been the identification of a suitable use-case together with VDL which can

be realized despite all the restrictions vendors of embedded-compute-units (ECUs) for cars place concerning

reprogramming of their units. Furthermore, additional functional verification features are under development for

the Dezyne tool.

Concerning temporal analysis techniques, a new refinement theory has been developed and published which

allows reordering of data as a result of for example data-parallel computation. Furthermore, the dataflow

simulator HAPI has been developed which is able to simulate sharing of resources. Also a more accurate

temporal analysis technique has been developed and published. This techniques enables acc urate modelling of

an application using the more expressive CSDF model. The analysis method has been implemented in an

analysis tool which is called Xenoclea.

Furthermore, TNO has defined a use-case of a distributed control system in coach/truck which makes use of

car-2-car communication using WLAN 802.11p. This use-case will be used for the valuation of the developed

temporal analysis techniques and the dataflow simulator. TNO is interested to analyse worst -case temporal

behaviour as well as the probabilistic temporal behaviour of the system using the developed tools. This temporal

behaviour is very important in the considered system because it affects the stability of the control system that

will be used for the controlling the distance in a platoon of trucks. To relax the temporal requirements more

robust state estimation and control techniques are under development in the cluster.

4.1. Analysis of industrial use cases and requirements

Use-case TNO_UC01 is defined by TNO/VDL and its objective is to derive the worst-case and probabilistic

temporal behaviour of a network of ECUs in truck platooning setup which is under development by TNO. One of

the key challenges is the definition of a formal analysis model that captures the mix of time -triggered and event-

driven processing. This model should unambiguously describe the temporal behaviour of the system despite

shared resources (e.g. the communication network). Using the model it should be possible to compute the

worst-case behaviour as well as derive the probability density function which describes the end-to-end latency.

Use-case 2 is defined by VDL/Verum and concerns the definition of monitors and/or controllers for ECUs in CAN

networks. Monitors should raise alarms when communication with the environment does not adhere to defined

protocol/behaviour. Controllers add active communication to this, and as such influence the network. The

current proposal is the usage of a separate ECU for monitoring and control because after a long investigation

and consultation of the ECU vendor, no suitable way was found to program the ECUs in C that are currently in

use by VDL.

4.2. Proposed tools and methods

In the safe vehicle control cluster there are no plans to define one overall tool flow that makes use of developed

tools. The main reason is that most of the tools that are under development address different aspects of a

design and do not benefit from results of other tools. One exception is probably the work on Xenoclea and HAPI

where the simulator can be (and is) used to falsify analysis results. In the future it is likely that exchange of data

with a model checker like Uppaal will be added.

D4.1 – Methodology draft

Page 24 of 28 Public V1.0

4.2.1.1. Xenoclea

Xenoclea is a temporal analysis tool developed by the UT/NXP. This tool is suitable for the analysis of task

graph running on multiprocessor systems in which the processors are shared. Different schedulers are support

including fixed priority preemptive. The task are allowed to communicate using finite FIFO buffers resulting in a

cyclic dataflow analysis model. It is desirable that the accuracy of the tool is further extended as well as more

expressive models should be supported to allow the analysis of a larger class of systems.

4.2.1.2. Dezyne

Dezyne is an event-driven modelling tool developed by Verum. The typical application of Dezyne in the

automotive domain requires Dezyne models to be executed on an ECU in a CAN bus network. The CAN

standard requires all nodes on the CAN network to be synchronized to sample every bit on the CAN network at

the same time. Dezyne models with their discrete event-driven approach have to interface with the CAN oriented

world. Such interfaces will developed.

Furthermore we investigate the possibilities to extend Dezyne with a formalism for functional verification, where

the user can specify certain properties of the observable behaviour of a design. A specification language for

such properties is needed, and tooling to check the design against these properties.

D4.1 – Methodology draft

Page 25 of 28 Public V1.0

5. Consumer electronics cluster

Smart devices and components has been widely employed in recent years. New and previously unforeseen

application areas for smart components emerge frequently. Although application areas are different, efficiency

and scalability is the common and premium requirement of the smart components. Hence, the underlying

embedded controllers mostly rely on multi-core architectures or allow concurrent programs.

To achieve better performance, programs tend to adopt techniques that increase the level of concurrency.

However, highly concurrent programs enable enormous number of possible interleavings and different

executions which make reasoning about the correctness of the program difficult and make the programs error -

prone. Some concurrency bugs occur in subtle and/or rare conditions and it is difficult to detect them by

standard testing methods. Hence, formal treatment (verification or validation) is crucial for mission-critical or

safety critical components of the programs.

However, verifying a concurrent program by doing formal proofs and static analysis is not an easy task. The firs t

difficulty arises because of the gap between the theory and practice. The widely accepted model for reasoning

about the behaviors and semantics of concurrent programs is Sequential Consistency (SC) defined by Lamport

(Lamport, 1979). In SC, all operations of an execution appear to be in some sequential order and operations

from the same execution unit appear in this execution in the order specified by the program. SC is an elegant

and powerful enough to describe concurrent programs but it is not realistic. Most modern hardware architectures

(Intel x86, PowerPC, Arm …), including GPUs and programming language specifications (C, C++ 2011) allow

“relaxations” which enable programs to produce more behaviors than SC ones.

The relaxations in hardware and programming language specifications are necessary for performance reasons.

Relaxations are diverse and there are still significant examples of programming languages and hardware

architectures that lack the formal semantic model. In the recent literature, relaxations are described by allowing

statement reorderings in SC, imposing some relations among program actions as constraints on the executions

or adding machines and data structures to SC programs for an operational description.

Reasoning techniques and proof tools are well-developed for programs running on SC semantics. The well-

known Owicki-Gries (OG) reasoning (Gries, 1976) can be utilized for checking correctness of local assertions

and Lipton’s theory of reduction (Lipton, 1975) combined with abstraction techniques can be used for performing

refinement proofs. However, there are no practically applicable tool or method for verifying programs running on

relaxed semantics.

Our aim in the scope of this project is to develop a proof system that enables refinement and linearizability

proofs for programs running on weak semantics. Core of our method is to start from the most abstract

specification of the program and reach to a concrete program in which all of the atomic actions of the program

correspond to actual assembly level instructions, via a sequence of refinement proofs. We aim to leverage the

power of already existing proof methods for SC for performing the refinement proofs. We transform original

program P to another program P’ by explicitly adding operational semantics of the relaxed memory model such

that every relaxed execution of P is also an SC execution of P’. Hence, proving linearizability or refinement of

the transformed program using the SC proof rules is sufficient for showing that the original relaxed programs

refinement or linearizability.

We pick x86-TSO as our sample relaxed model since it describes the memory model of x86 Intel machines and

a useful fragment of the C, C++ 2011 specification. Operationally, TSO can be described on SC as follows: each

execution unit (thread or core) keeps a local stack for write (update) operations. Different from SC, write

operations on global variables are not directly reflected to shared memory, but they are pushed to local stacks.

These stacks can nondeterministically interfere into execution and perform pops. In addition, read operations on

global variables first try to read from the local stack to check if there is a recent update on this variable that has

not been reflected to shared memory yet. This model is simple enough to allow explicit program transformation,

yet powerful enough to yield non-SC executions by delaying write operations.

5.1. Benchmark Data Structures and Synchronization Primitives

Static analysis methods are robust and used for formal proofs about programs. However, performing proofs is a

tedious task that mostly needs human effort and intervention since most of the problems considered are

undecidable by their nature. Hence, they are used for verifying mission-critical or safety critical components of

D4.1 – Methodology draft

Page 26 of 28 Public V1.0

the programs. We pick important data structures and synchronization primitives from the literature to show

applicability of our approach. The examples we pick are widely employed in real industrial applications and their

correctness is crucial for correct functioning of the programs. In this section, we will present, analyse and show

importance of these benchmark examples.

Spinlock: Locks are important synchronization primitives that are used to protect critical sections and provide

synchronization among threads. Spinlock is a widely used CAS based locking mechanism. For this example we

aim to show that spinlock adheres to its atomic specification under relaxed semantics.

Double Checked Locking: An optimized concurrent software engineering paradigm for initializing objects or

assigning values to objects based on locking. We developed a simple procedure that performs assignment using

double checked locking, utilizing a spinlock. We aim to verify that the method adheres to its atomic specification.

Send / Receive Example: A simple synchronization mechanism that allows execution units to communicate

through a shared flag variable. Using this variable in a careful way, an execution unit prevents another

execution unit to read shared variables before it reflects all of its changes. We provide sample sender and

receiver methods in this example and aim to show that values read by the receiver method is exactly the ones

updated by the sender by providing local assertions.

Chase-Lev Deque (CLDeq) (Lev, 2005): A double-ended queue (deque in short) is a concurrent data structure.

A special thread called worker thread could perform put and take operations could insert and remove elements

from the tail of the deque, respectively. Concurrently, other threads (called stealer threads) could perform steal

operations that can remove elements from the head of the deque. Deque is a key data structure use d in task-

based concurrent platforms and its correctness is crucial for distribution of tasks. CLDeq is a high -performance,

complicated deque implementation. It has been shown that non-SC behaviorus of CLDeq exist under TSO

semantics. Hence, the usual deque specifications may not be satisfied by TSO executions of CLDeq. We aim to

find tight enough (yet more relaxed than the original deque specs) atomic specifications and show that CLDeq

refines these specifications.

5.2. Proposed tool flow and desired tool extensions

5.2.1. Global toolflow organization

BoogiePL (Mike Barnett, 2005) is an intermediate verification language that is used for describing proof

obligations from various domains and Boogie is the tool developed by Microsoft Research to translate proof

obligations in Boogie PL to SMT formulae and check their satisfiability using SMT solvers. CIVL (Qadeer,

Tasiran, & Hawblitzel, 2015) is an extension to Boogie that uses a dialect of BoogiePL developed by Mic rosoft

Research and MSRC lab at KU for reasoning about concurrent programs. It allows a sequence of refinement

proofs for SC programs in a layered structure utilizing Lipton’s reduction, abstraction techniques and OG

reasoning. Our aim is to extend CIVL and Boogie tool set for our purposes.

Proposed method for refinement proofs on relaxed memory models contains the following steps:

 Input to the method is the finest grained concrete program P written in CIVL-like language. The

language we use both extends and restricts the original CIVL language. Atomic actions of the program

and the global variables must obey the restrictions provided in Section 5.3.1. CIVL language is extended

to allow TSO memory model specific constructs like barriers.

 Apply program transformation on P to obtain equivalent SC program P`. Program transformation

involves explicit modelling of thread buffers and global shared memory. In addition, the lowest level

atomic actions in P are replaced with TSO counterparts in P` and nondeterministic drains are

introduced. The transformed program is totally in the language of CIVL.

 Use CIVL to perform refinement proofs on P`. Using the layered proof structure of CIVL, obtain abstract

programs by performing refinement proofs until reaching the desired abstract specifications. In addition

to existing OG, reduction/abstraction proof techniques, we develop and apply new proof rules special to

TSO related actions for simplifying proofs.

 (Optional) Use adapted version of BoogieASM on P to obtain executable assembly program for the

desired platform. Since BoogieASM is in an experimental stage now and its development directions are

D4.1 – Methodology draft

Page 27 of 28 Public V1.0

uncertain, we may skip employing BoogieASM and prefer to develop our own translation tool for this

purpose in the future stages of the project.

5.2.2. Tool status and needed extensions

CIVL is a tool that can be used for verifying SC concurrent programs. Currently, it does not have any support or

proof techniques for the relaxed memory models. Our aim is to extend CIVL/ Boogie toolset so th at it becomes

convenient for TSO programs and semantics.

5.2.2.1. CIVL \ Concurrent Boogie

There are two crucial extensions needed on CIVL to make it suitable for our method:

 A translator / compiler that will take the relaxed program P written in the extended CIVL language

described previously and that will produce the SC program P` in CIVL language.

 Modifications in the CIVL source code to adopt our TSO specific proof rules. Our TSO proof rules

include generalizations of existing mover analysis and reduction rules as well as specific rules tailored

for certain TSO actions that may occur in the transformed program P`.

5.2.2.2. BoogieASM

BoogieASM is a tool that aims to generate executables from Boogie programs that are correct by construction.

However, the tool is still in its infancy. It is not certain that what kind of semantic models will be supported by the

tool and how it will be integrated to Boogie – CIVL. Depending on the future developments on BoogieASM, we

aim to extend it for generating executables from Boogie programs that are verified through our methodology.

5.3. Interface definitions

5.3.1. Common Interface for CIVL and BoogieASM

In addition to the language allowed by CIVL, we require following restrictions / extensions on the input program

P:

 For simplicity, we initially allow two kind of base types for global variables inside the programs: integers

and pointers. Integers are already a base type in CIVL. If pointers will be used by the programs, there

should be a definition of Boogie type with the exact name xPointer:int in the program where x is another

type name. If the defined type is just Pointer, we interpret it as the integer pointer. We allow composite

types (records in Boogie) that may consist of base types or other composite types.

 Thread identifiers are assumed to be of type Tid. They must be passed as linear arguments to the

methods.

 Dynamic memory allocation from explicitly defined memory is possible. To achieve this, the lowest level

method alloc must be defined inside the program and it should be called for dynamic memory allocation

inside the other methods.

 For reading from a global variable x, the programmer must define and use the lowest level atomic

procedure readX().

 For writing to a global variable x, the programmer must define and use the lowest level atomic procedure

writeX().

 For performing a compare-and-swap action, programmer must define and use the lowest level atomic

procedure CAS().

 The lowest level method name barrier() must be defined and used inside the methods for putting TSO

fences inside the methods.

D4.1 – Methodology draft

Page 28 of 28 Public V1.0

References
ASSUME Project Team. (2015). Full Project Proposal Annex. ASSUME.
CHAFEA, E. C. (2012, January 30). Managing projects, Elaborating a Dissemination Plan . Retrieved from

http://ec.europa.eu/chafea/management/Fact_sheet_2010_06.html

Gries, S. O. (1976). An axiomatic proof technique for parallel programs. Acta Informatica, 6(4), 319-340.

Lamport, L. (1979). How to make a multiprocessor computer that correctly executes multiprocess programs.

Computers, IEEE Transactions on, 100(9), 690-691.

Lev, D. C. (2005). Dynamic circular work-stealing deque. In Proceedings of the seventeenth annual ACM

Symposium on Parallelism in algorithms and architectures , 21-28.

Lipton, R. J. (1975). Reduction: A method of proving properties of parallel programs. Communications of the

ACM, 18(12), 717-721.

Mike Barnett, e. a. (2005). A modular reusable verifier for object-oriented programs. International Symposium on

Formal Methods for Components and Objects, 364-387.

Mutluergil, S. O., & Tasiran, S. (2016). A Mechanized Refinement Proof of the Chase-Lev Deque Using a Proof

System. International Conference on Networked Systems (pp. 280-294). Springer International

Publishing.

Qadeer, S., Tasiran, S., & Hawblitzel, C. (2015). Automated and modular refinement reasoning for concurrent

programs. International Conference on Computer Aided Verification (pp. 449-465). Springer International

Publishing.

T. Carle. Efficient compilation of embedded control specifications with complex functional and non -functional

properties. PhD thesis. 2014. https://tel.archives-ouvertes.fr/tel-01088786/document

Koek, P. et. al. (2016, May 23-25) CSDFa: a model for exploiting the trade-off between data and pipeline

parallelism. In: Proceedings of the 19th International Workshop on Software and Compilers for

Embedded Systems

Kurtin, P. et. al. (2016, May 23-25) HAPI: An Event-Driven Simulator for Real-Time Multiprocessor Systems. In:

Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems

Sridharan, V., Kaeli, D. Quantifying software vulnerability. Proceedings of the 2008 workshop on Radiation

effects and fault tolerance in nanometer technologies, 2008.

Sridharan, V., Kaeli, D. Using hardware vulnerability factors to enhance AVF analysis . Proceedings of the 37th

annual international symposium on Computer architecture (ISCA'10).

Shafique, M. and Rehman, S. and Aceituno, P. V. and Henkel, J. Exploiting Program-level Masking and Error

Propagation for Constrained Reliability Optimization. Proceedings DAC 2010.

Cohen, A., Duranton, M., Eisenbeis, C., Pagetti, C., Plateau, F., Pouzet, M. - n-Synchronous Kahn Networks. In

POPL 2006

