
PROPRIETARY RIGHTS STATEMENT
THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE ASSUME CONSORTIUM.
NEITHER THIS DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED
OR COMMUNICATED BY ANY MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE
PRIOR WRITTEN CONSENT OF THE ASSUME CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE
ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE RESEARCH LEADING TO THESE
RESULTS HAS RECEIVED FUNDING FROM VARIOUS NATIONAL AUTHORITIES IN THE FRAMEWORK OF
THE ITEA 3 PROGRAMME (PROJECT NUMBER 14014).

Affordable Safe & Secure Mobility Evolution

State-of-the-art and technology Y2
Deliverable D6.6.2

Deliverable Information

Nature Document Dissemination
Level

Public

Project ASSUME Project Number 14014

Deliverable ID D6.6.2 Date 28.11.2016

Status Final Version 0.6

Contact Person Moharram Challenger Organisation UNIT

Phone +90 (232) 339 6633 E-Mail Moharram.challenger@unitbilisim.com

 D6.6.2 - State-of-the-art and technology Y2

Author Table

Name Company Email

Moharram Challenger UNIT Moharram.challenger@unitbilisim.com

 Reinhold Heckmann AbsInt heckmann@absint.com

Didem Unat Koc University dunat@ku.edu.tr

Serdar Taşıran Koç University stasiran@ku.edu.tr

Change and Revision History

Version Date Reason for Change
Affected
sections

0.1 03.11.2015 Initial version

0.2 20.11.2015 Extension of initial version 2, 4.1, 5

0.3 26.11.2015 Modification and further extension

0.4 01.12.2015 Updated version Submitted to Reviewers

0.5 15.12.2015 Review finished

0.6 28.11.2016 Additions of second year’s SotA 1,3,4.2,5

D6.6.2 - State-of-the-art and technology Y2

Page 3 of 24 State-of-the-art and technology v0.5

Table of Contents

	
AUTHOR TABLE .. 2	
CHANGE AND REVISION HISTORY .. 2	
TABLE OF CONTENTS ... 3	
1.	 EXECUTIVE SUMMARY ... 4	
2.	 SCALABLE ZERO-DEFECT ANALYSIS FOR SINGLE-CORE SYSTEMS (WP2) 5	

2.1.	Static analysis of run-time errors ... 5	
2.2.	Analysis of interactions .. 5	
2.3.	Model-based development and integration with static analysis .. 5	

3.	 SYSTEM ENGINEERING METHODOLOGY AND STANDARDS (WP3) .. 7	
3.1.	“Roadblocks” ... 7	
3.2.	Requirement Formalization & Impact Analyses .. 7	
3.3.	Interfaces of Tools & Traceability ... 8	
3.4.	Standards for Semantic Interoperability ... 8	

4.	 SYNTHESIS OF PREDICTABLE CONCURRENT SYSTEMS (WP4) .. 10	
4.1.	Verification of compilers and code generators ... 10	
4.2.	Relaxed memory models ... 10	
4.3.	Synthesis of critical real-time software for multi-processor architectures 12	
4.4.	Automotive applications ... 12	

5.	 ZERO-DEFECT ANALYSIS FOR MULTI-CORE SYSTEMS (WP5) .. 13	
5.1.	Static analysis of concurrent multi-core applications .. 13	
5.2.	Deductive methods .. 13	
5.3.	Dynamic race detection ... 14	
5.4.	Worst-case execution time (WCET) ... 15	

6.	 RELATED PROJECTS ... 17	
7.	 CONCLUSIONS AND DISCUSSION ... 20	
REFERENCES .. 21	

	

D6.6.2 - State-of-the-art and technology Y2

Page 4 of 24 State-of-the-art and technology v0.5

1. Executive Summary

In order to consider and keep up with the up to date science and technology, related work and
tools are analysed in each technical work package. In this deliverable, the state of the art and
technology are collected and published for the first and second year of the ASSUME project. This
document will be updated based on the new studies and technologies in the next years of the
project.

D6.6.2 - State-of-the-art and technology Y2

Page 5 of 24 State-of-the-art and technology v0.5

2. Scalable Zero-Defect Analysis for Single-Core Systems (WP2)

Avionics and automotive software development features a rich and multi-step validation and
verification (V&V) process. It is however essentially based on conventional testing techniques, for
which required coverage metrics and requirements are defined in international standards (e.g.,
ISO 26262 for automotive applications). Conventional V&V requires a significant and ever growing
portion of the overall development effort. With rising system complexity, it is on the brink of
becoming the bottleneck of today's processes.

2.1. Static analysis of run-time errors

Sound static analysis (SSA) is a promising technique to improve the situation. It allows the
analysis of software on unit level. In contrast to testing, it achieves complete control and data
coverage of software by employing conservative over-approximations [1]. Thus SSA allows, under
favourable circumstances, to prove the total absence of certain kinds of errors, in particular run-
time errors (RTE) [2].
Most SSA tools are limited in scalability and precision. A single analysis run can take several
days, limiting their application to components of small size. The results may include thousands of
false (spurious) alarms, leading on some projects to economic ineffectiveness due to high efforts
inspecting by hand these alarms.
The state of the art in SSA for RTE on embedded C programs is Astrée, an analyzer developed by
ENS and industrialized by AbsInt [3][4]. The limit on the precision of Astrée has its origins in the
necessity for making approximate (abstract) computations, in order to scale up to large programs.
In the past, it has been shown that by tailoring the abstractions to a specific class of properties
and programs, the goal of zero false alarms can be achieved for synchronous embedded avionic
and space software [5][6]. More research is necessary before generic libraries of abstractions are
available to handle other common cases found in embedded software.

2.2. Analysis of interactions

Faults in complex industrial systems may result from complex hidden dependencies between
interacting components. Existing tools do not allow for architecture and design verification of
complex interactions (e.g. where dependencies between components are hidden in a
communication layer or where call-back mechanisms are used). Therefore, to achieve the zero
defect goal, architecture and design principles have to be improved and their fulfilment verified
using new more powerful static analysis tools. Moreover, with the recent development of cyber-
physical systems in safety relevant areas, the amount of interactions with the system context
grows tremendously. Consequently, future systems will have to ensure safety and security to a
much greater extent. While safety analysis focuses on the reliability and correctness of the
software, approaches to security analysis have to examine the software against risks resulting
from interactions through high level and low level software interfaces. Today's analysis tools do
not provide sufficient support for safety and security analyses, although it is highly demanded.

2.3. Model-based development and integration with static analysis

Model-driven development has been used to a rising degree in automotive industries, including
functional models (in Simulink or ASCET) and meta-models which capture relevant meta-data.
AUTOSAR and also the meta-model of the project AMALTHEA are prominent examples. Model-
driven development is also common in the avionics industry (LUSTRE and SCADE). The model

D6.6.2 - State-of-the-art and technology Y2

Page 6 of 24 State-of-the-art and technology v0.5

information is often ignored by SSA tools, leading to needlessly difficult analysis problems and a
loss of precision. There are however some examples for the integration of model-based code
generators and static analysis tools. An integration between AbsInt’s WCET analyser aiT and
Esterel’s SCADE generator has been established in the projects INTEREST and INTERESTED
[7]. In ALL-TIMES, a first integration between aiT, Astrée, and TargetLink from dSPACE has been
set up [8].
Moreover, there is a need to check beyond published modelling guidelines (such as MAAB or
MISRA) and company specific rules, to include quality criteria such as maintainability,
changeability and expandability. Analyses for coupling, cohesion and encapsulation are already
available for non-model based development, but not for model-based development. They are
needed to prevent the introduction of defects resulting from side effects or insufficient
understanding of the software system while modifying the code. In model-based development of
large and complex models the same risks occur even more dramatically since the availability of
software engineering principles in this field is very limited. Advanced methodology as well as
convenient tool support is required for the quality analysis of models to prevent the introduction of
defects during future development and maintenance activities.

D6.6.2 - State-of-the-art and technology Y2

Page 7 of 24 State-of-the-art and technology v0.5

3. System engineering methodology and standards (WP3)

Automotive system engineering is founded on a wide set of well established, proven and tested
processes ranging from requirements elicitation to system verification and validation. Many of
these processes comprise dedicated engineering approaches targeting particular system quality
aspects like e.g. correctness, safety, security, and many more. Even though these aspects are
often combined together, synergies between these approaches are seldom recognized.
Significant benefit is thus expected from coherently applying these engineering techniques
continuously throughout the development process, i.e. from requirements elicitation to system
verification and validation. We provide state of the art practice in system engineering methodology
and standards but more detailed discussion can be found in D3.1.

3.1. “Roadblocks”

For example, at Daimler, as an OEM, automotive system development starts at system level
where the realization and deployment of functions is not clear at the beginning. The validation and
verification of system requirements is executed in a multi-step process and supported by several
tools and models. These models show certain aspects of the modelled system. The purpose of
this approach is to improve the system understanding. Models serve also as source for
verification. Since models typically are much simpler than their final source code representation
verification tasks become better realizable.
However, the verification of a model with respect to a certain requirement does not guarantee that
the implementation does not violate that requirement. To ensure this, the code or at least certain
parts have to be generated from these models with a sound code generator or some verification
technologies have to be applied. In certain cases higher-level models are extractable from the
source. An example here is the extraction of the task model to prove the absence of raise
conditions. In other cases such a higher-level model is very hard to extract. The code that is
generated from Matlab/Stateflow is an example here.
Today many analysis tools work on code or even binary code level. For the efficient verification
they often lack of information that is present but not easily accessible at this level. Due to this fact
and due to technological borders, the application of static analysis tools today requires a high
effort for setup and parameterization. Nevertheless many false alarms are produced causing
significant effort for rework. Accompanied with the mentioned development process is the
requirement of traceability. Available traceability solutions today are very limited and usually show
only some aspects. Hence sound automatic impact analyses are difficult to execute. The
pervasive traceability of requirements as well as faults requires the seamless integration into the
development lifecycle of software-based vehicle functions running on multi-core embedded
systems. This comprises data models, description languages, tools and methodology.
Today, the source to gain performance is parallelization. Single core CPUs have nearly reached
their limits in that respect. Multi- and many-core CPUs are state of the art in hardware technology.
However, the development or the migration of existing software to concurrent application that
exploits the CPU resources is an art itself and not well supported by tools. Hence, the effort to
migrate an existing application to a multi-core processor causes much effort today.

3.2. Requirement Formalization & Impact Analyses

Key results relevant for the ASSUME have been created within the ARTEMIS project CESAR,
addressing the lack of requirements quality that often leads to additional efforts, cost overrun and

D6.6.2 - State-of-the-art and technology Y2

Page 8 of 24 State-of-the-art and technology v0.5

schedule drifts in downstream development activities. One means to improve requirements quality
is to formalize requirements using boilerplates, domain ontologies and patterns in order to allow
automatic analysis and test generation. Key results of ITEA2 SAFE, relevant for ASSUME, are the
methodology and pervasive consideration to analyses on functional safety for electric / electronic
architectures of vehicles in the concept phase, and represented by static architectural models.
This includes formalized safety requirements engineering and –management, the derivation of the
safety case, pervasive traceability from requirements to detailed hardware models running the
embedded software and the analysis and evaluation of this hardware in terms of fulfilling the
safety requirements using industrial standards as E.g. AUTOSAR, EATOP and PREEvision.

WP3 develops new patterns to blend functional requirements with timing requirements. We
improve the consistency analysis to capture these new patterns. In near future, we further develop
new formalization and analysis techniques to meet the industrial needs and investigate new
pattern’s integration to the existing tools such as BTC EmbeddedSpecifier and IBM DOORS.

3.3. Interfaces of Tools & Traceability

Quality assurance is integral part in model-based SW development. Today, several tools are
applied to address the broad range of quality requirements. Proper tracking of product quality
requires much manual work and is thus error-prone. Tight analysis integration would provide
means to compile quality results in a uniform and centralized fashion taking into account not only
design and modelling tools, but also analysis tools for determining different properties of a system
under development and proving correctness of the system under various aspects such as
functional behaviour, timing and safety. Consequently, the different models, generated source
code and analysis results have to be related in order to ensure traceability of the development
artefacts created during the process.

3.4. Standards for Semantic Interoperability

Further needs arise in semantic interoperability between methods and tools. Some standards and
exchange formats (e.g. AUTOSAR [O7]) exist, which facilitate the integration of architecture and
behaviour modelling tools, and code generators. While analysis tools usually support interfaces to
such standards, the integration of the analysis tools themselves is often considered using ad hoc
solutions. There have been efforts in different research projects like MBAT, ARAMiS and
Amalthea to come up with a more systematic integration approach. In MBAT a prototypical tool
coupling between BTC's EmbeddedTester and Astrée has been developed, with the goal to
applying model-based testing to automatically find test cases for alarms reported by the static
analysis. In the SAFE project, the data models of AUTOSAR, the initiative EATOP, tools from
Dassault Systemes and PREEvision along with the respective tools were combined to facilitate
pervasive traceability and analysis in architectural models. In the ARAMiS project the
interoperability of design and analysis tools for multi-core systems was addressed. An option
consists in developing in-house integration platforms, generally based on internal and proprietary
point-to-point solutions. A second option consists in relying on commercial integration platforms
implemented by well-established tool providers, e.g., PTC Integrity, IBM Rational Jazz, Siemens
PLM Teamcenter, Dassault Enovia, Tasktop Sync, or Systemite System Weaver.

D6.6.2 - State-of-the-art and technology Y2

Page 9 of 24 State-of-the-art and technology v0.5

The CESAR project offered customizable systems engineering providing interoperability of
existing or emerging technologies. This project constitutes a milestone for a European
standardization effort. Reference Technology Platform (RTP) defines basic services and their
interfaces to perform specific design steps. RTP led the development of Interoperability
Specifications (IOS) enabling seamless implementation of the whole design flows. Similar
interoperability challenges are addressed by two other German projects, namely SPES 2020 and
ARAMiS. These two projects aim to define common vocabulary for software-oriented systems
engineering.

D6.6.2 - State-of-the-art and technology Y2

Page 10 of 24 State-of-the-art and technology v0.5

4. Synthesis of predictable concurrent systems (WP4)

4.1. Verification of compilers and code generators

Compiler and automatic code generators are essential tools to bridge the gap between models
and executables. Sequential code generation from a synchronous language like Scade 6 can be
formalized as a series of source-to-source and traceable transformations that progressively
eliminate high-level programming constructs (hierarchical automata, activation conditions,
sequences) down to a minimal data-flow kernel which is further simplified to a generic
intermediate representation for transition functions, and ultimately turned into C code. These tools
are vulnerable to miscompilation risks: a bug in the compiler or code generator causing it to
produce incorrect object code from a correct source program. These risks are difficult to address
in the context of critical embedded software qualified at the highest assurance levels: a few code
generators have been qualified at level A of DO-178B (e.g. the Scade KCG6 generator), but no
optimizing C compiler. A radical way to eradicate the miscompilation risk and provide high
assurance is to formally verify the compilers and code generators themselves, using program
proof. The flagship of this approach is the CompCert C compiler, developed at Inria Gallium: an
optimizing C compiler that is proved to be free of miscompilation bugs using the Coq proof
assistant. CompCert provides provably correct mechanisms to trace properties of the source
program down to the machine code, and is now in the pre-industrial phase via a collaboration with
Airbus. The CompCert compiler has been licensed by AbsInt for further extensions of its
capabilities and full industrialization. The full formal verification of a code generator from a
modelling language such as Scade remains to be done.

4.2. Relaxed memory models

Sequential consistency (SC), coined by Lamport [28], is an idealized semantic model for
describing the behaviours of concurrent programs. It describes executions of concurrent programs
as total orders over the set of program statements in which the program orders of the individual
threads/processes are preserved. Although this definition gives us a clear and easy
understanding, it is not realistic. Many modern hardware architectures (including Intel-x86,
PowerPC ARM and GPUs) and programming language specifications (like C, C++, 2011) allow
more behaviours than SC ones due to performance reasons. Hence, their semantics are relaxed
with respect to SC.
The documentation that describes memory subsystems of modern processors often lack formal
precision and they are even inconsistent with the actual behaviours of the system at some points
due to incorrectly implemented hardware. Extensive tooling was developed to perform model-
based testing of processors and compilers, leading to the discovery of hardware bugs
(acknowledged as such by the manufacturers) in the Power5 and Cortex A9 processors. Hence,
there has been a notable effort to develop precise semantic models for these systems. They can
be classified under two groups. Axiomatic models ([15], [29]) describe executions as unions of
some relations over events and/or memory accesses and memory models as restrictions on the
relations that define executions. Authors in [29] introduce a formal hierarchy of SC, RMO (relaxed
memory order), PSO (partial store order), TSO (total store order) and Alpha memory models
based on axiomatic models and proofs developed on Coq proof system. On the other hand,
operational models ([21], [30], [31]) depict the behaviour of actual hardware components,
abstracting them through data structures, such as queues. Most of the current research [13-21]

D6.6.2 - State-of-the-art and technology Y2

Page 11 of 24 State-of-the-art and technology v0.5

formalizes semantics of relaxed memory models of the system they study as an example of one of
these classes.
Since SC is clear and powerful enough to reason about concurrent programs, it is desirable by the
programmers. Adve and Hill [32] coined the term weak ordering as an interface between hardware
and software. Given a restriction on the shared memory accesses of the programs as a
synchronization model, hardware is weakly ordered with respect to this synchronization model if
all the programs that obey the synchronization model show only SC behaviours. Hence, if the
programmer writes a program obeying the synchronization model of a weakly ordered hardware,
then s/he can reason this program as if it is SC. Similar definition of weak-ordering exists for
programs and it is called robustness. A program is robust (or stable) if every weak memory
behaviour of it corresponds to some SC behaviour. [29] and [33] propose a method for checking
robustness. It characterizes robustness as acyclicity of a particular happens-before relation in the
axiomatic model. However, the method in [33] is incomplete in the sense that it may label a
program as non-robust although it is robust. [16] provides a complete decision procedure for
checking robustness in terms of TSO programs.
In some applications, correctness is much more important than the performance. In this situation,
the programmer may agree to sacrifice performance to get rid of non-SC behaviours of the
program, which might be unprecedented and erroneous. For this reason, a line of research
developed for enforcing robustness on the programs by using synchronization primitives. The
most commonly used primitives are memory fences which force programs to wait until some
memory accesses become visible to all other processing units. Since the fence causes processing
units to wait, it may degrade the program performance. Therefore, inserting as few fences as
possible is crucial for the minimum performance degradation. Initial theoretical results for finding
minimal fence insertions that forces robustness date back to 1988 [34]. Authors in [29] extend this
algorithm to particular weak memory models and fence types. Authors in [16] propose an optimal
fence insertion algorithm as a modification of their robustness check algorithm, which minimizes a
particular cost function. Another group provides a dynamic and efficient fence insertion algorithm,
which is neither complete nor optimal [35].
There are recent studies on the verification of programs running on weak memory models.
Successful methods has been developed and used for verification of SC programs (like Owicki-
Gries, reduction, concurrent separation logic etc.) for a long time. There are recent attempts to
extend these techniques to weak memory settings. [17] provides an Owicki-Gries kind of
reasoning model for weak memory programs. [20] develops the relaxed separation logic (RSL)
which can be used to verify programs in release/acquire fragment of C11 specification. A novel
approach for verifying compiler optimizations is presented in [31]. This study considers possible
statement rewritings or reorderings as compiler optimizations. Correctness of these optimizations
depends on the underlying memory model of the platform that the program will run. For instance,
reordering consecutive global read and write statements by the same thread is allowed by TSO
memory model. Hence performing this reorder during the compilation period does not add any
new behaviour to the program and it is valid for TSO. However, this reordering is not allowed by
SC and it cannot be allowed as a valid optimization on an SC platform. To prove validity of given
transformations on given memory models, the authors provide necessary conditions to be
checked.
Important preliminary studies on verified code generation for weak memory models has begun to
emerge recently [13], however, such work often assumes that inter-thread and inter-task
interference has been already ruled out through other verification tools. Verified refinement of
programming language code to executable machine code for weak memory models remains an
unsolved problem.

D6.6.2 - State-of-the-art and technology Y2

Page 12 of 24 State-of-the-art and technology v0.5

4.3. Synthesis of critical real-time software for multi-processor architectures

Much of the classical work on real-time scheduling (both in research and the industry) relies on a
process where the implementation is derived by manual transformations. Implementation is
followed by verification and validation phases where timing analysis and schedulability analysis
guarantee the respect of non-functional requirements. But today, the complexity of the multi-
processor execution targets and the complexity of the functional and non-functional specifications
increase rapidly, which makes it difficult to preserve a manual process (for cost, time-to-market,
and/or confidence issues related to the number of errors introduced by human coders). Some
important advances in this direction have largely automated the construction of task code and
even the generation of full real-time implementations without providing schedulability guarantees
or optimized mapping algorithms aimed at providing such guarantees. Work on optimized
mapping still has to be integrated in standard industrial tooling. INRIA proposed methods and
tools in this direction, namely the AAA methodology and the SynDEx and LoPhT tools for
optimized real-time mapping of synchronous/reactive specifications onto multi-processor
(distributed/multi-/many-core) targets.

4.4. Automotive applications

During the last years multi-core µC have entered the automotive domain. The arising challenge is
to bring all existing and future SW from single core implementations and development processes
into the new highly concurrent world. In industrial setting this transformation is still done by
manual injection of inter-process communication and synchronization code. In addition, the
mapping of runnable entities to different cores is also done manually. This injection of primitives is
manual work, and hence prone to errors, and the runnable distribution has a huge impact on
computation efficiency. Formal models of computation exist, but are currently not used for the
multi-core SW engineering. Static analysis is in most cases restricted to the analysis of non-
concurrent SW.

D6.6.2 - State-of-the-art and technology Y2

Page 13 of 24 State-of-the-art and technology v0.5

5. Zero-defect analysis for multi-core systems (WP5)

5.1. Static analysis of concurrent multi-core applications

Sound static analyzers (such as Astrée) have been successfully applied to check run-time errors
in safety-critical sequential software, but far less tools are available for the analysis of concurrent
software. Polyspace Code Prover can identify shared variables accessed by concurrent threads,
but cannot precisely identify data races and lacks OS support so that OS-related information has
to be provided manually. Earlier versions of the state-of-the-art industrial analyzer Astrée have
been restricted to analyzing sequential code and did not support natively task-interleaving. To
overcome this restriction ENS has developed AstréeA, a research prototype extending Astrée to
check for run-time errors in multi-task C software consisting of millions of lines of code [9].
Concurrency effects like preemptions, task priorities, and critical sections can be soundly and
precisely taken into account. AstréeA provides mechanisms to model operating systems by
mapping the OS functionality to efficient stub libraries. In the course of the FORTISSIMO project
the AstréeA mechanisms have now been transferred to Astrée and have been further enhanced.
Currently OS support is provided for avionic software running under an ARINC 653 OS [10], and
automotive software running under OSEK and AUTOSAR OS [11]. In ASSUME, the AUTOSAR
support, which had been limited to system specifications in .oil format, has been extended to the
service libraries, as, e.g., CAN and DEM. Furthermore some OSEK/AUTOSAR OS mechanisms
like phases of execution, the priority inheritance protocol, and enabling/disabling interrupts have
been modelled in the FORTISSIMO project. Detection of deadlocks has been added in ASSUME.
Now, Astrée can find concurrency-specific faults, including detection of data races, deadlocks,
and priority inversions.
The static analyzer framework Goblint is another emerging academic tool for concurrent
programs. It has been elaborated in the scope of the MBAT project to prove the absence of data
races in concurrent code as well as in interrupt-driven OSEK applications. The resulting prototype
was imprecise with respect to global data, and not able to precisely model sophisticated
synchronization primitives such as sending and receiving of events or suspending and resuming
of tasks (often employed in embedded software to enforce scheduling policies). In ASSUME, the
precision has been improved by better handling of casts between different types, support for
context-sensitive warnings has been added, and the regression test infrastructure has been
improved.
A third tool, the MEMICS analyzer, was developed in the ARAMiS project to detect race
conditions in concurrent software by bounded model checking. Its focus is on the analysis of low-
level code (close to machine code). It incorporates an elaborate memory model including malloc
and free and deals well with pointer structures.
Another outcome of the ARAMiS project is the Gropius analyzer, a static analysis tool focused on
concurrency errors arising in automotive software. In ASSUME, the tool was tested with real
industrial code, which showed limitations in the tool design. A redesign of the tool in ASSUME led
to an increase in efficiency of the tool and a reduction of the number of false positives during the
analysis of industrial code.

5.2. Deductive methods

Program proofs for concurrent programs were pioneered by the Calvin and QED tools. Current
tools include VCC, which operates on concurrent C programs annotated with specifications and

D6.6.2 - State-of-the-art and technology Y2

Page 14 of 24 State-of-the-art and technology v0.5

invariants and proves them correct using the Z3 SMT solver; Chalice, a modular verification tool
for a dedicated concurrent language; and CIVL (Concurrency Intermediate Verification Language),
which verifies refinement for concurrent programs in various different languages after translation
into a common intermediate format. VCC and Chalice base their invariant reasoning on objects,
object ownership, and type invariants. VCC does not support refinement and Chalice does so only
for sequential programs; neither support movers nor reduction reasoning. Finally, concurrent
separation logic reasons on concurrent programs without explicit non-interference checks. State-
of-the art tools are able to blend this logic with explicit non-interference reasoning.

5.3. Dynamic race detection

Runtime verification and dynamic analysis fill an important gap between static analysis and
testing. While static tools are conservative which may lead to a large false alarm rate, testing
catches errors late, making it difficult to find their cause. Runtime verification, on the other hand,
provides early error detection during execution. For instance, dynamic race detection tools, such
as Goldilocks and FastTrack, instruments a program with code that detects data races while the
program is running. However these tools often suffer from significant execution slowdown. To
reduce this slowdown, a variety of techniques have been explored. Some approaches improve
performance by sacrificing precision, i.e., missing some races. They accomplish this by sampling
the accesses performed, e.g. ThreadSanitizer [36] and RACEZ [37]. Speeding up race detection
and/or replay by parallelization has also been explored, e.g. in the GPU-accelerated split race
checker Kuda and DoublePlay (parallelizing sequential logging and replay) [40]. Others, e.g.,
HARD (Hardware-Assisted lockset-based Race Detection) [38] and Paralog (enabling and
accelerating online parallel monitoring of multithreaded applications) [39] make use of custom
hardware to accelerate race detection and similar parallel program monitoring techniques.

The following commercial tools can be used or adapted to detect races on some particular
embedded computing platforms:

- Intel Inspector XE, PIN dynamic instrumenter
- Valgrind DRD
- Helgrind
- Parallocity ZVM-K (ARM)
- Google ThreadSanitizer

While these tools have been used in commercial applications with some success, the algorithms
underlying them are often not precisely documented and each of them may need some adaptation
and modifications before they can be used on any particular code base and application.

Dynamic race detection for embedded systems has unique challenges. These include the mixed
use of variables of different, often quite small, bit lengths [22], the use of task-based concurrency
with priorities and interrupts [23-25] rather than threads and concurrency libraries, and issues
relating with the platform on which development and testing is performed to the one on which the
applications will finally run [26-27].

In particular, [22] proposes a dynamic race detection algorithm based on vector clocks by
considering the granularity of program data (i.e.; words, bytes, bits, etc.) that is common in
embedded systems. The main motivation is to improve data race precision as opposed to other

D6.6.2 - State-of-the-art and technology Y2

Page 15 of 24 State-of-the-art and technology v0.5

race detection solutions, which do not consider various data sizes in the program. In [23] an on-
the-fly technique that efficiently detects apparent data races in interrupt-driven programs without
false positives is presented. The technique combines a tailored lightweight labelling scheme to
maintain the logical concurrency between a program and every instance of its interrupt handlers
with a precise detection protocol that analyzes conflicting accesses to shared memories by storing
at most two accesses for each shared variable.

Interrupt-driven programs where inconsistent ordering (races) of interrupt events could result in
non-determinism in the program. To detect these kinds of races, the algorithm in [24]
sequentializes the program and applies model checking. However, this solution does not focus on
multi-threads programs because the program under consideration is single-threaded event-driven.
A failure that is caused by interruption handler that modifies a certain variable between a
reference or modification to the variable and a later reference to the variable is defined as a race
in [25]. The proposed solution in [25] is to generate an interrupt at the instruction points that
possibly cause race conditions and replace input value from external device to control interrupt
handlers. This covers all possibilities of sharing memory between the interrupt handler and other
routines that would cause data races.

To improve race detection performance in embedded systems, [26] employs hardware registers
originally added to processors, for debugging by, to watch the traffic along the data and
instruction buses. This improves analysis of races compared to software instrumentation based
techniques.

Testing method for identifying faults in multitasking applications for embedded systems is
proposed in [27] where intra and inter task analysis to generate test cases is used to improve the
observability of faults.

In ASSUME, we aim at a race detection approach that can be adapted to a variety of platforms
and applications, including possibly interrupt-driven ones, and one whose overhead-precision
trade-off can be adjusted by the programmer.

5.4. Worst-case execution time (WCET)

Worst-case execution time (WCET) analysis on multi-core architectures has been considered in
recent projects: Predator, T-Crest, Certainty, and parMerasa. In ARAMiS, an approach was
proposed for computing an interference-sensitive Worst-Case Execution Time (isWCET) taking
into account variable access delays due to the concurrent use of shared resources in multi-core
processors [12]. The state of the art can now handle single-core executions without interference
or when the number and kind of interference points can be determined. For time composable
architectures, this is sufficient to obtain an overall WCET. There have also been
recommendations for hardware configurations increasing predictability and composability.
Recent results by INRIA showed that precise and scalable timing analyses can be achieved on
selected parallel applications (using for instance the Heptane WCET analyzer). The analysis has
the precision and scalability of classic IPET-based WCET analysis.
Timing analysis on concurrent task execution at the system level can also be used to reason
about potential race conditions, as part of the concurrency defect analysis. Two classes of
analyses can be identified. Analytical methods determine performance characterizations, such as
response times of task chains, by solving fixed point equations. Popular approaches include

D6.6.2 - State-of-the-art and technology Y2

Page 16 of 24 State-of-the-art and technology v0.5

SymTA/S and the Real-Time Calculus. Periodic resource models provide compositional methods,
focusing on partitioned resources. Computational methods, on the other hand, rely on model-
checking techniques, where the system behaviour is represented as a state transition system. For
example, the model checker UPPAAL can be used for scheduling analysis, as well as the related
TIMES tool. While computational methods typically provide better results, e.g. a reduced number
of false positives, they also lack in scalability due to computational complexity. Scalability
improvements have been proposed, e.g. as part of the COMBEST project. However, no
computational analysis exists with integrated methods reliably preserving appropriate precision of
the results.

D6.6.2 - State-of-the-art and technology Y2

Page 17 of 24 State-of-the-art and technology v0.5

6. Related Projects

Name
Program
Period

Technical Focus Relationship

CompCert
French ANR
2005-2009

Formal verification of compilers First explorations of compiler
verification using Coq.

ES_PASS
ITEA 2
2007-2009

Embedded Software Product-
based Assurance

Improvement and integration of the
Astrée tool used in ASSUME.

COMBEST
FP7 IST STREP
2008-2010

Computational and analytical
models for non-functional
properties of embedded systems.
Methods and tools for rigorous
embedded systems design.

Combination of different analysis
techniques and tools.

PARSEC
FUI
2009-2012

Model-driven engineering for
critical distributed systems

Collaboration with Thales SA towards
defining a development environment
for critical distributed embedded
systems requiring certification
according to strict standards such as
DO-178B (avionics) or IEC61508
(transportation).

ARAMiS
German BMBF
2011-2014

ARAMIS develops methods and
techniques for optimized use of
Multi-Core architectures with
respect to development standards
in the transportation domain such
as ISO 26262.

ASSUME will develop models and
interchange formats for the analysis of
single and multi-core software.
Functional as well as non-functional
properties will be taken into
consideration. The ARAMIS meta-
model for scheduling and timing will
be taken into account to enrich the
interfaces of the ASSUME platform.
ARAMIS methods regarding the
analysis of multi-core systems will be
developed further in the ASSUME
project including the MEMICS tool.

Amalthea(4public)
ITEA 2
2011-2014,
and
2014-2017

AMALTHEA4public will built a
continuous development tool
chain platform for automotive
embedded multi-core systems
based on results of various public
funded projects by using the
AMALTHEA methodology.

ASSUME extends the scope of
AMALTHEA beyond timing and HW
resource modeling and simulation.
ASSUME derives a methodology to
analytically calculate data for the
AMALTHEA meta-model (in contrast
to measuring and simulation).

D6.6.2 - State-of-the-art and technology Y2

Page 18 of 24 State-of-the-art and technology v0.5

Name
Program
Period

Technical Focus Relationship

MBAT
ARTEMIS
2011-2014

Combination of model-based
analysis and testing.

Traceability between Requirements,
Design and V&V artefacts. Extensions
of the Astrée and Goblint tools used in
ASSUME.

ParMerasa
FP7
2011-2014

The objective of parMERASA
(Multi-Core Execution of
Parallelised Hard Real-Time
Applications Supporting
Analysability) is a timing
analysable system of parallel hard
real-time applications running on a
scalable multi-core processor.

The idea of analysable systems with
regard to timing will be expanded in
ASSUME by the analysis of functional
and various non-functional properties
in multi-core systems.

PHARAON
FP7
2011-2014

Parallel and Heterogeneous
Architectures for Real-Time
Applications

Parallelization of soft real-time
programs for low-power embedded
architectures, based on task-parallel
data-flow languages and model-driven
engineering.

SAFE
ITEA
2014-2017

The SAFE project brings solutions
to demonstrate the compliance to
the ISO26262 functional safety
standard for the development of
safe automotive applications
based on the AUTOSAR
architecture.

While SAFE focuses on architecture
modelling in the concept phase of
system development ASSUME will
target the synthesis and analysis of
implementation and behaviour models.
Interfaces to SAFE will be explored
regarding the traceability from concept
models to implementation models in
the development of safety-relevant
functionality.

Verasco
French ANR
2012-2015

Joint verification of compilers and
static analyzers

Collaboration with Airbus towards the
industrialization of CompCert.

ESPRESSO
Swedish FFI
2012-2015

Modelling and analysis
methodology, Guidelines and tool
recommendations for model-based
engineering of embedded system
at Scania, Application and
evaluation of the developed
concepts

Traceability across the engineering
phases (based on a use case from
Scania)

CRYSTAL
ARTEMIS
2013-2016

Interoperability of System
Engineering Methods

Requirement Formalization, CCC
(Correctness, Completeness,
Consistency).

D6.6.2 - State-of-the-art and technology Y2

Page 19 of 24 State-of-the-art and technology v0.5

Name
Program
Period

Technical Focus Relationship

AstréeA
French ANR
2012-2015

Static analysis of concurrent
programs.

Developed a research prototype of the
AstréeA tool used in Assume.

Fortissimo
German BMBF
2014-2016

Formal Analysis and Verification of
Concurrent Hardware and
Software

Develop the AstréeA tool as part of
the commercial Astrée analyser.
Addition of execution phases and
priorities to the concurrency model of
Astrée.

CAPACITES
French
Investissements
d’Avenir
2014-2017

Parallel computing for safety-
critical real-time applications

Collaboration with Kalray SA, Airbus,
SAGEM, Dassault Aviation, MBDA on
the construction of many-core safety-
critical real-time applications. This
includes mixed-criticality applications
with focus on the spatial partitioning
enforced by the architecture, and
latency-critical applications expressed
in an idiomatic form of OpenCL that
enables worst-case response time
analysis.

EMC2
ARTEMIS

EMC² finds solutions for dynamic
adaptability in open systems,
provides handling of mixed
criticality applications under real-
time conditions, scalability and
utmost flexibility, full scale
deployment and management of
integrated tool chains, through the
entire lifecycle.

ASSUME complements EMC² by
analysis methods supporting the (1)
validation of functional safety
concepts including dynamic system
adaptation and the (2) verification of
technical safety concepts (against
these functions) based on mixed-
criticality multi-core platforms, thereby
providing the needed arguments for
certification purposes.

SPES_XT
BMBF
2012-2015

The Project SPES_XT develops a
seamless integration platform for
modelling and analysis techniques
for embedded systems.

The methods and techniques
developed in ASSUME will be
constructed to support the SPES
methodology. They will provide new
building blocks for the requirements
viewpoint and the functional viewpoint
in the SPES matrix.
The demand of SPES_XT to
implement the results in the industrial
practice will be subsequently
supported by the use case driven
approach of ASSUME.

D6.6.2 - State-of-the-art and technology Y2

Page 20 of 24 State-of-the-art and technology v0.5

7. Conclusions and Discussion

This deliverable presents the state of the art and technology regarding the ASSUME project. The
related technologies for the main work packages of the project including WP2 (Scalable Zero-
Defect Analysis for Single-Core Systems), WP3 (System engineering methodology and
standards), WP4 (Synthesis of predictable concurrent systems), and WP5 (Zero-defect analysis
for multi-core systems) are discussed. Also, the related projects for ASSUME are elaborated in
the document.

D6.6.2 - State-of-the-art and technology Y2

Page 21 of 24 State-of-the-art and technology v0.5

References

[1] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In POPL ’77: Proceedings of the
4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages
238–252, New York, NY, USA, 1977. ACM Press.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. A Static Analyzer for Large Safety-Critical Software. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation
(PLDI’03), pages 196–207, San Diego, California, USA, June 7–14 2003. ACM Press.

[3] P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne, D. Monniaux, and X. Rival. Varieties

of Static Analyzers: A Comparison with ASTRÉE. In First Joint IEEE/IFIP Symposium on
Theoretical Aspects of Software Engineering, TASE 2007, pages 3–20. IEEE Computer
Society, 2007.

[4] D. Kästner, S. Wilhelm, S. Nenova, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,

X. Rival. Astrée: Proving the Absence of Runtime Errors. Embedded Real Time Software
and Systems Congress ERTS², Toulouse, 2010.

[5] D. Delmas and J. Souyris. ASTRÉE: from Research to Industry. In Proc. 14th

International Static Analysis Symposium (SAS2007), number 4634 in LNCS, 2007.

[6] O. Bouissou, É. Conquet, P. Cousot, R. Cousot, J. Feret, K. Ghorbal, É. Goubault, D.

Lesens, L. Mauborgne, A. Miné, S. Putot, X. Rival, M. Turin. Space software validation
using abstract interpretation. In Proc. of the International Space System Engineering
Conference on Data Systems in Aerospace (DASIA 2009), volume SP-669, 7 pages,
Istanbul, Turkey, May 2009.

[7] C. Ferdinand, R. Heckmann, T. Le Sergent, D. Lopes, B. Martin, X. Fornari, F. Martin.
Combining a High-Level Design Tool for Safety-Critical Systems with a Tool for WCET
Analysis on Executables. 4th European Congress ERTS - Embedded Real Time Software,
Toulouse, 2008.

[8] D. Kästner, C. Rustemeier, U. Kiffmeier, D. Fleischer, S. Nenova, R. Heckmann, M.
Schlickling, C. Ferdinand. Model-Driven Code Generation and Analysis. SAE World
Congress 2014, available at http://papers.sae.org/2014-01-0217/

[9] A. Miné. Static analysis of run-time errors in embedded real-time parallel C programs.
Logical Methods in Computer Science (LMCS), 8(26):63, Mar. 2012.

[10] A. Miné and D. Delmas. Towards an Industrial Use of Sound Static Analysis for the
Verification of Concurrent Embedded Avionics Software. In Proc. of the 15th International
Conference on Embedded Software (EMSOFT’ 15), pages 65–74. IEEE CS Press, Oct.
2015.

[11] A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot, D. Kästner, S. Wilhelm, C. Ferdinand.
Taking Static Analysis to the Next Level: Proving the Absence of Run-Time Errors and Data
Races with Astrée. 8th European Congress ERTS - Embedded Real Time Software,
Toulouse, 2016. To appear.

D6.6.2 - State-of-the-art and technology Y2

Page 22 of 24 State-of-the-art and technology v0.5

[12] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, M. Schmidt. Multi-core
Interference-Sensitive WCET Analysis Leveraging Runtime Resource Capacity
Enforcement. 26th Euromicro Conference on Real-Time Systems (ECRTS '14), pages 109-
118. IEEE Computer Society, 2014.

[13] Jagannathan, S., Laporte, V., Petri, G., Pichardie, D., & Vitek, J. (2014). Atomicity

refinement for verified compilation. ACM Transactions on Programming Languages and
Systems (TOPLAS), 36(2), 6.

[14] Jagannathan, S., Laporte, V., Petri, G., Pichardie, D., & Vitek, J. (2014). Atomicity
refinement for verified compilation. ACM Transactions on Programming Languages and
Systems (TOPLAS), 36(2), 6.

[15] Sarkar, S., Sewell, P., Nardelli, F. Z., Owens, S., Ridge, T., Braibant, T. & Alglave, J. (2009,
January). The semantics of x86-CC multiprocessor machine code. In ACM SIGPLAN
Notices (Vol. 44, No. 1, pp. 379-391). ACM.

[16] Bouajjani, A., Derevenetc, E., & Meyer, R. (2013). Checking and enforcing robustness
against TSO. In Programming Languages and Systems (pp. 533-553). Springer Berlin
Heidelberg.

[17] Lahav, O., & Vafeiadis, V. Owicki-Gries Reasoning for Weak Memory Models, In ICALP

2015: 41st International Colloquium on Automata, Languages, and Programming.

[18] Hawblitzel, C., & Petrank, E. (2009, January). Automated verification of practical garbage
collectors. In ACM SIGPLAN Notices (Vol. 44, No. 1, pp. 441-453). ACM.

[19] Yang, J., & Hawblitzel, C. (2010, June). Safe to the last instruction: automated verification
of a type-safe operating system. In ACM Sigplan Notices (Vol. 45, No. 6, pp. 99-110). ACM.

[20] Vafeiadis, V., & Narayan, C. (2013, October). Relaxed separation logic: A program logic for

C11 concurrency. In ACM SIGPLAN Notices (Vol. 48, No. 10, pp. 867-884). ACM.

[21] Burckhardt, S., & Musuvathi, M. (2008, January). Effective program verification for relaxed
memory models. In Computer Aided Verification (pp. 107-120). Springer Berlin Heidelberg.

[22] "Efficient Data Race Detection for C/C++ Programs Using Dynamic Granularity”
Young Wn Song; Yann-Hang Lee, 2014 IEEE Parallel and Distributed Processing
Symposium,

[23] “Verification of Data Races in Concurrent Interrupt Handlers” Guy Martin Tchamgoue,

Kyong Hoon Kim, and Yong-Kee Jun, International Journal of Distributed Sensor Networks,
2013

[24] "Data Race Detection for Interrupt-Driven Programs via Bounded Model Checking”

Xueguang Wu, Yanjun Wen, Liqian Chen, Wei Dong, Ji Wang, SERE-C '13 2013 IEEE
Conf. on Software Security and Reliability, 2013

[25] "An effective method to control interrupt handler for data race detection” Makoto

Higashi, Tetsuo Yamamoto, Yasuhiro Hayase, Takashi Ishio, Katsuro Inoue, AST '10,
Proceedings of the 5th Workshop on Automation of Software Test, 2010

D6.6.2 - State-of-the-art and technology Y2

Page 23 of 24 State-of-the-art and technology v0.5

[26] "E-RACE, A Hardware-Assisted Approach to Lockset-Based Data Race Detection for
Embedded Products “ Lily Huang, Michael Smith, Albert Tran, James Miller, 24thIEEE
Symposium on Software Reliability Engineering (ISSRE), 2013

[27] "An approach to testing commercial embedded systems” Tingting Yu, Ahyoung Sung,

Witawas Srisa-An, Gregg Rothermel, Journal of Systems and Software archive Volume 88,
February 2014

[28] Lamport, L. (1979). How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE transactions on computers, 100(9), 690-691.

[29] Alglave, J. (2010). A shared memory poetics (Doctoral dissertation, Université Paris 7).

[30] Boudol, G., & Petri, G. (2009, January). Relaxed memory models: an operational

approach. In ACM SIGPLAN Notices (Vol. 44, No. 1, pp. 392-403). ACM.

[31] Burckhardt, S., Musuvathi, M., & Singh, V. (2010). Verifying local transformations of
concurrent programs.

[32] Adve, S. V., & Hill, M. D. (1990, May). Weak ordering—a new definition. In ACM

SIGARCH Computer Architecture News (Vol. 18, No. 2SI, pp. 2-14). ACM.

[33] Alglave, J., & Maranget, L. (2011, July). Stability in weak memory models. In International
Conference on Computer Aided Verification (pp. 50-66). Springer Berlin Heidelberg.

[34] Shasha, Dennis, and Marc Snir. "Efficient and correct execution of parallel programs

that share memory." ACM Transactions on Programming Languages and Systems
(TOPLAS) 10.2 (1988): 282-312.

[35] Liu, F., Nedev, N., Prisadnikov, N., Vechev, M., & Yahav, E. (2012). Dynamic synthesis

for relaxed memory models. ACM SIGPLAN Notices, 47(6), 429-440.

[36] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: data race detection
in practice. In Proceedings of the Workshop on Binary Instrumentation and Applications (WBIA
'09). ACM, New York, NY, USA, 62-71.

[37] Tianwei Sheng, Neil Vachharajani, Stephane Eranian, Robert Hundt, Wenguang Chen, and

Weimin Zheng. 2011. RACEZ: a lightweight and non-invasive race detection tool for
production applications. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE '11). ACM, New York, NY, USA, 401-410.

[38] P. Zhou, R. Teodorescu and Y. Zhou, "HARD: Hardware-Assisted Lockset-based Race

Detection," 2007 IEEE 13th International Symposium on High Performance Computer
Architecture, Scottsdale, AZ, 2007, pp. 121-132.

[39] Evangelos Vlachos, Michelle L. Goodstein, Michael A. Kozuch, Shimin Chen, Babak Falsafi,

Phillip B. Gibbons, and Todd C. Mowry. 2010. ParaLog: enabling and accelerating online
parallel monitoring of multithreaded applications. In Proceedings of the fifteenth edition of
ASPLOS on Architectural support for programming languages and operating systems (ASPLOS
XV). ACM

D6.6.2 - State-of-the-art and technology Y2

Page 24 of 24 State-of-the-art and technology v0.5

[40] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Peter M. Chen,
Jason Flinn, and Satish Narayanasamy. 2011. DoublePlay: parallelizing sequential logging
and replay. SIGPLAN Not. 46, 3 (March 2011), 15-26

