

Building as a Service - BaaS

Deliverable

D02 - State of the Art

Editor:

Ingo Lück, Materna

ITEA 2 Project 12011

October 18th, 2016

ITEA2: Building as a Service - BaaS 2

Document properties

Distribution Confidential

Version Version 2

Editor Ingo Lück, Materna

Authors/
Contributors

Özgür Devrim Orman, Bor Software

Miguel Díez, Everis

Alejandro López, Everis

Borja Ortiz, Everis

Andrés Páez, Everis

Selahattin Gökçeli, Istanbul Technical University, Defne

DǸƴŜǒ YŀǊŀōǳƭǳǘ YǳǊǘΣ Istanbul Technical University, Defne

Michael Christmann, Kieback&Peter

Jürgen Maaß, Kieback&Peter

Peter Michael Schmidt, Kieback&Peter

9ƳǊŀƘ !œƤƪŀƭƤƴΣ YƻŎ{ƛǎǘŜƳ

Ozan Gürsoy, KocSistem

Christoph Fiehe, Materna

Ingo Lück, Materna

Jannis Müthing, Materna

Niklas Röder, Materna

Daniel Gastón Iglesias, Prodevelop

Christophe Joubert, Prodevelop

Vicente Sanjaime, Prodevelop

Darko Anicic, Siemens

Michael Bahr, Siemens

Nicolas Gümbel, Siemens

Sebastian Käbisch, Siemens

Jelena Mitic, Siemens

Christoph Niedermeier, Siemens

Norbert Vicari, Siemens

Malte Burkert, Technische Universität Dortmund

Oliver Dohndorf, Technische Universität Dortmund

ITEA2: Building as a Service - BaaS 3

Heiko Krumm, Technische Universität Dortmund

Benjamin Hof, Technische Universität München

Marc-Oliver Pahl, Technische Universität München

Svenja Borchers, TWT

Andreas Müller, TWT

Martin Neubauer, TWT

Björn Butzin, Universität Rostock

Frank Golatowski, Universität Rostock

Pages 177

Changes in this document compared to version 1:

Type of
change

Location

added 8.3 Bluetooth

added 8.4 RFID Reader and Tags

added 8.7.5.10 RFM22 Module

added 8.7.5.11 Arduino Uno

added 8.7.5.12 Intel Galileo

added 8.7.5.13 Temperature Sensor

added 8.7.5.14 HC-05 Bluetooth RF Transceiver Module

updated 8.7.2 Operating systems

added 8.8 Pixage - Digital Signage

added 8.9 Keycloak - IDM

added 6.2.4 The Smart Appliances REFerence (SAREF) Ontology

added
6.2.5 QUDT - Quantities, Units, Dimensions and Data Types

Ontologies

added 6.2.6 ifcOWL - Industry Foundation Classes Ontology

added 6.3 W3C Web of Things and Thing Description

updated 3.10 Constrained Application Protocol (CoAP)

ITEA2: Building as a Service - BaaS 4

Abstract

This document describes the State of the Art analysis of technologies, modeling- and
architecture-approaches, which will be relevant for the BaaS project. Since the project
schedule plans one iteration of the state of the art analysis, the deliverable D02 appears in
two versions. This is the first version. It identifies, collects and analyses approaches which
potentially may be of relevance for the project since they may deliver conception and
solution element input to the development of the BaaS architecture, model, platform,
building services and demonstrator applications.

After an introduction to this document an overview over the domain of building automation
describes basic concepts and current trends. It is followed by chapters dealing with base
technologies, building automation data models and middleware architecture. Since the BaaS
project intends to follow a model based approach this documents proceeds with two
chapters about semantic modeling and domain specific modeling. Finally supporting
technologies considered to be relevant for BaaS are introduced.

ITEA2: Building as a Service - BaaS 5

Table of contents

Document properties ... 2

Abstract .. 4

Table of contents .. 5

1. Introduction .. 10

2. Building Automation Overview ... 12

2.1. Introduction .. 12

2.2. System Architecture and Communication Standards .. 14

2.3. Current Trends ... 17

3. Base Technologies ... 18

3.1. Self-Adaptive Systems .. 18

3.1.1. Definition .. 18

3.1.2. Self-X Properties ... 19

3.1.3. Adaptation Loop ... 20

3.1.4. Sense-Plan-Act .. 21

3.1.5. Collect-Analyze-Decide-Act .. 21

3.1.6. Observer/Controller ... 22

3.1.7. Operator-Controller Module .. 22

3.1.8. Software Engineering ... 23

3.1.9. Control Theory .. 23

3.1.10. Research Challenges ... 24

3.2. Data Mining for Building Automation .. 25

3.2.1. Introduction .. 25

3.2.2. Observe ... 26

3.2.3. Analyze .. 26

3.2.4. Learn and apply .. 27

3.3. Device SOA ... 28

3.3.1. Introduction .. 28

3.3.2. Technologies ... 29

3.3.3. Not-Device-centered SOA gateway/middleware projects 31

3.3.4. Abstraction provided by JMEDS ... 32

3.4. Privacy and data security ... 34

3.4.1. Data security ... 34

3.4.2. Privacy strategies .. 35

ITEA2: Building as a Service - BaaS 6

3.5. Secure Authorization using OAuth 2.0 ... 36

3.5.1. Introduction .. 36

3.5.2. OAuth 2.0 Architecture ... 37

3.5.3. OAuth 2.0 Standards ... 40

3.5.4. OAuth 2.0 Features ... 40

3.5.5. Relevance of OAuth for BaaS .. 41

3.6. Functional Safety and Reliability in Service Systems ... 42

3.6.1. Metrics .. 42

3.6.2. Failures and Errors affecting Safety and Reliability .. 43

3.6.3. Safety and Reliability Related Standards and Guidelines 43

3.6.4. Common Principles ... 44

3.6.5. Common Methods Targeting Safety and Reliability ... 45

3.6.6. Related Work in the Building Automation Domain .. 46

3.7. OSGi .. 47

3.7.1. OSGi Remote Services... 47

3.7.2. OSGi Device Integration .. 48

3.8. RESTful Web Services ... 49

3.8.1. Architectural Constraints .. 49

3.8.2. General Principal and Concept ... 50

3.8.3. REST applied to Web Services .. 51

3.8.4. Application Examples.. 51

3.9. Efficient XML Interchange (EXI) .. 51

3.9.1. Relevance of EXI for BaaS ... 53

3.10. Constrained Application Protocol (CoAP) .. 53

3.10.1. Relevance of CoAP for BaaS.. 56

4. Building Automation Data Models ... 57

4.1. BACnet .. 57

4.1.1. BACnet Architecture ... 57

4.1.2. BACnet Application Layer ... 58

4.1.3. Current Trends in BACnet Standardization .. 59

4.1.4. Relevance of BACnet for BaaS .. 60

4.2. oBIX... 60

4.2.1. oBIX Basics .. 61

4.2.2. Message Structure .. 61

ITEA2: Building as a Service - BaaS 7

4.2.3. Web Services .. 61

4.2.4. Object Model .. 63

4.2.5. Encoding Variants ... 64

4.2.6. oBIX Contracts .. 65

4.2.7. oBIX Watches .. 66

4.2.8. oBIX 2.0 ... 67

4.2.9. Relevance of oBIX for BaaS ... 67

5. Middleware Architecture .. 68

5.1. Pervasive Computing Middleware ... 68

5.2. Middleware projects .. 68

5.2.1. Gaia OS .. 68

5.2.2. Aura... 68

5.2.3. HomeOS .. 69

5.2.4. CORTEX ... 69

5.2.5. BOSS .. 69

5.2.6. Context Toolkit ... 70

5.2.7. SOCAM .. 70

5.2.8. JCAF ... 70

5.2.9. PACE .. 71

5.2.10. OPEN ... 71

5.2.11. One.World .. 71

5.2.12. Assessment ... 72

6. Semantic Modeling ... 74

6.1. Introduction .. 74

6.2. Semantic Web .. 76

6.2.1. Role of Semantics in Building Automation Systems ... 76

6.2.2. An Overview of Semantic Web Technologies ... 78

6.2.3. Taxonomies and Ontologies Relevant for the Domain of Building Automation
 .. 83

6.2.4. The Smart Appliances REFerence (SAREF) Ontology .. 86

6.2.5. QUDT - Quantities, Units, Dimensions and Data Types Ontologies 87

6.2.6. ifcOWL - Industry Foundation Classes Ontology .. 88

6.2.7. Ontology-Based Access Control .. 88

6.2.8. Semantic Technologies in Building Automation by Example 89

ITEA2: Building as a Service - BaaS 8

6.2.9. Conclusion .. 93

6.3. W3C Web of Things and Thing Description .. 93

6.3.1. WoT Overview .. 93

6.3.2. Thing Description .. 94

6.3.3. Conclusion .. 95

7. Domain Specific Modeling .. 96

7.1. Model-Driven Software Development ... 96

7.2. Metamodeling .. 97

7.3. Domain Specific Languages .. 98

7.3.1. Categorization of DSLs .. 99

7.3.2. Abstract versus concrete Syntax .. 100

7.3.3. Projectional Editing ... 101

7.4. Model Transformations and Code generation ... 101

7.5. Language Workbench and Tools .. 102

7.5.1. Graphical DSLs .. 102

7.5.2. Textual DSLs .. 103

7.5.3. Case Study - Jetbrains MPS ... 103

8. Supporting Technologies .. 104

8.1. NFC ... 104

8.1.1. Introduction .. 104

8.1.2. Features .. 104

8.1.3. Architecture .. 106

8.1.4. Standards .. 108

8.1.5. Why is it necessary to BaaS? .. 110

8.2. Zigbee ... 110

8.2.1. Introduction .. 110

8.2.2. Features .. 111

8.2.3. Architecture .. 112

8.2.4. Standards .. 114

8.2.5. Why is it necessary to BaaS? .. 116

8.3. Bluetooth .. 118

8.4. RFID Reader and Tags ... 119

8.4.1. Radio Frequency Identification... 119

8.4.2. RFID Tags ... 120

ITEA2: Building as a Service - BaaS 9

8.4.3. RFID Readers ... 120

8.5. Machine to Machine (M2M) .. 120

8.5.1. Introduction .. 120

8.5.2. Benefits ... 121

8.5.3. Application .. 121

8.5.4. Issues .. 121

8.5.5. Standards .. 122

8.6. Web GIS Services .. 123

8.6.1. Introduction .. 123

8.6.2. Spatial Data Infrastructure ... 123

8.6.3. Institutional framework: INSPIRE Directive .. 124

8.6.4. Web GIS Technologies .. 124

8.6.5. WEB GIS Standards (OGC) .. 126

8.6.6. Conclusions ... 128

8.7. Embedded Systems .. 128

8.7.1. Overview of embedded systems architectures .. 128

8.7.2. Operating systems .. 130

8.7.3. Processors ... 131

8.7.4. Selection of suitable architecture ... 132

8.7.5. Overview of analyzed modules .. 134

8.8. Pixage - Digital Signage ... 146

8.8.1. Features .. 146

8.6.2. Contents ... 147

8.6.3. Architecture .. 148

8.6.4. Why is it necessary to BaaS? .. 149

8.9. Keycloak - IDM .. 149

8.9.1. Features [346] ... 149

8.9.2. Architecture [347]... 150

8.9.3. Why is it necessary to BaaS? .. 152

9. List of Figures .. 154

10. List of Tables ... 157

11. References .. 158

ITEA2: Building as a Service - BaaS 10

1. Introduction

The BaaS project targets the need for comprehensive and open cross-domain management
ŀƴŘ ŎƻƴǘǊƻƭ ǎŜǊǾƛŎŜǎ ƛƴ ǘƻŘŀȅΩǎ ōǳƛƭŘƛƴƎǎ ŀƴŘ ŦƻŎǳǎǎŜǎ ƻƴ ǘƘŜ ŦƻǳǊ ǘŜŎƘƴƛŎŀƭ ƻōƧŜŎǘƛǾŜǎ ƻf
conceptualizing and developing

¶ a flexible open building service platform facilitating the generation and deployment of
value added building services at a considerably lower cost compared to the state of the
art;

¶ a BaaS data model providing additional meta-information to simplify the engineering of
value added services and applications for the BaaS system and the integration of legacy
systems;

¶ model-based mechanisms for analysis, aggregation and transformation of data
according to the meta-information provided in the BaaS data model;

¶ methods for the integration of existing and novel sources of information to create a
άōǳƛƭŘƛƴƎ ƛƴŦƻǊƳŀǘƛƻƴ ǎǇƘŜǊŜέ ŎƻƴǎƛŘŜǊƛƴƎ ŀƭƭ ǎǘŀƪŜƘƻƭŘŜǊǎ ƻŦ ǘƘŜ ōǳƛƭŘƛƴƎΦ

These objectives imply that the distributed systems paradigm of the Service-Oriented
Architecture (SOA) shall be followed up in the project.

Moreover, a series of challenging properties of complex distributed systems like flexibility,
dynamic adaptability and extendibility are addressed by the objectives directly. Others, like
security, privacy, dependability, safety, robustness, self-healing/self-management and real-
time capabilities follow from the requirements of the application domain.

The objective of low implementation and deployment costs pleads for the application of
enhanced software engineering approaches. Particularly methods of model-driven and
model-based software system development are of interest.

Finally one has to consider that the objective of easy integration of existing systems and
information sources demands for a thorough analysis of the application domain and a
comprehensive research of the techniques, methods, terms, conceptions and models
applied there so far in order to prepare the design of compliant solutions.

Thus the project objectives result in a wide range of topics which is reaching from abstract
system properties over supporting implementation approaches, as well as engineering,
modeling and description techniques to the different technologies and conceptions of the
building automation domain.

Against this background, Task 2 of Working Package 2 of the project proposal is devoted to
the corresponding state of the art analysis. This document, Deliverable D02, reports the
results. Since the project schedule plans one iteration of the state of the art analysis, the
deliverable D02 appears in two versions, the first one is due after the second quarter of the
first year and the second one is due at the end of the project.

The content of the first version of the state of the art report identifies, collects and analyses
approaches which potentially may be of relevance for the project since they may deliver
conception and solution element input to the development of the BaaS architecture, model,
platform, building services and demonstrator applications.

Later on, the second version will take a closer look on the approaches actually applied.

Particularly in the first version, due to its early deadline, the selection and structuring of
topics, analysis work and contributions cannot profit from rich project experiences and thus

ITEA2: Building as a Service - BaaS 11

mainly resorts on the existing expertise of the project partners. Table 1 summarizes the
contributing partners and their contributions, as they are reflected in the first version of the
document.

Partner Contributions

everis 8.1 NFC, 8.2 Zigbee, 8.3 Machine to Machine (M2M)

Kieback und Peter
2.1 Introduction, 2.2 System Architecture and Communication
Standards, 2.3 Current Trends

Masaryk University 8.5 Embedded Systems

Materna
3.1 Self-Adaptive Systems (3.1.1 - 3.1.3 and 3.1.8- 3.1.10), 3.3 Device
SOA

Prodevelop 8.4 Web GIS Services

Siemens
3.5 Secure Authorization using OAuth 2.0, 3.8 RESTful Web Services,
4 Building Automation Data Models, 6.2 Semantic Web, 7 Domain
Specific Modeling

TU Dortmund 3.6 Functional Safety and Reliability in Service Systems, 3.7 OSGi

TU München
3.4 Privacy and data security, 5 Middleware Architecture, 6.1
Introduction

TWT
3.1 Self-Adaptive Systems (3.1.4 - 3.1.7), 3.2 Data Mining for Building
Automation

University of Rostock
3.9 Efficient XML Interchange (EXI), 3.10 Constrained Application
Protocol (CoAP)

Table 1: Contributing partners, fields of expertise and contributions

The document is structured as follows:

¶ Section 2 provides an overview over the domain of Building Automation, its major
requirements and solution approaches.

¶ Section 3 is devoted to those base technologies which contribute to the provision of
challenging required properties and the implementation of solutions.

¶ Section 4 gives an overview over and a first analysis of appropriate data models in
order to prepare the easy integration of existing components and systems.

¶ Section 5 enters into the consideration of software architecture issues, particularly, a
series of middleware approaches for distributed and pervasive systems are
discussed.

¶ Section 6 focusses on the description and modeling of the semantics of services,
operations and components.

¶ Section 7 investigates software engineering, tool support and domain-specific
modeling approaches.

¶ Finally, Section 8 presents communication and information representation
technologies, which may be used as base technologies in the project.

ITEA2: Building as a Service - BaaS 12

2. Building Automation Overview

2.1. Introduction

Building automation technology improves the security and comfort of buildings and helps
saving energy. Additionally, it reduces maintenance efforts and the need for manual control.
Building automation enables effective supply of large buildings and saves costs at the same
time.

For about 100 years now buildings are controlled by building automation systems (BAS). First
BAS used pneumatic sensors and controllers to mainly control temperature in the building.
Today BAS controls a wealth of different systems and zone controllers are used to control
individual rooms separately. Nowadays BAS are found primarily in functional buildings
όƻŦŦƛŎŜ ōǳƛƭŘƛƴƎǎΣ ƘƻǎǇƛǘŀƭǎΣ ƛƴŘǳǎǘǊȅΧύ ŀƴŘ ƛƴŎǊŜŀǎƛƴƎƭȅ used in residential buildings.

In the 1980s pneumatic sensors and controllers were replaced by electric and analog
electronic circuits. Large ventilation systems were needed to control the air pressure, the air
quality for hygienic or industrial (clean room) reasons, the air temperature and had to
ensure certain level of air mass without transgressing speed limits within the air ducts. These
multivariate controlling was not fulfilled by analog controllers, which use physical laws to
generate a certain output signal from an input signal. Through the 1990s digital controllers
came into play and transform the measured data into digital signals, process and output the
signal to the actuator. The digital controlling units are called Direct Digital Controller (DDC)
and many products of various manufacturers have the abbreviation DDC in their name.

The lack of the standardization for the corresponding digital communications soon led to the
manifold of proprietary communication protocols on the market. Thus, interoperability and
combination of products from different manufactures were not possible. Therefore, in the
1990s there were moves afoot to open standardized communication protocols like BACnet
[1] and LonWorks [2].

In the last two decades evaluation of BAS has benefited heavily from rapid development of
computers, communication and information technologies. The evaluation of BAS from
pneumatic transmission towards IT standardizing information models is shown in the Figure
1.

Building automation relieves the user of controlling the room. When a room is empty lights
are not needed anymore and heating or cooling can be reduced. A user can adjust the
settings manually (by turning off the lights and setting the thermostat) or the technique
takes over. For example: some room controllers enable occupancy-based heating control.
Additionally, they learn and will preheat the room in advance to the predicted return of the
user. Ideally, the user does not even recognize the function. By this way, energy can be
saved without losing comfort.

Building automation helps user and owner of buildings to lower the energy cost and manage
ŎŜƴǘǊŀƭƭȅΦ Lƴ ǇǳōƭƛŎ ōǳƛƭŘƛƴƎǎ όŦƻǊ ŜȄŀƳǇƭŜ ƘƻǎǇƛǘŀƭǎύ ǳǎŜǊǎ ŘƻƴΩǘ ƘŀǾŜ ŀ ŘƛǊŜŎǘ ƛƴǘŜǊŜǎǘ ƛƴ
ŜƴŜǊƎȅ ǎŀǾƛƴƎ ōŜŎŀǳǎŜ ǘƘŜȅ ŘƻƴΩǘ ǇŀǊǘƛŎƛǇŀǘŜ ƛƴ ǘƘŜ ŎƻǎǘΦ ¢ƘŜ ƻǇŜǊŀǘƻǊ ƻŦ ǘƘŜ ōǳƛƭŘƛƴƎ Ŏŀƴ
benefit from building automation and lower the influence of the users. If open windows are
detected, the controller can automatically decrease the heating or cooling power where a
thermostatic valve would rather increase the heating power.

ITEA2: Building as a Service - BaaS 13

Figure 1: Evolution of Building Automation and Control Systems [3]

The safety of people and material is increased with building automation technology. For
example when fire detectors report within milliseconds to a central building control system,
an immediate evacuation can be started. Another example from residential buildings is a use
of motion sensor under the bed to switch on the lamp as soon as you get up. Also, after
leaving the house you can check by your smart phone whether critical appliances (cooker,
electric iron) are still turned on and if necessary switch them off from the distance.

Building automation systems make buildings intelligent, make everyday life easier and lower
the energy costs.

From initially controlling only heating, ventilation, and air-conditioning (HVAC) over the
decades BAS have been added a manifold of different service domains listed in the Table 2.

Domain Typical building services

Climate Control HVAC, humidity, air quality

Visual Comfort
Artificial lighting, daylighting (motorized blinds/shutters),
constant light control

Personal Safety
Fire alarm, gas alarm, emergency sound system, emergency
lighting, CCTV (closed circuit television)

Building Security
Intrusion alarm, access control, water leak detection, CCTV, audio
surveillance

Transportation Elevators, escalators, conveyor belts

One-way Audio
Public address/audio distribution and sound reinforcement
systems

Energy Management Energy efficiency, peak avoidance, integration of renewable

ITEA2: Building as a Service - BaaS 14

Domain Typical building services

energy sources (RES)

Supply and disposal
Power distribution, waste management, fresh water/domestic
hot water, waste water

Communication and
information exchange

IT Networks, PBX (Private Branch Exchange), Intercom, shared
WAN access, wireless access (WLAN)

Other special domains
Clock systems, flextime systems, presentation equipment (e.g.,
video walls), medical gas, pneumatic structure support systems
(for airhouses)

Table 2: Domains of building services [4]

Currently different BAS functions are executed mostly in separate technology silos without
any or with very little datŀ ŜȄŎƘŀƴƎŜ ƛƴ ōŜǘǿŜŜƴΦ ¢ƻŘŀȅΩǎ ǊŜǉǳƛǊŜƳŜƴǘǎ ƻƴ ōǳƛƭŘƛƴƎǎ ǘƻ ōŜ
more energy efficient, cost less to operate, provide a better indoor environment for
occupants, and have a smaller environmental footprint make integration between these
systems necessary. New regulations for energy performance of buildings [5] add additional
optimization goals that can be achieved only with proper mechanisms for comprehensive
facility management, fine-grained energy monitoring and benchmarking. Thus, modern BAS
ought to provide value added cross-domain services while minimizing engineering efforts.

2.2. System Architecture and Communication Standards

The automation pyramid as drawn in Figure 2 is basic for many BAS. It shows the
management level, automation level and field level.

Figure 2: Automation pyramid (Source: Rexroth, Bosch Group)

The automation pyramid shows the management level separated in the engineering and the
visualization. Different communication media (and protocols) such as Ethernet (TCP/IP) or
various open system buses can be used. The automation and field levels are separated as
well in 3 typical crafts: hydraulic (e.g. heating, cooling, ventilation etc.), electric (e.g. lights,
blinds etc.) and the lesser used pneumatic.

ITEA2: Building as a Service - BaaS 15

The standard [6] defines rather a generic system model then precisely defined system
architecture in order to ensure flexibility in terms of application. The model presented in
Figure 3 can accommodate the different types of Building Automation and Control Systems
(BACS) and their interconnections.

Figure 3: Possible interconnections in three-level functional hierarchy

The system topology of building automation systems from different manufacturers may vary
but because of the standardized open system buses (e.g. LON, BACnet, KNX) the schemes
look very alike. Figure 4 and Figure 5 show the system topology of the companies
Kieback&Peter and Siemens, though the field level is not shown.

Different communication standards provided the use of building automation beyond the
borders of proprietary systems. A widely spread standard is the BACnet protocol as well as
the LON protocol and the (more European) EIB/KNX protocol [7]. These protocols enable a
universal application of different technologies on a basis of a bus system. Bus systems
reduce the total cable length because not every communication node has to have a separate

ITEA2: Building as a Service - BaaS 16

connection to every other node but they all share one data net. Even the data exchange
between the protocols is possible, for example using a LON-BACnet-Gateway.

Figure 4: System topology within the Kieback&Peter company (new automation system, Source:
Kieback&Peter GmbH & Co. KG)

Figure 5: System topology of DESIGO BAS from Siemens [8]

Other protocols for the field level are M-bus, Modbus, DALI (lighting control), EnOcean and
Web technologies. The development of latter was pushed by the requirements towards
using data from the filed within enterprise applications and led to different technologies for
use in building automation like OPC UA, oBIX or BACnet/WS [9]. The Figure 6 depicts on
which levels the different protocols can be used.

ITEA2: Building as a Service - BaaS 17

Figure 6: Communications protocols as used in the different levels of the automation pyramid [10]

2.3. Current Trends

The Web technologies based on Transmission Control Protocol (TCP), Hyper-Text Transfer
Protocol (HTTP) and Extensible Markup Language (XML) often represent a bottleneck in
building automation and control systems. Therefore a novel approach using a User Datagram
Protocol (UDP) based Constrained Application Protocol (CoAP) and efficient XML interchange
ς EXI [11] is discussed.

Interesting for the future of building automation is also a present trend that is pursued by
ǘƘŜ ǇǊƻƧŜŎǘ άƘŀȅǎǘŀŎƪέ [12]. Haystack tries to semantically structure information and to
develop models so that the huge amount of data automation systems have to deal with can
be analyzed effectively. The Haystack community recognized the threat of a data overload in
large automation facilities. More about Haystack Project is to be found in Chapter 4.

Another interesting development is Niagara AX Framework [13], an open Java-based
framework for building device-to-enterprise applications and Internet-enabled products. It
provides a unified development platform to easily build Internet-enabled products and
ǎƻŦǘǿŀǊŜ ŀǇǇƭƛŎŀǘƛƻƴǎ ŦƻǊ ŎƻƴǘǊƻƭƭƛƴƎ ŀƴŘ ƳŀƴŀƎƛƴƎ ŘƛǾŜǊǎŜ άǎƳŀǊǘέ ŘŜǾƛŎŜǎ ŀŎǊƻǎǎ ŀƴ
enterprise in real time.

In the last years the Building Information Modeling (BIM) is changing the way of the design
ǇǊƻŎŜǎǎ ƻŦ ŀ ōǳƛƭŘƛƴƎΦ .La άǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ǇǊocess of development and use of a computer
ƎŜƴŜǊŀǘŜŘ ƳƻŘŜƭ ǘƻ ǎƛƳǳƭŀǘŜ ǘƘŜ ǇƭŀƴƴƛƴƎΣ ŘŜǎƛƎƴΣ ŎƻƴǎǘǊǳŎǘƛƻƴ ŀƴŘ ƻǇŜǊŀǘƛƻƴ ƻŦ ŀ ŦŀŎƛƭƛǘȅέ
[14]. BIM aims at collecting, processing and updating digital data over the whole life cycle of
a building ς from the planning stage to the operating to the refurbishing to the demolition.
The data could possibly be the basis for model predictive control (MPC). BIM data includes a
3D-model of the building with information about the building physics as well as the
plumbing and electricity network. A standard for BIM files are for example the Industry
Foundation Classes (IFC). While BIM has proven its value in design and construction phases,
the necessary technologies for using BIM through operation including the integration with
BAS are still missing. Nevertheless, there are several approaches in this direction, including
ELASSTIC Project [15].

ITEA2: Building as a Service - BaaS 18

3. Base Technologies

3.1. Self-Adaptive Systems

Systems that operate under changing conditions and environments often require human
supervision in order to adapt their behaviors correspondingly. It is the human himself that
decides which actions have to be taken to achieve a desired goal. This approach refers to the
Human-in-the-loop principle [16] leading to costly and time-consuming procedures during
the operating phase. Therefore, there is a high demand for reduction of management
complexity, management automation, and robustness to maintain the quality criteria within
a time-limited range and that with only minimum costs. Self-adaptive systems are a solution
to these problems. They react immediately to changing conditions and requirements and
adapt relevant system parameters automatically. Therefore, such a system has to monitor
itself and its surrounding context continuously, detect changes, decide how to react, and
execute these actions. This results in a modified behavior that ensures a proper system
operation. These processes depend on adaptation properties, domain characteristics, and
preferences of stakeholders. It is widely believed that new models and frameworks are
needed to design self-adaptive systems. Today, we are struck by the trend of increasing
complexity in the design, development, and maintenance of technical systems. Organic
Computing (OC) [17]Σ ƭƛƪŜ ƻǘƘŜǊ ƛƴƛǘƛŀǘƛǾŜǎ ǎǳŎƘ ŀǎ L.aΩǎ Autonomic Computing [18] or
Proactive Computing [19], postulates the necessity of a paradigm shift in the design of future
technical applications underlined by [20]:

άLǘ ƛǎ ƴƻǘ ǘƘŜ ǉǳŜǎǘƛƻƴ ǿƘŜǘƘŜǊ ǎŜƭŦ-organized and adaptive systems will arise but
Ƙƻǿ ǘƘŜȅ ǿƛƭƭ ōŜ ŘŜǎƛƎƴŜŘ ŀƴŘ ŎƻƴǘǊƻƭƭŜŘΦέ

Traditionally, a significant part of the research on handling complexity and achieving
quality goals has been focused on software development and its internal quality
attributes. However, in recent years, there has been an increasing demand to deal with
these issues at runtime. The primary causes for this trend include an increase in the
heterogeneity level of software components, more frequent changes in the context,
goals, and requirements especially at runtime. In fact, some of these causes are
consequences of the higher demand for ubiquitous, pervasive, embedded, and mobile
applications, mostly in the Internet and ad-hoc networks.

3.1.1. Definition

A definition of self-adaptive software is provided in a DARPA Broad Agency Announcement
(BAA) [21]:

άSelf-adaptive software evaluates its own behavior and changes behavior when
the evaluation indicates that it is not accomplishing what the software is
intended to do, or when better functionality or performance is possibleΦέ

A similar definition is given in [22]:

άSelf-adaptive software modifies its own behavior in response to changes in its
operating environment. By operating environment, we mean anything observable
by the software system, such as end-user input, external hardware devices and
ǎŜƴǎƻǊǎΣ ƻǊ ǇǊƻƎǊŀƳ ƛƴǎǘǊǳƳŜƴǘŀǘƛƻƴέ.

ITEA2: Building as a Service - BaaS 19

Prior to formalizing the concept of self-adaptive software, there has been a related point of
view regarding the adaptive programming principle as an extension of object-oriented
programming [23]:

ά! ǇǊƻƎǊŀƳ ǎƘƻǳƭŘ ōŜ ŘŜǎƛƎƴŜŘ ǎƻ ǘƘŀǘ ǘƘŜ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴ ƻŦ ŀƴ ƻōƧŜŎǘ Ŏŀƴ ōŜ
changed within certain constraints without affecting tƘŜ ǇǊƻƎǊŀƳ ŀǘ ŀƭƭΦέ

According to this view point, an adaptive program is considered as [24]:

ά! ƎŜƴŜǊƛŎ ǇǊƻŎŜǎǎ ƳƻŘŜƭ ǇŀǊŀƳŜǘŜǊƛȊŜŘ ōȅ ƎǊŀǇƘ ŎƻƴǎǘǊŀƛƴǘǎ ǿƘƛŎƘ ŘŜŦƛƴŜ
compatible structural models (customizers) as parameters of the process model."

This view on adaptation is similar to reflection and meta-programming techniques. In
another point of view, adaptation is mapped to evolution. A taxonomy is provided by [25]
based on the object of change (where), the system properties (what), the temporal
properties (when), and the actions to perform (how). This classification is mapped by [26] to
the self-adaptive software domain, they propose a conceptual model for adaptation changes
based on Activity Theory. Static and dynamic adaptations, related to the temporal dimension
of this view, are mapped to compile-time evolution and run-time evolution. For this reason,
dynamic adaptation is sometimes called dynamic evolution. In fact, self-adaptivity is directly
linked to feedback and feedback control, whereas self-adaptive software can be aligned with
the laws of evolution. Self-adaptive systems are autonomic on the one hand and self-
managing on the other hand. Many researchers use the terms self-adaptive, autonomic, and
self-managing interchangeably [27]. In the context of self-adaptive systems, we can consider
a layered model that consists of: applications, services, components, middleware, network,
and devices. The key point in self-adaptive software is that its lifecycle does not end after its
development. It must be continued in order to respond to changing constraints and
requirements at runtime.

3.1.2. Self-X Properties

The term self-x properties was initially characterized by IBM in the context of autonomous
systems. They comprise key features exhibited by adaptive systems. At the very beginning
IBM just defined the so called self-CHOP functions: self-configuration, self-healing, self-
optimization und self-protection. In the course of time, several additional self-x properties
were defined. The most popular ones are listed below.

3.1.2.1. Self-Management

The system must be able to manage its own functionalities without actions from outside the
system. The complexity of the system management task can be decreased by increasing the
management capability of single components.

3.1.2.2. Self-Configuration

The configuration of complex systems is performed by experts. By enhancing a system with
self-configuration capabilities, it is possible to find a feasible configuration in a distributed
and autonomous way. Thus, the manual and error-prone configuration process can be
omitted.

ITEA2: Building as a Service - BaaS 20

3.1.2.3. Self-Healing

The autonomous diagnosis of the current system state enables the detection of invalid
system states. Afterwards, a valid system state is restored by means of self-healing. The self-
healing process is supported by the self-configuration capabilities of the system. To achieve
ǘƘŜ ŎƻƳǇƭŜǘŜ άƘŜŀƭƛƴƎέ ƻŦ ǘƘŜ ǎȅǎǘŜƳ ŀ certain degree of redundancy is assumed.

3.1.2.4. Self-Protection

Self-protection of specific elements is necessary if the system is operating in a dynamic
environment. An autonomic application/system should be capable of detecting and
protecting its resources from both internal and external attacks and maintaining overall
system security and integrity.

3.1.2.5. Self-Optimization

The proactive search of a specific element for new opportunities to optimize its own
behavior helps to reach the optimal system state. But to achieve such an optimization,
resources are continuously needed. It is necessary to evaluate carefully if this effort for self-
optimization is justifiable.

3.1.3. Adaptation Loop

The reference standard from the IBM Autonomic Computing Initiative [28] comprises an
external feedback control loop which is called the MAPE-K loop. It includes monitoring,
analyzing, planning and executing functions together with an additional shared knowledge
base.

3.1.3.1. Adaptation Process

¶ The monitoring part provides the mechanisms that collect, aggregate, filter and report
information (such as metrics and topologies) collected from managed resources.

¶ The analyzing part contains the mechanisms that correlate and model complex
adaptation situations.

¶ The planning function encloses the mechanisms that construct the actions needed to
achieve goals and objectives. The planning mechanism uses adaptation policies
information to guide its work.

¶ The execute function groups the mechanisms that control the execution of an
adaptation plan with considerations for dynamic updates.

¶ Knowledge represented by symptoms and policies is the relevant data shared among
the monitoring, analyzing, planning and execute activities of the Autonomic Manager.

3.1.3.2. Sensors and Effectors

Sensors monitor software entities to generate a collection of data reflecting the state of the
system, while effectors apply changes. Sensors and effectors are essential parts of a self-
adaptive software system. The first step in realizing self-adaptive software is instrumenting
sensors and effectors to build the adaptable software. Some of the protocols, standards, and
formats that can be utilized are: Web-Based Enterprise Management (WBEM) [29] together
with the Common Information Model (CIM) [30], Scalable Internet Event Notification
Architectures (SIENA) [31], and the Open Mobile Alliance Device Management Model (OMA

ITEA2: Building as a Service - BaaS 21

DM) [32]. Another noteworthy standard for sensing is Application Response Measurement
(ARM) [33], which enables developers to create a comprehensive end-to-end management
system with the capability of measuring the application's availability, performance, usage,
and end-to-end response time. The ideas behind the Simple Network Management Protocol
(SNMP) [34] for network and distributed systems are also applicable to self-adaptive
software. Software management frameworks, such as Java Management eXtensions (JMX)
[35] provide powerful facilities for both sensing and effecting. Another notable idea along
this line is pulse monitoring [36] adopted from Grid Computing, which is an extension of the
heartbeat monitoring process.

Some of the effectors are based on a set of design patterns that allow the software system
to change some artifacts during run-time. For instance, wrapper (adapter), proxy, and
strategy are well-known design pattern [37] for this purpose. Moreover, microkernel,
reflection, and interception are architectural patterns suitable for enabling adaptability in a
software system [38], [39]. Furthermore, several design patterns are mentioned, namely
goal-driven self-assembly, self-healing clusters, and utility-function-driven resource
allocation for self-configuring, self-healing, and self-optimizing, respectively [40].

3.1.4. Sense-Plan-Act

The sense-plan-act (SPA) is an approach for autonomous robots consisting of three
functional components: a sensing system translating raw sensor inputs into a world model, a
planning system generating a plan to achieve a specific goal with the help of the world
model, and an execution system generating the actions provided by the plan [41]. The
characteristics of the SPA approach are that the flow of control among these elements is
unidirectional and linear and that the acting component, i.e., the execution of a plan, is built
of orderings, conditionals and loops. Thus, the intelligence of the system is entailed in the
planning component that generates the plan. However, the SPA architecture entails the
major difficulty that planning is time-consuming. Since the world may change quickly, the
resulting plan might be rendered invalid already during the planning process. Thus, these
time-consuming computations induce the risk of internal states that are not synchronized
with the reality that it is intended to represent and therefore execution steps might be
executed in an inappropriate context [41].

3.1.5. Collect-Analyze-Decide-Act

Autonomic systems form a feedback loop collecting information from several sources,
analyzing them, forming a decision based on the analysis and reporting this result to users or
acting in a similar way. This process is also often referred to as the autonomic control loop
[42]. Specifically, in the collection phase relevant knowledge information about the current
state is collected, e.g., via environmental sensors or network instrumentations. This data
must be analyzed in the next step constructing a model of the situation using inferences and
distinct rules. At this state, it needs to be clarified how the systems state is inferred and
which data is relevant for validation. The basis of the inferences is useful knowledge for the
decision making process in the next step. In the acting phase, the decision is attempted to be
realized by performing the adaptation or by reporting the result to users or administrators.
For the next control cycle, the impact of the decisions can be fed back and used as relevant
knowledge.

ITEA2: Building as a Service - BaaS 22

3.1.6. Observer/Controller

Numerous sensors, processors and embedded systems provide safety and comfort functions
as well as regulation or motor control functions. These embedded systems will be
interconnected and form a complex communication network. A system consisting of many
interacting components may exhibit new properties emerging from new configuration
possibilities that are not yet anticipated in the design stage but need to be dealt with at run-
time. This requires adaptive systems with optimization techniques in order to learn
adequate responses to unforeseen conditions. A generic observer/controller is required to
assess the behavior of an organic computing (OC) system and to control its dynamics [43]. A
number of sensors and actuators are used in order to measure system variables and to
influence the System unŘŜǊ hōǎŜǊǾŀǘƛƻƴ ŀƴŘ /ƻƴǘǊƻƭ ό{ǳh/ύ ŎƘŀǊŀŎǘŜǊƛȊƛƴƎ ǘƘŜ ǎȅǎǘŜƳΩǎ
global state and dynamics. The observer measures and quantifies the current state of the
SuOC. The monitored data needs to be preprocessed, analyzed and a prediction of future
developments will result in situation parameters that characterize the observed or future
system state. Based on these situation parameters that are computed by the observer and
being transferred to the controller, an evaluation will be performed with respect to the user-
defined goal leading to a decision of the controller whether an intervention will be
beneficial. This decision is made by mapping the situation parameters to respective actions
and evaluating the corresponding performance changes. Previous situation-action mappings
will be stored in order to determine the reaction to known situations. Using these mappings
and estimations, the controller will basically act as a learning component. In particular, the
controller is designed in two levels consisting of an on-line learning level and an offline
optimization level. This design provides several advantages: using simulation based
evaluations, appropriate situation-action mappings can be found without having to test
different alternatives and this approach is significantly faster than the realization of
evaluations in the SuOC. Combining the slower level 2 approach with the faster memory-
based level 1 approach enables a quick reaction by situation-action mappings for known or
similarly known situations while in parallel an optimized situation-action mapping will be
available in the future [44]. Therefore, the observer/controller architecture framework is
widely applicable to a large range of technical systems including building automation
systems.

3.1.7. Operator-Controller Module

Another related approach is the Operator-Controller Module (OCM) developed by the
Collaborative Research Centre 614 [45]. The OCM is an autonomic system following its own
objectives. It is specialized for mechatronic systems combining mechanical and electrical
engineering with a strong focus on real-time constraints [46]. The controller represents the
continuous part of the system and the operator comprises the time-discrete parts of
information processing, which includes functions like emergency routines, controller
monitoring and optimization. In particular, a reflective operator may modify the controller
and induce switches between control strategies, while a cognitive operator gathers
ƛƴŦƻǊƳŀǘƛƻƴ ŀōƻǳǘ ǘƘŜ ǎȅǎǘŜƳ ŀƴŘ ƛǘǎ ŜƴǾƛǊƻƴƳŜƴǘ ƛƳǇǊƻǾƛƴƎ ǘƘŜ ǎȅǎǘŜƳΩǎ ōŜƘŀǾƛƻǊΦ ¢ƘŜ
agent could, e.g., use simulation runs of alternative future behaviors and evaluate them
selecting the most promising alternative concerning the optimization goal. Thus, the
structure of the OCM is especially useful for model-based optimization and due to its
modular composition it is easily possible to add other methods or functions of the agent

ITEA2: Building as a Service - BaaS 23

theory. During execution of the plan and the monitoring of the real world, inductive and
reinforcement learning is used in order to adapt the behavior-based environment and
system models to the real world. The use of learning procedures enhances the assessment
of an optimal starting point for the optimization and the convergence of the optimization
technique. Hence, this knowledge base can be used for similarity analysis enabling the
detection of frequently reoccurring scenarios [46].

3.1.8. Software Engineering

A lot of research areas in software engineering are directly or indirectly related to self-
adaptive software. Many of the self-x properties correspond to quality factors and deal with
non-functional requirements (NFR) concerning e.g. safety, security, and performance.
According to this, most of the ideas developed in the context of software quality for realizing
and measuring quality are applicable to self-adaptive software. Despite of non-functional
requirements, also functional ones have to be considered bringing the requirements
engineering into play. The combination of software with its specification allows the formal
proof of correctness regarding requirements and self-x properties [47]. Due to various
differences between traditional and self-adaptive software, the existing models and
methods developed for non-adaptive software systems are not directly applicable. This
means that new approaches based on formal models, such as Model-Integrated Computing
(MIC) [48], are required for this purpose.

Software Architecture models and languages, such as Architectural Description Languages
(ADL), can certainly be helpful in software modeling and management, particularly at
runtime [49]. A survey on several ADLs based on graphs, process algebras, and other
formalisms for dynamic software architectures is provided by [50]. Acme ADL is used to
describe the architecture of adaptable software and to detect violations from defined
constraints [51].

Component-Based Software Engineering (CBSE) supports the development of self-adaptive
software in two ways. It is easier to implement adaptable software systems relying on
established component models. Secondly, an adaptation engine needs to be itself modular
and reusable. Moreover, component models can be used in adaptive systems as a means of
incorporating the underlying services for dynamic adaptation and adaptation management.
Another related area, Aspect-Oriented Programming (AOP) can also be used in realizing self-
adaptive software. This facilitates encapsulating adaptation concerns in the form of aspects
through dynamic runtime adaptation.

Service Computing and Service-Oriented Architecture (SOA) can also support realizing self-
adaptive software by facilitating the composition of loosely coupled services. Web service
technology is often an appropriate option for implementing dynamic adaptable business
processes and service-oriented software systems, due to their flexibility for composition,
orchestration, and choreography.

3.1.9. Control Theory

Techniques used in network and distributed computing can be extensively applied to self-
adaptive software. Policy-based management (PBM) is one of the most successful
approaches followed in network and distributed computing [52]. Policy-based management
specifies how to deal with situations that are likely to occur (e.g., priorities and access

ITEA2: Building as a Service - BaaS 24

control rules for system resources). Most of the definitions given for policy emphasize on
providing guidance in determining decisions and actions. The policy management services
normally consist of a policy repository, a set of Policy Decision Points (PDP) for interpreting
the policies, and a set of Policy Enforcement Points (PEP) for applying the policies [53]. The
most widely used policy type in networks is the action policy (in the form of event-condition-
action rules) which is also applicable to self-adaptive software. In addition, other policy types
like goal policy (specifying a desired state), and utility policy (expressing the value of each
possible state) can also be exploited in self-adaptive software [54]. The adaptation policies
may need to be changed based on new requirements or conditions.

Quality of Service (QoS) management, another successful area in networking and distributed
systems [55], is closely related to policy management [56]. QoS requirements are related to
non-functional requirements of a system, and consequently, they can be linked to self-x
properties in distributed software systems. In this context, QoS management methods rely
on either modeling the application, e.g., queuing models, or using well-understood
components, e.g. Prediction-Enabled Component Technology (PECT) [57]. Therefore, QoS
management can assist in modeling the quality factors of a self-adaptive software system
and also in realizing adaptation processes.

One of the well-established areas in networks and distributed systems is resource
management. In specific, virtualization techniques can have a significant impact on the
quality of self-adaptive software. Virtualization reduces the domain of an adaptation engine
to the contents of a virtual machine [58]. It also provides an effective way for legacy
software systems to coexist with current operational environments.

3.1.10. Research Challenges

Self-adaptive software creates new opportunities, and at the same time, poses new
challenges to its development and operation. Functional and non-functional requirements,
self-x properties, and quality factors must be considered as a whole. Besides that, it is a
ŎƘŀƭƭŜƴƎƛƴƎ ǘŀǎƪ ǘƻ ŎŀǇǘǳǊŜ ǘƘŜ ǎǘŀƪŜƘƻƭŘŜǊǎΩ ŜȄǇŜŎǘŀǘƛƻƴǎΣ ǘǊŀƴǎƭŀǘŜΣ ǊŜŦƛƴŜ ŀƴŘ ǊŜƭŀǘŜ ǘƘŜƳ
to adaptation requirements and goals satisfying at run-time. A model at design-time is used
ŀǎ ŀ ŦǳƴŘŀƳŜƴǘŀƭ ōŀǎƛǎ ŦƻǊ ŀƴǎǿŜǊƛƴƎ ǘƘŜ ŀŘŀǇǘŀǘƛƻƴ ǊŜǉǳƛǊŜƳŜƴǘǎΩ ǉǳŜǎǘƛƻƴǎΥ ǿƘŜǊŜΣ ǿƘŜƴΣ
what, why, who, and how. A significant challenge for monitoring different attributes in
adaptable software is the cost and load of the sensors, respectively. In most cases, the
monitoring process does not need all details of an event, while in the case of deviating from
ǘƘŜ άƴƻǊƳŀƭέ ōŜƘŀǾƛƻǊΣ ƳƻǊŜ Řŀǘŀ ƛǎ ǊŜǉǳƛǊŜŘΦ ¢ƘŜǊŜŦƻǊŜΣ ǘƘŜ ƳƻƴƛǘƻǊƛƴƎ ŀƴŘ ƳŀƴŀƎŜƳŜnt
process must be adaptable itself. Most of the existing solutions are not able to represent
policies and goals explicitly. Typically high-level policies must be decomposed and refined
into lower-level ones that are understandable by the technical system elements. It is difficult
to accomplish this task without an explicit model with comprehensive tool-support.
Commonly, lower-level policies at runtime are represented as rules that are hand-coded on
the basis of informal descriptions of constraints and objectives restricting the system
behavior. This is insufficient, especially in the context of high dynamic service systems that
depend on an overall management process respecting high-level goals and constraints.

ITEA2: Building as a Service - BaaS 25

3.2. Data Mining for Building Automation

3.2.1. Introduction

Data Mining is the process of analyzing and identifying patterns in large data sets in order to
extract information and transform it into a meaningful structure for further use. When
information about energy management, physical security, environmental conditions and
facility operations etc. is converged for building automation, not only redundant control
infrastructure can be eliminated but also communication between different systems is
enabled allowing for data collection and analysis. It was shown, e.g., that building occupancy
can be predicted using data mining [59] combined with Bayesian modeling [60] enabling
more efficient control of HVAC systems. Overall, analyzing this large amount of data may
open new possibilities as flexible management control and automation mechanisms leading
to risk reduction, energy efficiency, operational effectiveness and occupant satisfaction.
However, before being able to analyze this data, it needs to be pre-processed in order to
minimize errors. The pre-ǎŜƭŜŎǘƛƻƴ ƻŦ ǊŜƭŜǾŀƴǘ ŘŀǘŀΣ ƛǘΩǎ ǇǊŜǇǊƻŎŜǎǎƛƴƎ ŀǎ ǿŜƭƭ ŀǎ
transformations are critical for the quality of the overall result and consequently take up 75-
80% of the total effort in the data mining process [61]. In addition to these three stages, the
data mining process, also known as Knowledge Discovery in Databases (KDD) contains
several other stages: the selection of data mining methods and their application, the
interpretation and evaluation of results, and finally the application of the results [62].
Basically, a parallel can be drawn between the data mining process and the MAPE loop [63]
containing the phases: observe (measure), analyze (analyze), learn (plan) and apply
(execute) (Figure 7).

Figure 7: Data Mining Process adapted from [62] compared with the MAPE loop.

Since in BaaS, the target is an automated process, the major challenge of the data mining
process is the automatic minimization of errors during pre-processing of data and the
preparation of meaningful quantifications, while the automatic interpretation and
evaluation of the data and the application of the results might be realized via adaptive
systems (3.1). Nevertheless, the interpretation of processed data might also be computed
further using Bayesian networks as proposed by [60].

ITEA2: Building as a Service - BaaS 26

Another challenge for the application of data mining for Building Automation is that
resource limitations may impose restrictions on applicable data mining techniques. For
example, if data mining techniques are implemented on building automation devices
distributed throughout the building then these are likely to be designed cost-effectively, i.e.
tailored to their focused purpose. Consequently, resource consuming data mining algorithms
might not be possible to realize on these devices but might be relocated to the central
control center of the building.

On the other hand it was shown that data mining techniques can also assist in detecting
communication faults in control networks, preventing problems by detecting early
symptoms of potential problems [64].

3.2.2. Observe

Since the measurement and collection of huge amounts of data in order to continuously
track changes can be error-prone, the preprocessing of data minimizing errors and selecting
important data for interpretations is an important step in the data mining process. Data
formats need to be transformed, data needs to be analyzed in an exploratory manner,
appropriate data needs to be selected and aggregated, samples need to be selected for
further analysis reducing the amount of data, the dimensionality of the data needs to be
reduced, missing data needs to be dealt with and incorrect data needs to be detected.
Techniques like anomaly/outlier detection, clustering or regression can be used in order to
detect missing or incorrect data. Finally, features need to be coded in order to be analyzed
choosing a subset of features that ideally and sufficiently describe the target concept. This
step of feature selection is of paramount importance since it determines the quality of the
data mining process. When the quality of feature selection, usually performed by machine
learning, pattern recognition, or statistical algorithms is poor, incomplete information might
be extracted or noisy or irrelevant features might be detected. Here, the separability of
features in feature space (e.g., in different categories) is targeted to unambiguously describe
the target concept [65].

3.2.3. Analyze

In the next step the preprocessed data is analyzed for being interpretable. That means that
data mining involves the fitting of models to observed data or to determine patterns from
data. The goal of data mining is either the verification of existing hypothesis or the
autonomous discovery of new patterns either for predictions or for the presentation in
human-understandable form. Data is being analyzed using methods like (1) classifications for
discrete variables, (2) regression analyses identifying dependencies between continuous
variables and predicting new values based on the past ones, (3) segmentations or clustering
for finding homogenous objects within a group, or (4) other exploratory statistically based
data analyses [62], [66]. These methods are applied in a variety of data mining approaches.
The most commonly applied techniques for data mining are decision trees, artificial neural
networks, and nearest neighbor classification. These data mining techniques are often
repeatedly applied in an iterative manner [62].

Decision trees are based on classification techniques. During training sessions data is
successively divided into disjoint subsets that within each subset represent a homogenous
group. This division is subsequently verified during test sessions, where the quality of the

ITEA2: Building as a Service - BaaS 27

model is determined by the number of incorrect classifications. The classification model is
represented in a tree structure making the model relatively easy to comprehend for the user
but also limiting the type of classification boundaries. Therefore, often multivariate
hyperplanes are introduced making the model more powerful for predictions but more
complex to comprehend [62], [66]. This technique was also used by a recent study examining
the use of data mining techniques for the understanding of energy performance of a building
[67].

Inspired by the biological nervous system, artificial neural networks are non-linear,
predictive, but rather complex models learning through training. They contain modelled
neurons, each being a processing unit within a network. Each neuronal unit has an input
function calculating a weighted mean of all inputs. This value is propagated to the activation
function, which determines whether the neuron is activated when a certain threshold is
reached. An output function determines the value that will be propagated to other neurons
when the activation of the neuron was successful. When modelling a neural network the
number, type as well as the configuration of neurons and the weightings of their
connections need to be fixed at the beginning. The model is then adjusted according to the
dataset refining the weightings of the connections by learning. Supervised learning methods,
where input and desired output data is known at the time of training, rely basically on
classification mechanisms, while unsupervised learning, which is not provided with the
correct results during training, works through clustering and prediction. Back propagation is
mostly used as learning technique where the output value is compared with the target and
the error is fed back through the network enabling an adjustment of the weights [62], [68].

The nearest neighbor classifier is a supervised learning mechanism trying to classify datasets
based on similar data in a historical datasets, i.e., where their classification is known. It
works therefore better for extrapolation rather than for predictive enquiries [66], [69].
Vectors in a multidimensional feature space are used to separate the classifications of data,
while a commonly used distance metric is the Euclidean distance for continuous variables
and the Hamming distance for discrete variables [66]. It was shown that using this technique
a high performance data mining can be achieved [69].

Regardless of the technique used, data mining always involves the process of building a
model based on specified criteria from already captured data. Once a model is built, it can
be applied in similar situations for predictions or discovery of new pattern.

3.2.4. Learn and apply

Finally, when patterns have been found in datasets, they need to be interpreted. Often, an
iterative process of data mining techniques is necessary before data can be interpreted.
Interpretation of the extracted patterns and models usually involve visualization techniques.
However, since in building automation, the learning and application from data mining should
be performed in an automated way, parameters might directly be adjusted of an existing
model or other appropriate parameters will be selected and applied to the model.
Parameters need to be meaningfully quantified, e.g., to assess the required energy to
achieve a certain increase in (room) temperature. In order to map these results on
adaptations in building automation, an integration of autonomous adaptive techniques like
the operator/controller approach (3.1.6) will be conceivable for the assistance in planning
but as well for the application of the results.

ITEA2: Building as a Service - BaaS 28

3.3. Device SOA

3.3.1. Introduction

There is a great number of technologies available to have functionality exposed to users on a
network. We will talk about the approach to have services offered by specific devices. This is
different from the device independent approach to implement a service oriented
architecture (SOA) [70] ǳǎƛƴƎΣ ŦƻǊ ŜȄŀƳǇƭŜΣ WŀǾŀΩǎ ǊŜƳƻǘŜ ƳŜǘƘƻŘ ƛƴǾƻŎŀǘƛƻƴ όwaLύ [71] or
representational state transfer based (REST) web services [72].

In service oriented architectures services are self-contained functional entities [73]. Devices
on the other hand are containers for services or other devices. In Device SOAs, devices
announce their presence on the network and/or can be actively discovered. Both services
and devices are enabled to let third parties know their capabilities and metadata
information. For devices, this may include hosted services and friendly names for example. A
ǎŜǊǾƛŎŜΩǎ ƳŜǘŀŘŀǘŀ Ŏŀƴ ǊŜǎǇŜŎǘƛǾŜƭȅ ƛƴŎƭǳŘŜ ƻŦŦŜǊŜŘ ƻǇŜǊŀǘƛƻƴǎΦ ¢Ƙƛǎ ƛǎ ƛƭƭǳǎǘǊŀǘŜŘ ƛƴ Figure 8.

Figure 8: Abstract Device SOA scheme

To talk about similarities and differences between Device SOA technologies a common
terminology is helpful. Important concepts are listed below.

Discovery: As mentioned, this includes devices announcing their presence on a network and
clients being able to actively search for them.

Description: The ability of devices and services to describe themselves by means of
metadata exchange.

Control: Makes it possible for clients on the network to use operations of a service. This
includes providing input and getting output back from operations.

Eventing: Enables clients to subscribe for a predetermined time span for interesting data
from a service. The service is responsible for delivering the subsequent events to all its
subscribers.

These represent a subset of the six categories identified by the SIRENA project [74].

Device

Metadata
ÅDevice-Type
ÅUnique ID
ÅInstance Info
ÅServices Info

¶
¶
¶

Service n
Service 2

Service 1

Metadata
ÅService-Type
ÅUnique ID
ÅOperations

¶
¶
¶

Operation n

Operation 1

¶
¶
¶

ITEA2: Building as a Service - BaaS 29

3.3.2. Technologies

Some of the most important technologies enabling a Device SOA approach are Devices
Profile for Web Services (DPWS) [75], Universal Plug and Play (UPnP) [76], Bluetooth (BT)
[77], the building automation and control networks protocol (BACnet) [1], the local
operating network (LonWorks) [2] and the building automation field bus KNX [78]. These
technologies are specialized to serve the needs of their respective domains but are very
similar from a more abstract point of view.

The following subsections shortly present these technologies with a focus on the four basic
concepts, described in the last chapter. Because the description capabilities of the
technologies differ, description is split up into device/service metadata and dynamic service
description. Dynamic service description is the ability of a service to describe itself without
relying on static information (i.e. templates or profiles). This enables such services to be
defined as needed and makes them much more flexible.

The four basic concepts have different names and characteristics in the respective
technology. Table 3 offers a short overview for each technology and its capabilities. Notable
is that only DPWS and UPnP offer dynamic service description.

 DPWS UPnP Bluetooth BACnet LonWorks KNX

Discovery X X X X X X

Device/Service Metadata X X X X X X

Dyn. Service Description X X

Control X X X X X X

Eventing X X X X

Table 3: Abstract comparison of technologies focusing on Device SOA functionalities

3.3.2.1. DPWS

DPWS fully implements the Device SOA principle. Mechanisms for Discovery, Description,
Control and Eventing are all defined and come in alignment with web service standards.
Services, operations and parameters of operations are described using the Web Service
Description Language (WSDL).

Discovery is implemented according to the WS-Discovery standard. It uses Hello, Bye, Probe
and Resolve multicast messages to enable devices to announce when they are entering a
network (Hello), when they are leaving a network (Bye) and when they have changed their
metadata (Hello with an updated metadata version). Metadata exchange is done over HTTP
using Get messages when talking to devices and GetMetadata messages when requesting
metadata from services. Operations in DPWS can be one-way operations (only input) or
request-response operations (input and output). DPWS is based upon WS-Eventing and
supports simple (one-way) notification for events as well as solicit responses from the client.

3.3.2.2. UPnP

Like DPWS, UPnP implements the Device SOA principle. It therefore offers mechanisms for
Discovery, Description, Control and Eventing.

Discovery is based on HTTP over UDP and Simple Service Discovery Protocol (SSDP), which
uses M_Search and Notify messages. UPnP offers Description functionality, which relies on

ITEA2: Building as a Service - BaaS 30

XML templates. Eventing is based and limited to the observation of status variables
(multicast notifications are available).

UPnP comes with the special ability for devices to contain other devices, calling the former
root device and the latter embedded devices. Embedded devices are published by the root
device.

As stated in [79], ά¦tƴt ǿŀǎ ŀ ŎƘƻƛŎŜ ŦƻǊ {Lw9b! ōŀǎƛŎ ǘŜŎƘƴƻƭƻƎȅ ōut has the disadvantage
of supporting only smaller networks. With an increasing amount of services/devices, the
amount of broadcast messages grows exponentially in an UPnP network. Furthermore UPnP
ǎǳǇǇƻǊǘǎ LtǾп ƻƴƭȅΦέ

3.3.2.3. Bluetooth

Bluetooth uses predefined profiles. These represent certain functionalities, like the service
discovery profile. This facilitates easy to use communication between devices with the ability
for devices to advertise all of the services they provide. Because all service descriptions are
known in advance and defined by their respective profiles, the logic to discover and use a
service is not as complex and service descriptions are not send over the network, which
ƘŜƭǇǎ ǘƻ ƪŜŜǇ ǘƘŜ ƴŜǘǿƻǊƪΩǎ ŎƻƴƎŜǎǘƛƻƴ ƭƻǿΦ

.ƭǳŜǘƻƻǘƘΩǎ 5ŜǾƛŎŜ aŀƴŀƎŜǊ ǊŜƭies on Inquiry and Inquiry-Response messages for device-
discovery, the Link Manager Protocol provides device-description leveraging name request
messages, while the Service Discovery Protocol provides service description (using
ServiceSearchRequest, ServiceAttributeRequest and ServiceSearchAttributeRequest
messages). Control is being provided by the OBEX protocol (using Connect, Get, Put, SetPath
messages). Bluetooth provides no eventing capabilities at all.

3.3.2.4. BACnet

ά.!/ƴŜǘΩǎ ŘŜǾƛŎŜ ŦǳƴŎǘƛƻƴŀƭƛǘȅ ƛǎ ōŀǎŜŘ ƻƴ an object model to represent the functioning of
ōǳƛƭŘƛƴƎ ŀǳǘƻƳŀǘƛƻƴ ŀƴŘ ŎƻƴǘǊƻƭ ǎȅǎǘŜƳǎ ό.!/{ύΦέ [80]

While the protocol currently provides eight device profiles defining their capabilities, BACnet
defines a set of 38 services as a basis for all messages between devices. This communication
is based on a client-server model, which uses standardized objects for information exchange
(service requests and responses).

The service set can be differentiated into five broad categories. These categories do not
match with the Device SOA functionalities one-to-one and one category has become
deprecated through technological advancements. The Remote Device Management Services
offer the Who-Is and Who-Has services which provide device and object Discovery
mechanisms while also offering a variety of Control functionalities. The File Access Services
and Object Access Services provide other Control functionalities (e.g. CreateObject) whereby
the Object Access Services offers access to object properties for Description, i.e. the
ReadProperty service. Eventing functionalities are provided by the Alarm and Event Services.

This standardization of sets of profiles, services and objects facilitates high interoperability
across manufacturers. It is also a common practice within the building automation domain
to use BACnet systems for managing KNX- and LonWorks networks because of its focus on
the management level in contrast to their focus on the field level.

ITEA2: Building as a Service - BaaS 31

3.3.2.5. LonWorks

[ƻƴ²ƻǊƪǎΩ ŘŜǾƛŎŜǎ Ƴǳǎǘ Ǌǳƴ ŀƴ application, which may contain network variables and
configuration properties. Device templates are being used that contain all the attributes of a
given device type and the device publishes information of the running application. As for
Discovery an automatic discovery process can be executed to search for devices on the
ƴŜǘǿƻǊƪΦ [ƻƴ²ƻǊƪǎΩ ǎelf-identification and self-documentation mechanisms provide
Description functionality.

While communication itself uses a client-server model, (standardized) network variables are
being defined to create logical connections between devicesΦ άLonWorks uses bindings
which offer a process that defines connections between devices including the data that
ŘŜǾƛŎŜǎ ǎƘŀǊŜ ǿƛǘƘ ŜŀŎƘ ƻǘƘŜǊΦέ [81]

LonWorks also provides basic eventing functionalities, i.e. subscription and one-way event
notification.

3.3.2.6. KNX

Within a KNX network devices communicate over a single event bus system (which can be
coupled to an Ethernet network). On this bus, special data-telegrams are being used with
Service Type Identifiers like SEARCH_REQUEST for Discovery functionality,
DESCRIPTION_REQUEST for Description and DEVICE_CONFIGURATION_REQUEST for Control
functionality. No Eventing is provided.

3.3.3. Not-Device-centered SOA gateway/middleware projects

There is software building on the abstract similarity of the presented technologies and many
others, functioning as a middleware or gateway layer between two or more of them.

Many of the more sophisticated approaches use a modularized solution utilizing web service
standards or more often OSGi as an underlying service platform.

For example, EnTiMid ά! ǎŜǊǾƛŎŜ-ōŀǎŜŘ ƳƛŘŘƭŜǿŀǊŜ ŦƻǊ ƘƻƳŜ ŀǇǇƭƛŀƴŎŜǎέ ǿƘƛŎƘ ǳǎŜǎ h{Dƛ ƛƴ
ŀ ƳƻŘŜƭ ŘǊƛǾŜƴ ŜƴƎƛƴŜŜǊƛƴƎ ŀǇǇǊƻŀŎƘ άǘƻ ŀŘŘǊŜǎǎ ǘƘŜ ŎƘŀƭƭŜƴƎŜǎ ƻŦ ǘƘŜ ŘŜǾŜƭƻǇƳŜƴǘ ŀƴŘ
deployment of building automation applications over an evolving, large-scale distributed
computing inŦǊŀǎǘǊǳŎǘǳǊŜΦέ [82] The framework integrates high-level service technologies
like DPWS, UPnP and web services as well as low-level service like BACnet, LonWorks, KNX
and others into a service architecture to offer a neutral middleware solution.

Another OSGi based architecture is presented in [83], where the evaluation of the platform,
in a similar context as the one presented by the previous example, proves that it serves as an
effective bridge across disparate networking technologies (DPWS, UPnP, Bluetooth, Jini, and
Zigbee).

The study in [84] discusses possibilities for building automation system based on web
services while a web service adapter approach has been evaluated in [85], integrating DPWS,
UPnP, Bluetooth, Jini and WS (Web Services).

As one of the most recent and the most promising solutions, mainly focusing on smart home
technologies, the open Home Automation Bus (openHAB) [86], using a domain model
centered approach, has been developed. It integrates a vast range of building automation
technologies based on, once more, the OSGi platform for modularization. It primarily
implements an event bus, which adds new technologies through technology-specific

ITEA2: Building as a Service - BaaS 32

bindings, which come as OSGi bundles. In contrast with the other examined projects, it tries
to be an offline solution, thereby ignoring web service interoperability resulting in the lack of
ǘŜŎƘƴƻƭƻƎƛŜǎ ƭƛƪŜ 5t²{Σ ¦tƴt ŜǘŎΦ ŀƴŘ ƳŀǊƪŜǘƛƴƎ ƛǘǎŜƭŦ ŀǎ ǘƘŜ άLƴǘǊŀƴŜǘ ƻŦ ¢ƘƛƴƎǎέΦ ¢ƘŜ
project currently evolves into the open-source project Eclipse SmartHome [87].

The next chapter will present the Device SOA based Java Multi Edition DPWS Stack (JMEDS)
framework.

3.3.4. Abstraction provided by JMEDS

The general similarity of the concepts underlying all of the technologies mentioned above
was the motivation behind the development of JMEDS beyond its single technology
orientation to be a dynamic Device SOA framework. In the following chapter, we will explain
how the framework enables the development of devices and services independently of the
underlying protocol.

First, the most important concepts from the device/service perspectives will be explained in
Section 3.3.4.1Φ ¢ƘŜ ǎŀƳŜ ǿƛƭƭ ōŜ ŘƻƴŜ ŦǊƻƳ ǘƘŜ ŎƭƛŜƴǘΩǎ ǇŜǊǎǇŜŎǘƛǾŜ ƛƴ ǘƘŜ ŦƻƭƭƻǿƛƴƎ Section
3.3.4.2. Please refer to the diagram in Figure 9 when reading these sections. Finally, some of
Wa95{Ω ŎǊƻǎǎ ǘŜŎƘƴƻƭƻƎȅ ǎŜŎǳǊƛǘȅ ŎŀǇŀōƛƭƛǘƛŜǎ ǿƛƭƭ ōŜ ŜȄǇƭŀƛƴŜŘ ƛƴ Section 3.3.4.3.

Figure 9: JMEDS frame structure

3.3.4.1. Service/Device

It does not come as a surprise to find devices and services represented in the internal
structure of JMEDS. A device traditionally holds references to services. An exception to the
traditional case is the UPnP protocol where it is possible to have devices hosting other
devices. The first case is generally supported by the framework, the second only when using
the UPnP module. The diagram in Figure 9 shows both containment variants.

Services contain operations. Operations, like methods in Java or functions in C, have
predefined input and output parameters. A special kind of operation is an event (also called
άŜǾŜƴǘŜŘ ƻǇŜǊŀǘƛƻƴέύΦ 9ǾŜƴǘǎ Ŏŀƴ ǎŜƴŘ ƳŜǎǎŀƎŜǎ ǘƻ ǎǳōǎŎǊƛōŜǊǎΣ ŀŦǘŜǊ ǘƘƻǎŜ ƘŀǾŜ ǎǳōǎŎǊƛōŜŘ
themselves.

All those entities need to be discoverable on the network. Discoverability in this context
means nothing more than announcing the presence of a device on a network or probing for
a device on a network making use of multicast technologies. DPWS does this utilizing WS-

ITEA2: Building as a Service - BaaS 33

Discovery (WS-DD), UPnP using the Simple Service Discovery Protocol (SSDP). JMEDS does
not expose these protocols directly. Instead, it only has to be provided with the necessary
information about the interfaces to use during this process. A device in JMEDS can be
provided with so-called ά5ƛǎŎƻǾŜǊȅ .ƛƴŘƛƴƎǎέ ŀƴŘ άhǳǘƎƻƛƴƎ 5ƛǎŎƻǾŜǊȅ LƴŦƻǎέΦ ¢ƘŜ ŦƻǊƳŜǊ
specify an interface and an address (for example something like eth0 and IP/PORT in case it
is a UDP binding) that the device is going to listen on to receive messages (i.e. probe
messages), the latter specify the interface to be used when sending discovery messages.

Both of the previously mentioned constructs come in two flavors. The concept will be
ŜȄǇƭŀƛƴŜŘ ǿƛǘƘ ŀ ŦƻŎǳǎ ƻƴ ǘƘŜ ōƛƴŘƛƴƎǎΣ ōǳǘ ǘƘŜ άhǳǘƎƻƛƴƎ 5ƛǎŎƻǾŜǊȅ LƴŦƻǎέ ǿƻǊƪ ǾŜǊȅ ǎƛƳƛƭŀǊΦ
First, there is the static binding, which has to be provided with everything (interface,
address, port etc.) in advance. The second flavor has auto in its name and thus can do more
ƻƴ ƛǘǎ ƻǿƴΦ ¢ƘŜ ǎƻ ŎŀƭƭŜŘ άŀǳǘƻ ōƛƴŘƛƴƎǎέ ǊŜǉǳƛǊŜ ƻƴƭȅ ƛƴǘŜǊŦŀŎŜǎ ǘƻ ōŜ ǎǳǇǇƭƛŜŘ to them.
Ports and addresses are chosen automatically. When one of those interfaces goes down or
ŎƻƳŜǎ ǳǇΣ ǘƘŜ έŀǳǘƻ ōƛƴŘƛƴƎέ ǘŀƪŜǎ ŎŀǊŜ ƻŦ ǘƘŜ specifics of removing or (re-)adding the
device to the corresponding network. In fact, it is even possible to make an interface known
ǘƻ ǘƘŜ ōƛƴŘƛƴƎ ǘƘŀǘ ŘƻŜǎ ƴƻǘ ȅŜǘ ŜȄƛǎǘΦ Lǘ ǿƛƭƭ ōŜ ǳǎŜŘ ōȅ ǘƘŜ άŀǳǘƻ ōƛƴŘƛƴƎέ ŀǎ ǎƻƻƴ ŀǎ ƛǘ
becomes available.

As discovery bindings are needed for the discovery of devices, devices and services also need
bindings to be reachable for metadata requests, operation invocations etc. The concept
behind these bindings in JMEDS is very much analog to that behind the discovery bindings.
As discovery bindings, ǘƘŜ ǎƻ ŎŀƭƭŜŘ άŎƻƳƳǳƴƛŎŀǘƛƻƴ ōƛƴŘƛƴƎǎέ ŀƭǎƻ ŎƻƳŜ ŀǎ ǎǘŀǘƛŎ ŀƴŘ
automatic bindings. For example, if a devices gains reachability through one if its auto-
bindings (an interface becomes available) JMEDS takes care of the logistics of changing the
devices metadata and making this change public (in case of DPWS it, for example, sends a
new hello message).

3.3.4.2. Client

The most important entity in JMEDS on the client ǎƛŘŜ ƛǎ ǘƘŜ Ƴŀƛƴ ŎƭƛŜƴǘ όǘƘŜ άŘefault
cƭƛŜƴǘέύΦ Lǘ ƻŦŦŜǊǎ ŀōƛƭƛǘƛŜǎ ǘƻ ŀŎǘƛǾŜƭȅ ǎŜŀǊŎƘ ŦƻǊ ƛƴǘŜǊŜǎǘƛƴƎ ŘŜǾƛŎŜǎ ŀƴŘ ǘƻ ōŜ ƴƻǘƛŦƛŜŘ ŀōƻǳǘ
new devices that appear on the network (i.e. when receiving a DPWS hello message). The
ŎƭƛŜƴǘ ǳǎŜǎ ǘƘŜ άdiscovery ōƛƴŘƛƴƎǎέ ŀƴŘ άoutgoing discovery iƴŦƻέ concepts (presented in
the previous section) to provide these abilities. When a search in a network is successful or a
new device appears on the network, a device reference is provided by JMEDS. It is important
to remark that a device reference does not contain any device metadata initially. This
metadata is obtained only when an actual device (technically a device proxy) is requested
from the device reference. This segregation between discovery and metadata exchange
exists in many of the supported technologies such as DPWS and UPnP. Even if the
segregation does not exist in the technology (for example, if there is only a limited number
of profiles and those are all present on the client side - as it is the case in BT) the JMEDS API
has proofed to be appropriate.

A device on its part can be asked for a service reference, which in turn can be asked for an
actual service. Again, the further metadata exchange is triggered by the request for the
service on the reference.

The services can be asked to provide operation proxies and event source proxies. These can
be invoked or in case of the event source can be subscribed. To receive events an event sink
has to be provided. The address of which is included in the subscription message. An event

ITEA2: Building as a Service - BaaS 34

sink must be reachable for connections from the corresponding event source. It is a special
kind of binding.

3.3.4.3. Security

To foster easier understanding of the basic structures, the security support was omitted in
the previous sections. JMEDS supports authentication, authorization and encryption. This
section will focus on authentication and authorization to some extent.

It is possible for every device, service, operation and event source to be configured to take
ǘƘŜ ǳǎŜǊΩǎ ŎǊŜŘŜƴǘƛŀƭǎ ŀƴŘ ǘƘŜ ǿŀȅ ƻŦ ŎƻƳƳǳƴƛŎŀǘƛƻƴ ƛƴǘƻ ŀŎŎƻǳƴǘ ǿƘŜƴ ŘŜŎƛŘƛƴƎ ǘƻ ŀƴǎǿŜǊ
or to disallow the request (authorization). In JMEDS the authentication information on both
client and device/service side is stored in άŎǊŜŘŜƴǘƛŀƭ ƛƴŦƻέ ƻōƧŜŎǘǎΦ ¢ƘƻǎŜ ŀǊŜ ǎǳǇǇƭƛŜŘ, for
example, as parameters when invoking an operation on a service reference. They can
contain user name/password combinations or digital certificates. Another concept used in
Wa95{ ƛǎ ǘƘŜ άǎŜŎǳǊƛǘȅ ƪŜȅέΦ Lǘ ŜƴŎŀǇǎǳƭŀǘŜǎ άŎǊŜŘŜƴǘƛŀƭ iƴŦƻǎέ ŀƴŘ άƻǳǘƎƻƛƴƎ ŘƛǎŎƻǾŜǊȅ
ƛƴŦƻǊƳŀǘƛƻƴέ ƻōƧŜŎǘǎΦ hƴ ǘƘŜ ŘŜǾƛŎŜκǎŜǊǾƛŎŜ side, the latter are used to control the network
interfaces that are to be used for discovery (e.g. hello messages, resolve messages, etc.). The
former is used to optionally sign outgoing discovery messages and more importantly enable
secure (SSL/TLS) connections between clients and devices, services (encrypted metadata
exchange) and operations (encrypted operation invocations).

3.4. Privacy and data security

A system with the aspiration of BaaS will collect, store and process data from the
environment as well as data about individual persons. In particular, this includes sensitive
data with need for protection. Therefore, security considerations have to be taken into
account in the BaaS system design. Where personal data is handled by the system, privacy
aspects need to be examined.

3.4.1. Data security

For designing secure distributed systems, Anderson identifies four elements to be subject to
analysis [88].

First, the security policy defines intended goals. Security policies are abstract rules a system
needs to fulfill. One way to define these is to model threats to the assets considered
valuable and determining the appropriate protection rules.

A policy is implemented by mechanisms, which are the concrete method used to achieve
goals. An example could be requiring a secure channel protecting and authenticating
communication content and implementing it with the transport layer security protocol (TLS).

Assurance considers the appropriate amount of confidence to be put in a mechanism, in
order for the security analysis to reflect the actual properties of a deployed system in
adversarial conditions.

Lastly, complex systems involving multiple stakeholders or individuals need to ensure that
the actors as modeled in the system design reflect the actual interests and behavior of
individuals in the deployed system. To reach this goal, incentives have to be appropriately

ITEA2: Building as a Service - BaaS 35

engineered. This ensures that any attacker actually has to defeat the security policy as
designed and cannot simply circumvent it.

One common requirement for security mechanisms is to provide secure separation of data
access, while transiting less trusted systems. This goal can be addressed with the concept of
attribute based encryption [89]. In contrast to secret-sharing approaches, where multiple
parties have to cooperate, there the goal of attribute based encryption is to isolate
decryption power to the appropriate parties, comparable to role based access control. Such
systems allow specifying attributes, where only the entities labeled with a specific attribute
may decrypt a cipher text.

3.4.2. Privacy strategies

For IT systems that handle user information, data protection laws apply in many countries.
Considering privacy implications (from early development phases on) allows creating
systems that fulfill their functional goals while maintaining privacy properties.

Relevant influences to privacy properties not only arise from storage and processing of
personal data, but also from the power of combining data from multiple sources to infer
properties not directly visible from a single source. This fact indicates that a high level of
diligence is required in analyzing such systems.

Based on an analysis of European data protection legislation, OECD guidelines and the ISO
29100 privacy framework, Hoepmann identifies eight design strategies for designing privacy
preserving IT systems [90]. These strategies aim to help fulfill privacy principles and the
respective requirements. They can be grouped in data oriented and process oriented
strategies.

Data oriented strategies:

Minimize: The minimization strategy demands that only the minimally possible amount of
data shall be collected, stored and disseminated. The principle of proportionality should be
applied in the design.

Hide: Personal data and relationships between data should be hidden. This strategy suggests
not making data accessible to other entities, where it may not be needed. For example, the
creation of identifiers should be scrutinized in order to reduce likability.

Separate: By separating and compartmentalizing data processing, the profiling of persons
can be impeded. When possible, data should be processed locally.

Aggregate: Data should be processed at the least possible detail in which data is still useful.
The amount of aggregation directly influences the sensitivity of the data.

Process oriented strategies:

Inform: In order to provide transparency, individuals should be informed which information
about them is processed. Any distribution to third parties is to be disclosed as well.

Control: In complementing the information strategy, individuals need to be able to exert
their will about the fact that data is processed. Without information, control has little
meaning. In the same vein, information without control has little practical impact.

Enforce: A privacy policy should exist and be enforced, e.g. by technical protections and
organizational structures.

ITEA2: Building as a Service - BaaS 36

Demonstrate: The ability to actively show compliance to a policy by demonstrating the
expected behavior shows that the implementation is functioning correctly.

These strategies formulate very generic approaches to deal with common problems in the
processing of personally identifiable data. In general, not all of the strategies can be applied
to a given situation. Applicable strategies have to be identified and combined to establish
privacy properties in a system. These strategies are of use to the BaaS system, e.g. where a
smart building may add value by identifying specific users or storing information about these
users in order to provide tailored services to them. This kind of information would need to
be protected from abuse.

3.5. Secure Authorization using OAuth 2.0

In device networks, such as building automation networks or the Internet of Things (IoT),
secure communication is going to become a quite crucial issue. In particular, it has to be
ensured that the access to resources (data, APIs etc.) on devices is controlled, i.e.
unauthorized access to these resources is prohibited. General access control includes the
elements authentication, authorization, access approval and accountability. A more narrow
definition of access control is focusing on access approval. In this case, a system has to
decide whether to grant or reject an access request issued by an already authenticated
subject. This decision is usually based on an authorization model that describes what
resources an individual subject or a role that the subject may assume is authorized to access.
Authentication and access control are sometimes combined into a single step where the
access to a resource is automatically granted if authentication has been successful or if an
appropriate anonymous access token has been presented.

OAuth is an open protocol for allowing secure API/service authorization from desktop and
web applications through a simple standardized method. OAuth provides client applications
a secure delegated access to server resources on behalf of a resource owner. It provides a
mechanism that allows resource owners to grant third parties access to their resources
(usually hosted on a Web server) without sharing their credentials with them.

3.5.1. Introduction

In the common client-server authentication model, a client requests access to a protected
ǊŜǎƻǳǊŎŜ ōȅ ǇǊŜǎŜƴǘƛƴƎ ǘƘŜ ǊŜǎƻǳǊŎŜ ƻǿƴŜǊΩǎ ŎǊŜŘŜƴǘƛŀƭǎ όŜΦƎΦ ǳǎŜǊƴŀƳŜ ŀƴŘ ǇŀǎǎǿƻǊŘύ ǘƻ
the server. To facilitate access to protected resources for third-party applications (or
devices), the resource owner has to share its credentials with that third party. This kind of
procedure has quite a few drawbacks as listed below.

¶ ¢ƘƛǊŘ ǇŀǊǘȅ ŀǇǇƭƛŎŀǘƛƻƴǎ ǳǎǳŀƭƭȅ ǎǘƻǊŜ ǘƘŜ ǊŜǎƻǳǊŎŜ ƻǿƴŜǊΩǎ ŎǊŜŘŜƴǘƛŀƭǎ ŦƻǊ ŦǳǘǳǊŜ ǳǎŜΤ
presumably in clear text.

¶ Servers have to support password based authentication which has inherent
vulnerabilities.

¶ Third party applications get full access to the protected resources; usually, there is no
way to limit the duration or scope of that access.

¶ Resource owners are not able to revoke access from a particular third party without
revoking access from all third parties because the password must be changed.

ITEA2: Building as a Service - BaaS 37

¶ If any third party is compromised, the end-ǳǎŜǊΩǎ ǇŀǎǎǿƻǊŘ ŀƴŘ ŀƭƭ Řŀǘŀ ǇǊƻǘŜŎǘŜŘ ōȅ
that password are compromised.

OAuth offers an alternative way to authenticate an application or device to a service. It is a
security protocol that allows users to grant third-party access to their (web) resources
without sharing their passwords. The heart of OAuth is a security token with limited rights
and limited lifetime. If supported by the infrastructure, a user may revoke that security
token at any time and thus prevent further access. As each client obtains a different token,
revocation of a token does not affect any other client.

h!ǳǘƘ ǎǳǇǇƻǊǘǎ ǘƘƛǎ άŘŜƭŜƎŀǘŜŘ ŀǳǘƘŜƴǘƛŎŀǘƛƻƴέ ōŜǘǿŜŜƴ ǿŜō ŀǇǇǎ ǳǎƛƴƎ ŀ ǎŜŎǳǊƛǘȅ ǘƻƪŜƴ
called an "access token." To obtain access to a resource, the web app has just to present that
kind of token; no other credentials are required. An OAuth token gives one client access to
one API on behalf of one user.

Figure 10 illustrates with an example how data can be shared with an application using
OAuth 2.0: The user provides the application (Game) with a token that allows it to access the
ǳǎŜǊΩǎ Řŀǘŀ ƻƴ ǘƘŜ ǎŜǊǾŜǊ όCŀŎŜōƻƻƪύΦ

Figure 10: Example of how OAuth 2.0 is used (from [91])

The mechanisms of OAuth can be transferred to the IoT by providing an IoT device acting as
a client with an access token that allows it to access the data on another IoT device acting as
a server. No user must be involved in that kind of scenario; the client device itself requests
the access token from an authorization server using its own credentials.

OAuth is already used by a large number of major Web players: Amazon, Dropbox,
Facebook, Twitter, Google, Flickr, GitHub, Instagram, LinkedIn, MySpace, PayPal, Xing etc. A
more complete list of OAuth service providers is given by Wikipedia [92].

Information, documentation and code regarding OAuth 2.0 is provided on the OAuth
Community site [93]. An introduction to OAuth 1.0 is also available there [94]. There are
several tutorials on OAuth 2.0, for instance [91] or [95], a video tutorial in 8 lessons.

Recently, several books on OAuth 2.0 have been published or will be in the near future: A
guide to OAuth 2.0 for beginners [96], a comprehensive guide to OAuth 2.0 providing
practical information for building clients and servers [97], and several eBooks on different
aspects of OAuth 2.0 [98]ς[100].

3.5.2. OAuth 2.0 Architecture

In the following, the architecture and communication scheme of OAuth are explained.

ITEA2: Building as a Service - BaaS 38

The OAuth architecture is based on the following roles / entities:

¶ Resource Owner: An entity capable of granting access to protected resources. The
resource to be shared is usually data owned by the resource owner, but can also be an
API providing access to some service. The resource owner may either a person or an
application. OAuth 2.0 allows both possibilities.

¶ Resource Server: The server hosting protected resources. It is capable of handling client
requests asking for access to the protected resource. In particular, it must be able to
verify the validity of the access tokens presented with the request. This may include a
check if the token has been revoked since it has been issued.

¶ Client Application: An application making protected resource requests on behalf of the
resource owner and with its authorization. The request includes an access token which
is presented to the resource server providing the protected resource. If the access token
proves to be valid, the application gains access to the resource.

¶ Authorization Server: The server issuing access tokens to the client after successfully
authenticating the resource owner and obtaining authorization. Authorization server
and resource server may be collocated on one machine. The OAuth 2.0 specification
does not describe how the two servers should interact, if they are separate.

Figure 11: OAuth 2.0 roles as defined in the specification (from [91])

Figure 11 shows the roles/entities used by OAuth and the relationships between them. In
case of device networks, such as building automation systems, the application acting as
client is hosted on an embedded device and usually has its own schedule when to access
another embedded device acting as a resource server; a resource owner is usually not
participating in the procedure.

ITEA2: Building as a Service - BaaS 39

Figure 12: OAuth 2.0 authorization sequence (from [91])

Figure 12 describes the sequence of interactions required to obtain an authorization grant
and steps are listed below.

1. The resource owner (user) accesses the client application.
2. The client application advises the user to login to it via an authorization server, and

redirects the user to such a server. The client application provides its ID to the
authorization server to inform him who requests access to the protected resource.

3. The user performs a login via the authorization server. After successful login, the user
is asked if the client application should be granted access to the protected resource.

4. After granting access to the protected resource to the client application, the user is
redirected back to a specific redirect URI of the client application that it has
registered previously at the authorization server. Together with the redirection, the
authorization server sends an authorization code.

5. When the redirect URI in the client application is accessed, it connects directly to the
authorization server.

6. The client application sends the authorization code along with its own credentials.
7. If the authorization server is ready to accept these values, it sends an access token

back to the client application.
8. The login procedure is reported to be complete.
9. The user can now access the client application to request an action on the resource.
10. The client application can now use the access token to request the protected

resource from the resource server.
11. The resource server validates the access token. If this is successful, the resource

server returns the resource to the client application.
12. The client application can now present the obtained resource to the user.

ITEA2: Building as a Service - BaaS 40

3.5.3. OAuth 2.0 Standards

Work on OAuth started around 2006 as a complementary activity to the definition and
implementation of OpenID [101]. In April 2007, a discussion group was created to write the
draft proposal for an open protocol. On October 3, 2007, the OAuth Core 1.0 final draft was
released [102]. After the decision in November 2008 to bring OAuth into the IETF for further
standardization work, the IETF OAuth Working Group [103] was started. The working group
already released a number of RFCs:

¶ wC/ рупф ά¢ƘŜ h!ǳǘƘ мΦл tǊƻǘƻŎƻƭέ [104]

¶ wC/ стпф ά¢ƘŜ h!ǳǘƘ нΦл !ǳǘƘƻǊƛȊŀǘƛƻƴ CǊŀƳŜǿƻǊƪέ [105]

¶ wC/ стрл ά¢ƘŜ h!ǳǘƘ нΦл !ǳǘƘƻǊƛȊŀǘƛƻƴ CǊŀƳŜǿƻǊƪΥ .ŜŀǊŜǊ ¢ƻƪŜƴ ¦ǎŀƎŜέ [106]

¶ wC/ сумф άh!ǳǘƘ нΦл ¢ƘǊŜŀǘ aƻŘŜƭ ŀƴŘ {ŜŎǳǊƛǘȅ /ƻƴǎƛŘŜǊŀǘƛƻƴǎέ [107]

OAuth 2.0 differs considerably from OAuth 1.0; and there is no backward compatibility.
OAuth 2.0 targets to simplify client development while offering specific authorization flows
for web applications, desktop applications, mobile phones, and living room devices.

The IETF working group is still active and working on a number of Internet drafts. The titles
of the active working group drafts are given below; the full list of drafts is available on the
status page of the IETF OAuth working group [103].

¶ OAuth 2.0 Token Revocation

¶ OAuth 2.0 Dynamic Client Registration Protocol

¶ JSON Web Token (JWT)

¶ JWT Profile for OAuth 2.0 Client Authentication and Authorization Grants

¶ SAML 2.0 Profile for OAuth 2.0 Client Authentication and Authorization Grants

¶ OAuth 2.0 Message Authentication Code (MAC) Tokens

3.5.4. OAuth 2.0 Features

This section describes major features of OAuth 2.0 that discriminate it from OAuth 1.0.

3.5.4.1. Specific Authorization Flows

OAuth 2.0 provides specific authorization flows for particular types of clients and use cases.

¶ User-Agent Flow: for clients running inside a user-agent (e.g. a web browser).

¶ Web Server Flow: for clients that are part of a web server application, accessible via
HTTP requests. This is a simpler version of the flow provided by OAuth 1.0.

¶ Username and Password Flow: used in cases where the user trusts the client to handle
its credentials but still does not allow the client to store its username and
password. Only applicable if there is a high degree of trust between user and client.

¶ Client Credentials Flow: the client uses its credentials to obtain an access token. This
flow supports what is known as the 2-legged scenario. This flow is appropriate for
authorization in the device networks like building automation systems.

¶ Assertion Flow: the client presents an assertion such as a SAML (Security Assertion
Markup Language) assertion to the authorization server in exchange for an access
token.

ITEA2: Building as a Service - BaaS 41

3.5.4.2. Bearer tokens

OAuth 2.0 provides a cryptography-free option for authentication that is based on existing
cookie authentication architecture. Instead of sending signed requests using Keyed-Hash
Message Authentication Code (HMAC) and token secrets, a so-called bearer token is used as
secret. Any party possessing such a bearer token can use it to get access to the respective
resources (without the need of a cryptographic key). To prevent misuse, bearer tokens need
to be protected from disclosure in storage and transport. Bearer token transport can be
secured by using HTTPS exclusively.

The advantage of this approach is that if HTTPS is used for secure transport in a system, no
other cryptographic mechanism beside the Transport Layer Security (TLS) protocol is
ǊŜǉǳƛǊŜŘΦ IƻǿŜǾŜǊΣ ǎƻƳŜ ǇŜƻǇƭŜ ŎƻƴǎƛŘŜǊ ǘƘƛǎ ŀǎ ŀ ŘŀƴƎŜǊƻǳǎ ŦŜŀǘǳǊŜ ōŜŎŀǳǎŜ ƛǘΩǎ άǇǳǘǘƛƴƎ
ŀƭƭ ȅƻǳǊ ŜƎƎǎ ƛƴ ƻƴŜ ōŀǎƪŜǘέ [108].

3.5.4.3. Short-lived tokens with long-lived authorizations

Instead of issuing a long lasting token (typically good for a year or unlimited lifetime), the
server can issues a short-lived access token and a long lived refresh token. This allows the
client to obtain a new access token without having to involve the user again, but keeps the
lifetime of access tokens limited.

The advantage of short-lived access tokens is that no complicated revocation mechanisms
are required to withdraw a granted authorization from a client.

3.5.4.4. Separation of roles

OAuth 2.0 separates the role of the authorization server responsible for obtaining user
authorization and issuing tokens from the role of the resource server responsible for
handling API calls. In contrast, OAuth 1.0 does not distinguish between the roles
authorization server and resource server.

This feature is of some relevance for device networks as it simplifies the implementation of
the resource server (that actually may be a quite small device) by outsourcing the task of
authorization to a separate authorization server (that may be a larger computer).

3.5.5. Relevance of OAuth for BaaS

OAuth is an access control mechanism for clients accessing resources on Web servers that
recently gained a lot of attention. The OAuth 2.0 Framework offers alternative flows that
open OAuth for new types of scenarios. In particular, client credential flows (2-legged
scenario) seem to be applicable for device networks as building automation systems.

While there is some criticism regarding the security level and the complexity of the OAuth
2.0 specification raised by the former OAuth working group leader [109], it is generally
considered as a sufficiently secure authorization and access control mechanism. In
particular, if combined with the HTTPS protocol, which ƛǎ ƛƴŎǊŜŀǎƛƴƎƭȅ ŎƻƳƳƻƴ ƛƴ ǘƻŘŀȅΩǎ
Web infrastructures, no other cryptographic mechanism beside TLS (upon which HTTPS is
based) is required.

For these reasons, several authors recommend use of OAuth 2.0 for the Internet of Things
(IoT) and its Web based implementation, the Web of Things (WoT). These works are briefly
overviewed below.

ITEA2: Building as a Service - BaaS 42

¶ hƴ ŀ ²ƛƪƛ ǇŀƎŜ ƻŦ ǘƘŜ ²о/ ²Ŝō ƻŦ ǘƘƛƴƎǎ /ƻƳƳǳƴƛǘȅ DǊƻǳǇ ǘƛǘƭŜŘ άDŜƴŜǊŀƭ
ŎƻƴǎƛŘŜǊŀǘƛƻƴǎ ŦƻǊ ǘƘŜ ²Ŝō ƻŦ ¢ƘƛƴƎǎέΣ h!ǳǘƘ ƛǎ ŎƻƴǎƛŘŜǊŜŘ ŀǎ ŀ ǇƻǎǎƛōƭŜ ƳŜŎƘŀƴƛǎƳ ŦƻǊ
access control in the WoT [110].

¶ Lƴ ǘǿƻ ǇǊŜǎŜƴǘŀǘƛƻƴǎ ǘƛǘƭŜŘ ά{ŜŎǳǊƛƴƎ ǘƘŜ LƴǘŜǊƴŜǘ ƻŦ ¢ƘƛƴƎǎέ ŀƴŘ άCŜŘŜǊŀǘƛƴƎ !ŎŎŜǎǎ ǘƻ
Lƻ¢ ǳǎƛƴƎ h!ǳǘƘέ ǘƘŜ ǳǎŜ ƻŦ h!ǳǘƘ ƛƴ combination with CoAP and MQTT, a very
lightweight messaging protocol is investigated [111], [112].

CƛƴŀƭƭȅΣ ŀ ǇǊƻǇƻǎŜŘ ŀŘŘŜƴŘǳƳ ǘƻ ǘƘŜ .!/ƴŜǘ ǎǘŀƴŘŀǊŘ ƛƴǘǊƻŘǳŎƛƴƎ ά.!/ƴŜǘ ²Ŝō ǎŜǊǾƛŎŜǎέ
uses OAuth 2.0 as access control mechanism [113]. Another extension of BACnet, the
ά.!/ƴŜǘ LƴǘŜǊƴŜǘ ¢ǊŀƴǎǇƻǊǘ .ƛƴŘƛƴƎέ όL¢.ύ ǘƘŀǘ ƛǎ ŎǳǊǊŜƴǘƭȅ ōŜƛƴƎ ǎǇŜŎƛŦƛŜŘ ǿƛƭƭ ŀƭǎƻ ǳǎŜ
OAuth 2.0 for secure authorization.

This demonstrates that OAuth is considered to be suitable for the WoT in general and Web-
based Building Automation Systems in particular. As OAuth has also been adopted by
extensions to the BACnet, it seems to a reasonable choice for the BaaS project as well. This is
emphasized by the fact that the combination of OAuth and the CoAP protocol has already
been investigated.

3.6. Functional Safety and Reliability in Service Systems

Due to the fact that different devices and components are spread across buildings, it is
obvious to think of BAS as distributed systems. A further abstraction or perspective is to
assume BAS as service systems where each device and component is represented by
services.

Due to BAS controlling the environment where people live respectively work, it is necessary
to impose requirements on the behavior and quality of the underlying system. Another point
requesting functional safety and reliability in service systems is the apparent complexity
arising from applying a service system in the field of building automation, where various
services are combined to control respective parts of buildings. Without any requirements on
the involved services, it is not possible to assure certain qualities of such a complex service
system.

However, hard requirements for functional safety, reliability and predictability, however, are
in contrast with the flexibility, dynamic adaptation and dynamic configuration properties,
which are typically achieved with service-oriented architectures. Applying service systems
for building automation therefore needs approaches which successfully can bridge that gap.

The following subsections give further background about

¶ metrics

¶ safety and reliability related standards

¶ common principles and requirements

¶ common methods targeting safety and reliability

The last subsection gives a short overview of approaches and ongoing work in the building
automation domain.

3.6.1. Metrics

The functional safety and reliability is according to [114], [115] quantifiable by the following
parameters:

ITEA2: Building as a Service - BaaS 43

¶ Error Probability: Probability, that a system running error-free at the beginning
becomes erroneous after a certain period of time.

¶ Probability of Surviving: Probability, that a system running error-free at the beginning
works without any error until a certain point of time.

¶ Mean Time to Failure: Expected value of time until first occurrence of an error.

¶ Failure in Time: describes the proportion of failing components relating to the number
of working components during a certain time interval.

¶ Availability: Probability, that a system is running free of errors to any point of time; this
parameter is relevant for systems being considered as guarded by an error treatment
transferring the system after occurrence of an error to an error-free state.

3.6.2. Failures and Errors affecting Safety and Reliability

As stated by [116], [117] there are different causes resulting in error-prone systems.
Basically the safety and reliability of systems is affected by failure of hard- and software,
errors in software and wrong manual user intervention. Failures of hard- and software can as
well as errors in software be subdivided into random and systematic [117].

Echtle describes in [114] the causes of failure in detail. Failures emerge either during design
time, production or runtime, which can be differentiated according to [114] as follows:

¶ Design Time: Specification, Implementation and Documentation Failures

¶ Production: no further differentiation

¶ Runtime: Fault-based, Attrition-based, Random Physical, User Intervention and
Maintenance Failures

3.6.3. Safety and Reliability Related Standards and Guidelines

Safety and reliability related standards are mentioned in several publications [117]ς[121].
The following standards give several guidelines and procedures how to achieve a certain
level of safety and/or reliability.

¶ ISO 26262: This standard has been developed for functional safety in road vehicles. It is
the successor of the IEC 61508. The ISO 26262 standard is divided into ten volumes
describing: 1. Vocabulary, 2. Management of functional safety, 3. Concept phase, 4.
Product development: system level, 5. Product development: hardware level, 6. Product
development: software level, 7. Production and operation, 8. Supporting processes, 9.
Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses and 10.
(Informative) Guidelines on ISO 26262 [118], [121].
Volumes 4-6 contain common methods for the system development process, which
might be adapted and interesting in the development of a complex distributed system
as targeted in the BaaS project.

¶ IEC 61508: The IEC 61508 is the standard the ISO 26262 standard is derived from. It is a
cross-sector generic guideline for safety-related systems. It is as well as the ISO 26262
divided into several parts. The first four parts are normative and form the actual
guideline whereas the last three parts have only an informative character. Part 1
describes common principals which should be followed if no domain specific standards
exist. It covers the whole lifecycle of a safety-related system. Part 2 contains guidelines
concerning hardware aspects. As part of the overall lifecycle a safety lifecycle for the

ITEA2: Building as a Service - BaaS 44

hardware level has to be defined. Part 3 comprises techniques and methods how safety-
related software should be developed and documented. Moreover are the known
safety-integrity levels (SIL) described in this part, which are a method to gain
requirements for the development process and the software architecture. The last
important part 4 is a glossary including all terms and abbreviations used in the standard
[119], [120].

¶ DIN EN 61508 (VDE 0803): This standard is the German version of the IEC 61508
described beforehand [117].

¶ ISO 13849: ¢ƘŜ L{h моупф ǎǘŀƴŘŀǊŘ άǎǇŜŎƛŦƛŜǎ ǎŀŦŜǘȅ ǊŜǉǳƛǊŜƳŜƴǘǎ ŀƴŘ ŀ ōŀǎƛŎ ƎǳƛŘŜƭƛƴŜ
how to develop and integrate safety-relŀǘŜŘ ǇŀǊǘǎ ƻŦ ŀ ŎƻƴǘǊƻƭ ǎȅǎǘŜƳ ώΧϐ ƛƴŎƭǳŘƛƴƎ
ǎƻŦǘǿŀǊŜ ŘŜǾŜƭƻǇƳŜƴǘ ŦƻƭƭƻǿƛƴƎ ǘƘŜ ǎǘŀƎŜǎέ ƘŀȊŀǊŘ ŀƴŘ Ǌƛǎƪ ŀƴŀƭȅǎƛǎΣ ǎŀŦŜǘȅ
requirements specification, safety analysis and safety validation [120]. Similar to SIL the
άǎǘŀƴŘŀǊŘ ǎǇŜŎƛŦƛŜǎ р ǇŜǊŦƻǊƳŀƴŎŜ ƭŜǾŜƭǎ ǿƘŜǊŜ ŜŀŎƘ ƭŜǾŜƭ Ŝǉǳŀƭǎ ŀ ǇǊƻōŀōƛƭƛǘȅ ƻŦ ŀ
dangerous ŦŀƛƭǳǊŜ ǇŜǊ ƘƻǳǊ ώΧϐΦ ¢ƘŜ ǘŀǊƎŜǘ ƭŜǾŜƭ ƻǊ Ǌƛǎƪ ƛǎ ŘŜƭƛǾŜǊŜŘ ŀǎ ŀ ǊŜǎǳƭǘ ƻŦ ǘƘŜ Ǌƛǎƪ
ŀƴŀƭȅǎƛǎ ŎŀǊǊƛŜŘ ƻǳǘ ŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ ǊŜǉǳƛǊŜƳŜƴǘǎ ƻŦ L{h мпмнмέ [120].

¶ VDI/VDE 2184: A more specific standard targeting fieldbus systems is the German
guideline VDI/VDE 2184. Due to fieldbus systems being the core infrastructure in
building automation systems, this guideline should be considered developing the BaaS
ǇƭŀǘŦƻǊƳΦ Lǘ άƎƛǾŜǎ ǊŜǉǳƛǊŜƳŜƴǘǎ ŦƻǊ ǾŀǊƛƻǳǎ ƭƛŦŜ-cycle activities to be met when using
fieldbus systems in industrial automation areas demanding regarding safety and timing
behavior. The life-cycle model and generally activities relating to functional safety are
ŀŎŎƻǊŘƛƴƎ ǘƻ L9/ смрлуΦέ [120]

¶ Common Criteria ISO/IEC 15408: As described in [122] ƛǎ ǘƘŜ /ƻƳƳƻƴ /ǊƛǘŜǊƛŀ ό//ύ άŀ
basis for evaluation of security properties of IT products and systems. CC specifies a set
of requirements for the security functions of IT products and systems. Additionally, it
gives requirements for assurance measures applied to the security functions during
ǎŜŎǳǊƛǘȅ ŜǾŀƭǳŀǘƛƻƴΦέ

¶ EN ISO 14121: ¢Ƙƛǎ ǎǘŀƴŘŀǊŘ άŜǎǘŀōƭƛǎƘŜǎ ƎŜƴŜǊŀƭ ǇǊƛƴŎƛǇƭŜǎ ƛƴǘŜƴŘŜŘ ǘƻ ōŜ ǳǎŜŘ ǘƻ
ƳŜŜǘ ώΧϐ Ǌƛǎƪ ǊŜŘǳŎǘƛƻƴ ƻōƧŜŎǘƛǾŜǎ ώΧ]. These principles of risk assessment bring
together knowledge and experience of the design, use, incidents, accidents and harm
related to machinery in order to assess the risks posed during the relevant phases of the
ƭƛŦŜ ŎȅŎƭŜ ƻŦ ŀ ƳŀŎƘƛƴŜΦέ [123]

3.6.4. Common Principles

The respective literature gives several answers on how to achieve functional safety and
reliability in service systems. Following the subsequent principles the operation of
dependable systems can be supported.

¶ Error and failure detection through suitable monitoring [124]

¶ Assurance of an emergency mode in case of errors and failures [124]

¶ Avoidance of mistakes during all the phases of the system life-cycle [117]

¶ Prevention, tolerance, removal and forecasting of faults and threats [125]

¶ Redundancy of important and inalienable system components [117]

In [114], Echtle structures the field of dependability into measures, impairments,
procurements and analysis. Dependability is quantifiable through reliability, time to failure
and availability. These measures are influenced by errors and faults or failures. To verify the
dependability of a system, Echtle states on one side verification and on the other side error

ITEA2: Building as a Service - BaaS 45

forecasting as methods for the analysis of systems. According to [114] there are basically
two procurements covering the improvement of system dependability: fault avoidance and
fault tolerance. The field of fault tolerance is divided into fault specifications, redundancy,
fault diagnosis and error processing. The error processing includes different strategies to
handle errors and faults at system runtime to achieve fault tolerant and thus dependable
systems. A simplified version of the structure by Echtle is depicted in Figure 13.

Figure 13: Dependability measures (from [114])

3.6.5. Common Methods Targeting Safety and Reliability

There are many methods approaching and supporting safe and reliable systems. They follow
different ideas and thus are not mutually exclusive.

Habermann and Burton [118] propose to ensure safety in the process of system
development. This could be achieved through model-based development. Model-based
development gives the ability to create a system model with specific constraints like safety
and reliability. Due to the automatic derivation of artifacts for the automatic system
management there is less probability of errors and faults which can occur through manual
development of the management system. A similar idea is stated in [126] by Rodrigues et al.
ǿƘƻ ǿŀƴǘ άǘƻ ǎǳǇǇƻǊǘ ǊŜƭƛŀōƛƭƛǘȅ ŘŜǎƛƎƴ ŦƻƭƭƻǿƛƴƎ ǘƘŜ ǇǊƛƴŎƛǇƭŜǎ ƻŦ the Model Driven
Architecture (MDA). By doing this, [they] aim to contribute to the task of consistently
ŀŘŘǊŜǎǎƛƴƎ ŘŜǇŜƴŘŀōƛƭƛǘȅ ŎƻƴŎŜǊƴǎ ŦǊƻƳ ǘƘŜ ŜŀǊƭȅ ǘƻ ƭŀǘŜ ǎǘŀƎŜǎ ƻŦ ǎƻŦǘǿŀǊŜ ŜƴƎƛƴŜŜǊƛƴƎέΦ

ITEA2: Building as a Service - BaaS 46

Another way of improving the safety and reliability of systems is to use certain guidelines for
the development of systems. As described in [117], [120], [122] there are different levels of
certain qualities to assure safety of developed systems: Safety Integrity Level (SIL),
Evaluation Assurance Level (EAL) and Performance Level (PL). The guidelines should provide
a method to achieve a particular level of safety and reliability through the consideration
during the development phase.

Elzer describes in [124] that the reliability of systems can be enhanced by using diversity in
the system infrastructure. The diversity can be applied to hardware, software, functional
aspects and operating conditions. Through this approach and redundancy of components it
is less probable, that the whole system stops working properly in case of failing components.

Another approach to prevent errors and faults is to use different analysis techniques as
described in [116], [118]. Biegert [116] follows a model-based approach. He proposes to use
the system models developed at design time to analyze certain aspects of the resulting
system. Habermann and Burton [118] propose a model-based safety analysis as well. They
emphasize that the model-based approach allows to automatically analyze dependencies
between different levels of the architecture and gives an opportunity to evaluate the system
safety or other properties. Another advantage is, that derived actions and measures can
directly affect the model and enhance the corresponding system property. This analysis
method enables the combination of system design, specification, development and analysis.

There are more reliability and availability prediction methods which are summarized and
surveyed in [115]. Immonen and Niemelä define a framework based on Normative
Information Model-based System Analysis and Design (NIMSAD) to compare and evaluate
different prediction methods. According to their survey there is currently no approach
fulfilling all requirements they have considered during evaluation. Their main concern is that
άǘƘŜ ǎǳǊǾŜȅŜŘ ŀǇǇǊƻŀŎƘŜǎ ώΧϐ ŘƛŘ ƴƻǘ ŎƻƳƳƛǘ ǘƘŜƳǎŜƭǾŜǎ ǘƻ ώǊŜƭƛŀōƛƭƛǘȅ ŀƴŘ ŀǾŀƛƭŀōƛƭƛǘȅ
(R&A)] requirements at any level. Therefore, they failed to define how R&A requirements
could be transformed into different architectural decisions and how architectural decisions
ŎƻǳƭŘ ōŜ ǘǊŀŎŜŘ ōŀŎƪ ǘƻ ǊŜǉǳƛǊŜƳŜƴǘǎΦέ

3.6.6. Related Work in the Building Automation Domain

Functional safety in the building automation domain has already been approached among
others in [120], [122], [125], [127].

YŀǎǘƴŜǊ ŀƴŘ bƻǾŀƪ ǎǳǊǾŜȅ άƎŜƴŜǊŀƭ ǎŀŦŜǘȅ ǎǘŀƴŘŀǊŘǎ ώΧϐ and point out what requirements
have to be met by a safety-ǊŜƭŀǘŜŘ ōǳƛƭŘƛƴƎ ŀǳǘƻƳŀǘƛƻƴ ǘŜŎƘƴƻƭƻƎȅΦέ 9ǎǇŜŎƛŀƭƭȅ ǘƘŜȅ ŜǾŀƭǳŀǘŜ
the possibility of applying safety-related standards like IEC 61508, ISO 13849 and VDI/VDE
2184 to KNX/EIB which is an automation networking technology used in the building
automation systems without any safety support [120].

Novak et al. present in [122] and [125] how to engineer a building automation technology
taking safety- and security into account. They focus on a life-cycle model which covers all
necessary steps from development to operation considering safety and security in all phases.
They point out that one main challenge is to harmonize the requirements occurring from
safety and security being in contradiction to each other. The requirements derive from
hazard, threat and risk analyses which are part of the life-cycle model. As well as in [120],
they follow the IEC 61508 standard.

ITEA2: Building as a Service - BaaS 47

Dongbo et al. follow a different approach to functional safety described in [127]. They
emphasize the common structure of building automation and control systems and point out
that devices, the communication and controller components in such an infrastructure have
to provide and fulfill different functions for a safe and reliable system. They have a more
infrastructure-centric approach and argue in terms of reliability of involved components how
to achieve a safe building automation and control system.

3.7. OSGi

The focused development of software systems, meaning a focus on the implementation of
business logic without the redevelopment of basic functions by reusing already developed is
a paradigm that is explored in software engineering for a long time. The component-based
software development has influenced this research and provides an approach where
comprehensive applications can be assembled of individual software components, provided
by various vendors, in a flexible way.

In the early stages, monolithic structured systems dominated the software world, but these
systems were then structured more and more fine-grained. Started with the introduction of
layered architectures, the division into logically related components continued the trend,
until the division into components was achieved.

The idea to make the complexity of software manageable by decomposition into modules
was already described by David Parnas in 1972 in [128]. In the component-based software
development, however, the aspect of components commercial exploitation is increased. This
novel approach has thereby quickly achieved a high level of acceptance and market
relevance [129]. Thus, comprehensive component frameworks have been developed in
recent years, such as the CORBA Component Model [130], the Component Object Model
(COM / DCOM) [131], the Enterprise Java Beans and the OSGi framework.

The OSGi specification [132], realized by the OSGi Alliance, follows the paradigm of
component-based software development and defines a dynamic, service-oriented
component model for Java. It is a software platform that enables the dynamic integration of
independent software components (bundles) and services (services). At runtime, the
components can be installed in the Framework, started, stopped and uninstalled without
restarting the entire platform. The individual components communicate with each other via
services. In this way, complex applications can be easily realized through the composition of
these components.

Originally, OSGi was designed for the use in so-called Residential Internet Gateways [133],
[134]. The platform serves as a central connection between heterogeneous in-house
networks and the Internet in the field of building automation. Nowadays, OSGi is also used
for telematics and infotainment systems in the automotive field [135], serves as the basis for
the Eclipse platform [136] and is becoming increasingly popular in the field of telemedicine
[137].

3.7.1. OSGi Remote Services

At the beginning, the OSGi specification realized only a local component-based platform
within the boundaries of a Java VM. Over time, however, more and more applications came
into existence, in which communication between OSGi services of different platforms was

ITEA2: Building as a Service - BaaS 48

desirable or necessary. But up to version 4.1 of the OSGi specification this was only realized
by research outside the official specification. One of the first distributed OSGi platforms was
presented in 2005 within the Newton project, which enabled a distributed communication
based on the Service Component Architecture (SCA) [138]. Rellermeyer's R-OSGi [139] is
perhaps the most achieved attempt to transparently distribute services on several OSGi
platforms. R-OSGi goes further first with a dynamic proxy generation refined with ASM [140]
bytecode generation and moreover with a transparent use of local and remote services. The
Comoros project took up this point and developed an OSGi middleware based on the DPWS.
In addition to the transparent use of local and remote services, legacy services could be
distributed without adaptation and, for the first time, native devices and services could be
used within an OSGi platform in a transparent manner. Other projects, such as Nyota [141],
also allowed a distributed communication, but were changing the core of the OSGi platform
and were therefore not completely compatible with the specification.

Parallel to this research the OSGi Alliance developed a specification for a distributed service
usage. The RFC 119 (Distributed OSGi) [142] was the first release by the OSGi Alliance. This
specification was taken up by the Apache CXF project [143], which has since been regarded
as a reference implementation. In version 4.2 of the OSGi Compendium specification the
standard was eventually finalized under the name OSGi Remote Services. As a result, existing
projects, such as R-OSGi and Comoros have been adapted to this specification. Since the
specification leaves much technical space, many different implementations of the
specification were developed henceforth. In the Tuscany project an SCA container serves as
the implementation of a distribution provider. Within Amdatu, multiple protocols,
serializations and discovery mechanisms were implemented. There are variants with HTTP +
JSON, HTTP + JavaSerialization for protocols and serialization and with SLP, MulticastDNS
and Hazelcast for the discovery. The Eclipse Communication Framework (ECF) [144] focused,
apart from the synchronous communication, especially the asynchronous communication
and thus developed a Remote Event Admin. Another special type of communication is
presented by Ibrahim et al. [145]. Here requests are collected and are transmitted bundled
to the client side. In that way, the communication overhead should be reduced in
environments of embedded systems. Further implementations of the standard remote
services are realized in the Corba-based Service Oriented Framework (SOF), the Karaf project
and the Fuse Fabric project.

3.7.2. OSGi Device Integration

In addition to the distributed communication between OSGi platforms, the integration of
services and devices of third party technologies is of key importance for the OSGi
environment. Due to the original orientation of OSGi as Residential Internet Gateways, the
device integration was an integral component of the platform from the beginning. Within
the Device Access Specification the handling of devices is specified. The specification
describes the discovery of devices, the subsequent linkage with the OSGi framework, as well
as the downloading and installation of drivers at runtime to support a hot-plug capability of
devices. Currently there are a number of Base Driver implementations for different
technologies. The UPnP Base Driver can be considered as the reference implementation of
the specification and is now part of the OSGi Compendium specification [146]. Similar
technologies are supported with the publication of the DPWS Base Driver [147] and the JINI
Base Driver. Within the research project GiraffPlus, part of the AALOA initiative, the ZigBee
technology support was implemented which is highly relevant especially in the area of

ITEA2: Building as a Service - BaaS 49

ambient systems. Further Base Driver implementations exist for the technologies Bluetooth,
USB and Tmote [148]. Within the OSAmI project, a novel device integration concept was
developed by extending the Device Access Specification to encapsulate the services
functions as services in terms of a service-oriented architecture [149].

Out of the specification are projects like IoTSys, a work of the University of Vienna, that
provides a complete protocol stack for the integration of building automation systems in the
Internet-of-Things-World [150], [151]. The Eclipse project SODA [152] is also based on OSGi
and addresses the same problem like the OSAmI Device Integration. SODA is not compatible
to the Device Access Specification but introduces a layered architecture which allows
applying SOA principles, e.g. the composition of services.

3.8. RESTful Web Services

Representational State Transfer (REST) was developed as a way of evaluating architectures
of distributed network applications [153] by Roy Fielding for his Ph.D. Thesis [154]. Most of
the information on REST in the beginning has been like best practices and has been
distributed mainly through informal communication channels such as email lists. Leonard
wƛŎƘŀǊŘǎƻƴΩǎ ŀƴŘ {ŀƳ wǳōȅΩǎ ōƻƻƪ άw9{¢Ŧǳƭ ²Ŝō {ŜǊǾƛŎŜǎέ [153] has been the first
comprehensive book on the principles and definitions of Representational State Transfer,
άw9{¢ŦǳƭƴŜǎǎέΣ ŀƴŘ ƛǘǎ ŀǇǇƭƛŎŀǘƛƻƴ ǘƻ ²Ŝō {ŜǊǾƛŎŜǎΦ

In principle, Representational State Transfer (REST) is a general architectural style
independent of specific protocols. However, REST is more or less exclusively used in the
World Wide Web and the Internet. In some sense, REST is providing a machine-readable web
compared to the human-readable web we know from our everyday interaction with the
World Wide Web. Consequently, REST is usually connected with HTTP.

3.8.1. Architectural Constraints

REST has the following architectural constraints (collection is based on [155]):

¶ Client-server communication: The communication according to REST follows a strict
client-server model. This leads to a sǘǊƛŎǘ ǎŜǇŀǊŀǘƛƻƴ ƻŦ ŦǳƴŎǘƛƻƴŀƭƛǘȅ ƻǊ άŎƻƴŎŜǊƴǎέΦ CƻǊ
ƛƴǎǘŀƴŎŜΣ ǎŜǊǾŜǊǎ ŀǊŜ ŎƻƴŎŜǊƴŜŘ ǿƛǘƘ Řŀǘŀ ǎǘƻǊŀƎŜΣ ŎƭƛŜƴǘǎ ŀǊŜƴΩǘΦ Clients are concerned
ǿƛǘƘ ǘƘŜ ǳǎŜǊ ƛƴǘŜǊŦŀŎŜΣ ǎŜǊǾŜǊǎ ŀǊŜƴΩǘΦ ¢ƘŜ ŎƭƛŜƴǘ-server model improves portability and
scalability.

¶ Statelessness: No client context is stored on the server between requests by the client.
This means, that no state about the client is stored on the server after the request of
the client has been handled. This requires self-descriptive requests, which allows to
distribute multiple, successive requests of a client to different servers with the same
functionality. Statelessness improves scalability and reliability.

¶ Cacheability: Responses are explicitly marked as cacheable or non-cacheable. Cacheable
responses can be sǘƻǊŜŘ ƛƴ ƛƴǘŜǊƳŜŘƛŀǘŜ ŘŜǾƛŎŜǎ όάŎŀŎƘŜǎέύ ōŜǘǿŜŜƴ ǘƘŜ ǎŜǊǾŜǊ ŀƴŘ ǘƘŜ
client. Cacheability improves scalability and performance.

¶ Layering: The client connects with the server. The actual communication, however, is
transparent to the client. The client may talk to the server directly, or to an
intermediary along the path, to a server farm for load balancing, to a cache or to any

ITEA2: Building as a Service - BaaS 50

other device on the WWW that provides the required server functionality. Layering
improves scalability, reliability, and performance.

¶ Uniform interface: The uniform interface between client and server simplifies the
communication between clients and servers. It decouples the two important
architectural components ς clients and servers ς from each other so that both
components can evolve independently. There are four guiding principles for the uniform
interface:
o Identification of resources: Individual resources are identified in requests by

Uniform Resource Identifiers (URIs). The resources themselves are conceptually
separate from their representations in the response to the client. For example, the
server does not send its database but some description in a standardized way (e.g.
HTML, XML, or JSON).

o Manipulation of resources through their representations
o Self-descriptive messages: Every message contains all the information that is

necessary to describe the required processing of the message.
o Hypermedia as the engine of application state: clients make state transitions only

through actions that are dynamically identified within hypermedia from the server.
A client does not assume availability of any other action for a particular resource
beyond those described in representations previously received from the server
(plus simple, fixed entry points to the application on the server).

¶ Code on demand (not mandatory): Servers can temporarily extend or customize the
functionality of a client by the transfer of executable code such as Java applets or client-
side JavaScripts.

Applications and services conforming to the architectural constraints of REST are called
άw9{¢ŦǳƭέΦ hǊ ǘƘŜ ƻǘƘŜǊ ǿŀȅ ǊƻǳƴŘΣ ŀƴ ŀǇǇƭƛŎŀǘƛƻƴ ƻǊ ǎŜǊǾƛŎŜ Ŏŀƴƴƻǘ ōŜ ŎƻƴǎƛŘŜǊŜŘ άw9{¢Ŧǳƭέ
if it violates any of the architectural constraints of REST.

3.8.2. General Principal and Concept

REST can be considered as a well-designed Web application [155]: The user (client) is able to
connect to a network of Web pages (on the servers) in order to progress through an
application by selecting links leading to the next Web page which is transferred to the user
and rendered for his use. The selection of a link corresponds to a state transition of the
application, and the next Web page represents the next state of the application.

REST in the WWW uses HTTP for the communication between client and server. However,
άw9{¢ŦǳƭƴŜǎǎέ ƛǎ ƴƻǘ ŀ ǇǊƻǘƻŎƻƭ ōǳǘ ŀƴ ŀǊŎƘƛǘŜŎǘǳǊŀƭ ŎƻƴŎŜǇǘΦ ¢ƘŜǊŜŦƻǊŜΣ w9{¢Ŧǳƭ
architectures can be developed with any set of protocols that is able to fulfill and is following
the architectural constraints of REST as given in 3.8.1.

HTTP provides all the necessary means for setting up a RESTful distributed network-based
application in the World Wide Web. Moreover, HTTP is a native protocol of the WWW
leading to a natural integration of REST into the WWW.

REST is simple and well-defined. Simplicity and lack of unnecessary features are its strength
and power [153]. It is using the basic web protocols such as HTTP. This makes RESTful
ǎŜǊǾƛŎŜǎ ōŜƛƴƎ ǇŀǊǘ ƻŦ ǘƘŜ ²Ŝō ƛƴǎǘŜŀŘ ƻŦ Ƨǳǎǘ ōŜƛƴƎ άƻƴέ ǘƘŜ ²Ŝō [153] (or running over the
Web).

ITEA2: Building as a Service - BaaS 51

3.8.3. REST applied to Web Services

A Web Service API is called RESTful if it adheres to the REST architectural constraints as given
in 3.8.1. A RESTful API is defined according to the following aspects:

¶ Base URI

¶ Internet media type such as JSON or XML

¶ Standard HTTP methods: GET, PUT, POST, DELETE

¶ Hypertext links to reference
o state of the application on the server
o resources

3.8.4. Application Examples

Well-known applications on the WWW, that are RESTful, are Amazon and Google Maps
[153].

3.9. Efficient XML Interchange (EXI)

Efficient XML interchange is a binary format for XML. It has the status of a W3C
recommendation since 10th of March 2011, is available in the second edition [156] since
February 11th 2014 and has been produced by the EXI Working Group. The general approach
of EXI is to encode most probable content of the XML documents with less bits, which is
similar to the Huffman encoding [157]. The process of generating and parsing EXI is state
machine based. The corresponding state machine is called EXI-Grammar and it reflects the
XML-schema that is used. In which way this grammar is build depends on the selected mode
of EXI. On the one hand there is the schema-informed mode where the grammar is
generated out of a XML-Schema document. If the mode is additionally set to strict the EXI-
Grammar cannot be changed during runtime. In some cases however it could be useful to
handle unexpected elements. Then the non-strict mode is to be used. In this case unknown
XML elements are added to the EXI-Grammar when they occur. On the other hand, there is
the schema-less mode. In this case the EXI-Grammar is generated only by a set of XML-
documents and is still extendable during runtime.

 schema-less
schema-informed
strict

schema-informed
non-strict

compressed Byte- aligned Byte- aligned Byte- aligned

uncompressed
Bit- and Byte-

aligned
Bit- and Byte-

aligned
Bit- and Byte-

aligned

deviation of the EXI-
Grammar

Yes No Yes

Table 4: EXI format modes

A concrete EXI format is called EXI-Stream. The structure of an EXI file is only determined by
the state changes. The occurrence of state changes or other specific content elements is
called EXI-Event. Therefor the EXI-Stream consists of EXI-Events and the related content. In
EXI it is possible to send the EXI-9ǾŜƴǘǎ ŀƴŘ ǘƘŜ ŎƻƴǘŜƴǘ ƛƴ ǎŜǇŀǊŀǘŜ ŎƻƴǘŀƛƴŜǊǎ ǎƻ ǘƘŜȅ ŘƻƴΩǘ
have to follow each other directly. This makes it possible to apply additional generic

ITEA2: Building as a Service - BaaS 52

compression algorithms on the stream to reduce the size more effective because of
repeated EXI-Events. This mode is called compressed which uses the IETF standardized
RFC1951 [158] deflate algorithm. In contrast there is a mode called uncompressed where
the encoded EXI-Stream is send without compression.

For confusion, the uncompressed mode does not mean that there is not the possibility to
reduce the file size. Most systems using byte as smallest possible storage unit, which means
a number from 0 to 256 can be stored. But for most states in an EXI-grammar there are less
than 256 possibilities to go on. For this purpose there is a bit-aligned mode which allows EXI
to move away from byte-alignment. In this way EXI only uses the number of bit suitable for
the number of possible events which, together with the fore mentioned Huffman coding,
reduces the size of the stream. In [159], EXI is compared to other generic and XML
compression algorithms and shows much better size reduction in DPWS and web-service
XML documents.

Beside the compact message sizes of EXI that provokes, e.g., the reduction of network
traffic, EXI messages are quite simple and fast to process as well as have a very low memory
usage. This is justified by the fact that EXI operates on a set of simple grammar structures
which reflect, e.g., a given XML Schema definition. Figure 14 shows an EXI grammar
construct that represents the well-known SOAP framework. This grammar is built by the EXI
options schema-informed, strict, and bit-aligned.

Body

Header

EV(0)

EV(1)

EV(-)

EV(-)

Figure 14 Sample EXI grammar (Envelope grammar) of the SOAP-Envelope framework

The start state corresponds to the optional element of the Header element in the SOAP XSD
definition by the transitions with the event code EV(1) (Header element is present) and EV(0)
(Header element is not present). To illustrate the simple encoding mechanism of EXI let us
consider the following message snipped

ғ9ƴǾŜƭƻǇŜҔғIŜŀŘŜǊҔ Χ ғκIŜŀŘŜǊҔғ.ƻŘȅҔ Χ ғκ.ƻŘȅҔғκ9ƴǾŜƭƻǇŜҔ

EXI would start to apply the Envelope root element to a default root grammar which typically
reflects all global elements defined in the XML Schema. Let assume the transition to the
Envelope state is assigned with the event code EV(00). Next, we go to the Envelope grammar
which is shown in Figure 14. Since the Header element is present in the snipped, we follow
the transition with the event code EV(1). So far, we only spend 3 bits to represent the SOAP
framework:

лл м Χ

ITEA2: Building as a Service - BaaS 53

This already shows how efficient the EXI format is. Since EXI is compliant to the XML InfoSet
[160], we are also able to operate direct on the EXI stream to retrieve the XML-based date.
Furthermore, EXI is a type-aware encoder which enables us to directly use the values in the
applications without any type conversations such as string to int etc. Based on this benefits,
EXI is very suitable and feasible in environments which are based on constrained resources
such as from microcontrollers [161]. In that context, the W3C EXI Profile [162] can be applied
to optimize the memory usage at runtime.

When using EXI it must be noticed that EXI Specification does not define a mandatory
mechanism to negotiate or exchange EXI-Grammar or used schema-documents to ensure
that the communication partners use the same EXI-Event encoding.

There are several EXI implementations that can be found such as:

¶ EXIficient [163] is an open source Java implementation for EXI encoding, parsing and
Grammar generation

¶ uEXI [164] is an open source EXI parser written in C aiming at a small footprint as well as
exip [165]

¶ hardexi [166] is a to be published hardware based EXI parser with significant
performance increase compared to software implementations.

¶ openexi [167] is a project to develop open source EXI implementations where the java
implementation is currently available and a C# version is in progress.

3.9.1. Relevance of EXI for BaaS

XML is a well-known, platform-independent exchange format with the opportunity to model
the data content quite precisely with XML Schema definitions. However, plain-text XML has
a negative impact on processing, memory, and bandwidth usage. Since the BaaS project also
considers constrained embedded devices, EXI would be a good approach to support an end-
to-end XML-based messaging. Furthermore, this would also go in hand in hand with the
constrained application protocol (CoAP).

3.10. Constrained Application Protocol (CoAP)

The Constrained application protocol (CoAP) is a protocol of the application layer. It is
intended to be used on constrained devices for machine to machine (M2M) communication
over IP based networks. Since June 2014 CoAP has been ratified as IETF Standard RFC-7252
[168]. CoAP is already used in several research projects in the area of sensor networks
[169][170][171] and the Internet of things (IoT) [172]. CoAP is very similar to the Hypertext
Transfer Protocol (HTTP) as sown in Figure 15 but is adapted to resource constrained devices
and networks. Therefor it is a RESTful protocol that uses the well-known methods GET to get
resources, POST to modify them, PUT to create new resources and DELETE to delete them.
The methods are handled in a request response scheme in an asynchronous way. The
payload can be any text which includes JSON, XML, EXI and many more. Especially the
possibility to use CoAP together with EXI has a good perspective in the M2M communication
on constrained networks and devices [173]. In contrast to HTTP, CoAP uses UDP instead of
TCP on the transport layer. This reduces the overhead that is made on this layer.
Nevertheless CoAP has the possibility to handle reliability, fragmentation and deduplication
of messages on its own if needed. Additionally CoAP reduces overhead by coding the

ITEA2: Building as a Service - BaaS 54

message header in a binary way. The efficiency is further enhanced by the possibility to
cache CoAP messages on less constrained devices by providing the Max-Age header option.
Because of the similarity to HTTP there is the possibility of cross-protocol-proxies between
CoAP and HTTP networks to raise interoperability to other networks like the internet.

CoAP
Binary Header
Unicast / Multicast
UDP
Discovery
Eventing

HTTP
ASCII Header

Unicast
TCP

Methods
(TRACE, HEAD,

 OPTIONS, CONNECT)

Proxy / Cache
HTTP > CoAP

Proxy / Cache
CoAP > HTTP

Client/Server
Request/Response

Media-Types
Methods

(GET,PUT,POST,DELETE)

Response Codes
Proxy/Caching

Figure 15: Comparison CoAP and HTTP [159]

In CoAP there are four types of messages that can be used. These are: confirmable (CON),
non-confirmable (NC), acknowledgement (ACK) and reset (RST) messages. A CON message
contains a message ID. Those messages are resend if the sender does no receive an ACK with
the matching ID within an exponentially raising time. Duplicated packets are identified by
the ID as well. The response can be attached to the ACK message to reduce bandwidth. If the
computing of the response takes too long, it is also possible to send an empty ACK and later
on a new CON message with the response. RST messages indicate that the given request
cannot be handled by the receiver. The alternative way is to send NC messages. A
communication that uses NC messages is connection less so the receiver does not need to
send ACK or even react.

Besides RFC 7252 there are some related standards (see Figure 16).

¶ wC/ ссфл ά/ƻw9 ƭƛƴƪ ŦƻǊƳŀǘέ ƛǎ ŀ wC/ ǎǘŀƴŘŀǊŘ ŀƭǊŜŀŘȅΦ ¢ƘŜ /ƻw9 [ƛƴƪ CƻǊƳŀǘ ŘŜŦƛƴŜǎ ŀ
fixed resource (.well-known/core) on CoAP servers which allows obtaining information
about the available resources hosted by a server. This includes size, resource type, path
and media type for each individual resource.

¶ wC/ тспм ά/ƻ!t ƻōǎŜǊǾŜέ ƛǎ ŀƭǎƻ ŀƴ L9¢C ǎǘŀƴŘŀǊŘΣ ǿƘƛch describes the possibility to
observe resources in a publish/subscribe approach by using a observe flag in the CoAP-
message-header. When receiving a request with this header option the CoAP server will
send notifications of changed resources to the client. Both server and client can cancel
the subscription.

¶ wC/ тофл ά/ƻ!t ƎǊƻǳǇ ŎƻƳƳǳƴƛŎŀǘƛƻƴέ ƛǎ ŦƻǊ ƴƻǿ ǘƘŜ ƭŀǎǘest related standard. It
specifies CoAP communication based on IP multicast. It provides guidance how CoAP
should be used in group communication e.g. addressing all devices in a room. Together
with the CoRE link format a device discovery can be realized.

ITEA2: Building as a Service - BaaS 55

Furthermore there are a number of drafts related to CoAP which should be mentioned:

¶ CoAP block-wise transfer (Draft 20) [174] intends to enable CoAP to transmit larger
amounts of data. For this purpose, data is segmented into blocks. CoAP block-wise
transfer ensures that these blocks arrive and are handled in the right order.

¶ CoAP HTTP mapping (Draft 11) [175] specifies how an cross-protocol proxy can translate
HTTP queries to CoAP queries and return respective results.

¶ CoRE resource directory (Draft 07) [176] defines mechanisms to employ entities that
host and maintain descriptions of resources held on other servers. This enables
resource-discovery in environments where multicast is not allowed or inefficient.

¶ CoRE formats in JSON & CBOR (Draft 05) [177] tries to represent the the CoRE link
format in JSON or CBOR.

¶ CoAP over TCP & TLS (Draft 05) [178] replaces the UDP layer of CoAP by TCP and thus
DTLS by TLS.

¶ SenML media types (Draft 10) [179] defines the SenML format to represent sensor data
and configuration parameters. This format is proposed to be added to the media types
supported by CoAP.

¶ Patch & fetch methods for CoAP (Draft 00) [180] defines mechanisms to partially access
resources instead of always read and write complete resources.

Figure 16: CoAP related standards

There are several implementation of CoAP available. Some of them shall be mentioned here:

¶ The Swiss Federal Institute of Technology Zurich provides a set of implementations as:
o Copper [181] is a CoAP user-agent for Firefox and therefore only a CoAP client

written in JavaScript and is conform to RFC 7252.
o Erbium [182] is a REST Engine which is currently used in Contiki and is

implemented in C. In contrast to the other implementations this is only conform to
the CoAP draft 16.

o Californium [183] is a CoAP framework in Java which is RFC 7252 conform and
currently the most complete implementation of related drafts like CoAP resource
discovery and observation.

o Actinium [184] at last is an Apps server for Californium.

ITEA2: Building as a Service - BaaS 56

¶ jCoAp [185] is a CoAP stack for Java which is conform to RFC 7252. It can be used to
develop client, server and CoAP<->HTTP-Proxy software. The jCoAP stack is developed
by the University of Rostock.

¶ The University of Bremen provides libCoAP[186] which is a C implementation conform
to RFC 7252 and provides the possibility to create clients and servers

¶ CoAP.net [187] is a C# (.net) implementation based on Californium and is currently
conform to the CoAP draft 13

3.10.1. Relevance of CoAP for BaaS

The BaaS project needs communication protocols for different device types from small
sensing devices up to enterprise server systems. CoAP matches this requirement by
providing a platform-independent transport protocol with reduced overhead for M2M
communication while still remaining interoperable with HTTP. Additionally it covers the
basics for flexible system configuration including the discovery of servers and resources and
it can work hand in hand with the Efficient XML Interchange format (EXI). Furthermore CoAP
brings the freedom to choose between a publish/subscribe or push/pull based
communication style.

ITEA2: Building as a Service - BaaS 57

4. Building Automation Data Models

4.1. BACnet

BACnet is one of the predominating standards in the building automation area. The acronym
.!/ƴŜǘ ǎǘŀƴŘǎ ŦƻǊ ά.ǳƛƭŘƛƴƎ !ǳǘƻƳŀǘƛƻƴ ŀƴŘ /ƻƴǘǊƻƭ ƴŜǘǿƻǊƪƛƴƎ ǇǊƻǘƻŎƻƭέΦ Lǘ ŘŜŦƛƴŜǎ
network stack and application layer for communication in building automation and control
systems (BACS). The intention is to allow the communication and integration of BACS
equipment from different vendors. The current revision of the standard [188] was done in
2012 and is maintained by the American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE) since 1995 in the Standard Project Committee (SPC) 135.
BACnet is adopted as national standard in many countries and was adopted by the
International Organization for Standardization (ISO) in 2003, where BACnet is known as ISO
16484-5.

Since the standard [188] does not give the reasoning/explanation for the standard the
interested reader is referred to the overview of the protocol and its history in [189].

4.1.1. BACnet Architecture

The BACnet architecture as defined in the BACnet standard is shown in Figure 17. The
architecture consists of an application layer and network layer with associated data link and
physical layers. A BACnet network is defined to form a local area network, either physically
based on data links like MS/TP or logical based e.g. on IP and UDP. Newer directions in
BACnet standardization strive to add transport bindings that replace the LAN based network
definitions in favor of native IP networking definitions. Such bindings will (among other
functionalities) make use of IP routing and thus alleviate from BACnet overlay routing. More
details on this may be found in the description of the BACnet IT working group, c.f. Section
4.1.3.1.

Figure 17: Collapsed BACnet Architecture.

The network layer (and below) definitions are of minor relevance for BaaS. We expect that
an IP based gateway will provide the access to data points on legacy devices. Thus, the
following sections on BACnet will focus on the BACnet application layer and relevant trends
in the BACnet standardization.

BVLL

BACnet Network Layer

BACnet Application Layer

Equivalent

OSI Layers

ARCNET EIA-485
ISO 8802-3

(IEEE 802.3)

ISO 8802-2 (IEEE 802.3)

Type 1

EIA-232

MS/TP PTP

LonTalk

Application

Layer

Network Layer

Data Link Layer

Physical Layer

UDP/IP

BACnet Protocol

Stack Layers

 = BACnet

Definitions

ZVLL

ZigBee

CBA

IEEE

802.15.4

BVLL IPv6

UDP/IPv6

IP(v6) Datalink

ITEA2: Building as a Service - BaaS 58

4.1.2. BACnet Application Layer

The BACnet application layer is formed of objects and services. Objects represent the data
describing the BACS. Services provide a means to communicate between devices.

4.1.2.1. BACnet Objects

BACnet objects describe functions of an automation device in representing a collection of
related attributes, which are called properties. A property has a defined data type.
Properties might be optional and properties are either readable only or write- and readable.
Thus, the BACnet standard defines object types which contain all properties that might be
present in an object. A real instance of an object will contain only the properties which are
mandatory for an object and the optional properties needed in the implementation of a
specific function.

Objects are identified / addressed by a numeric Object_Identifier, which must be unique
within a BACnet device. The device has in turn a unique (with regard to the BACnet network)
address. This means, each object in a BACnet network can be unambiguously addressed.

Further, each object has an Object_Name, an Object_Type and a Property_List to describe
the object and its present properties.

Besides the properties that contain actual values like set points, or sensor readings
(Present_Value), many objects implement properties that control the object itself. This
applies to starting/disabling an object, reporting on the status or reliability of an object, but
also applies to properties around the event/alarm services.

Currently, 54 objects are specified in the BACnet 2012 standard. In [189] these objects are
classified in the following categories.

¶ Basic Device Object Types: Device, Analog Input, Analog Output, Analog Value, Binary
Input, Binary Output, Binary Value, File

¶ Process-related Object Types: Averaging, Loop, Program

¶ Control-related Object Types: Command, Load Control

¶ Meter-related Object Types: Accumulator, Pulse Converter

¶ Presentation-related Object Types: Group, Global Group, Structured View

¶ Schedule-related Object Types: Calendar, Schedule

¶ Notification-related Object Types: Event Enrollment, Notification Class, Notification
Forwarder, Alert Enrolment

¶ Logging-Object Types: Event Log, Trend Log, Trend Log Multiple

¶ Life Safety and Security Object Types: Life Safety Point, Life Safety Zone, Network
Security

¶ Physical Access Control Object Types: Access Zone, Access Point, Access Door, Access
User, Access Rights, Access Credential, Credential Data Input

¶ Simple Value Object Types: Character String Value, DateTime Value, Large Analog
Value, BitString Value, OctetString Value, Time Value, Integer Value, Positive Integer
Value, Date Value, Date Time Pattern Value, Time Pattern Value, Date Pattern Value

¶ Lighting Control Object Types: Channel, Lighting Object

ITEA2: Building as a Service - BaaS 59

4.1.2.2. BACnet Services

While BACnet objects describe the functionality of BAcnet devices, BACnet services are used
to communicate between the BA devices. This communication is not restricted to the
information contained in the objects and properties (Object Access Services), but also
facilitates other services, such as Remote Device Management, Alarm and Event and File
Access and Virtual Terminal services.

BACnet supports confirmed and unconfirmed services. Confirmed services are used in direct
communication between two BACnet devices and must be acknowledged. The
acknowledgment (ACK) may be simple, i.e. just confirm that the request was received and
executed but will not contain a response. A complex ACK will also contain a response.
Confirmed services can be used for unicast communication patterns. Unconfirmed services
are used mainly for broad/multicast communications, but may also be used in unicast
communications.

The BACnet standard describes the services by a textual description of the purpose of the
service, a table of the structure of the primitives (parameters for request, response, and
error and if those parameters are mandatory or user defined), and a textual description of
each parameter. Finally the service description contains a description of the service
procedure, i.e. how the receiver of a request should process the request.

In the following, we will list the services clustered according the previous mentioned service
categories:

¶ Alarm and Event Services: AcknowledgeAlarm, ConfirmedCOVNotification, Unconfirme
dCOVNotification, ConfirmedEventNotification, UnconfirmedEventNotification, GetAlar
mSummary, GetEnrollmentSummary, GetEventInformation, LifeSafetyOperation, Subscr
ibeCOV, SubscribeCOVProperty

¶ File Access Services: AtomicReadFile, AtomicWriteFile

¶ Object Access Services: AddListElement, RemoveListElement, CreateObject, DeleteObje
ct, ReadProperty, ReadPropertyMultiple, ReadRange, WriteProperty, WritePropertyMul
tiple, WriteGroup

¶ Remote Device Management Services: DeviceCommunicationControl, ConfirmedPrivat
eTransfer, UnconfirmedPrivateTransfer, ReinitializeDevice, ConfirmedTextMessage, Unc
onfirmedTextMessage, TimeSynchronization, UTCTimeSynchronization, Who-Has and I-
Have, Who-Is and I-Am

¶ Virtual Terminal Services: VT-Open, VT-Close, VT-Data

4.1.3. Current Trends in BACnet Standardization

In the following we describe some of the more recent directions BACnet is heading, if these
might be relevant for BaaS or give indications for BaaS requirements.

4.1.3.1. BACnet IT

The BAcnet IT working group aims on adding an IT/IP based transport binding to the BACnet
stack. The first protocol option is adding a HTTP binding to BACnet. This binding is able to
make use of IT/IP network mechanisms, such as IP routing. It is also well accepted in IT
infrastructures. The following main goals will be achieved with the new binding:

ITEA2: Building as a Service - BaaS 60

¶ Replacement of BACnet overlay routing (where possible) and usage of already present
IP mechanisms.

¶ Reduce UDP broadcasts. This includes the utilization of IT registry and discovery
ƳŜŎƘŀƴƛǎƳǎ ǘƻ ǊŜǇƭŀŎŜ ǘƘŜ .!/ƴŜǘ άǿƘƻ-ƛǎέ ŀƴŘ άǿƘƻ-Ƙŀǎέ ōǊƻŀŘŎŀǎǘǎΦ ²ǊƻƴƎ
configured BACnet overlay routing led formerly to broadcast storms which caused
friction in a shared infrastructure with IT departments.

¶ Introduce typical and well accepted IT security mechanisms, e.g. HTTPS based on TLS.

4.1.3.2. Extensions for BACnet WS

In the planned addendum 135-2012am the BACnet web services are extended and revised.
The revision will include the following features:

¶ Allow for the exchange of structured data.

¶ Allow the retrieval of (also non periodic) trend history.

¶ Support for subscriptions (either by polling or callbacks).

¶ Move from SOAP to a RESTful approach.

4.1.4. Relevance of BACnet for BaaS

The relevance of BACnet for BaaS is twofold. First, BACnet is one of the predominating
protocols in the building automation domain. BaaS is committed to provide legacy
integration and BACnet will be a potential candidate for the integration of already existing
devices. There are several options to do this; the new BACnet addendum (c.f. Section
4.1.3.2) on web services might reduce implementation effort compared to a native BACnet
implementation. It is not clear yet, if implementations of the WS addendum will be available
in time for BaaS.

Second, the very limited set of objects and services of BACnet combined with the versatile
application of BACnet shows, that building automation tasks can be implemented with such
limited object and services. Taking up the hints from BACnet will guide to an efficient and
reasonable data model of BaaS.

4.2. oBIX

Open Building Information Exchange (oBIX) [190] is an Organization for the Advancement of
Structured Information Standards (OASIS) specification and provides an XML-based data
model that is exchanged via Web service interfaces between different building automation
components. Thus, the oBIX mechanism provides access to the embedded software systems
which sense and control the environment. The current specification version is 1.0 and was
accepted as Committee Specification in December 2006. The OASIS oBIX TC is based on
members, among others, from Cisco Systems, CABA, IBM, Tridum, and Schneider Electric.
Currently, the oBIX TC is working on a new minor version, the oBIX Version 1.1 [191], as well
as on encoding and binding variants referred to as Common Encodings Version 1.0 [192],
REST Bindings Version 1.0 Public [193], SOAP Bindings Version 1.0 [194], and WebSocket
Bindings 1.0 [195]. Furthermore, an oBIX version 2.0 is planned that includes topics such as
broadcast, peer-to-peer interactions, and enterprise contracts.

In the following, we give an overview about of the basic technical ideas of oBIX 1.0 as well as
the perspectives which are given by the upcoming encoding and binding specifications. We

ITEA2: Building as a Service - BaaS 61

start with basics of a typical oBIX message structure, how it is used in the Web Service
context, and which data models are defined as well as the opportunities with the different
encoding variants. The subsequent sections provides some insides about oBIX contracts,
oBIX Watches, and finally about the work plan of oBIX 2.0.

4.2.1. oBIX Basics

4.2.2. Message Structure

Figure 18 shows a sample oBIX message structure that may be provided by a thermostat.
The first element obj, a.k.a. root element, models the entire thermostat. In general, objects
are the abstraction used by the oBIX data model (see Section 4.2.4) and each used (sub-)
element in message can be mapped to an oBIX object. The attribute href within the obj
element is used to identify the Uniform Resource Identifier (URI) for this message.
Furthermore, the message contains three nested elements, namely two times real and one
bool element. The real elements/objects represent a float value that is given by the val
attribute. The name attribute defines the role of the nested elements. Here, the first sub-
element represents the space temperature (spaceTemp) and the second sub-element the
setpoint. The units attribute is used to assign the values a particular physical unit. The
examples show the units assignment of Fahrenheit (obix:units/fahrenheit). The last sub-
element/sub-object in this sample message is a bool-based element that represents the
furnace state (furnaceOn) which is set to true.

Figure 18: Sample oBIX message structure

Beside the usage of primitive data types such as real and bool, users are able to define own
data structures for their own automation devices. By doing so, contracts are defined and
used which is explained in Section 4.2.6.

4.2.3. Web Services

Web services are well known approaches for client-server interactions. oBIX uses Web
services for requesting and responding its messages. In general, there are three different
kinds of request-response types, as described below.

¶ Read: return the current state of an object at a given URI.

¶ Write: update the state of an existing object at a URI. The new updated state is
returned as response message.

¶ Invoke: invoke an operation identified by a given URI. Thereby, the input parameters
are transported within the request message and the output result within the response
message.

The oBIX standard describes two Web service binding variants which are able to apply these
basic types: HTTP/REST and SOAP. In the next two subsections we will explain the usage of
these bindings with the defined request-response types above. Furthermore, we will also
explain usage of a new binding, CoAP, that is currently described in the draft specification
REST Bindings 1.0 [193].

ITEA2: Building as a Service - BaaS 62

4.2.3.1. HTTP/REST

As aforementioned, REST is an architectural style that is typically used with the HTTP binding
for the development of Web services. The following table associates the different HTTP
methods to the oBIX types.

oBIX Request Type HTTP Method Target

Text Text Text

Read GET Any object with an href

Write PUT Any object with an href and writable=true attribute

Invoke POST Any object

Table 5: oBIX type map to HTTP methods

For each HTTP request, the URI addressed within the HTTP header must map to the URI of
the object (root element) of the oBIX message. A simple read is initiated by the HTTP GET
method and will receive a resulting oBIX message as response. The write and invoke type is
initiated by PUT and POST respectively which will also receive the result as an oBIX message.

4.2.3.2. SOAP

SOAP Web services is a well-known approach that is standardized by the W3C. oBIX uses this
SOAP binding to transport its messages within the Body element of the SOAP message
framework. Each request-response type is reflected by a read, write, and invoke element in
the SOAP request message.

Figure 19 depicts a sample SOAP request message that imitate a read of an about object.
The corresponding read element is nested in the Body element and contains the URI
(http://localhost/obix/about) of the desired object. That means, unlike to the HTTP/REST
approach, the URI of the SOAP request is not typically bind to the oBIX object.

Figure 19: Sample SOAP request message

Figure 20: Sample SOAP response message

http://localhost/obix/about

