
Derivative-free Parameter Optimization
of Functional Mock-up Units

Sofia Geddaa,c Christian Anderssona,c Johan Åkessonb,c Stefan Diehla

aCentre for Mathematical Sciences, Lund University, Sweden
bDepartment of Automatic Control, Lund University, Sweden

cModelon AB, Sweden

Abstract

Representing a physical system with a mathematical
model requires knowledge not only about the physical
laws governing the dynamics but also about the param-
eter values of the system. The parameters can some-
times be measured or calculated, but some of them are
often difficult or impossible to obtain directly. Never
the less, finding accurate parameter values is crucial
for the accuracy of the mathematical model.

Estimating the parameters using optimization algo-
rithms which attempt to minimize the error between
the response from the mathematical model and the real
physical system is a common approach for improving
the accuracy of the model.

Optimization algorithms usually require informa-
tion about the derivatives which may not always be
easily available or which may be difficult to com-
pute due to, e.g., hybrid dynamics. In such cases,
derivative-free optimization algorithms offer an alter-
native for design and parameter optimization.

In this paper, we present an implementation of
derivative-free optimization algorithms for parameter
estimation in the JModelica.org platform. The imple-
mentation allows the underlying dynamic system to
be represented as a Functional Mock-up Unit (FMU),
and thus enables parameter optimization of models ex-
ported from modeling tools compliant with the Func-
tional Mock-up Interface (FMI).

Keywords: Derivative-free optimization; Parameter
Estimation; JModelica.org; FMI; Assimulo

1 Introduction

Increasingly, industry rely on mathematical modeling
for evaluating and designing new machines and de-
vices. As the models grow increasingly complex, the

need for estimating parameters which are unknown or
uncertain is put into focus. Estimating unknown pa-
rameters in the mathematical model using optimiza-
tion algorithms is a commonly used approach to in-
crease the accuracy of models. In this paper, we focus
on parameter estimation problems where the objective
is to minimize the error between the simulated profiles
of the mathematical model and measurements from the
corresponding physical system. The objective func-
tion considered

f (x) =
M

∑
i=0

(ysim(ti,x)− ymeas(ti))2 (1)

where ysim is the model output trajectory and ymeas are
the measurements. The parameters to be estimated are
x ∈ Rn, where n is the number of parameters. M is
the number of measurements at the time points ti. The
optimization problem is then formulated as

min
x∈Rn

f (x). (2)

subject to the system dynamics, in the FMI case given
by a hybrid Ordinary Differential Equation (ODE).
Additionally, the parameters may be subject to bounds,
l ≤ x≤ u.

This optimization problem may be solved by tran-
scribing the problem into a non-linear programming
problem using either shooting methods [6] or collo-
cation methods [6]. These methods, however, both
use derivative information, which may be difficult or
expensive to compute, e.g., in the case of hybrid sys-
tems. The idea is then to use algorithms which do not
depend on derivative information, such as the Nelder-
Mead simplex method [7]. In a derivative-free method,
instead of using information from the derivatives to
improve the solution, the objective is evaluated at a
chosen set of points which are then used to improve

the solution. How the points are chosen and which
strategy is used to improve the solution depends on the
method. Typically, computation times are longer than
for derivative-based methods, but on the other hand,
derivative-free methods offer a feasible and robust op-
tion when other algorithms fail.

In this paper, we evaluate three derivative-free op-
timization algorithms for parameter estimation avail-
able in the JModelica.org platform: the Nelder-Mead
simplex method, the differential evolution method and
a genetic algorithm. Based on this evaluation, the
Nelder-Mead algorithm seems most appropriate to
solve the class of parameter optimization problems
considered.

The main contribution of the paper is an implemen-
tation of the Nelder-Mead simplex algorithm. The al-
gorithm supports parameter bounds and parallel eval-
uation of function evaluations where FMU models are
loaded and simulated.

We also briefly present the underlying packages
FMI Library (FMIL), PyFMI1 and ASSIMULO2.
These packages are part of JModelica.org, but also
available stand-alone, and are used for simulating the
model response. In Figure 1, an overview of the
interaction between the packages in JModelica.org
when solving a derivative-free optimization problem
is shown.

Functional Mock-up Unit

PyFMI ASSIMULO

JModelica.org

DFO

FMIL

Parameter
guess

Model
response

Figure 1: Overview of the interaction between the
packages in JModelica.org when solving a derivative-
free optimization problem.

The paper is outlined as follows. In Section 2, the
Functional Mock-up Interface is presented together
with an overview of optimization tools. In Section 3,
an introduction to the JModelica.org platform is given
together with the simulation package ASSIMULO as
well as the Python package PyFMI for interaction with
FMUs. Next, derivative-free optimization algorithms
are introduced, followed by a description of the imple-
mentation in JModelica.org. In Section 6, the imple-

1http://www.pyfmi.org
2http://www.assimulo.org

mentation is applied to two different problems where
the second is a large industrial example where a model
of an engine is calibrated. Finally, Section 7 concludes
the paper with a summary and conclusions.

2 Background

2.1 The Functional Mock-up Interface

The Functional Mock-up Interface [1] defines an open
standard for model exchange. The intention is to allow
exchange of models between different modeling and
simulation tools. The standard describes models as hy-
brid ODEs with state, step and time events. A model
that implements the FMI standard is called a Func-
tional Mock-up Unit and is distributed as a compressed
directory containing a shared object file or source code
containing the model equations, and a set of functions
for data access, and an XML file, which describes the
model parameters and variables. The standard has re-
ceived a significant amount of attention among ven-
dors since the release in 2010 and currently there are
34 environments that support or plan to support the
standard.

2.2 Optimization tools

There exist many tools for optimization of complex
systems, both in the public domain and commercially
available. Broadly, there are three different categories
of optimization tools, although the scope is sometimes
overlapping. In Model integration tools the problem
of interfacing several design tools into a a single com-
putation environment, where analysis, simulation and
optimization can be performed is addressed. Examples
include ModelCenter [23], OptiY [22], modeFRON-
TIER [12], and iSIGHT [10]. Such environments are
capable of integrating several simulation and design
tools into one computational chain, where the results
are optimized. The integrated tools may be hetero-
geneous in the sense that they model different phys-
ical domains by means of different algorithms. Due
to this heterogeneity amongst supported tools, opti-
mization algorithm that does not exploit derivatives
or model structure such as sparsity is commonly em-
ployed. Model integration tools typically also have
strong support for model approximation and visualiza-
tion.

Many modeling and simulation tools has optimiza-
tion add-ons, e.g., Dymola [9], gPROMS [24], Jaco-
bian [19], and OMOptim [18]. The level of support
for optimization in this category differs between the

tools. Dymola, for example, offers add-ons for param-
eter identification and design optimization [11, 20].
gPROMS on the other hand, offers support for so-
lution of optimal control problems and has the ad-
ditional benefit in comparison with Modelica tools
to provide support for partial differential equations
(PDEs). Tools in this category usually support a set of
derivative-based and derivative-free optimization algo-
rithms. Optimization problems are typically formu-
lated by means of graphical user interfaces.

In the third category there are numerical packages
for dynamic optimization, often developed as part of
research programs. Examples are ACADO [21], Mus-
cod II [28], and DynoPC [17]. Such packages are typ-
ically focused on efficient implementation of an op-
timization algorithm for a particular class of dynamic
systems. Also, detailed information about the model to
optimize is generally required in order for such algo-
rithms to work, including accurate derivatives and in
some cases also sparsity patterns. While these pack-
ages offer state of the art algorithms, they typically
come with simple or no user interface. Their usage
is therefore limited due to the effort required to code
the model and optimization descriptions. A notable
example is CasADi [4], which provides an efficient
AD kernel, interfaces to numerical optimization algo-
rithms and a comprehensible Python interface for cus-
tom development of dynamic optimization algorithms.
CasADi also support import of Modelica models in
XML format, see [5].

The approach presented in this paper falls into
the category of additions to modeling and simulation
tools. Specifically, models exported from FMI compli-
ant tools can be optimized. The presented algorithm
uses Python scripting as a means to formulate opti-
mization problems, and in this respect it differs from,
e.g., the approach taken in Dymola.

3 JModelica.org

JModelica.org3 [26] is a platform for modeling, sim-
ulation and optimization of complex physical sys-
tems primarily based on the Modelica4 modeling lan-
guage. JModelica.org is a community-based open-
source project started at Lund University with the fol-
lowing aim:

“To offer a community-based, free,
open-source, accessible, user and applica-

3http://www.jmodelica.org
4http://www.modelica.org

tion oriented Modelica environment for op-
timization and simulation of complex dy-
namic systems, built on well-recognized
technology and supporting major plat-
forms.”

JModelica.org provides compilers for the Modelica
language and the extension Optimica [25]. For sim-
ulations, the Python package ASSIMULO is used for
both simulating ODEs and DAEs. Dynamic optimiza-
tion is available using direct local collocation algo-
rithms based on the DAE formulation of the model.
The user interaction with JModelica.org is based on
the programming language Python.

Included in JModelica.org are packages that can
also be used stand-alone. In the following subsections,
the packages FMI Library, PyFMI and ASSIMULO are
presented.

3.1 FMI Library

FMI Library (FMIL) is a C package designed for
working with FMUs and serving as support for ap-
plications interfacing the FMI. The package con-
tains convenient methods for decompressing of FMUs,
parsing XML information and connecting the binary5.
The library supports FMI 1.0 for model exchange and
for co-simulations and is intended for custom integra-
tion of FMI technology in applications. FMIL is also
used as a basis of the Python package PyFMI.

3.2 PyFMI

PyFMI [2] is a package for interacting with FMUs us-
ing Python, based on the FMI Library. It provides
convenient high-level functions for interacting with an
FMU, retrieving values and accessing variable infor-
mation from the XML information. Additionally, a
low-level mapping of the functions specified in the in-
terface can also be accessed. A model can be loaded
and made available from Python using the following
Python code:

#Import the model class

from pyfmi import FMUModel

#Load the model into Python

model = FMUModel("bouncingBall.fmu")

PyFMI also provides a connection to the simulation
package ASSIMULO and thus enables access to state-
of-the-art solvers such as CVode and IDA from the
Sundials suite, capable of simulating hybrid systems.

5http://www.jmodelica.org/FMILibrary

A simulation is performed by using the simulate

method.

#Simulate the model using Assimulo

res = model.simulate(final_time=10)

3.3 ASSIMULO

ASSIMULO [3] is a Python package for solving first
or second order explicit ordinary differential equa-
tions (ODEs) or implicit ordinary differential equa-
tions (DAEs).

ASSIMULO combines a variety of different solvers
written in FORTRAN, C and Python via a com-
mon high-level interface. The state-of-the-art solvers
CVode and IDA from the SUNDIALS suite [15] as
well as RADAU5 [14] are amongst the available
solvers.

ASSIMULO is divided into two parts, namely prob-
lem definitions and solvers. A problem definition may
in addition to the right-hand side of the differential
equation also contain for instance the Jacobian as well
as event functions in order to support simulation of
hybrid systems. The idea is to separate information re-
lated to a problem from the solver. For instance, which
states are algebraic is information that is related to the
problem and not the solver. In Figure 2, an overview
is given showing the available problem definitions and
solvers in ASSIMULO. Also shown is the connection
between the different problem formulations.

Problems

Solvers

Implicit
ODE

Explicit
ODE

IDA CVODE

GLIMDA

ODASSL

DOPRI5

RODAS LSODAR

RADAU5

RADAU5

Explicit ODE
(2nd order)

Implicit ODE
Overdetermined

Newmark

HHT-alpha
methods

A
S
S
IM

U
L
O

Figure 2: Connection between the different problem
formulations and the different solvers available in AS-
SIMULO.

4 Derivative-free Optimization

In applications where derivatives are difficult or com-
putationally expensive to obtain, there is a need for
derivative-free optimization methods. Examples in-
clude very large models which also contains hybrid
elements.

δ Operation type

−1
2 inside contraction

1
2 outside contraction
1 reflection
2 expansion

Table 1: Different δ -values with corresponding opera-
tion types.

We shall now introduce three different derivative-
free optimization algorithms which have been imple-
mented or interfaced in the JModelica.org platform
[13]: the Nelder-Mead simplex method, the differen-
tial evolution method and a genetic algorithm.

4.1 The Nelder-Mead simplex method

The Nelder-Mead simplex method has obtained its
name from the fact that each iteration is based on
a simplex. A simplex in Rn is a set of n + 1 ver-
tices x1, . . . ,xn+1 ∈Rn such that the vectors xi−x1, i =
2, . . . ,n+1 are linearly independent, i.e. it is a gener-
alization of a triangle to arbitrary dimension.

In each iteration of the Nelder-Mead algorithm, the
objective is to replace the vertex with the highest cost
in the n-dimensional simplex with a better point. The
vertices are ordered by increasing value of f such that
f (x1) ≤ . . . ≤ f (xn+1). The new point is searched for
along the line through the vertex with the highest cost,
xn+1, and the centroid,

xc =
1
n

n

∑
i=1

xi, (3)

of the remaining vertices x1, . . . ,xn. This line has the
equation

x = xc +δ (xc− xn+1), δ ∈ R. (4)

The parameter δ defines the type of the operation
performed on the simplex. There are four different op-
eration types that are performed by the algorithm: re-
flection, expansion, inside contraction or outside con-
traction, resulting in the reflection point, xr, the expan-
sion point, xe, the inside contraction point, xic, or the
outside contraction point, xoc respectively. Table 4.1
displays the δ -values corresponding to these four op-
erations. If none of these operations results in a better
point than xn+1, the simplex is shrunk toward the ver-
tex with the lowest cost, x1. That is, the n points with
the highest costs are replaced by new points obtained

from

x = x1 +
1
2
(xi− x1), i = 2, . . . ,n+1. (5)

This procedure is repeated until some termination cri-
terion is fulfilled. There are usually three different ter-
mination criteria, one of which has to be fulfilled in
order for the algorithm to terminate:

• Convergence criterion for x – the simplex is suf-
ficiently small according to a user-provided toler-
ance.

• Convergence criterion for f – the function values
at the simplex vertices are sufficiently close ac-
cording to a user-provided tolerance.

• Termination criterion without convergence – the
maximum number of iterations or function eval-
uations has been reached.

In Figure 3, two iterations of the algorithm are
shown, illustrating how the simplex changes form and
position.

6 4 2 0 2 4 6
6

4

2

0

2

4

6
Simplex search

Figure 3: Two simplex iterations where the solid tri-
angle is the initial simplex which transforms into the
dashed triangle (δ = 2) and then the dash-dot triangle
(δ =−1

2).

4.2 Evolutionary algorithms

The differential evolution method and genetic algo-
rithms belong to the class of evolutionary algorithms,
which consists of stochastic optimization algorithms
inspired by the principles of biological evolution the-
ory. In such algorithms, each candidate solution, x̄ ∈
Rn, represents an individual and the objective function,
f (x), or fitness function, represents the environment

within which the individuals live. The value f (x̄) de-
termines how fit the individual x̄ is to survive in the
environment; a lower value means a better fit. At each
iteration, or generation, a new population of possi-
ble solutions is produced through mutation, crossover
and selection. Mutation is a mechanism for maintain-
ing genetic diversity by modifying an existing solution
while crossover means combining two existing solu-
tions into a new one.

4.2.1 The differential evolution method

The differential evolution method [27] works accord-
ing to the following steps.

Initialization: An initial population of N individu-
als, or vectors, is generated randomly inside the feasi-
ble region.

Mutation: At each iteration, the population con-
sists of N vectors, xi ∈ Rn, i = 1, . . . ,N. For each vec-
tor xi, the target vector, a mutant vector, vi ∈ Rn, is
produced by adding the weighted difference between
two vectors in the current population to a third one ac-
cording to the following formula:

vi = xr1 +F (xr2− xr3) ,

where r1,r2,r3 ∈ {1,2, . . . ,N} are random indices, dis-
tinct from each other and from i, and F ∈ [0,2] is a
constant.

Crossover: The mutant vector, vi, is then recom-
bined with its corresponding target vector, xi, through
a mixing of their elements, generating a trial vector,
ui ∈ Rn. The trial vector receives elements of the mu-
tant vector with probability P ∈ [0,1] and elements of
the target vector with probability 1−P.

Selection: The trial vector, ui, is compared with the
target vector, xi, and the one giving the lowest value of
the fitness function, f , is selected for the next genera-
tion.

The phases mutation, crossover and selection con-
tinue until a termination criterion is fulfilled.

4.2.2 Genetic algorithms

In genetic algorithms [16] the individuals are encoded
as bit strings. There are various genetic algorithms
which differ from one another but the following is a
general description.

Initialization: An initial population of size N is
generated randomly inside the feasible region.

Selection: In each generation, a selection probabil-
ity, p(xi), is defined for each individual, xi ∈ Rn. The
selection probability depends on the fitness function

value for the individual, f (xi), a smaller value gives
a larger probability. Two individuals are then selected
randomly according to their selection probabilities.

Crossover: Crossover is performed on the two
selected individuals with a certain probability, the
crossover rate. A common choice for this probability
is around 0.7. There are different crossover techniques
but a common approach is to randomly choose a posi-
tion in the bit strings and swap all bits between the two
strings after that position.

Mutation: Mutation is performed by flipping bits
(from 0 to 1 or vice versa) at random positions in the
bit strings. The probability of flipping a bit, the mu-
tation rate, should be much lower than the crossover
rate.

Selection, crossover and mutation is repeated until
a termination criterion is reached.

5 Implementation

The algorithms evaluated in Section 4, have been made
available in JModelica.org. The Nelder-Mead simplex
algorithm has been implemented and is now provided
as part of JModelica.org, while the differential evolu-
tion algorithm and a genetic algorithm has been in-
terfaced through the OpenOpt package 6. The algo-
rithms are available through the Python function fmin

in JModelica.org.
The method fmin requires as input the objective

function together with the initial conditions as well
as options for specifying the intended optimization al-
gorithm and tolerances. In Section 6.1, it is shown
how the objective function can be defined when the
dynamic model is contained in an FMU.

In the Nelder-Mead algorithm, support for parallel
evaluation of the objective function, f (x), has been
implemented. In each iteration of the algorithm, the
evaluations of the n+ 1 vertices are distributed over
a user-supplied number of processes, as well as the
evaluations of the reflection, expansion and contrac-
tion points.

For further implementation details, see [13].

6 Examples

In [13], the different derivative-free algorithms was
tested and the result indicated that the Nelder-Mead
algorithm is the preferred algorithm for the tested pa-
rameter estimation problems. The evaluation was done

6http://openopt.org/

based based on execution time and convergence to the
optimal solution.

6.1 Furuta pendulum

The Furuta pendulum is a system consisting of a hori-
zontal arm driven by a motor which is connected to a
vertical pendulum, see Figure 4. The system has two
degrees of freedom, namely the angle of the arm, φ ,
and the angle of the pendulum, θ . Additionally, there
is friction in both the arm joint and the pendulum joint.
Due to the discontinuities introduced by the friction,
the system is not well suited for derivative-based opti-
mization algorithms.

Figure 4: The Furuta pendulum.

The Furuta pendulum is modeled by a Modelica
model, see Figure 5. The problem at hand is to cal-
ibrate the unknown friction coefficients of the arm and
pendulum, respectively, against the given measure-
ments using the Nelder-Mead simplex algorithm. The
objective is thus

f (x) =
M

∑
i=1

(φ sim(ti,x)−φ
meas(ti))2+

M

∑
i=1

(θ sim(ti,x)−θ
meas(ti))2

(6)

where x is a vector containing the friction coefficients
for the arm and the pendulum respectively.

The measurements were generated by simulation
of the Modelica model for the Furuta pendulum and
white measurement noise was added to the outputs.
The measurements were given for a period of 40 sec-
onds and were contained in a data file. The data was
loaded into Python by the following code:

Figure 5: A Modelica model for the Furuta pendulum.

from scipy.io import loadmat

import numpy as N

Load measurement data from file

data = loadmat('FurutaData ')

Extract data series

t_meas = data['time'][:,0]

phi_meas = data['phi'][:,0]

theta_meas = data['theta'][:,0]

y_meas = N.vstack ((phi_meas ,theta_meas))

The objective function is defined as a Python function
where the FMU, generated by Dymola, for the Furuta
pendulum is loaded and simulated for given parameter
values.

from pyfmi import FMUModel

from pyjmi.optimization import dfo

Define the objective function

def furuta_dfo_cost(x):

#Scale down

armFriction = x[0]/1e3

pendFriction = x[1]/1e3

Load the FMU Model

model = FMUModel('Furuta.fmu')

Set new parameter values

model.set('armFriction ',

armFriction)

model.set('pendulumFriction ',

pendFriction)

Simulate the model response

res = model.simulate(final_time=40)

Load simulation result

phi_sim = res['armJoint.phi']

theta_sim = res['pendulumJoint.phi']

t_sim = res['time']

Evaluate the objective function

y_sim = N.vstack ((phi_sim ,theta_sim))

obj = dfo.quad_err(t_meas ,y_meas ,

t_sim ,y_sim)

return obj

Finally, the objective is provided to the optimization
function fmin together with the initial guess and the
parameter bounds. The initial guess, i.e., the nomi-
nal values, were obtained through manual testing. The
object returned by fmin contains the optimized param-
eters together with statistics, such as the number of it-
erations performed:

Specify initial conditions (scaled)

x0 = N.array([0.012 ,0.002])*1e3

Lower and Upper bounds

lb = N.zeros(2)

ub = x0 + 10

Solve using the Nelder -Mead algorithm

res = dfo.fmin(furuta_dfo_cost ,

xstart=x0,lb=lb ,ub=ub ,

x_tol=1e-3,f_tol=1e-2)

Optimal point rescaled

[armFriction_opt ,pendFriction_opt] =

res[0]/1e3

The optimized parameter values were found to be
0.010 for the arm friction coefficient and 0.0010 for
the pendulum friction coefficient. The result is visual-
ized in Figure 6, where it can be seen that the model
response is significantly more accurate using the opti-
mized parameters as compared to the response given
from the nominal parameters. In Figure 7, the error
is shown between the measurements and the simulated
response using both the nominal parameters and the
optimized parameters.

6.2 Diesel Engine

In this example, parameters in a model of an exhaust
gas pipe in a diesel engine is calibrated against mea-
surements. The model was developed in Dymola using
the Engine Dynamics Library and models a 13 liters
Volvo truck engine [8]. The energy of the exhaust gas
after the combustion is converted to torque, before re-
leasing the gas to the purification process. In Figure
8, an overview of the model is shown. The energy is
converted into torque by two turbines, shown as two
trapezoids, where the first drives a compressor at the

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6
theta [rad]

Measurements

Simulation nominal parameters

Simulation optimal parameters

0 5 10 15 20 25 30 35 40
t [s]

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.1

phi [rad]

Measurements

Simulation nominal parameters

Simulation optimal parameters

Figure 6: Simulation profiles corresponding to the
optimized parameters (dashed-dotted), profiles result-
ing from simulation with nominal parameter values
)dashed) and measurements (solid).

air intake of the engine and the second is connected
to the drive shaft. Additionally, there are two gas vol-
umes which are connected to two thermal conductors
that transport heat to the surrounding air. The endpoint
circles represent the boundary conditions for the gas.

The uncertain parameters are the thermal capacities
in the walls of the gas volumes together with the ther-
mal conductance from gas to wall in the volumes.

The inputs of the model are the gas temperature and
pressure entering the system, angular velocity of the
turbines and the gas pressure exiting the system. The
output is the gas temperature exiting the system.

Measurements are provided for the inputs and the
output sampled every second over a thirty minute pe-
riod. In Figure 9, the result is shown when simulating
the model using nominal parameter values.

The problem is to minimize the error between the
simulated gas temperature that exits the system and the
measured temperature,

min
x∈Rn

M

∑
i=1

(T sim(ti,x)−T meas(ti))2 (7)

subject to x≥ 0 (8)

where M is the number of measurement points and n
the number of parameters.

Instead of optimizing the four uncertain parameters
simultaneously, the problem is divided into two prob-
lems. The first problem is to determine the thermal
capacity and the thermal conductance in the right vol-
ume. The second is to determine the thermal capacity

0 5 10 15 20 25 30 35 40
10-6

10-5

10-4

10-3

10-2

10-1

100

101

e
rr

o
r

[r
a
d
]

theta

Measurements - Nominal

Measurements - Optimal

0 5 10 15 20 25 30 35 40
t [s]

10-5

10-4

10-3

10-2

10-1

100

e
rr

o
r

[r
a
d
]

phi

Measurements - Nominal

Measurements - Optimal

Figure 7: Error between the measurements and
the simulated profiles using the nominal parame-
ters (dashed) and the optimized parameters (dashed-
dotted).

Figure 8: Overview of the model of the diesel engine.

and the thermal conductance in the left volume, using
the results from the first problem. This procedure is
used since the parameters of the first and second vol-
ume are correlated. Optimizing all parameters simul-
taneously then results in over-parameterization.

For each optimization problem, the first third of the
measurement data sequences are used for calibration
and the remaining part is used for validation.

The model was exported from Dymola as an FMU
and thereby made available to the DFO algorithms
in JModelica.org. The two problems are then solved
using the Nelder-Mead simplex algorithm. Figure 9
shows the resulting simulation response for the opti-
mized parameters. In Figure 10, the corresponding er-
ror profiles are shown for the calibration and validation
data sets respectively. As can be seen, the optimized
parameters significantly increase the accuracy of the
model. The (scaled) RMS error was decreased from
1.0 to 0.18 for the calibration data set and from 1.0 to

0.36 for the validation data set.

0.0 0.2 0.4 0.6 0.8 1.0
time

0.75

0.80

0.85

0.90

0.95

1.00

Exhaust gas temperature (scaled)

Measurements

Simulation with nominal parameters

Simulation with estimated parameters

Figure 9: Simulation result with the optimized param-
eters together with result using the nominal parameter
values and measurements.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
10-7

10-6

10-5

10-4

10-3

10-2

10-1

C
a
lib

ra
ti

o
n
 d

a
ta

Exhaust gas temperature error (scaled)

Measurements - Nominal
Measurements - Optimal

0.4 0.5 0.6 0.7 0.8 0.9 1.0
time

10-7

10-6

10-5

10-4

10-3

10-2

10-1

V
a
lid

a
ti

o
n
 d

a
ta

Measurements - Nominal
Measurements - Optimal

Figure 10: Error profiles for the calibration data set
(top) and the validation data set (bottom).

7 Summary

An implementation of derivative-free optimization al-
gorithms in JModelica.org has been presented. The
implementation has been successfully applied to two
dynamic models where the dynamics are contained in
a Functional Mock-up Unit. In one of the examples,
a Volvo truck engine was calibrated against measure-
ment data, demonstrating the industrial applicability
of the approach.

The Python-based user interface enables flexible
implementation of complex cost functions involving,

e.g., simulation of FMUs and comparison with mea-
surement data or algorithmic evaluation of complex
discontinuous costs.

8 Acknowledgments

The authors gratefully acknowledges financial sup-
port from Vinnova under the contract (Project number
P35278-5) and from the Lund Center for Control of
Complex Systems, LCCC, funded by the Swedish Re-
search Council.

References

[1] Functional Mock-up Interface for Model Ex-
change. Interface specification, MODELISAR,
January 2010.

[2] C. Andersson, J. Åkesson, C. Führer, and
M. Gäfvert. Import and export of Functional
Mock-up Units in JModelica.org. In In 8th In-
ternational Modelica Conference 2011. Model-
ica Association, 2011.

[3] C. Andersson, J. Andreasson, C. Führer, and
J. Åkesson. A workbench for multibody systems
ODE and DAE solvers. In The Second Joint In-
ternational Conference on Multibody System Dy-
namics, 2012.

[4] J. Andersson, J. Åkesson, and M. Diehl.
CasADi—A symbolic package for automatic dif-
ferentiation and optimal control. In S. Forth,
P. Hovland, E. Phipps, J. Utke, and A. Walther,
editors, Proc. 6th International Conference
on Automatic Differentiation, Lecture Notes
in Computational Science and Engineering.
Springer, 2012.

[5] Joel Andersson, Johan Åkesson, Francesco
Casella, and Moritz Diehl. Integration of casadi
and jmodelica.org. In 8th International Modelica
Conference, March 2011.

[6] T. Binder, L. Blank, H.G. Bock, R. Bulirsch,
W. Dahmen, M. Diehl, T. Kronseder, W Mar-
quardt, J.P. Schlöder, and O. v. Stryk. Online Op-
timization of Large Scale Systems, chapter Intro-
duction to model based optimization of chemical
processes on moving horizons, pages 295–339.
Springer-Verlag, Berlin Heidelberg, 2001.

[7] A.R. Conn, K. Scheinberg, and L.N. Vicente.
Introduction to Derivative-Free Optimization.
Mps-siam Series on Optimization. Society for In-
dustrial and Applied Mathematics/Mathematical
Programming Society, 2009.

[8] J. Dahl and D. Andersson. Gas exchange and ex-
haust condition modeling of a diesel engine using
the Engine Dynamics Library. In In 9th Interna-
tional Modelica Conference 2012. Modelica As-
sociation, 2012.

[9] Dassault Systèmes. Dymola Home Page, 2012.
http://www.3ds.com/products/catia/

portfolio/dymola.

[10] Dassault Systèmes. iSIGHT Home
Page, 2012. http://www.3ds.

com/products/simulia/portfolio/

isight-simulia-execution-engine/

overview/.

[11] H. Elmqvist, H. Olsson, S.E. Mattsson, D. Brück,
C. Schweiger, D. Joos, and M. Otter. Optimiza-
tion for design and parameter estimation. In
In 4th International Modelica Conference 2005.
Modelica Association, 2005.

[12] ESTECO. modeFRONTIER Home Page, 2012.
http://www.esteco.com/.

[13] Sofia Gedda. Calibration of Modelica models us-
ing derivative-free optimization. Master’s thesis,
Lund University, August 2011.

[14] E. Hairer and G. Wanner. Solving Ordinary
Differential Equations: Stiff and differential-
algebraic problems. Springer series in compu-
tational mathematics. Springer-Verlag, 1993.

[15] Alan C. Hindmarsh, Peter N. Brown, Keith E.
Grant, Steven L. Lee, Radu Serban, Dan E. Shu-
maker, and Carol S. Woodward. Sundials: Suite
of nonlinear and differential/algebraic equation
solvers. ACM Trans. Math. Softw., 31(3):363–
396, September 2005.

[16] John H. Holland. Adaptation in natural and ar-
tificial systems. MIT Press, Cambridge, MA,
USA, 1992.

[17] Y.D. Lang and L.T. Biegler. A software en-
vironment for simultaneous dynamic optimiza-
tion. Computers and Chemical Engineering,
31(8):931–942, 2007.

[18] Linköping University. OMOptim Home Page,
2012. https://openmodelica.org/index.

php/developer/tools/176.

[19] Numerica Technology. Jacobian, 2012. http:

//www.numericatech.com/jacobian.htm.

[20] H. Olsson, J. Eborn, S.E. Mattsson, and
H. Elmqvist. Calibration of static models using
Dymola. In In 5th International Modelica Con-
ference 2006. Modelica Association, 2006.

[21] OPTEC K.U. Leuven. ACADO Home Page,
2012. http://www.acadotoolkit.org/.

[22] OptiY. OptiY Home Page, 2012. http://www.
optiy.de/.

[23] Phoenix Integration. ModelCenter Home
Page, 2012. http://www.phoenix-int.com/

software/phx_modelcenter.php.

[24] Process Systems Enterprise. gPROMS Home
Page, 2012. http://www.psenterprise.com/
gproms/index.html.

[25] Johan Åkesson. Optimica—an extension of mod-
elica supporting dynamic optimization. In In 6th
International Modelica Conference 2008. Mod-
elica Association, March 2008.

[26] Johan Åkesson, Karl-Erik Årzén, Mag-
nus Gäfvert, Tove Bergdahl, and Hubertus
Tummescheit. Modeling and optimization
with Optimica and JModelica.org—languages
and tools for solving large-scale dynamic op-
timization problem. Computers and Chemical
Engineering, 34(11):1737–1749, November
2010.

[27] Rainer Storn and Kenneth Price. Differential
evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. of
Global Optimization, 11(4):341–359, December
1997.

[28] University of Heidelberg. MUSCOD-II
Home Page, 2009. http://www.iwr.

uni-heidelberg.de/~agbock/RESEARCH/

muscod.php.

