
Functional Mockup Interface 2.0: The Standard
for Tool independent Exchange of Simulation Models

T. Blochwitz1, M. Otter2,
 J. Akesson3, M. Arnold4, C. Clauß5, H. Elmqvist6

M. Friedrich7, A. Junghanns8, J. Mauss8, D. Neumerkel9, H. Olsson6,, A. Viel10

Germany: 1ITI GmbH, Dresden; 2DLR Oberpfaffenhofen; 4University of Halle, 5Fraunhofer
IIS EAS, Dresden; 7SIMPACK, Gilching; 8QTronic, Berlin;9Daimler AG, Stuttgart;

Sweden: 6Dassault Systèmes, Lund; 3Modelon, Lund;

France: 10LMS Imagine, Roanne

Abstract

The Functional Mockup Interface (FMI) is a tool
independent standard for the exchange of dynamic
models and for Co-Simulation. The first version,
FMI 1.0, was published in 2010. Already more than
30 tools support FMI 1.0. In this paper an overview
about the upcoming version 2.0 of FMI is given that
combines the formerly separated interfaces for Mod-
el Exchange and Co-Simulation in one standard.
Based on the experience on using FMI 1.0, many
small details have been improved and new features
introduced to ease the use and increase the perfor-
mance especially for larger models. Additionally, a
free FMI compliance checker is available and FMI
models from different tools are made available on
the web to simplify testing.

Keywords: Simulation; Co-Simulation, Model Ex-
change; Functional Mockup Interface (FMI); Func-
tional Mockup Unit (FMU);

1 Introduction

The Functional Mockup Interface (FMI) standard
version 1.0 (see [1]) was published in 2010 as one
result of the ITEA2 project MODELISAR, see Fig-
ure 1. In a short time after this first release several
modeling and simulation tools started to support
FMI. Today, more than 30 tools support FMI 1.0,
and it is heavily used in industrial and scientific pro-
jects, not only in the automotive sector.

Figure 1: Improving model-based design between OEM and

supplier with FMI.

The MODELISAR project ended in Dec. 2011. The
maintenance and further development is now per-
formed by the Modelica Association in form of the
Modelica Association Project FMI (see
https://www.modelica.org/projects). FMI was initiat-
ed and organized by Daimler AG with the goal to
improve the exchange of simulation models between
suppliers and OEMs. The further FMI development
is performed by 16 companies and research institutes
(see Annex). The FMI project is open for FMI inter-
ested persons1 and for (Modelica and non-Modelica)
tool vendors supporting FMI.

In this article an overview about the upcoming
version 2.0 of FMI is given. This new version com-
bines the formerly separated interfaces for Model
Exchange and Co-Simulation in one standard. The
specification document was clarified which increases
the compatibility of implementations. New features
ease the use and increase the performance especially
for larger models.

1 Members of the MA project FMI need not be Modelica As-
sociation members, with exception of the project leader.

2 The Functional Mock-Up Interface

2.1 Main Design Ideas

The FMI 2.0 standard consists of two main parts:

1. FMI for Model Exchange:
The intention is that a modeling environment can
generate C-Code of a dynamic system model in
the form of an input/output block, see Figure 2,
that can be utilized by other modeling and simu-
lation environments. Models (without solvers)
are described by differential, algebraic and dis-
crete equations with time-, state- and step-
events.

2. FMI for Co-Simulation:
The intention is to couple two or more models
with solvers in a co-simulation environment. The
data exchange between subsystems is restricted
to discrete communication points. In the time be-
tween two communication points, the subsys-

tems are solved independently from each other
by their individual solver. Master algorithms
control the data exchange between subsystems
and the synchronization of all slave simulation
solvers. The interface allows standard, as well as
advanced master algorithms, e.g., the usage of
variable communication step sizes, higher order
signal extrapolation, and error control.

y

v 0 0, ,inital values (a subset of ())t tp v

t time
p parameters of type T
u inputs of type T
v all exposed variables
y
T

outputs of type T
Real, Integer, Boolean, or String

 FMU instance
(model exchange or co-simulation)

u

Figure 2: Data flow between the environment and the FMU
Blue/red arrows: Information provided by/to the FMU.

Figure 3: Complete XML schema of upcoming FMI 2.0 (but without attributes and without time synchronization).

Enclosing Model

2.2 Distribution

A component which implements the FMI is called
Functional Mockup Unit (FMU). It consists of one
zip-file with extension “.fmu” containing all neces-
sary components to utilize the FMU either for Model
Exchange, for Co-Simulation or for both:

1. An XML-file contains the definition of all varia-
bles of the FMU that are exposed to the envi-
ronment in which the FMU shall be used, as well
as other model information. It is then possible to
run the FMU on a target system without this in-
formation, i.e., with no unnecessary overhead.

2. A set of C-functions is provided to execute mod-
el equations for the Model-Exchange case and to
setup and run the slaves for the Co-Simulation
case. These C-functions can either be provided
in source and/or binary form. Binary forms for
different platforms can be included in the same
model zip-file.

3. Further data can be included in the FMU zip-file,
especially a model icon (bitmap file), documen-
tation files, maps and tables needed by the mod-
el, and/or all object libraries or DLLs that are
utilized.

2.3 Description Schema

All information about a model and a co-simulation
setup that is not needed during execution is stored in
an XML-file called “modelDescription.XML”. The
benefit is that every tool can use its favorite pro-
gramming language to read this XML-file (e.g., C,
C++, C#, Java, Python) and that the overhead, both
in terms of memory and simulation efficiency, is re-
duced. The XML-file is defined by an XML-schema
file called “fmiModelDescription.xsd”. In FMI 2.0,
the XML-file contains the information both for
Model-Exchange and for Co-Simulation.

In Figure 2, the complete XML schema definition
is shown. All parts are the same for the two FMI-
cases, with exception of the elements “Mod-
elExchange” and “CoSimulation” that contain defini-
tions specific to the respective case. If either one or
both of the two elements are present in the XML file,
then the respective C-functions are available in the
zip-file (usually in binary form as DLL for Win-
dows, and/or as shared object for Linux or Mac).
Another essential difference to FMI 1.0 is the new
element “ModelStructure” that exposes and provides
more details of the model structure.

2.4 C-Interface

The execution interface of FMI 2.0 consists of three
header files that define the C-types and –interfaces.
The header file “fmiTypesPlatform.h” contains all
definitions that depend on the target platform:

#define fmiTypesPlatform "standard32"
#define fmiTrue 1
#define fmiFalse 0
#define fmiUndefinedValueReference
 (fmiValueReference)(-1)

typedef void* fmiComponent;
typedef void* fmiComponentEnvironment;
typedef void* fmiFMUState;
typedef unsigned int fmiValueReference;
typedef double fmiReal ;
typedef int fmiInteger;
typedef char fmiBoolean;
typedef const char* fmiString ;
typedef char fmiByte;

The underlined, blue type definitions have been new-
ly introduced into FMI 2.0. This header file must be
used both by the FMU and by the target simulator. If
the target simulator has different definitions in the
header file (e.g., “typedef float fmiReal” in-
stead of “typedef double fmiReal”), then the
FMU needs to be re-compiled with the header file
used by the target simulator. The header file plat-
form, for which the model was compiled, as well as
the version number of the header files, can be in-
quired in the target simulator with FMI functions.

The type fmiValueReference defines a handle
for the value of a variable: The handle is unique at
least with respect to the corresponding base type
(such as fmiReal) besides alias variables that can
have the same handle. All structured entities, such as
records and arrays, are “flattened” into a set of scalar
values of type fmiReal, fmiInteger etc. A
fmiValueReference references one such scalar.
The coding of fmiValueReference does not need
to be exposed by the modeling environment that
generated the model. The data exchange is per-
formed using the functions fmiSetXXX(...) and
fmiGetXXX(...). XXX stands for one of the types
Real, Integer, Boolean, and String. One argument of
these functions is an array of fmiValueReference,
which defines which variables are accessed. The
mapping between the FMU variables and the
fmiValueReferences is stored in the model de-
scription XML file.

For simplicity, a “flat” structure of variables is
used. Still, the original hierarchical structure of the
variables can be retrieved, if a flag is set in the
XML-file that a particular convention of the variable

names is used. For example, the Modelica variable
name “pipe[3,4].T[14]” defines a variable
which is the (3.4) element of an array of records
“pipe” of vector T (“.” separates hierarchical levels
and “[...]” defines array elements).

Header-file “fmiFunctionTypes.h” contains
typedef definitions of all function prototypes of an
FMU. When dynamically loading the DLL or shared
object of an FMU, these definitions can be used to
type-cast the function pointers to the respective func-
tion definition. Example for a definition in this head-
er file:
 typedef fmiStatus fmiSetTimeTYPE
 (fmiComponent, fmiReal);
This header file was newly introduced in FMI 2.0 to
ease the dynamic loading.

Finally, header file “fmiFunctions.h” contains the
function prototypes of an FMU that can be accessed
in simulation environments. This header file includes
the other two header files from above. Example for a
definition in this header file:
 DllExport fmiSetTimeTYPE fmiSetTime;

The goal is that both textual and binary represen-
tations of models are supported and that several
models using FMI might be present at link time in an
executable (e.g., model A may use a model B). For
this to be possible the names of the FMI-functions in
different models must be different or function point-
ers must be used. To support the first variant macros
are provided in “fmiFunctions.h” to build the
actual function names by using a function prefix that
depends on how the FMU is shipped. Typically,
FMU functions are used as follows:

// FMU is shipped with C source code,
// or with static link library
#define FUNCTION_PREFIX MyModel_
#include "fmiFunctions.h"
< usage of the FMU functions >

// FMU is shipped with DLL/SharedObject
#define FUNCTION_PREFIX
#include "fmiFunctions.h"
< usage of the FMU functions >

If an FMU is shipped with C source code, or with a
static link library, then a function that is defined as
“fmiGetReal” is changed by the macros to the ac-
tual function name “MyModel_fmiGetReal”. The
function prefix is hereby defined in the XML file. A
simulation environment can therefore construct the
relevant function names by generating code for the
actual function call. In case of a static link library,
the name of the library is MyModel.lib on Windows,
and libMyModel.a on Linux, in other words the
function prefix attribute is used as library name.

If an FMU is shipped with a DLL/SharedObject,
the constructed function name is “fmiGetReal”, in
other words it is not changed. A simulation environ-
ment will then dynamically load this library and will
explicitly import the function symbols by providing
the FMI function names as strings. The name of the
library is MyModel.dll on Windows or MyModel.so
on Linux, in other words the function prefix attribute
is used as library name.

An FMU can be optionally shipped so that it ba-
sically contains only the communication to another
tool. This is particularly common for co-simulation
tasks. In FMI 1.0, the function names are always pre-
fixed with the model name and therefore a
DLL/Shared Object has to be generated for every
model. FMI 2.0 improves this situation since model
names are no longer used as prefix in case of
DLL/Shared Objects: Therefore one DLL/Shared
Object can be used for all models in case of tool
coupling.

3 New Features of FMI 2.0

In this section the main new features introduced by
FMI 2.0 are sketched. Note, also many other minor
improvements have been introduced, based on the
experience in using FMI 1.0. Especially:

 When instantiating an FMU, the simulation envi-
ronment must report the absolute path to the
FMU resource directory also in Model Ex-
change, in order that the FMU can read all of its
resources (for example maps, tables, ...) inde-
pendently of the "current directory" of the simu-
lation environment where the FMU is used.

 Enumerations have an arbitrary (but unique)
mapping to integers (in FMI 1.0, the mapping
was automatically assigned to 1,2,3,...).

 When enabling logging, log categories can be
defined, so that the FMU needs to only generate
logs of the defined categories (in FMI 1.0, logs
had to be generated for all log categories and
they had to be filtered afterwards).

 Explicit alias/antiAlias variable definitions have
been removed, to simplify the interface: If varia-
bles of the same base type (such as fmiReal)
have the same valueReference, they have
identical values. A simulation environment may
ignore this completely (this was not possible in
FMI 1.0), or can utilize this information to more
efficiently store results on file.

 Continuous state variables are explicitly listed as
FMU variables, and an ordering is introduced for

them, as well as for inputs, and outputs in the
XML file, in order that not an (arbitrary) order is
selected by the simulation environment. This is
essential, for example when linearizing an FMU,
or when providing "sparsity" information (see
below).

3.1 Unification of FMI for Model Exchange
and Co-Simulation

In FMI 1.0 the Model Exchange and Co-Simulation
interfaces were defined in two different documents.
The XML-description and function definitions were
slightly different. In version 2.0 both interfaces are
combined in one document and unified. Now one
FMU can implement both interfaces at the same
time. The presence of the “ModelExchange” or “Co-
Simulation” elements in the XML-description indi-
cates which interface is implemented. Which inter-
face is used by the environment is decided by calling
the appropriate instantiation function (fmiInstan-
tiateModel or fmiInstantiateSlave).

In this way the distributed use case (see [1])
which was applicable for Co-Simulation in FMI 1.0
only is supported in the Model Exchange case too. In
this use case only the ability of a tool to evaluate the
model equations is used, not its solver.

3.2 Classification of Interface Variables

Variables exposed by the FMU are now categorized
in a slightly different way in FMI 2.0:

Attribute “causality” is an enumeration that defines
the causality of the variable. Allowed values are:
 parameter: An independent variable that must

be constant during simulation.
 input: The variable value can be provided from

another model.
 output: The variable value can be used by an-

other model. The algebraic relationship to the
inputs is defined in element ModelStructure.

 local: Local variable that is calculated from other
variables. It is not allowed to use the variable
value in another model

Attribute “variability” is an enumeration that de-
fines the time dependency of the variable, in other
words it defines the time instants when a variable
can change its value. Allowed values are:
 constant: The value of the variable never chang-

es.
 fixed: The value of the variable is fixed after

initialization.
 tunable: The value of the variable is constant

between externally triggered events due to

changing variables with causality = "parameter"
or "input" (see explanation below).

 discrete: The value of the variable is constant
between internal events (= time, state, step
events defined implicitly in the FMU).

 continuous: No restrictions on value changes.

The new value “tunable” introduced in FMI 2.0 al-
lows a modeling environment to expose independent
parameters that can be manually “tuned” during sim-
ulation (for example, during simulation a modeler
might change the gain of a PID controller, or the
load mass of a drive train in order to quickly improve
the design).

“Tuning a parameter” during simulation does not
mean to “change the parameter online” during simu-
lation (since this might introduce Dirac impulses).
Instead, this is a short hand notation for:

1. Stop the simulation at an event instant (usually, a
step event, in other words after a successful inte-
gration step).

2. Change the values of the tunable parameters.

3. Compute all parameters that depend on the tuna-
ble parameters.

4. Resume the simulation using as initial values the
current values of all variables and the new values
of the parameters.

With this interpretation, changing parameters online
is “clean”, as long as these changes appear at an
event instant.

3.3 Save and Restore of FMU state

An FMU has an internal state consisting of all values
that are needed to continue a simulation. This inter-
nal state consists especially of the values of the con-
tinuous states, discrete states, iteration variables, pa-
rameter values, input values, file identifiers and
FMU internal status information. With newly intro-
duced (optional) functions, the internal FMU state
can be copied and the pointer to this copy is returned
to the environment. The FMU state copy can be set
as current FMU state, in order to continue the simu-
lation from it. This feature introduced in FMI 2.0 can
be for example used:

 For iterative co-simulation master algorithms
(get the FMU state for every accepted communi-
cation step; if the follow-up step is not accepted,
restart co-simulation from this FMU state).

 For nonlinear Kalman filters (get the FMU state
just before initialization; in every sample period,
set new continuous states from the Kalman filter
algorithm based on measured values; integrate to
the next sample instant and inquire the predicted

continuous states that are used in the Kalman fil-
ter algorithm as basis to set new continuous
states).

 For nonlinear model predictive control (get the
FMU state just before initialization; in every
sample period, set new continuous states from an
observer, initialize and get the FMU state after
initialization. From this state, perform many
simulations that are restarted after the initializa-
tion with new input signals proposed by the op-
timizer).

Furthermore, the FMU state can be serialized and
copied into a byte vector. This can, for example be
used to perform an expensive steady-state initializa-
tion, copy the received FMU state in a byte vector
and store this vector on file. Whenever needed, the
byte vector can be loaded from file, can be deserial-
ized and the simulation can be restarted from this
FMU state, in other words from the steady-state ini-
tialization.

3.4 Dependency Information

In FMI 1.0 only the dependencies of outputs on in-
puts could be defined by the element “DirectDe-
pendency” in the XML-description. In FMI 2.0 this
information and the dependencies of outputs w.r.t.
state variable and of derivatives w.r.t. inputs and
state variables can be provided using the element
“ModelStructure”. Under this element ordered lists
of inputs, derivatives (with their associated state var-
iable names) and outputs are provided. At each out-
put and derivative additional attributes define the
dependency on inputs and state variables. Not only
the dependency itself but also the kind of dependen-
cy is defined here. It can be indicated whether the
dependency is nonlinear, fixed (the dependency
is linear, the factor is constant after initialization) or
discrete (the factor might change after events).
Using this information a tool can decide at which
stage of the solution process the respective entries of
the Jacobian matrices are to be retrieved.

The dependency information of outputs can be
utilized for detection of algebraic loops when FMUs
are connected with other parts of a model. In addi-
tion to that dependency information is necessary for
usage of sparse matrix techniques on Jacobian matri-
ces.

Assume for example that the following equations
are defined:

1 1 2
2

2 2 1 2 1 3

3 3 1 3 1 2 3

1 2 3

()

() 3 2 3

(, , , ,)

(,)

x f x
d

x f x p x u u
dt

x f x x u u u

y g x x

where u1 and u2 are continuous-time inputs (variabil-
ity=”continuous”), u3 is a discrete-time input (var-
iability=”discrete”), and p is a fixed parameter
(variability=”fixed”). The structure of these equa-
tions can then be defined optionally in the following
way in the XML file:

<ModelStructure>
 <Inputs>
 <Input name="u1"/>
 <Input name="u2"/>
 <Input name="u3"/>
 </Inputs>

 <Derivatives>
 <Derivative name="der(x1)" state="x1"
 stateDependencies="2"
 inputDependencies="" />
 <Derivative name="der(x2)" state="x2"
 stateDependencies="1 2"
 stateFactorTypes ="nonlinear fixed"
 inputDependencies="1 3"
 inputFactorTypes ="fixed fixed" />
 <Derivative name="der(x3)" state="x3"
 stateDependencies="1 3" />
 </Derivatives>

 <Outputs>
 <Output name="y"
 stateDependencies="2 3"
 inputDependencies="" />
 </Outputs>
</ModelStructure>

3.5 Jacobian Matrices

Partial derivatives of FMU variables with respect to
inputs or state variables (Jacobian matrices) are
needed for implicit integration methods, for lineari-
zation of FMUs, or for usage in extended Kalman
filters. Especially for large models the numerical
computation of Jacobian matrices is time consuming.
For that reason FMUs can optionally provide func-
tions to retrieve partial derivatives (complete Jacobi-
ans) or directional derivatives of some variables
w.r.t. some others.

The sparsity pattern defined under “ModelStrucu-
tre” (see section above) can be utilized for efficient
data storage and matrix operations on sparse Jacobi-
ans. FMI does not define a specific storage schema.
The calling environment is free to use its own sche-
ma by the following approach. The environment has
to provide a function pointer to a call back function
setMatrix as argument of fmiGetPartialDe-

rivatives. The FMU calls this function to set re-
spective matrix elements.

The FMU internally is free to use efficient nu-
merical methods for Jacobian computation, use a
symbolically deduced algorithm or automatic differ-
entiation.

3.6 Precise Time Event Handling

The details of precise time event handling in FMI
were still under discussion before the editorial dead-
line of this paper. Hence we cannot present a detailed
description here. The development work is compli-
cated since several aspects have to be considered:
 The synchronous features of Modelica 3.3 [2]

should be supported.
 FMI should also be useable by tools that do not

support synchronous time event handling.
 The time event handling is to be defined in a

way that allows backward compatible exten-
sions.

3.7 Improved Unit Definitions

The unit definitions have been improved in FMI 2.0:
The tool-specific unit-name can optionally be ex-
pressed as function of the 7 SI base units and the SI
derived unit “rad”. It is then possible to check units
when FMUs are connected together (without stand-
ardizing unit names as needed in FMI 1.0), or to
convert variable values that are provided in different
units (for the same physical quantity). In the specifi-
caiton it is sketched how to utilize this information
for connection checks, dimensional checks, or unit
propagation. The trick is to treat the derived unit
“rad” either as “rad” (for connection checks and unit
propagation) or as “1” (for dimensional checks) de-
pending on the situation.

4 Examples

In this section two examples are shown that demon-
strate the structure of the XML file and especially
how FMUs can be connected together. The use case
is an often occurring situation where two FMUs shall
be connected that have a mechanical interface.

4.1 FMU as Force Element

In the first example, FMU 1 consists of a one-
dimensional rotational drive train with an inertia that
is connected to a rotational spring/damper system
and the end point of the spring/damper system shall
be used as interface of this FMU, see next figure:

In multi-body system terminology, this is called a
“force element”. Typically, FMU 1 would be a com-
plicated device, e.g., a controlled electrical motor
with a gearbox, but the essential part is the force el-
ement at the interface. The inputs to FMU 1 are the
angle phi and the angular velocity w of the end point
of the spring/damper system. The output would be
the torque generated by the spring/damper. It is cal-
culated with the simple equation
 torque = c*(phi - inertia.phi) +
 d*(w – inertia.w)

where c is the spring and d is the damper constant.
This FMU is then connected to a multi-body sys-

tem FMU, for example a robot, and drives a revolute
joint. The FMU 2 provides phi and w as output
(from the relative joint coordinates) and gets the
torque as input.

The XML-file of FMU 1 has the following structure:
<?XML version="1.0" encoding="UTF-8"?>
<fmiModelDescription
 XMLns:xsi="http://www.w3.org/2001/.."
 xsi:noNamespaceSchemaLocation="fmiModel.."
 fmiVersion="2.0"
 modelName="FMU_Coupling.DriveTrain_TorqueAtEnd"
 guid="{a4976b5c-b9f7-432a-9dd3-e80bafaac060}"
 generationTool="..."
 generationDateAndTime="2012-07-15T12:52:13Z"
 variableNamingConvention="structured"
 numberOfEventIndicators="0">

 <ModelExchange
 modelIdentifier="FMU_0Coupling_..."
 canGetAndSetFMUstate="true"
 providesPartialDerivativesOf_Derivative
 Function_wrt_States="true"
 ...
 providesDirectionalDerivatives="true"/>

 <CoSimulation
 modelIdentifier="FMU_0Coupling_..."
 canHandleVariableCommunicationStepSize="true"
 canHandleEvents="true"
 canInterpolateInputs="true"
 canSignalEvents="true"
 canGetAndSetFMUstate="true"
 .../>

 <UnitDefinitions>
 <Unit name="N.m">
 <BaseUnit kg="1" m="2" s="-2"/> </Unit>
 </UnitDefinitions>

 <TypeDefinitions>
 <SimpleType
 name="Modelica.SIunits.Torque">
 <Real quantity="Torque" unit="N.m"/>
 </SimpleType>
 ...
 </TypeDefinitions>

 <DefaultExperiment startTime="0.0"
 stopTime="1.0" tolerance="0.0001"/>

 <ModelVariables>
 <ScalarVariable
 name="torque"
 valueReference="335544320"
 description="Torque in flange"
 causality="output">
 <Real
 declaredType=
 "Modelica.Blocks.Interfaces.RealOutput"
 unit="N.m"/>
 ...
 </ModelVariables>

 <ModelStructure>
 <Inputs>
 <Input name="phi"/>
 <Input name="w" derivative="1"/>
 </Inputs>
 <Derivatives>
 <Derivative
 name="der(inertia.phi)"
 state="inertia.phi"
 stateDependencies="2"
 inputDependencies=""/>
 <Derivative
 name="der(inertia.w)"
 state="inertia.w"/>
 </Derivatives>
 <Outputs>
 <Output name="torque"
 inputDependencies="1 2"
 inputFactorKinds="fixed fixed"/>
 </Outputs>
 </ModelStructure>
</fmiModelDescription>

Most of the elements should be self-explanatory. The
interesting part for the connection is element
“ModelStructure” at the end. Output torque de-
pends on the first and the second input, i.e. on phi
and w. Furthermore, the attributes fixed define that
the inputs enter the equation for the output with fixed
linear factors:

torque = p1*phi + p2*w + f(..)

where p1 and p2 are constants that are fixed after
initialization. Additionally, for input w the attribute
derivative = ”1” is defined. The meaning is that
w is the derivative of the first input, i.e. of phi. This
derivative information for inputs and outputs is es-
sential in order that a coupling tool can check that an
input is really the derivatives of another input by
checking the derivative attributes of the outputs from
another FMU.

The XML-file for FMU 2 looks similar. We will
concentrate only on the ModelStructure element:
 <ModelStructure>
 <Inputs>
 <Input name="torque"/>
 </Inputs>
 <Derivatives>
 ...
 <Outputs>
 <Output
 name="phi"
 stateDependencies="1"
 inputDependencies=""/>
 <Output
 name="w"
 derivative="1"
 stateDependencies="2"
 inputDependencies=""/>
 </Outputs>
 </ModelStructure>

The important point is that empty inputDependen-
cies lists are defined for the outputs. This means
that the outputs phi and w do not directly depend on
the input torque. As a result, when connecting FMU
2 to FMU 1, the outputs phi and w are provided by
FMU 2. FMU 1 computes its output torque that is
an input to FMU 2. Since the FMU 2 outputs do not
depend on this input, there is no algebraic loop and
the computation is simple.

4.2 FMUs with Coupling Constraint

The second example is the more often occurring
case, but is more involved. FMU 1 is again a one-
dimensional rotational drive train, but ends this time
with a rotational inertia, see next figure:

Since FMU 1 is connected to a joint of FMU 2, the
coupling leads to a constraint equation that states that
the angle of the revolute joint of FMU 2 is identical
to the angle of inertia2 in FMU 1. It is well-
known that such a model cannot be transformed by
purely algebraic transformations into a state space

form (this is a so called higher index system2), and
that the first and second derivatives of this constraint
equation is needed. For this reason, FMU 2 provides
the angle phi of the revolute joint, its first derivative
w (the angular velocity) as well as its second deriva-
tive a (the angular acceleration) to FMU 1. In turn
FMU 1 provides the reaction torque to FMU 2. The
“ModelStructure” elements of the two FMUs have
now the following structure:

FMU 1:
 <ModelStructure>
 <Inputs>
 <Input name="phi"/>
 <Input name="w" derivative="1"/>
 <Input name="a" derivative="2"/>
 </Inputs>
 <Derivatives>
 ...
 <Outputs>
 <Output
 name="torque"
 inputDependencies="3"
 inputFactorKinds="fixed"/>
 </Outputs>
 </ModelStructure>

FMU 2:
 <ModelStructure>
 <Inputs>
 <Input name="torque"/>
 </Inputs>
 <Derivatives>
 ...
 <Outputs>
 <Output
 name="phi"
 stateDependencies="1"
 inputDependencies=""/>
 <Output
 name="w"
 derivative="1"
 stateDependencies="2"
 inputDependencies=""/>
 <Output
 name="a"
 derivative="2"
 stateDependencies="1"/>
 </Outputs>
 </ModelStructure>

The ModelStructure of FMU 1 states that its output
torque depends on its 3rd input a and that a enters
with a fixed factor. Therefore, the following equation
is present:
 torque = J*a + f1(<states>)

where J is a constant quantity that is fixed after ini-
tialization (this is the inertia of component iner-
tia2) and f1(..) is an additional functional de-
pendency of the states of the FMU, but not of its in-
puts.

2 Simulating such a higher index system of index 3 directly
will usually fail with an error message of the integrator that
there is no convergence.

The ModelStructure of FMU 2 states that it’s 3rd
output a depends on all of its inputs, i.e. on torque
(since no inputDependencies attribute is defined):

a = f2(torque, <states>)

Therefore, when the two FMUs are connected to-
gether an algebraic loop in the angular acceleration a
and in the reaction torque appears. The environ-
ment has therefore to either use a differential-
algebraic equation solver, or has to solve a non-
linear algebraic loop over the two FMUs. The latter
case can be improved by using Jacobian information:

As will be explained below, it is possible to com-
pute the factor J once after initialization and the term
f1 at every model evaluation (which turns out to be a
cheap operation for a drive train). It is then only nec-
essary to solve a nonlinear algebraic loop over FMU
2 and the simple equation of FMU 1. Additionally,
the Jacobian of the FMU 2 equation can be comput-
ed. Since for all mechanical systems the FMU 2
equation depends linearly on the unknowns, a non-
linear solver will converge with the provided Jacobi-
ans within one step.

An often occurring situation is that FMU 1 is im-
ported into a multi-body program and coupled to a
joint. In such a case, the multi-body code gets the
information about the linear equation of FMU 1.
Since the multi-body program has to solve a linear
equation system in the accelerations and in the forc-
es/torques of its mechanical system, just the simple
linear equation of FMU 1 has to be added and in eve-
ry model evaluation only one linear equation system
has to be solved.

To summarize, the coupling in this example be-
comes more complicated and linear or non-linear
equation systems have to be solved. This is relatively
cheap provided the information about linear depend-
encies and/or Jacobians are utilized.

The partial derivatives of output variables with
respect to input variables can be computed with
function fmiGetDirectionalDerivative. For the
case of one output variable y as function of states x
and of one input u, this function assumes an equation
of the form:

((), (),)y g t u t tx
The function calculates:

g

y u
u

where the seed Δu is given as an explicit input argu-
ment. Therefore, calling fmiGetDirectionalDe-
rivative for the output torque with respect to in-
put a and with Δa=1, the function will return the par-
tial derivative, that is J. The value of f1 is computed
by providing an input a=0 and computing the output
torque, that is torque = f1(<states>). Similari-

ly, the partial derivative of the FMU 2 equation can
be computed.

As a final remark: When FMU 1 is modeled in
Modelica, then the derivative relationships between
the inputs of the FMU must be defined, otherwise a
Modelica translator cannot process the model. There
is no direct Modelica language element available to
define this. However, with component Modeli-
ca.Mechanics.Rotational.Sources.Move from the
Modelica Standard library this relationship is ex-
pressed (based on language elements to express that
a function is a derivative of another function).

5 Increasing Quality of FMI Imple-
mentations

The FMI project provides an infrastructure to in-
crease the quality and compatibility of implementa-
tions in different tools. A repository of FMUs gener-
ated by different tools and reference results are pub-
lically available at the svn server:

https://svn.fmi-standard.org/fmi/trunk/Test_FMUs

In this way tool vendors are able to cross check their
implementations in an easy way. We hereby would
like to ask tool vendors that export FMUs, to provide
FMUs of their tools by sending an email with the
FMUs to info@fmi-standard.org.

Additionally, the Modelica Association contract-
ed the development of an open source FMI compli-
ance checker. This tool is now available for FMI 1.0
in source code, and as executable for Windows and
Linux under the svn address from above. It will be
available for FMI 2.0 soon after FMI 2.0 is released.

6 FMI Usage

FMI is used in industrial and scientific projects by
several companies and research institutions:

In all new gearbox projects for Mercedes-Benz
passenger cars FMI is used for software-in-the-loop
simulations [3]. Control software and FMUs coming
from different modeling environments run in closed-
loop in the virtual ECU tool Silver on Windows PC
in order to validate, test and debug control software.

Before FMI, vehicle models had to be imported
through various vendor and version specific import
procedures into Silver. This was expensive and error
prone. Thanks to the FMI, these bridges have now
been replaced by a uniform import interface, increas-
ing thereby the cost-benefit ratio of simulation in this
domain.

In mechatronic gearshift simulations for commer-
cial vehicles at Daimler AG FMI is utilized twice
[4]. At first controller software is connected to a de-
tailed 1D powertrain model in SimulationX. After-
wards this model is exported as FMU and imported
to the multibody system simulation tool Simpack.
There it is connected to a detailed truck model. This
allows the holistic simulation and optimization of the
shifting comfort.

At IFP Energies Nouvelles, FMI for Model Ex-
change is used to parallelize the execution of com-
plex internal combustion engine models in the tool
xMOD (see [5]). The models have around 100 - 300
state variables, with integration step-sizes that can
reach some microseconds. Their use is mainly in-
dented to validate engine controls. The final target is
to enable the execution in real-time, for hardware in
the loop simulations.

In [6], an algorithm is implemented for deriva-
tive-free optimization implemented in Python and
applied to parameter optimization of FMUs is intro-
duced. The FMUs are loaded and simulated using the
PyFMI package (http://www.pyfmi.org). The opti-
mization algorithm is applied to a Volvo truck en-
gine to identify model parameters based on meas-
urement data from a test cycle.

In [7] the FMI based co-simulation master from
Fraunhofer is used to develop, implement and test
sophisticated algorithms for the co-simulation of
FMUs generated by Dymola.

Dassault Systèmes uses FMI for academically
trainings. Student teams work with CATIA V6 and
define both a 3D CATIA representation of a NXT
robot as well as the controller software. Practically,
the real robot has sensors and actuators and is piloted
from a smartphone remote command, while the FMU
based logical control is executed in a CATIA ses-
sion. All these items are FMI and Bluetooth connect-
ed.

The solution has been delivered to Georgia Insti-
tute of Technology and University of Detroit Mercy
(US High Schools), also related to a cooperation
with Ford Motors Foundation.

In the field of modeling and simulation of build-
ing energy systems FMI is also used. In [8] FMI is
utilized to connect a building model with a Modelica
model of the heating system.

In 2012, the International Energy Agency, under
the implementing agreement on Energy Conserva-
tion in Buildings and Community Systems, approved
the five-year Annex 60 proposal "New generation
computational tools for building and community en-
ergy systems based on the Modelica and Functional
Mockup Interface standards." Eleven countries are
expected to participate in sharing, developing and

deploying free open-source contributions for model-
ing and simulation of energy systems of buildings
and communities, based on Modelica and Functional
Mockup Interface standard.

The Lawrence Berkeley National Laboratory
(LBNL) released an FMI for co-simulation import
interface in version 7.1 of the EnergyPlus building
simulation program. Work is also in progress to ex-
port EnergyPlus as a FMU for Co-Simulation. UC
Berkeley and LBNL have been developing JFMI, a
Java Wrapper for FMI for Co-Simulation and Model
Exchange. JFMI will be used to integrate an FMI
import interface in Ptolemy II, a software environ-
ment for design and analysis of heterogeneous sys-
tems.

The Institute for the Sustainable Performance of
Buildings has been developing a web-based eLearn-
ing tool, Learn Green Buildings
(http://learngreenbuildings.org), in which a Web in-
terface communicates with an FMU for Co-
Simulation that computes the dynamic response of
building energy and control systems. The tool will
allow students to interactively operate a simulated,
realistic building system, to test energy-saving
measures and to explore the effects of faults in
equipment and controls.

7 Conclusions and Outlook

FMI is an established standard for Model Exchange
and Co-Simulation. The upcoming version 2.0 im-
proves the compatibility of implementations by a
clarified specification. New features increase usabil-
ity and performance especially for large models.

This version will be stable for the next years. If
necessary, minor backwards compatible releases will
be available to improve and clarify the specification
and to support new features. Current development
tasks are the exchange of structured data and arrays
of variable size and support of the new synchronous
features of the Modelica language [2].

The further development of FMI is organized un-
der the hood of the Modelica Association. The FMI
Modelica Association Project is of course open for
non Modelica tool vendors and organizations. From
the 16 members of the FMI Steering Committee and
Advisory Group, only five are Modelica Tool ven-
dors.

Companies and organizations which are interest-
ed to contribute to FMI development or request fea-
tures are invited to contact the FMI project via
info@fmi-standard.org.

8 Acknowledgements
The authors wish to thank all the contributors to the
FMI specification (see Annex).

Parts of this work were supported by the German
BMBF (Förderkennzeichen: 01IS08002), the French
DGCIS, and the Swedish VINNOVA (funding num-
ber: 2008-02291) within the ITEA2 MODELISAR
project
(http://www.itea2.org/project/result/download/result/
5533) The authors appreciate the partial funding of
this work.

9 References

[1] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C.
Clauß, H.Elmqvist, A. Junghanns, J. Mauss, M.
Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-
V. Peetz, S. Wolf: The Functional Mockup Inter-
face for Tool independent Exchange of Simulation
Models. 8th International Modelica Conference.
Dresden 2011. Download:
http://www.ep.liu.se/ecp/063/013/ecp11063013.pdf

[2] Modelica Association: Modelica – A Unified Ob-
ject-Oriented Language for Systems Modeling.
Language Specification, Version 3.3. May 9, 2012.

[3] E. Chrisofakis, A. Junghanns, C. Kehrer, A. Rink:
Simulation-based development of automotive con-
trol software with Modelica. 8th International
Modelica Conference. Dresden 2011. Download:
http://www.ep.liu.se/ecp/063/001/ecp11063001.pdf

[4] A. Abel, T. Blochwitz, A. Eichberger, P. Hamann,
U. Rein: Functional Mock-up Interface in Mecha-
tronic Gearshift Simulation for Commercial Ve-
hicles. 9th International Modelica Conference. Mu-
nich, 2012.

[5] Abir Ben Khaled, Mongi Ben Gaid, D. Simon, G.
Font: Multicore simulation of powertrains using
weakly synchronized model partitioning. Accept-
ed for 2012 IFAC Workshop on Engine and Power-
train Control, Simulation and Modeling. Rueil-
Malmaison, 2012

[6] S. Gedda, C. Andersson, J. Åkesson, S. Diehl: De-
rivative-free Parameter Optimization of Func-
tional Mock-up Units. 9th International Modelica
Conference. Munich, 2012.

[7] T. Schierz, M. Arnold, C. Clauss: Co‐simulation
with Communication Step Size Control in an FMI
Compatible Master Algorithm. 9th International
Modelica Conference. Munich, 2012.

[8] S. Burhenne, M. Pazold, F. Antretter, F. Ohr, S. Her-
kel, J. Radon: WUFI Plus Therm: Co-Simulation
unter Verwendung von Modelica Modellen.
Presentation at the Symposium „Integrale Planung
und Simulation in Bauphysik und Gebäudetechnik.“
Dresden, March 2012.

Annex
Members of the FMI Modelica Association Project:

The Steering Committee is open for additional members that actively support FMI. Requirements: Must have
(a) participated at least at two FMI meetings in the last 24 months, (b) must either provided the FMI standard
or part of it in a commercial or open source tool, and/or must actively use FMI in industrial projects, (c) the
Steering Committee members agree with qualified majority.

The Advisory Committee is open for additional members that proofed to actively support FMI. Require-
ments: Must have (a) participated at least at two FMI meetings in the last 24 months, and (b) the Steering
Committee members agree with qualified majority.

Contributors to the FMI 2.0 Specification:

The following persons participated at FMI 2.0 design meetings and contributed to the discussion (alphabeti-
cal list):

Martin Arnold, University Halle, Germany
Johan Akesson, Modelon, Sweden
Mongi Ben-Gaid, IFP, France
Torsten Blochwitz, ITI GmbH Dresden, Germany
Christoph Clauss, Fraunhofer IIS EAS, Germany
Alex Eichberger, SIMPACK AG, Germany
Hilding Elmqvist, Dassault Systèmes AB, Sweden
Markus Friedrich, SIMPACK AG, Germany
Peter Fritzson, PELAB, Sweden
Andreas Junghanns, QTronic, Germany
Petter Lindholm, Modelon, Sweden
Kristin Majetta, Fraunhofer IIS EAS, Germany
Sven Erik Mattsson, Dassault Systèmes AB, Sweden
Jakob Mauss, QTronic, Germany
Dietmar Neumerkel, Daimler AG, Germany
Peter Nilsson, Dassault Systèmes AB, Sweden
Hans Olsson, Dassault Systèmes AB, Sweden
Martin Otter, DLR-RM, Germany
Bernd Relovsky, Daimler AG, Germany
Tom Schierz, University Halle, Germany
Bernhard Thiele, DLR-RM, Germany
Antoine Viel, LMS International, Belgium

The following people contributed with comments (alphabetical list):
Peter Aaronsson, MathCore, Sweden
Bernhard Bachmann, University of Bielefeld, Germany
Iakov Nakhimovski, Modelon, Sweden

Project Leader Torsten Blochwitz (ITI GmbH Dresden, Germany)

Steering Committee Atego, Daimler, Dassault Systèmes, IFP EN, ITI, LMS, Modelon, QTronic,
SIMPACK

Advisory Board Armines, DLR, Fraunhofer (IIS/EAS, First, SCAI), Open Modelica Consortium,
TWT, University of Halle

Guests Altair Engineering, Berkeley University, Bosch, ETAS, Siemens, Equa Simula-
tion

