
The 2nd Joint International Conference on Multibody System Dynamics
May 29–June 1, 2012, Stuttgart, Germany

A Workbench for Multibody Systems
ODE and DAE Solvers

Christian Andersson∗#†, Johan Andreasson†, Claus Führer∗, Johan Åkesson#†

∗ Department of Numerical Analysis
Lund University

Box 118, 221 00 Lund, Sweden
[chria, claus]@maths.lth.se

# Department of Automatic Control
Lund University

Box 118, 221 00 Lund, Sweden
johan.akesson@control.lth.se

†Modelon AB
Scheelevägen 17, 223 63 Lund, Sweden

johan.andreasson@modelon.com

ABSTRACT

During the last three decades, a vast variety of methods to numerically solve ordinary differential equations
(ODEs) and differential algebraic equations (DAEs) has been developed and investigated. Few of them met
industrial standards and even less are available within industrial multibody simulation software. Multibody
Systems (MBS) offer a challenging class [5] of applications for these methods, since the resulting system
equations are in the unconstrained case ODEs which are often stiff or highly oscillatory. In the constrained
case the equations are DAEs of index-3 or less. Friction and impact in the MBS model introduce discon-
tinuities into these equations while coupling to discrete controllers and hardware-in-the-loop components
couple these equations to additional time discrete descriptions. Many of the developed numerical methods
have promising qualities for these types of problems, but rarely got the chance to be tested on large scale
problems. One reason is the closed software concept of most of the leading multibody system simulation
tools or interface concepts with a high threshold to overcome. Thus, these ideas never left the academic
environment with their perhaps complex but dimensionally low scale test problems. In this paper we will
present a workbench, ASSIMULO, which allows easy and direct incorporation of new methods for solv-
ing ODEs or DAEs written in FORTRAN, C, Python or even MATLAB and which indirectly interfaces
to multibody programs such as Dymola and Simpack, via a standardized interface, the functional mock-up
interface. The paper is concluded with industrial relevant examples evaluated using industrial and academic
solvers.

1 INTRODUCTION

In an attempt to provide a unified interface for model interaction between simulation tools and modeling
environments, the MODELISAR project defined the Functional Mock-up Interface (FMI). The intention
is that a tool generates a model following the FMI specification which then in turn can be exchanged
via the standardized interface. A model following the specification is called a Functional Mock-up Unit
(FMU). Our intention is to describe a workflow where it is possible to create a multibody system using
a commercially available tool, such as Dymola, and by exporting the system as an FMU, enables it to be
interfaced into the simulation package ASSIMULO and made available for the solvers connected.

ASSIMULO is a simulation package for solving ordinary differential equations containing various different
solvers, both state-of-the art and more experimental. ASSIMULO is written in the programming language
Python which is a powerful dynamic programming language with a clear and readable syntax. The choice of
Python is highly influenced by the ability and the ease of connecting different software written in different
programming languages, such as C or FORTRAN, and the ability of using Python as glue. Another aspect
is due to the clear and readable syntax of Python a user can easily create their own scripts as the threshold
is relatively low for learning the language compared with the low-level languages C and FORTRAN, espe-
cially if the user has a background in MATLAB. Python is also a good choice for prototyping as there are
specialized packages for scientific computing and for visualization, much like MATLAB.

Another key part of the workflow is the Python package PyFMI which enables a FMU to be accessed from
Python and thus also be able to be interfaced into ASSIMULO.



This paper is outlined as follows. In Section 2, an overview of the Functional Mock-up Interface (FMI)
is given together with a description of its capabilities and a package, PyFMI, for interaction with models
using the high-level language Python. Next, the simulation package ASSIMULO is described together with
its available solvers and problem formulations. In Section 4, an example is given demonstrating the concept
of using the interface to gain access to models written in commercial multibody software. Finally, in Section
5, conclusions and limitations are discussed as well as future work.

2 FUNCTIONAL MOCK-UP INTERFACE

The Functional Mock-up Interface (FMI) [3] defines a standard for model exchange with a small set of
functions for model interaction while at the same time it provides the necessary means for simulation of
complex hybrid dynamic models. FMI is a result of the ITEA2 project MODELISAR where the idea is that
a modeling and / or simulation environment generates a dynamic library or source files, written in C, which
then can be exchanged between different tools and connected to other models. Additionally, FMI specifies
an XML format for describing the variables and parameters contained in the model. The idea is that these
two, self-contained files are compressed into a Functional Mock-up Unit (FMU) which can be exchanged
between different environments, see Figure 1 (Simpack plan to support export of Functional Mock-up Units
in 20121).
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Figure 1. Model exchange using the Functional Mock-up Interface (FMI).

The standard describes models as ordinary differential equations with time, state and step events. The
tool that export the FMU is responsible for providing the right-hand-side together with the methods for
monitoring the different events. How the events are intended to be handled depends on the type of event.
Time events are simply handled by asking the provided method for the next time event and if it is less than
the user asked final time, integrate up to that time instant and ask for the next time event. State events are
a bit more difficult as they are dependent on a set of functions where a sign change in any of the functions
indicates that a state event has occurred. This sets a constraint on the integrator that it has to continuously
monitor these sets of functions during the integration so that it can detect sign changes and if so, halt the
integration. Step events also sets a constraint on the integrator as they should be monitored after each
successful internal step taken by the integrator.

FMI 1.0 for model exchange was released in January 2010 and has received a significant amount of at-
tention among vendors. There are currently 34 tools that support or plan to support the FMI. Example of
tools includes the commercial products Dymola [1] and Simpack [2] as well as the open-source platform
JModelica.org [11].

1http://www.modelisar.com/tools.html



2.1 PyFMI

PyFMI 2 is a Python package for interacting with FMUs using Python. PyFMI takes care of unzipping the
FMU, connecting the binary for interaction from Python and loads the model information. The package
provides both a connection to the low-level native FMI functions and convenient high-level functions for
accessing model parameters and setting attributes. A model can be imported into Python using just a few
lines:

from pyfmi import FMUModel

model = FMUModel("Pendulum.fmu")

PyFMI also provides natively a connection to ASSIMULO and thus enables a FMU to be simulated using
the different solvers available in ASSIMULO. Additionally, a graphical user interface for visualization of
simulation results is available. An overview of the interactions are shown in Figure 2.
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Figure 2. Interaction between a Functional Mock-up Unit (FMU), PyFMI and ASSIMULO.

3 ASSIMULO

ASSIMULO [4] is a workbench for solving ordinary differential equations formulated as first or second
order explicit ordinary differential equations, (1) and implicit ordinary differential equations (differential–
algebraic equations, DAEs), (2).

ẏ = f(t, y), y(t0) = y0 (1)

F (t, y, ẏ) = 0, y(t0) = y0, ẏ(t0) = ẏ0. (2)

ASSIMULO is written in the high-level programming language Python and combines a variety of different
solvers written in FORTRAN, C and even Python via a common high-level interface. ASSIMULO consists
of mainly two parts, problem definitions and solvers. The problem definitions are not only limited to, for
instance the right-hand-side of the problem, but they may also contain event functions in order to support
hybrid systems with state, step and time events. Additionally, a problem definition can specify options
related to the problem such as which states are actually algebraic variables. The idea is to keep information
related to a problem separate from the solver. For instance, the tolerances, which are important quantities to
control the solver, are attributes of the solver class rather and are kept separate from the problem description.

ASSIMULO focuses on hybrid problems in such a way, that it helps to express them in a general sense and
eases to handle events once they have been detected by the solver. Say that a problem is defined as follows,

ẏ = f(t, y, sw), y(t0) = y0 (3a)
0 = g(t, y, sw) (3b)

2http://www.pyfmi.org



where f is the right-hand-side of an explicit ordinary differential equation and g are the state event functions
(root functions). Apart from time, t, and states, y, there is an extra argument, sw, which is a set of switches.
They are input variables, which are not altered by the solver. Their purpose is to indicate which internal
branch of f and g is to be evaluated. These switches are (re-)set once the integration has been stopped, due
to an event detection, triggered by a sign change in one of the components of the vector valued function g.
How these switches have to be set depends on the problem and has to be defined in the problem definition
by providing a handle-event function.

In Section 3.1, the available problem formulations are presented and in Section 3.2 follows a brief descrip-
tion of the solvers available and those planned to be included.

3.1 Problem formulations

ASSIMULO provides at its present stage four problem classes:

• Explicit hybrid ODEs

ẏ = f(t, y, sw), y(t0) = y0, sw(t0) = sw0 (4)

• Implicit hybrid ODEs (also called DAEs)

F (t, y, ẏ, sw) = 0, y(t0) = y0, ẏ(t0) = ẏ0, sw(t0) = sw0 (5)

• Mechanical systems in second order explicit ODE form

p̈ =M(p)−1f(t, p, ṗ) (6)

• Mechanical systems in (overdetermined) implicit ODE form

ṗ = v (7)

M(p)v̇ = f(t, p, v)−GT (p)λ (8)
0 = gconstr(p) (9)
0 = G(p)v (10)

For mechanical systems we denoted position and velocity states by p and v respectively. Lagrange multipli-
ers are denoted by λ, constraint matrix by G and the mass matrix by M . The applied forces are described
by f and the constraints by gconstr. Note, d

dpgconstr(p) =: G.

3.2 Solvers

The solvers interfaced to ASSIMULO consist of a variety of different codes written in both FORTRAN and
C. The codes include explicit and implicit Runge–Kutta methods, Rosenbrock-Wanner methods, multistep
methods of Adams and BDF type, Newmark and HHT-α methods. It is planned to include even extrapo-
lation methods for DAEs. Some methods come with a continuous solution representation which enables
root-finding for event detection to correctly handle hybrid systems.

The solver and problem classes are related to each other corresponding to Figure 3. The most universal
solver class handles implicit ODEs. Explict ODEs are thus transformed to their implicit counterpart (resid-
ual formulation), when solved with an implicit solver. Correspondingly overdetermined mechanical DAEs
are in this case transformed to fully determined DAEs by using a GGL-stabilization technique [7]. Also,
mechanical problems given as second order ODEs are automatically transcribed to implicit ODEs, when
exposed to a solver of that class.

The advantage of specially designed problem classes is to allow special purpose solvers. Thus, ASSIMULO
allows to solve most of the problems with specialized methods as well as with general purpose solvers. This
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Figure 3. Connection between the different problem formulations and the different solvers available in
ASSIMULO. The connection of the Functional Mock-up Interface to ASSIMULO is also shown.

makes the tuning of code control parameters as well as performance and accuracy comparisons easy and
documentable.

In the present state, ASSIMULO provides interfaces to production quality solvers like CVODE and IDA from
the SUNDIALS [10] suite developed at the Lawrence Livermore National Laboratory (LLNL). SUNDIALS
is a further development of the codes VODE and DASPK dating back to the 1980s. CVODE solves problems
defined by explicit ordinary differential equations, ẏ = f(t, y). A method flag allows to use for stiff
problems BDF methods and for non-stiff problems Adams-Moulton methods. CVODE uses a variable-order
and variable step size implementation. IDA, on the other hand solves the more general problem described
as implicit ODEs (differential algebraic equations). It uses BDF methods of variable order and variable
step size. While primarily intended to solve index-1 problems (in mechanics, problems with constraints on
acceleration level), it allows to exclude certain solution components from the step size selection procedure
and thus at least technically enables the possibility to solve higher index systems, e.g. mechanical systems
with constraints on position or velocity level. As the method tolerances are used to control both step size
selection and the corrector iteration process even the tolerances on the algebraic components have to be
raised in order to avoid corrector convergence failures.

One important purpose of the ASSIMULO project is to give the simulation and modeling engineer access
to the wide spread flora of research codes. A typical representative for this class of codes is Glimda [12]
which is now accessible by ASSIMULO. Glimda is an implementation of general linear multistep methods
to solve lower index DAEs. These methods can be viewed as a blend of the collocation approach of implict
Runge–Kutta methods with the interpolation-based linear multistep methods. These techniques allows to
adapt the methods coefficients to the special stability characteristics of the problem at hand. ASSIMULO’s
concepts exposes this method class to a wide range of mechanical problems and helps this way to gain
experience of this relatively new method class based on large and industrially relevant models.

The implicit Runge–Kutta method RADAU5 [9] shares stability properties with the implicit Euler method
but promises higher accuracy due to its larger order. A classical implementation of this method by Hairer is
included in ASSIMULO. The solvers DOPRI5 [8] and RODAS [9] are additionally available for problems
on the form ẏ = f(t, y). The solvers are different Runge–Kutta type methods with variable step size and
where RADAU5 and RODAS are suitable for stiff problems.

The codes wrapped into ASSIMULO are kept in their original form, only I/O parts and user communication
is lifted to the Python level in order to guarantee a homogeneous handling. But ASSIMULO also provides
to contribute with experimental code directly written in Python. A constant step size Runge–Kutta method
and an explicit Euler method, both implemented in Python, are included in ASSIMULO. ASSIMULO also
aims to expose even historically interesting codes together with modern industrial codes and more unknown



research codes. Among the classical codes we name the solver LSODAR from ODEPACK3 which is a
multistep method that depending on the stiffness of the problem switches between a Adams method and a
BDF method. Also ODASSL [6] is provided as a code specialized on mechanical systems described by the
problem class of overdetermined DAEs. It is a variant of DASSL with the linear algebra part of the corrector
iteration replaced by a special pseudo-inverse reflecting a transformation to state space form. Other classical
MBS simulation codes are planned to be included.

4 EXAMPLES AND RESULTS

For racing applications, finding the maximal performance of the car is crucial. One method to quickly
estimate the impact on performance of a change to the vehicle setup is to solve for the steady state limits
under different driving conditions. Identifying a set of critical points along a race track and calculating the
maximum achievable speed for each point can give a good indication on how the change will affect the lap
time. To investigate the dynamic response, simulations can be carried out with predefined input or by a
feedback loop using either a simulator or a virtual driver model.

In this example, a race car is modeled in Dymola, Figure 4, and exported to an FMU. In the example, the car
is driven by a virtual driver that tries to stay onto an eight shaped course with increasing velocity in order
to investigate the dynamic response of the car, especially when changing the turning direction.

Figure 4. Dymola model of a student formula race car with 47 states.

The FMU is then imported into Python, by means of the PyFMI package, and made available for simulation
using the integrators in ASSIMULO. A simulation is performed by creating a Python script which imports the
necessary packages and then load the FMU into an object. Parameters and solver options are in turn changed
with the available high-level interface. Once the options have been specified, if any, a call to simulate
performs the simulation. Finally, the result can be retrieved and visualized using either the graphical user
interface or directly using a specialized package. Below, a Python script for a simulation of the race car is
shown.

from pyfmi import FMUModel
import pylab as P #Used for plotting

model = FMUModel("FormulaStudent_Eight.fmu", enable_logging=True)
model.set("steeringInEight.left_turn", -1.0) #Change the initial position

#of the steering wheel

#Change the number of result points (ncp)
opts = model.simulate_options()
opts["ncp"] = 1000

#Simulate the model with the specified options
res = model.simulate(final_time=30, options=opts)

#Get the results
t = res["time"] #Time

3https://computation.llnl.gov/casc/odepack/odepack_home.html



steering_wheel = res["chassis.summary_p_sw"]
p_x = res["chassis.summary_r_0[1]"]
p_y = res["chassis.summary_r_0[2]"]

#Plot the results
P.figure(1)
P.plot(t, steering_wheel)
P.title("Steering Wheel")
P.xlabel("Time [s]");P.ylabel("Angle [rad]")

P.figure(2)
P.plot(p_x, p_y)
P.title("Track")
P.xlabel("Position in X [m]");P.ylabel("Position in Y [m]")

P.show()

The model is simulated using the solver CVODE in ASSIMULO for 30 seconds. In Figure 5, the resulting
angle of the steering wheel is shown together with the position of the race car. In Figure 6, the solver
statistics is shown.
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Figure 5. Results from a simulation of the race car driving on an eight shaped course. The left figure
shows the angle of the steering wheel while the right figure shows the position of the race car. The
model was generated as an FMU from Dymola and simulated in ASSIMULO using the solver CVODE.

Figure 6. Solver statistics reported by ASSIMULO from a simulation of the race car using the solver
CVODE.

The result can easily be compared against simulations of the original model in Dymola and with different



integrators connected in ASSIMULO. In Figure 7, a comparison is made of the angle of the steering wheel
using two different integrators in ASSIMULO against a simulation with the integrator DASSL on the original
model in Dymola.
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Figure 7. Comparison between a simulation of the original model in Dymola using DASSL with simu-
lations of the FMU using the integrators LSODAR and CVODE from ASSIMULO. The left figure shows
the difference of the steering wheel angle between the different integrators while the right figure shows
the actual angle calculated using the different integrators.

5 CONCLUSIONS AND FUTURE WORK

The example demonstrates the potential of the presented concept to connect industrial models from ac-
knowledged multibody software to a wide range of ODE integrators.

ASSIMULO currently interfaces to a number of different solvers suitable for different problems and different
problem formulations. The intention is to continue to include solvers and a growing number of problem
formulations, such as delay differential equations, to provide a solid foundations for developers to evaluate
their solver on industrial relevant examples and for users to test their problems on a variety of different
solvers. We believe that providing a open-source platform where industrial and academic solvers can be
tested on industrial relevant examples will benefit both academia and the industry.

A current limitation is that the Functional Mock-up Interface only specifies models described as explicit
ordinary differential equations. With this article we want to stimulate to open the standard for a wider
range of problem formulations, such as overdetermined problems commonly in MBS, which would enable
evaluations of a greater selection of solvers.

ASSIMULO has been proven to be a powerful code and concept. We hope that in the near future an increas-
ingly variety of original codes will be included, thanks of software like Cython and F2PY.

REFERENCES

[1] Dymola - multi-engineering modeling and simulation. Dassault Systèmes. http://www.dymola.com/.

[2] Simpack - multi-body simulation software. SIMPACK AG. http://www.simpack.com/.

[3] Functional mock-up interface for model exchange. Interface specification, MODELISAR, Jan 2010.

[4] Christian Andersson, Claus Führer, Johan Åkesson, and Magnus Gäfvert. Assimulo.
http://www.assimulo.org.



[5] M. Arnold, B. Burgermeister, C. Führer, G. Hippmann, and G. Rill. Numerical methods in vehicle
system dynamics: state of the art and current developments. Vehicle System Dynamics, 49(7):1159–
1207, 2011.

[6] C. Führer and B. J. Leimkuhler. Numerical solution of differential-algebraic equations for constrained
mechanical motion. Numerische Mathematik, 59:55–69, 1991.

[7] C.W. Gear, B. Leimkuhler, and G.K. Gupta. Automatic integration of euler-lagrange equations with
constraints. Journal of Computational and Applied Mathematics, 12-13(0):77 – 90, 1985.

[8] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations: Nonstiff problems.
Springer series in computational mathematics. Springer-Verlag, 1991.

[9] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations: Stiff and differential-
algebraic problems. Springer series in computational mathematics. Springer-Verlag, 1993.

[10] Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L. Lee, Radu Serban, Dan E. Shumaker,
and Carol S. Woodward. Sundials: Suite of nonlinear and differential/algebraic equation solvers. ACM
Trans. Math. Softw., 31(3):363–396, September 2005.

[11] Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove Bergdahl, and Hubertus Tummescheit. Mod-
eling and optimization with Optimica and JModelica.org—languages and tools for solving large-scale
dynamic optimization problem. Computers and Chemical Engineering, 34(11):1737–1749, November
2010.

[12] S. Voigtmann. General Linear Methods for Integrated Circuit Design. Logos Verlag Berlin, 2006.


	INTRODUCTION
	FUNCTIONAL MOCK-UP INTERFACE
	PyFMI

	ASSIMULO
	Problem formulations
	Solvers

	EXAMPLES AND RESULTS
	CONCLUSIONS AND FUTURE WORK

