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Abstract

This paper presents the integration of two open source
softwares: CasADi, which is a framework for efficient
evaluation of expressions and their derivatives, and the
Modelica-based platform JModelica.org. The integra-
tion of the tools is based on an XML format for ex-
change of DAE models. The JModelica.org platform
supports export of models in this XML format, wheras
CasADi supports import of models expressed in this
format. Furthermore, we have carried out comparisons
with ACADO, which is a multiple shooting package
for solving optimal control problems.

CasADi, in turn, has been interfaced with ACADO
Toolkit, enabling users to define optimal control prob-
lems using Modelica and Optimica specifications, and
use solve using direct multiple shooting. In addi-
tion, a collocation algorithm targeted at solving large-
scale DAE constrained dynamic optimization prob-
lems has been implemented. This implementation ex-
plores CasADi’s Python and IPOPT interfaces, which
offer a convenient, yet highly efficient environment for
development of optimization algorithms. The algo-
rithms are evaluated using industrially relevant bench-
mark problems.

Keywords: Dynamic optimization, Symbolic ma-
nipulation, Modelica, JModelica.org, ACADO Toolkit,
CasADi

1 Introduction

High-level modeling frameworks such as Modelica are
becoming increasingly used in industrial applications.
Existing modeling languages enable users to rapidly
develop complex large-scale models. Traditionally,
the main target for such models has been simulation,
i.e., to define virtual experiments where a simulation
software computes the model response.

During the last two decades, methods for large scale
dynamic optimization problems have been developed.
Notably, linear and non-linear model predictive con-
trol (MPC) have had a significant impact in the indus-
trial community, in particular in the area of process
control. In MPC, an optimal control problem is solved
for a finite horizon, and the first optimal control in-
terval is applied to the plant. At the next sample, the
procedure is repeated, and the optimal control problem
is solved again, based on updated state estimates. The
advantages of MPC as compared to traditional control
strategies are that it takes into account state and in-
put constraints and that it handles systems with mul-
tiple inputs and multiple outputs. Also, MPC offers
means to trade performance and robustness by tuning
of a cost function, where the importance of different,
often contradictory, control objectives are encoded. A
bottleneck when applying MPC strategies, in particu-
lar in the case of non-linear systems, is that the com-
putational effort needed to solve the optimal control
problem in each sample is significant. Development
of algorithms compatible with the real-time require-
ments of MPC has therefore been a strong theme in
the research community, see e.g., [15, 40].

Driven by the impact of high-level modeling lan-
guages in the industrial community, there have been
several efforts to integrate frameworks for such lan-
guages with algorithms for dynamic optimization. Ex-
amples include gPROMS [34], which supports dy-
namic optimization of process systems models and
Dymola [13], which supports parameter and design
optimization of Modelica models. Several other appli-
cations of dynamic optimization of Modelica models
have been reported, e.g., [20, 35, 3, 33, 28].

This paper reports results of an effort where
three different open source packages have been in-
tegrated: JModelica.org, [2], ACADO Toolkit, [26],
and CasADi, [4]. The integration relies on the XML



model exchange format previously reported in [32].
Two main results are presented in the paper. Firstly,
it is shown how CasADi, supporting import of the
mentioned XML model format, has been used to inte-
grate JModelica.org with ACADO Toolkit. Secondly,
a novel direct collocation method has been developed
based on the innovative symbolic manipulation fea-
tures of CasADi. From a user’s perspective, both
CasADi and JModelica.org come with Python inter-
faces, which makes scripting, plotting and analysis of
results straightforward.

The benefit of integrating additional algorithms for
solution of dynamic optimization problems in the
JModelica.org platform is that users may experiment
with different algorithms and choose the one that is
most suited for their particular problem. To some ex-
tent, the situation is similar to that of choosing an in-
tegrator for a simulation experiment, where it is well
known that stiff systems require more sophisticated
solvers than non-stiff systems.

The paper is organized as follows: in Section 2,
background on dynamic optimization, Modelica and
Optimica, ACADO and JModelica.org is given. Sec-
tion 3 describes CasADi and recent extensions thereof.
Section 4 reports a novel Python-based collocation im-
plementation and in Section 5, benchmark results are
presented. The paper ends with a summary and con-
clusions in Section 6.

2 Background

2.1 Dynamic optimization

Dynamic optimization is the solution of decision
making problems constrained by differential or
differential-algebraic equations. A common formula-
tion is the optimal control problem (OCP) based on
differential-algebraic equations (DAE) on the form

min
x,u,z,p

∫ T

0
l(t,x(t), ẋ(t),z(t),u(t), p)dt

+E(T,x(T ),z(T ), p)
subject to

f (t,x(t), ẋ(t),z(t),u(t), p) = 0 t ∈ [0,T ]
h(t,x(t), ẋ(t),z(t),u(t), p)≤ 0 t ∈ [0,T ]
x(0) = x0

umin ≤ u(t)≤ umax t ∈ [0,T ]
pmin ≤ p ≤ pmax

(1)

where x ∈ RNx and z ∈ RNz denote differential and al-
gebraic states respectively, u ∈ RNu are the free con-

trol signals and p ∈RNp a set of free parameters in the
model. The DAE is represented by the Nx + Nz equa-
tions f (t,x(t), ẋ,z(t),u(t), p) = 0, with the initial value
for x explicitly given.

The objective function consists of an integral cost
contribution (or Lagrange term) and an end time cost
contribution (or Mayer term). The time horizon [0,T ]
may or may not be fixed.

Numerical methods for solving this optimization
problem emerged with the birth of the electronic com-
puter in the 1950’s and were typically based on ei-
ther dynamic programming, which is limited to very
small problems, or methods based on the calculus
of variation, so-called indirect methods. The in-
ability of indirect methods to deal with inequality
constraints, represented above as the path constraint
h(t,x(t), ẋ,z(t),u(t), p) ≤ 0 and the control bounds
u(·)∈ [umin,umax], shifted the focus in the early 1980’s
to direct-methods, where instead the control, and (pos-
sibly) the state, trajectories are parametrized to form
a finite-dimensional non-linear program (NLP), for
which standard solution methods exist. In this work,
we employ two of the most popular methods in this
field, namely direct multiple shooting and direct collo-
cation, see [8, 9] for an overview.

2.1.1 Direct multiple shooting

After parametrizing the control trajectories, for exam-
ple by using a piecewise constant approximation, the
time varying state trajectories can be eliminated by
making use of standard ODE or DAE integrators. This
method of embeddding DAE integrators in the NLP
formulation is referred to as single shooting. The ad-
vantage is that it makes use of two standard problem
formulations, the solution of initial value problems for
DAEs and the solution of unstructured NLPs. For both
of these problems, there exist several standard solvers,
facilitating the implementation of the method. The
drawback of single shooting is that the integrator call
is a highly nonlinear operation, even if the differential
equation is a linear one, making the NLP-optimizer
prone to ending up in a local, rather than global, mini-
mum and/or to slow convergence speeds To overcome
this, Bock’s direct multiple shooting method [10] in-
cludes in the optimization problem the differential
state at a number of points, ”shooting nodes”, and the
continuity of the state trajectories at these points is en-
forced by adding additional constraints to the NLP.
These additional degrees of freedom can be used for
suitable initialization of the state trajectories and of-
ten increase the radius of convergence at the cost of a



larger NLP.
The main difficulty of the method, and often the

bottleneck in terms of solution times, is to efficiently
and accurately calculate first and often second or-
der derivatives of the DAE integrator, needed by the
NLP solver. Implementations of the method include
MUSCOD-II and the open-source ACADO Toolkit
[26], used here.

2.1.2 Direct collocation

A common alternative to shooting methods is direct
collocation on finite elements. Direct collocation is a
simultaneous method, where both the differential and
algebraic states as well as the controls are approxi-
mated by polynomials. But in contrast to multiple
shooting, no integrator is used to compute the state and
algebraic profiles. Rather, the original continuous time
optimal control problem (1) is transcribed directly into
an algebraic problem in the form of a non-linear pro-
gram (NLP). This non-linear program is usually large,
but is also typically very sparse. Algorithms, such as
IPOPT, [39], exist that explores the sparsity structure
of the resulting NLP in order to compute solutions of
the problem in a fast and robust way.

The interpolation polynomials used to approximate
the state profiles are usually chosen to be orthogonal
Lagrange polynominals, and common choices for the
collocation proints include Lobatto, Radau and Gauss
schemes. In this paper, Radau collocation will be used,
since this scheme has the advantage of featuring a col-
location point at the end of each finite element, which
makes encoding of continuity constraint for the states
at element junction points straightforward.

The direct collocation method shares some charac-
teristics with multiple shooting, since both are simulta-
neous methods. For example, unstable systems can be
handled, and it is easy to incorporate state and control
constraints. There are, however, also differences be-
tween multiple shooting and direct collocation. While
a multiple shooting method typically requires compu-
tation of DAE sensitivities by means of integration of
additional differential equations, direct collocation re-
lies only on evaluation of first and (if analytic Hessian
is used) second order derivatives of the DAE residual.
For further discussion on the pros and cons of multiple
shooting and direct collocation, see [9]

2.2 Modelica and Optimica

The Modelica language targets modeling of com-
plex heterogeneous physical systems, [37]. Model-

ica permits specification of models in a wide range
of physical domains, including mechanics, thermody-
namics, electronics, chemistry and thermal systems.
Also, recent versions of the language support mod-
eling of embedded control systems and mapping of
controller code to real-time control hardware. Mod-
elica is object-oriented and equation-based, where the
former property provides a means to construct mod-
ular and reusable models and the latter enables the
user to state declarative equations. It is worth notic-
ing that both differential and algebraic equations are
supported and that there is no need, for the user, to
solve the model equations for the derivatives, which is
common in block-based modeling frameworks. In ad-
dition, Modelica supports acausal modeling, enabling
explicit modeling of physical interfaces. This feature
is the foundation of the component model in Model-
ica, where components can be connected to each other
in connection diagrams.

Whereas Modelica offers state-of-the-art modeling
of complex physical systems, it lacks constructs for
expressing optimization problems. For simulation ap-
plications, this is not a problem, but when integrating
Modelica models with optimization frameworks, it is
inconvenient. In order to improve the support for for-
mulation of optimization problems, the Optimica ex-
tension [1] has been proposed. Optimica adds to Mod-
elica a small number of constructs for expressing cost
functions, constraints, and what parameters and con-
trols to optimize.

2.3 JModelica.org

JModelica.org is a Modelica-based open source plat-
form targeting optimization simulation and analysis of
complex systems, [2]. The platform offers compil-
ers for Modelica and Optimica, a simulation package
called Assimulo and a direct collocation algorithm for
solving large-scale DAE-based dynamic optimization
problems. The user interface in JModelica.org is based
on Python, which provides means to conveniently de-
velop complex scripts and applications. In particular,
the packages Numpy [30], Scipy [16] and Matplotlib
[27] enable the user to perform numerical computa-
tions interactively.

Recent developments of the JModelica.org plat-
form includes import and export of Functional Mock-
up Units (FMUs) and the integration with ACADO
Toolkit and CasADi reported in this paper. The JMod-
elica.org platform has been used in several industrial
applications, including [28, 5, 35, 31, 23, 11]

The JModelica.org compilers generate C-code in-



tended for compilation and linking with numerical
solvers. While this is a well established procedure
for compiling Modelica models, it suffers from some
drawbacks. Compiled code indeed offers very efficient
evaluation of the model equations, but it also requires
the user to regard the model as a black box. In con-
trast, there are many algorithms that can make efficient
use of models expressed in symbolic form. Exam-
ples include tools for control design, optimization al-
gorithms, and code generation, see [12] for a detailed
treatment of this topic. In order to offer an alterna-
tive format for model export, JModelica.org supports
the XML format described in [32]. This format is an
extension of the XML scheme specified by the Func-
tional Mock-up Interface (FMI) specification [29] and
contains, apart from model meta data also the model
equations. The equations are given in a format that is
closely related to the expression trees that are common
in compilers. The XML export functionality is ex-
plored in this paper to integrate the packages ACADO
Toolkit and CasADi with the JModelica.org platform.

2.4 ACADO Toolkit

ACADO Toolkit [26] is an open-source tool for au-
tomatic control and dynamic optimization developed
at the Center of Excellence on Optimization in En-
gineering (OPTEC) at the K.U. Leuven, Belgium. It
implements among other things Bock’s direct multiple
shooting method [10], and is in particular designed to
be used efficiently in a closed loop setting for nonlin-
ear model predictive control (NMPC). For this aim, it
uses the real-time iteration scheme, [14], and solves
the NLP by a structure exploiting sequential quadratic
programming method using the active-set quadratic
programming (QP) solver qpOASES, [18].

Compared to other tools for dynamic optimization,
the focus of ACADO Toolkit has been to develop a
complete toolchain, from the DAE integration to the
solution of optimal control problems in realtime. This
vertical integration, together with its implementation
in self-contained C++ code, allows for the tool to be
efficiently deployed on embedded systems for solving
optimization-based control and estimation problems.

3 CasADi

CasADi is a minimalistic computer algebra system im-
plementing automatic differentiation, AD (see [22]) in
forward and adjoint modes by means of a hybrid sym-
bolic/numeric approach, [4]. It is designed to be a low-

level tool for quick, yet highly efficient implementa-
tion of algorithms for numerical optimization, as il-
lustrated in this paper, see Section 4. Of particular
interest is dynamic optimization, using either a col-
location approach, or a shooting-based approach us-
ing embedded ODE/DAE-integrators. In either case,
CasADi relieves the user from the work of efficiently
calculating the relevant derivative or ODE/DAE sen-
sitivity information to an arbitrary degree, as needed
by the NLP solver. This together with an interface
to Python, see Section 3.1, drastically reduces the ef-
fort of implementing the methods compared to a pure
C/C++/Fortran approach.

Whereas conventional AD tools are designed to be
applied black-box to C or Fortran code, CasADi al-
lows the user to build up symbolic representations of
functions in the form of computational graphs, and
then apply the automatic differentiation code to the
graph directly. These graphs are allowed to be more
general than those normally used in AD tools, includ-
ing (sparse) matrix-valued operations, switches and
integrator calls. To prevent that this added general-
ity comes to the cost of lower numerical efficiency,
CasADi also includes a second, more restricted graph
formulation with only scalar, built-in unary and binary
operations and no branches, similar to the ones found
in conventional AD tools.

CasADi is an open source tool, written as a self-
contained C++ code, relying only on the standard tem-
plate library.

3.1 Python interface to CasADi

Whereas the C++ language is highly efficent for high
performance calculations, and well suited for integra-
tion with numerical packages written in C or Fortran,
it lacks the interactivity needed for rapid prototyping
of new mathematical algorithms, or applications of an
existing algorithm to a particular model. For this pur-
pose, a scripting language such as Python, [36], or a
numerical computing environment such as Matlab, is
more suitable. We choose here to work with Python
rather than Matlab due to its open source availabiliy
and ease of interfacing with other programming lan-
guages.

Interfacing C++ with Python can be done in sev-
eral ways. One way is to wrap the C++ classes in
C functions and blend them into a Python-to-C com-
piler such as Cython. While this approach is simple
enough for small C++ classes, it becomes prohibitively
cumbersome for more complex classes. Fortunately,
there exist excellent tools that are able to automate



this process, such as the Simplified Wrapper and Inter-
face Generator (SWIG) [17, 6] and the Boost-Python
package. We have chosen to work with SWIG due to
SWIG’s support for a large subset of C++ constructs, a
large and active development community and the pos-
sibility to interface the code to a variety of languages
in addition to Python, in particular JAVA and Octave.

The latest version of SWIG at the time of writ-
ing, version 2.0, maps C++ language constructs onto
equivalent Python constructs. Examples of features
that are supported in SWIG are polymorphism, excep-
tions handling, templates and function overloading.

By carefully designing the CasADi C++ source
code, it was possible to automatically generate inter-
face code for all the public classes of CasADi. Since
the interface code is automatically generated, it is
easy to maintain as the work on CasADi progresses
with new features being added. Using CasADi from
Python renders little or no speed penalty, since virtu-
ally all work-intensive calculations (numerical calcu-
lation, operations on the computational graphs etc.),
take place in the built-in virtual machine. Functions
formulated in Python are typically called only once,
to build up the graph of the functions, thereafter the
speed penalty is neglible.

3.2 The CasADi interfaces to numerical soft-
ware

In addition to being a modeling environment and an
efficient AD environment, CasADi offers interfaces to
a set of numeric software packages, in particular:

• The sensitivity capable ODE and DAE integrators
CVODES and IDAS from the Sundials suite [25]

• The large-scale, primal-dual interior point NLP
solver IPOPT [39]

• The ACADO toolkit

In the Sundials case, CasADi automatically formu-
lates the forward or adjoint sensitivity equations and
provides Jacobian information with the appropriate
sparsity needed by the linear solvers, normally an in-
volved and error prone process. For IPOPT, the gra-
dient of the objective function is generated via adjoint
AD. Also, a sparse Jacobian of the NLP constraints
as well as an exact sparse Hessian of the Lagrangian
can be generated using AD by source code transfor-
mation. The ACADO Toolkit interface makes it pos-
sible to use the tool from Python and attach an arbi-
trary ODE/DAE integrator (currently CVODES, IDAS

Figure 1: Optimization toolchain for JModel-
ica/CasADi.

or fixed-step explicit integrators that have been imple-
mented symbolically by the user) to ACADO.

3.3 Complete tool chain

Though models for relatively simple dynamic systems
can be efficiently formulated directly in CasADi, for
more complex models it is beneficial to use a more
expressive approach based on an object-oriented mod-
elling language such as Modelica. To transmit model
information about the dynamic system between Mod-
elica and CasADi, we use the XML exchange format
reported in [32], which is supported by JModelica.org.
On the CasADi side, an XML interpreter based on the
open source XML parser TinyXML, [38], is used to
parse the generated XML code and build up the corre-
sponding C++ data structures. The complete toolchain
is presented in Figure 1.

This approach contrasts to the more conventional
approach currently used in the current optimization
framework of JModelica.org. This approach is based
on C-code generation, which then needs to be com-
piled by a C compiler and linked with JModelica.org’s
runtime environment. See Figure 2.

The fact that the approach does not rely on a C-
compiler in the optimization loop means that the pro-
gram code can be compiled and linked once and for all
for a particular system and then distributed as executa-
bles. It is also important to note that as models grow
in size, the time needed to compile the code may be
large.

3.4 A simple example

To demonstrate the tool, we show how to implement
a simple, single shooting method for the Van der Pol
oscillator used as a benchmark in section 5.1:



Figure 2: Optimization toolchain for JModelica.

from casadi import *

# Declare variables (use simple, efficient DAG)

t = SX("t") # time

x=SX("x"); y=SX("y"); u=SX("u"); L=SX("cost")

# ODE right hand side function

f = [(1 - y*y)*x - y + u, x, x*x + y*y + u*u]

rhs = SXFunction([[t],[x,y,L],[u]],[f])

# Create an integrator (CVODES)

I = CVodesIntegrator(rhs)

I.setOption("ad_order",1) # enable AD

I.setOption("abstol",1e-10) # abs. tolerance

I.setOption("reltol",1e-10) # rel. tolerance

I.setOption("steps_per_checkpoint",1000)

I.init()

# Number of control intervals

NU = 20

# All controls (use complex, general DAG)

U = MX("U",NU) # NU-by-1 matrix variable

# The initial state (x=0, y=1, L=0)

X = MX([0,1,0])

# Time horizon

T0 = MX(0); TF = MX(20.0/NU)

# State derivative and algebraic state

XP = MX(); Z = MX() # Not used

# Build up a graph of integrator calls

for k in range(NU):

[X,XP,Z] = I.call([T0,TF,X,U[k],XP,Z])

# Objective function: L(T)

F = MXFunction([U],[X[2]])

# Terminal constraints: 0<=[x(T);y(T)]<=0

G = MXFunction([U],[X[0:2]])

solver = IpoptSolver(F,G)

solver.setOption("tol",1e-5)

solver.setOption("hessian_approximation", \

"limited-memory")

solver.setOption("max_iter",1000)

solver.init()

# Set bounds and initial guess

solver.setInput(NU*[-0.75], NLP_LBX)

solver.setInput(NU*[1.0],NLP_UBX)

solver.setInput(NU*[0.0],NLP_X_INIT)

solver.setInput([0,0],NLP_LBG)

solver.setInput([0,0],NLP_UBG)

# Solve the problem

solver.solve()

In CasADi, symbolic variables are instances of ei-
ther the scalar expression class SX, or the more general
matrix expression class MX.

x=SX("x"); y=SX("y"); u=SX("u"); L=SX("cost")

...

U = MX("U",NU) # NU-by-1 matrix variable

In the example above, we declare variables and for-
mulate the right-hand-side of the integrator symboli-
cally:

f = [(1 - y*y)*x - y + u, x, x*x + y*y + u*u]

Note that at the place where this is encountered in
the script, neither x, y or u have taken a particular
value. This representation of the ordinary differen-
tial equation is passed to the ODE integrator CVODES
from the Sundials suite [25]. Since the ODE is in sym-
bolic form, the integrator interface is able to derive any
information it might need to be able to solve the initial
value problem efficiently, relieving the user of a te-
dious and often error prone process. The information
that can be automatically generated includes derivative
information for sparse, dense or banded methods, as
well as the formulation of the forward and adjoint sen-
sitivity equations (required here since the integrator is
being used in an optimal control setting).

The next interesting line is:

for k in range(NU):

[X,XP,Z] = I.call([T0,TF,X,U[k],XP,Z])

Here, the call member function of the
CVodesIntegrator instance is used to construct
a graph with function calls to the integrator. Since the



matrix variable U is not known at this point, actually
solving the IVP is not possible. This allows us to get
a completely symbolic representation not only of the
ODE, but of the nonlinear programming program.
We then pass the NLP to the open source dual-primal
interior point NLP solver IPOPT. Again, since the
formulation is symbolic, the IPOPT interface will
generate all the information it needs to solve the
problem, including the gradient of the NLP objective
function and the Jacobian of the NLP constraint
function, both of which can be best calculated using
automatic differentiation in adjoint mode for this
particular example.

Note that the example above, with comments re-
moved, consists of about 30 lines of code, which is
a very compact way to implement the single shoot-
ing method. With only moderately more effort, other
methods from the field of optimal control can be for-
mulated including multiple-shooting and direct col-
location, see Section 4. When executing the script
above, it iterates to the the correct solution in 592 NLP
iterations, which is considerably slower than the corre-
sponding results for the simultaneous methods. Adapt-
ing the script to implement multple-shooting rather
than single-shooting (the code of which is available in
CasADi’s example collection), decreases the number
of NLP iterations to only 17.

4 A Python-based Collocation Algo-
rithm

As described in Section 2.1, one strategy for solv-
ing large-scale dynamic optimization problems is di-
rect collocation, where the dynamic DAE constraint
is replaced by a discrete time approximation. The re-
sult is an non-linear program (NLP), which can be
solved with standard algorithms. A particular chal-
lenge when implementing collocation algorithms is
that the algorithms typically used to solve the result-
ing NLP require accurate derivative information and
sparsity structures. In addition, second order deriva-
tives can often improve robustness and convergence of
such algorithms.

One option for implementing collocation algorithm
is provided by optimization tools such as AMPL [19]
and GAMS [21]. These tools support formulation of
linear and non-linear programs and the user may spec-
ify collocation problems by encoding the model equa-
tions as well as the collocation constraints. The AMPL
platform also provides a solver API, supporting evalu-
ation of the cost function and the constraints, as well

as first and second order derivatives, including sparsity
information. A benefit for the user is that the tool in-
ternally computes these quantities using an automatic
differentiation strategy that is very efficient, which in
turn enables a solver algorithm to operate fast and reli-
ably. On the other hand, AMPL, and similar systems,
does not offer appropriate support for physical mod-
eling. The description format is inherently flat, which
makes construction of reusable models intractable.

Physical modeling systems, on the other hand, of-
fer excellent support for modeling and model reuse,
but typically offer only model execution interfaces
that often do not provide all the necessary API func-
tions. Typically, sparsity information and second or-
der derivative information is lacking. The model exe-
cution interface in JModelica.org, entitled the JMod-
elica.org Model Interface (JMI) overcomes some of
these deficiencies by providing a DAE interface sup-
porting sparse Jacobians, which in turn are computed
using the CppAD package [7]. Based on JMI, a direct
collocation algorithm has been implemented in C and
the resulting NLP has been interfaced with the algo-
rithm IPOPT [39]. While this approach has been suc-
cessfully used in a number of industrially relevant ap-
plications, it also requires a significant effort in terms
of implementation and maintenance. In many respects,
implementation of collocation algorithms reduces to
book keeping problems where indices of states, inputs
and parameters need to be tracked in the global vari-
able vector. Also, the sparsity structure of the DAE Ja-
cobian needs to be mapped into the composite NLP re-
sulting from collocation. In this respect, the approach
taken in AMPL and GAMS has significant advantages.

In an effort to explore the strengths of the physi-
cal modeling framework JModelica.org and the con-
venience and efficiency in evaluation of derivatives of-
fered by CasADi, a direct collocation algorithm simi-
lar to the one existing in JModelica.org has been im-
plemented. The implementation is done completely
in Python relying on CasADi’s model import feature
and its Python interface. As compared to the approach
taken with AMPL, the user is relieved from the bur-
den of implementing the collocation algorithm itself.
In this respect the new implementation does not dif-
fer from the current implementation in JModelica.org,
but instead, the effort needed to implement the algo-
rithm is significantly reduced. Also, advanced users
may easily tailor the collocation algorithm to their spe-
cific needs.

The implementation used for the benchmarks pre-
sented in this paper is a third order Radau scheme,



which is also supported by the C collocation imple-
mentation in JModelica.org.

5 Benchmarks

Three different optimal control benchmark problems
with different properties have been selected for com-
parison of the different algorithms: the Van der Pol os-
cillator, a Continuously Stirred Tank Reactor (CSTR)
with an exothermic reaction, and a combined cycle
power plant. The first bencmark, the Van der Pol oscil-
lator, is a system commonly studied in non-linear con-
trol courses, and demonstrates the ability of all meth-
ods evaluated to solve optimal control problems. The
CSTR problem features highly non-linear dynamics in
combination with a state contstraint. The final bench-
mark, the combined cycle power plant, is of larger
scale, consisting of nine states and more than 100 al-
gebraics.

Whereas the Van der Pol problem has been success-
fully solved using both multiple shooting and collo-
cation, a solution to the CSTR and combined cycle
problem has been obtained only using a collocation
approach.

For reference, the original collocation implementa-
tion, written in C, is included in the benchmarks. This
algorithm is referred to as JM collocation.

All the calculations have been performed on an Dell
Latitude E6400 laptop with an Intel Core Duo proces-
sor of 2.4 GHz, 4 GB of RAM, 3072 KB of L2 Cache
and 128 kB if L1 cache, running Linux.

In the benchmarks where IPOPT is used, the algo-
rithm is compiled with the linear solver MA57 from
the HSL suite.

5.1 Optimal control of the Van der Pol Oscil-
lator

As a first example, consider the Van der Pol oscillator,
described by the differential equations

ẋ1 = x2, x1(0) = 1

ẋ2 = (1− x2
1)x2− x1 x2(0) = 0.

(2)

The optimization problem is formulated as to mini-
mize the following cost

min
u

∫ 20

0
x2

1 + x2
2 +u2dt (3)

subject to the constraint

u ≤ 0.75. (4)

Figure 3: Optimization results for the Van der Pol os-
cillator.

First, we solve the optimal control problem using three
different algorithms, all based on the Modelica model
and the Optimica specification encoding the optimal
control problem. 20 uniformly distributed control
segements were used in all cases. The first method
used to solve the problem is JModelica’s native, C-
based implementation of direct collocation, which re-
lies on code generation and the AD-tool CppAD to
generate derivatives. Secondly, the novel, CasADi
and Python-based implementation of direct colloca-
tion presented in Section 4 is applied. The third al-
gorithm is ACADO Toolkit’s implementation of mul-
tiple shooting, using CasADi’s interface to evaluate
functions and and directional derivatives. Forward
mode AD was used to generate DAE sensitivities and a
BFGS approximation of the Hessian of the Lagrangian
of the NLP. The optimal solutions for the three differ-
ent algorithms are shown in Figure 3.

Table 1 shows the number of NLP iterations and
total CPU time for the optimization (in seconds) for
5 different algorithmic approaches: direct colloca-
tion implemented in C and in Python using CasADi,
ACADO Toolkit via the CasADi interface, and imple-
mentations of single and multiple shooting based on
CasADi’s Python interface. The implementations of
single and multiple shooting are included to demon-
strate usage of CasADi’s integrator and NLP solver
implementation, rather than to achive high perfor-
mance. For the single shooting code, the complete
script was presented in Section 3.4.

The last column of the table contains the share of the



total time spent in the NLP solver, the rest is mostly
spent in the DAE functions (DAE residual, Jacobian
of the constraints, objective function etc.) which are
interfaced to the NLP solver. This information is not
available for ACADO Toolkit.

Table 1: Execution times for the Van der Pol bench-
mark.

Tool NLP
itera-
tions

Total
time [s]

Time
in NLP
solver
[s]

JModelica.org coll. 21 0.32 0.14
CasADi collocation 103 0.97 0.92
ACADO via CasADi 28 3.45 n/a
CasADi single shooting 616 167.7 1.22
CasADi mult. shooting 16 59.1 0.20

We can see that JModelica’s current C-based imple-
mentation of direct collocation and ACADO’s multi-
ple shooting implementation, both of them using an
inexact Hessian approximation with BFGS updating,
show a similar number of NLP iterations. In terms of
speed, the JModelica.org implementation clearly out-
performs ACADO which is at least partly explained
by the fact that JModelica.org involves a code genera-
tion step, significantly reducing the function overhead
in the NLP solver. Also, CasADi involves a code gen-
eration step, but not to C-code which is then compiled,
but to a virtual machine implemented inside CasADi.
Clearly, this virtual machine is able to compete with
the C implementation in terms of efficiently during
evaluation and is also fast in the translation phase, as
no C-code needs to be generated and compiled. Also
note that for this small problem size, the function over-
head associated with calling the DAE right hand side
is major for all of the shooting methods. A more fair
comparison here would involve the use of ACADO
Toolkit’s own symbolic syntax coupled with a code
generation step in ACADO.

In this particular example, IPOPT, using CasADi to
generate the exact Hessian of the Lagrangian, require
more NLP steps than ACADO and JModelica.org’s
native implementation of collocation which are both
using an inexact Hessian approximation. Despite the
fact that the CasADi-based implementation does not
rely on C code generation, and although it is calculat-
ing the exact Hessian, the time it takes to evaluate the
functions only constitute only a small fraction (around
5%) of the total execution time. In contrast, in the C-
based implmentation, the time spent in DAE functions,
make up more than half of the total CPU time. This re-
sult cleary demonstrates one of the main strengths of

CasADi, namely computational efficiency.
Looking at the number of iterations required in the

single shooting algorithm, the superior convergence
speed of simultaneous methods (collocation and mul-
tiple shooting) is obvious.

5.2 Optimal control of a CSTR reactor

We consider the Hicks-Ray Continuously Stirred Tank
Reactor (CSTR) containing an exothermic reaction,
[24]. The states of the system are the reactor temper-
ature T and the reactant concentration c. The reactant
inflow rate, F0, concentration, c0, and temperature, T0,
are assumed to be constant. The input of the system is
the cooling flow temperature Tc. The dynamics of the
system is then given by:

ċ(t) = F0(c0− c(t))/V − k0e−EdivR/T (t)c(t)
Ṫ (t) = F0(T0−T (t))/V−

dH/(ρCp)k0e−EdivR/T (t)c(t)+
2U/(rρCp)(Tc(t)−T (t))

(5)

where r, k0, EdivR, U , ρ , Cp, dH, and V are physical
parameters.

Based on the CSTR model, the following dynamic
optimization problem is formulated:

min
Tc(t)

∫ t f

0
(cref− c(t))2 +(T ref−T (t))2+

(T ref
c −Tc(t))2dt

(6)

subject to the dynamics (5). The cost function corre-
sponds to a load change of the system and penalizes
deviations from a desired operating point given by tar-
get values cref, T ref and T ref

c for c, T and Tc respec-
tively. Stationary operating conditions were computed
based on constant cooling temperatures Tc = 250 (ini-
tial conditions) and Tc = 280 (reference point).

In order to avoid too high temperatures during the
ignition phase of the reactor, the following tempera-
ture bound was enforced:

T (t)≤ 350. (7)

The optimal trajectories for the three different al-
gorithms are shown in Figure 4, where we have used
a control discretization of 100 elements and a 3rd or-
der Radau-discretization of the state trajectories for the
two collocation implementations.

Table 2 shows the performance of the two compared
implementations of collocation in terms of NLP itera-
tions and CPU time.



Figure 4: Optimization results for the CSTR reactor.

Table 2: Execution times for the CSTR benchmark.
Tool JM

coll.
CasADi
coll.

NLP iterations 85 20
Total time 3.2 0.18
Time in NLP solver 1.1 0.16
Time in DAE functions 2.1 0.02

In this example, the Python-based collocation algo-
rithm is clearly superior, it converges more quickly,
which is likely due to the provided exact Hessian.
Also, the lion’s share of the execution time is spent
internally in IPOPT, leaving little opportunities to op-
timize the code in function evaluations further.

5.3 Optimal start-up of a combined cycle
power plant

5.3.1 Physical model setup

A simplified model of a one-level-of-pressure
combined-cycle power plant is considered in this
benchmark, see Figure 5 for the object diagram.

The gas turbine model (lower left) generates a pre-
scribed flow of exhaust gas at a prescribed tempera-
ture, which are both a function of the load input signal.

The turbine exhaust gases enter the hot side of
a counter-current heat exchanger, and are then dis-
charged to the atmosphere. The economizer and su-
perheater are modelled by a dynamic energy balance
equation for each side, neglecting compressibility and
friction effects. The drum boiler evaporator instead
includes both dynamic mass and energy balance equa-
tions, assuming thermodynamic equilibrium between
the liquid and the vapour phases. The energy storage

Figure 5: Diagram of the combined-cycle plant model.

in all the steel walls is accounted for assuming they are
at the same temperature of the water/steam fluid.

The feedwater system is described by a prescribed
flow rate source with fixed temperature, driven by a PI
level controller that stabilizes the level dynamics and
keeps the void fraction in the drum around 0.5.

Finally, the superheated steam enters the steam tur-
bine, which is modeled as an expansion to the con-
denser pressure, assuming a constant isentropic effi-
ciency. The turbine also exposes a thermal port, cor-
responding to the surface where the inlet steam comes
into contact with the turbine rotor. This port is con-
nected to a thermal model of the hollow shaft, given
by Fourier’s heat equation, discretized by the finite dif-
ference method. The thermal stress on the shaft sur-
face, which is the main limiting factor in the start-up
transients, is proportional to the difference between the
surface and the average temperature of the shaft.

In order to keep the complexity low, constant spe-
cific heat cp is assumed in the economizers and su-
perheaters; lumped-parameter models are assumed for
the heat exchanger segments, with just one tempera-
ture state for each side. Last, but not least, also the
turbine rotor thermal model has only one tempera-
ture state resulting from the discretization of Fourier’s
equation. The resulting nonlinear model has nine state
variables and 127 algebraic variables. A more detailed
discussion on the physical modelling of the plant can
be found in [11].

5.3.2 Minimum-time start-up

The goal of the optimization problem is to reach the
full load level as fast as possible, while limiting the
peak stress value on the rotor surface, which deter-



mines the lifetime consumption of the turbine. Since
the steam cycle is assumed to operate in a pure slid-
ing pressure mode, the full load state is reached when
the load level of the turbine, u(t) (which is the con-
trol variable), has reached 100% and the normalized
value of the evaporator pressure, pev, has reached the
target reference value pref

ev . A Lagrange-type cost func-
tion, penalizing the sum of the squared deviations from
the target values, drives the system towards the desired
set-point (pevap,u) = (pref

evap,1) as quickly as possible.
Inequality constraints are prescribed on the maxi-

mum admissible thermal stress in the steam turbine,
σ(t), as well as on the rate of change of the gas turbine
load: on one hand, the load is forbidden to decrease,
in order to avoid cycling of the stress level during the
transient; on the other hand, it cannot exceed the max-
imum rate prescribed by the manufacturer.

The start-up optimization problem is then defined
as:

min
u(t)

∫ t f

t0
(pevap(t)− pref

evap)
2 +(u(t)−1)2 dt (8)

subject to the constraints

σ(t)≤ σmax

u̇(t)≤ dumin

u̇(t)≥ 0

(9)

and to the DAE dynamics representing the plant.
The initial state for the DAE represents the state of
the plant immediately after the steam turbine roll-out
phase and the connection of the electric generator to
the grid.

The optimization result is shown in Figure 6. Dur-
ing the first 200 seconds, the gas turbine load is in-
creased at the maximum allowed rate and the stress
builds up rapidly, until it reaches the target limit. Sub-
sequently, the load is slowly increased, in order to
maintain the stress level approximately constant at the
prescribed limit. When the 50% load level is reached,
further increases of the load do not cause additional
increase of the gas exhaust temperature, and therefore
cause only small increases of the steam temperature.
It is then possible to resume increasing the load at the
maximum allowed rate, while the stress level starts to
decrease. The full load is reached at about 1400 s. Be-
tween 1000 and 1100 seconds, the load increase rate
is actually zero; apparently, this small pause allows to
increase the load faster later on, leading to an overall
shorter start-up time.

This problem, which is of a more realistic size has
been solved with the two direct collocation implemen-
tations and the results are shown in Table 3.

Figure 6: Optimal startup of a combined cycle power
plant.

Table 3: Execution times for the combined cycle
benchmark.

Tool JM coll CasADi
coll

NLP iterations 49 198
Total time 19.9 16.3
Time in NLP solver 2.4 15.3
Optimal cost 6487 6175

We note that the CasADi-based collocation algo-
rithm needs more iterations to reach the optimal solu-
tion, but on the other hand, the optimum that it found is
indeed better than the one found using BFGS. Whether
this is due to some minor differences in the collocation
algorithms (since the models are identical), is beyond
the scope of this paper. What can be said with certainty
is that whereas most of the time spent in the DAE func-
tions in the existing C-based approach, the opposite
is true for the CasADi approach. Indeed, with more
than 90% of the computational time spent internally in
IPOPT, optimizing the CasADi execution time further
would do little to reduce the overall execution time.

6 Summary and Conclusions

In this paper, the integration of CasADi and the JMod-
elica.org platform has been reported. It has been
shown how an XML-based model exchange format
supported by JModelica.org and CasADi is used to
combine the expressive power provided by Modelica
and Optimica with state of the art optimization algo-
rithms. The use of a language neutral model exchange
format simplifies tool interoperability and allows users



to use different optimization algorithms without the
need to reencode the problem formulation. As com-
pared to traditional optimization frameworks, typically
requiring user’s to encode the model, the cost function
and the constraints in a algorithm-specific manner, the
approach put forward in this paper increases flexibility
significantly.
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