
 

 

  
 

ITEA 4 – 22019 

 
Work package 4 

 

Context-based Worker Assistance System 

 
   

Deliverable 4.3 
Sensor Fusion-based Task Planning Tool 

 
Document type  
Document version  
Document Preparation Date  
Classification  
Contract Start Date  
Contract End Date 

 
 
: Deliverable  
: 1.0 
: 16.12.2024 
: Public 
: 2024-03-01 
: 2027-02-28 
 

 

 

 

 

SMART AND CONNECTED WORKER 

 



 

 
SmArt and Connected Worker 

 
Project Coordinator: Atieh Hanna  

 

 2/28 

 

Final approval Name Partner 

Review Task Level Pedro Colarejo LOAD 

Review WP Level Sabino Roselli Chalmers 

Review Board Level Thomas Bär DAIMLER 

 



 

 
SmArt and Connected Worker 

 
Project Coordinator: Atieh Hanna  

 

 3/28 

 

Executive Summary 

This deliverable presents the results and methodological advances achieved in the 
development of context-aware task planning for smart and connected worker 
assistance systems. Building on previously established perception and sensing 
capabilities, the work focuses on transforming real-time observations of workers, tools, 
and environments into structured task understanding and adaptive planning decisions. 
The central contribution of this phase is the establishment of a systematic link between 
perception outputs and higher-level reasoning mechanisms that can support intelligent, 
situation-dependent system behavior in industrial settings. 

Across the addressed industrial domains, the work demonstrates how heterogeneous 
inputs such as worker localization, action recognition, and intention prediction can be 
combined into coherent task representations. These representations enable the 
system to reason task progress, anticipate upcoming actions, and evaluate contextual 
constraints such as safety conditions, workspace configuration, and resource 
availability. Rather than relying on rigid, predefined workflows, the proposed planning 
approaches support flexibility and adaptation, which are essential in environments 
characterized by manual operations, variability in worker behavior, and frequent 
deviations from nominal processes. 

The deliverable also highlights how context-aware task planning contributes to 
measurable project objectives. By enabling timely and relevant assistance actions, the 
developed concepts support improvements in productivity, error prevention, and 
system responsiveness, while maintaining alignment with safety and privacy 
requirements. The approaches are designed with validation in mind and are mapped 
to concrete industrial scenarios, providing a clear basis for assessing performance 
against project KPIs such as task completion efficiency, robustness under uncertainty, 
and user acceptance. 

Importantly, this work establishes the foundation for the next task of this work package, 
where planning will be integrated with execution and feedback mechanisms to form a 
closed-loop, context-based worker assistance system. In this closed-loop setup, 
perceptual feedback will continuously inform planning decisions, allowing the system 
to adapt dynamically to changing conditions and user behavior. This progression 
enables end-to-end validation of intelligent assistance concepts in real industrial pilots, 
demonstrating tangible benefits for both operational performance and worker support. 
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Glossary 

GPSS - Generic Photo-Based Sensor System 

RITA - Robot In The Air  

HMMs - Hidden Markov Models  

DBNs - Dynamic Bayesian Networks  

RNNs - Recurrent Neural Networks  

LSTM - Long Short-Term Memory 

GNNs - Graph Neural Networks  

RGB-D – camera that provides both colour and depth data 

LLMs - Large Language Models  

VLMs - Vision-Language Models  

FFSM - fuzzy finite state machine  

SEFFSM - structure‑evolving fuzzy finite‑state machine  

IPM - Inverse Perspective Mapping  
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1 Introduction 

In this phase we build on WP4.2, where the focus was placed on sensing and 
perception as the foundation for understanding industrial work environments. Through 
the development of methods for worker and tool detection, localization, action 
recognition, and three-dimensional environment modeling, WP4.2 established the 
capability to observe what is happening on the factory floor in real time. These 
perception capabilities enable the system to capture the current state of the 
environment, including the position and actions of human operators, the availability 
and use of tools, and the spatial context in which tasks are performed. While this 
represents a critical step toward smarter and safer industrial systems, perception alone 
is not sufficient to enable adaptive and intelligent behavior. 

This deliverable addresses the next logical step: transforming perceptual information 
into context-aware task planning. The central objective of this phase is to move from 
observing the environment to reasoning about it, enabling systems to decide what to 
do next based on the current task context. Context-aware task planning aims to 
interpret the worker’s ongoing activity, infer intentions, and anticipate upcoming steps, 
allowing assistance systems, robots, or digital tools to adapt their behavior accordingly. 
This is particularly relevant in industrial settings characterized by manual or semi-
automated work, high variability, and frequent human–machine interaction, where 
rigid, predefined workflows are insufficient. 

Building on the outputs of WP4.2, this phase leverages detection, localization, and 
intention prediction as inputs to higher-level planning mechanisms. These mechanisms 
reason task progress, spatial constraints, safety conditions, and available resources to 
support adaptive assistance, dynamic task sequencing, and coordinated actions 
between humans and machines. The goal is not to replace human decision-making, 
but to augment it by providing timely, situation-aware support in hybrid environments 
that may include robots, intelligent tools, or digital worker assistance systems. 

The challenges addressed in this phase span multiple industrial domains, including 
truck production, bus assembly, and textile manufacturing. Across these domains, 
context-aware task planning must cope with uncertainty in perception, variability in 
worker behavior and skill levels, and strict safety and operational constraints. This 
deliverable therefore focuses on approaches that integrate perceptual information into 
robust task representations and planning strategies, laying the groundwork for 
adaptive, safe, and efficient industrial assistance systems in the subsequent stages of 
the project. 
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2 Industrial Challenges  

The industrial challenges addressed in this work stem from the growing complexity and 
variability of modern production environments, where humans increasingly interact 
with intelligent systems and tools. Ensuring safe, efficient, and adaptive operation 
requires a reliable understanding of task context under real-world constraints. The 
following sections summarize the key challenges identified across the targeted 
industrial domains. 

2.1 Challenges in Truck industry  

The GPSS (Generic Photo-Based Sensor System) project aims to streamline material 
delivery and logistics by implementing an AI-powered automated pallet truck 
transporter system. Unlike traditional solutions that rely on expensive on-board 
sensors and processing units, GPSS utilizes a network of ceiling-mounted cameras to 
act as a "global eye." This allows the system to manage fleet navigation and safety 
boundaries from a bird's-eye perspective, ensuring efficient activity across large-scale 
warehouse and factory environments. 

Simultaneously, the RITA (Robot In The Air) project targets the "kitting" process, the 
labor-intensive task of gathering and organizing parts for assembly. RITA introduces a 
gantry-mounted collaborative robot that assists operators from above.  

To enable true human-robot coexistence (in GPSS) and collaboration (RITA), both 
projects seek to reduce physical distance between robots and workers. However, 
replacing steel fences safety cages with "virtual" ones introduces several technical 
challenges: 

• Off-Board Perception: Since the transporters and robot arms lack local LiDAR or 
proximity sensors, safety is entirely dependent on the off-board cameras with 
low latency and no blind spots. 

• Multi-Camera Data Fusion: In Volvo warehouses, no single camera can maintain 
a global view of the entire line. The system must "hand off" the tracking of 
workers and transporters between cameras without losing their identity or 
coordinates. This requires complex data fusion algorithms 

• Human Pose Detection: Safety in a kitting cell requires more than just detecting 
a "person." The system must perform high-fidelity pose estimation (tracking 
joints) to ensure the robot does not collide with a worker's arm during these 
tasks. 

• Continuous Verification & Validation (V&V): Because these systems are dynamic 
and AI-driven, traditional safety certifications are insufficient. There is a constant 
need for testing and validation frameworks to ensure the AI behaves predictably 
and correctly in all situations such as changing lighting conditions or changing 
in the environment. 
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2.2 Challenges in Bus industry 

The bus manufacturing industry presents unique challenges in assisted assembly 
processes, where workers must follow complex, multi-step procedures while managing 
tools, materials, and dynamic workflows. The primary challenge addressed in this work 
package is the development of a context-aware assistance system designed to support 
workers in real-time by providing relevant working instructions via a monitor. 

The assistance system must dynamically adapt to the worker’s current task context to 
ensure the correct information is displayed at the right moment. This requires multi-
modal sensor fusion to integrate diverse data sources, including: 

• Position Tracking 

• Real-time monitoring of the worker’s location, as well as the positions of 
tools and materials in the workspace. 

• Ensures the system understands which resources are being accessed or 
utilized. 

• Action Recognition 

• Detection of the worker’s current actions (e.g., picking up a tool, handling 
a material, or performing a specific task). 

• Enables the system to correlate physical activities with predefined 
workflow steps. 

• Event-Based History Tracking 

• Maintenance of a detailed event log capturing: 

• Material/tool usage (e.g., "Material X taken", "Tool Y picked up"). 

• Action initiation (e.g., "Worker started action Z"). 

• Resource return events (e.g., "Tool Y placed back on the 
toolboard"). 

• This historical data helps the system infer the worker’s progress and 
predict the next logical step. 

The most critical challenge lies in fusing these heterogeneous data streams to 
accurately determine the current working step the worker is performing. This involves: 

• Disambiguating overlapping or ambiguous events (e.g., distinguishing between a 
tool being used for a primary task vs. a secondary adjustment). 

• Mapping sensor data to predefined workflow models to identify whether the 
worker is on track, deviating, or requires guidance. 

• Dynamic adaptation of displayed instructions based on real-time context, 
ensuring minimal cognitive load while maintaining productivity. 

By resolving these challenges, the assistance system aims to reduce errors, improve 
efficiency, and enhance worker situational awareness in high-complexity bus assembly 
processes. 

2.3 Challenges in Textile industry  

The textile manufacturing environment presents significant challenges in ensuring that 
operators consistently execute tasks according to the most efficient and defect-free 
methods. Production lines are characterized by high variability, frequent changes in 
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product configurations, short life cycles, and strong dependency on operator skills. In 
this context, the primary challenge addressed in this work package is the development 
of a context-aware Assistance System capable of monitoring task execution in real 
time and supporting operators with corrective and adaptive gui-dance. 

The proposed Assistance System aims to observe and interpret how tasks are 
performed on the shop floor and to compare the detected execution patterns with 
predefined reference methods. To achieve this, the system relies on multi-modal 
sensor fusion, combining visual perception and contextual data sources, including: 

• Operator identification and positioning, enabling the association of actions and 
performance metrics with a specific operator. 

• Action and method recognition, through camera-based analysis of gestures and 
movements, allowing comparison between the detected execution and the 
reference method. 

• Task phase identification, determining the current stage of the operation, and 
overall progress. 

• Time and performance monitoring, measuring execution times, and detecting idle 
or inefficient periods. 

• Contextual event logging, recording relevant execution events to build a historical 
trace for analysis and improvement. 

Based on this contextual understanding, the Assistance System can provide real-time 
feedback to the operator, such as alerts, visual cues, or corrective suggestions, and 
can also update reference methods when better-performing execution patterns are 
consistently observed. By addressing these challenges, the Assistance System 
supports continuous improvement of production methods, reduces dependence on 
scarce “time and methods” specialists, and contributes to higher efficiency, 
consistency, and quality in textile manufacturing operations. 
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3 State of the Art  

This section provides an overview of the existing methods used to deal with the 
industrial challenges listed in the previous section. 

3.1 Sensor Fusion  

Sensor fusion refers to the integration of heterogeneous sensor signals (e.g., position 
tracking, action recognition, and event logs) to produce a coherent estimate of the 
current world or workflow state with reduced uncertainty. Sensor fusion has a long 
history in robotics and automation and is essential for real-time context estimation in 
complex tasks where single sensors are insufficient [1]. 

Probabilistic and Bayes-based Methods 

Probabilistic methods explicitly model sensor uncertainty and temporal dependencies. 
Hidden Markov Models (HMMs) and Dynamic Bayesian Networks (DBNs) serve as 
foundational frameworks for inferring hidden states (e.g., current assembly step) from 
sequences of noisy observations. HMMs maintain a probability distribution over 
possible states and update these distributions as new sensor events arrive, enabling 
robustness to sensor noise and intermittent data. DBNs elevate this by incorporating 
richer temporal dynamics and interdependencies across variables. Particle filters 
extend these approaches by representing state distributions with weighted samples 
and updating them over time. These methods work well in scenarios with structured 
workflows but can become computationally expensive as workflow complexity 
increases because of the explosion in state space and dependencies. 

A concrete example of probabilistic activity recognition in assembly tasks uses 
Bayesian filtering over structured state representations such as multi-hypergraphs to 
infer current assembly actions from sensor streams. This approach demonstrates how 
probabilistic inference can handle combinatorial state complexity in real manual work 
processes [2]. 

Machine Learning-Based Approaches 

Deep learning techniques have transformed sensor data interpretation by learning rich 
representations directly from raw sensor event sequences. Recurrent Neural Networks 
(RNNs) and related architectures like Long Short-Term Memory (LSTM) models can 
learn temporal dependencies in sequential data. Transformer models, with their self-
attention mechanisms, have been employed to identify salient events and relationships 
in long event streams without strict reliance on sequential recurrency. Graph Neural 
Networks (GNNs) model relationships between entities such as workers, tools, and 
materials, representing them as graph nodes where edges denote interactions. This 
representation captures spatial and relational dependencies that are difficult to express 
with purely sequential models [3]. Hybrid architectures combining deep learning with 
symbolic or probabilistic reasoning are increasingly explored to balance flexibility and 
interpretability. 

Rule-Based and Constraint-Satisfaction Systems 

In contrast to data-driven methods, rule-based systems rely on explicitly defined logical 
rules (e.g., “Tool Y must be picked before Action Z”). These systems enforce logical 
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consistency and interpretability, making them suitable for safety-critical scenarios 
where unpredictable decisions cannot be tolerated. Constraint-satisfaction frameworks 
formalize workflow constraints using temporal logic or mathematical constraints, 
enabling the direct detection of rule violations. These systems, however, lack the 
adaptive learning capacity of probabilistic and machine learning approaches and can 
struggle to generalize when workflows evolve. Hybrid systems leverage rule-based 
frameworks for their structure while using learning components to deal with exceptions 
and variability. 

Strengths and Limitations 

• Probabilistic models: strong in uncertainty handling, but scale poorly with complex 
workflows. 

• Machine learning models: adaptable and powerful at pattern recognition, but 
often opaque and data hungry. 

• Rule-based systems: deterministic and interpretable but limited in flexibility for 
unanticipated variations. 

3.2 Deviation Detection 

State-of-the-art deviation detection is evolving toward human-centric, AI-assisted 
systems capable of continuously aligning observed operator actions with expected 
work order procedures. While automotive manufacturing provides methodological 
foundations, textile manufacturing—exemplified by Petratex—drives innovation in 
flexibility, semantic interpretation, and expert knowledge capture. Within Artwork, 
deviation detection is positioned as a core mechanism to support scalable training, 
quality consistency, and resilience in highly variable textile production environments. 

3.2.1 Deviation Detection in Human-Centric Textile and Automotive Production 
Processes 

In the context of the Artwork project and the Petratex industrial environment, deviation 
detection refers to the identification of mismatches between the expected execution of 
a work order, as defined in digital work instructions, and the actual actions performed 
by an operator at a workstation. This capability is increasingly critical in service-based 
industrial models, where production capacity is sold as manufacturing hours and 
processes, and where high variability, short production line life cycles, and frequent 
onboarding of new operators are the norm. 

Deviation detection is a key enabler for quality assurance, operator training, knowledge 
transfer, and production consistency, particularly in environments where expert 
operators must support multiple workstations simultaneously. Unlike traditional 
production monitoring systems, which focus on machine signals and throughput, 
deviation detection in Artwork targets the human execution of procedures, interpreting 
how operators interact with machines, tools, materials, and the workstation context. 



 

 
SmArt and Connected Worker 

 
Project Coordinator: Atieh Hanna  

 

 13/28 

 

3.2.2 Reference Procedure and Deviation Typology 

In state-of-the-art systems, the reference procedure is derived from work instructions 
associated with a work order, often expressed as sequences of actions, machine 
configurations, and material handling steps. Deviations are commonly classified as: 

• Temporal deviations, such as missing or delayed execution of instruction steps; 

• Structural deviations, involving incorrect sequencing of operations; 

• Spatial deviations, including improper posture, hand positioning, or workspace 
usage; 

• Semantic deviations, where the operator manipulates an incorrect tool, 
material, or machine parameter relative to the work instruction [4],[5]. 

Recent approaches emphasize semantic alignment between observed actions and 
instruction intent, rather than strict step-by-step enforcement, allowing greater 
robustness in variable production contexts [6]. 

3.2.3 Automotive Industry as a Reference Baseline 

The automotive industry provides a mature baseline for deviation detection research, 
supported by highly standardized workstations and well-formalized assembly 
instructions. Vision-based systems using RGB-D cameras and pose estimation are 
commonly employed to recognize operator actions and compare them against 
expected task sequences using temporal models such as LSTMs and Transformers 
[7],[8]. 

In this sector, deviation detection is primarily used for assembly validation, operator 
certification, and quality defect prevention. Hybrid approaches combining operator 
actions with machine states and tool data have demonstrated improved reliability [9]. 
However, the high level of process standardization in automotive manufacturing limits 
the applicability of these solutions to more flexible and less formalized environments 
such as textile production. 

3.2.4 Textile Industry Specificities and Challenges 

Textile manufacturing, particularly in the JVC/Petratex context, presents significantly 
higher procedural variability. Operators perform manual or semi-manual tasks 
involving flexible materials, frequent machine reconfiguration, and continuous 
adaptation to customer-specific requirements. Many procedures rely heavily on tacit 
expert knowledge, which is difficult to formalize in traditional work instructions [10]. 

State-of-the-art textile-oriented approaches focus on: 

• Fine-grained analysis of operator gestures and hand-material interaction; 

• Context-aware interpretation of actions relative to fabric type, machine setup, and 
work order constraints; 

• Distinguishing between non-compliant deviations and acceptable operational 
variations that reflect expert adaptation [11]. 

This distinction is fundamental in Artwork, where the objective is not to constrain 
operators, but to capture, normalize, and disseminate expert know-how across the 
factory floor. 
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3.2.5 AI-Driven Multimodal Deviation Detection 

Since 2019, deviation detection has increasingly relied on multimodal AI architectures, 
combining video streams, depth data, machine telemetry, and contextual work order 
information [12]. In the Artwork approach, these modalities are used to digitally 
recognize machines, tools, materials, and operator actions during the execution of a 
work order. 

Emerging research explores the use of semantic reasoning layers and Large 
Language Models (LLMs) to translate low-level action descriptions into clear, operator-
oriented instruction language, adapted to different skill levels [13]. This enables 
deviation detection systems to function not only as compliance mechanisms, but also 
as training and assistance tools. 

3.2.6 Open Challenges in the Artwork Context 

Despite advances, several challenges remain highly relevant for Petratex and Artwork: 

• Work instructions may be incomplete, implicit, or evolve during production; 

• Models must generalize across machines, fabrics, and rapidly changing work 
orders; 

• Detected deviations must be explainable and actionable for operators and 
supervisors; 

• Human acceptance and compliance with EU data protection and worker 
monitoring regulations must be ensured [14]. 

 

3.3 Task Re-Planning 

In this part we talk about current approaches to tackle contextual robot task planning 
to assist a human worker. In general, robotic task planning is currently undergoing a 
fundamental shift, moving away from static, pre-programmed instruction sequences 
toward dynamic systems capable of reasoning about changing environments. This is 
primarily driven by either foundation models which provide high-level semantic 
reasoning or reactive motion generation, which focuses on physical safety and 
execution. 

A current trend is to shift towards the integration of LLMs and Vision-Language Models 
(VLMs) as the cognitive core of robotic systems. The advantage here is the vast 
knowledge they contain to ideally provide zero-shot planning without task-specific 
training. Further, robotic foundation models are being explored that, given some sensor 
input such as a camera, can move a robot end-effector simply by telling it about the 
task by text. While the potential of such solutions is high, they for now lack robustness 
and can be challenging to deploy given the high computational resources required. 

Other works instead use LLMs or VLMs as high level planner and rely on more classical 
controllers to execute the actual motions. While those methods lack generality, safety 
and convergence to task locations can be guaranteed, which is currently not possible 
for robotic foundation models. 
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4 Approach 

Out of the many different methods discussed in the previous section, this section dives 
into the ones implemented by the different Artwork’s partners to deal with the industrial 
challenges. 

4.1 Sensor Fusion based on Fuzzy Finite State Machines (FFSM) 

Our proposed solution for real-time operation recognition in industrial environments 
addresses the critical need for a framework that balances adaptability, interpretability, 
and computational efficiency. Existing machine learning-based methods, while 
powerful in pattern recognition, often suffer from opacity and high computational 
demands, making them less suitable for real-time applications where latency and trust 
in decision-making are paramount. Conversely, rule-based systems, though 
transparent and interpretable, lack the flexibility to accommodate dynamic or 
unpredictable worker behaviors, which are common in complex industrial tasks. To 
bridge this gap, the approach leverages fuzzy logic as a foundational element, enabling 
nuanced handling of uncertain or ambiguous sensor inputs while maintaining clarity in 
decision-making processes. By integrating fuzzy set theory, the framework transforms 
raw sensor data (such as tool usage, motion patterns, or material interactions) into 
interpretable linguistic variables, allowing for gradual state transitions rather than rigid 
binary classifications. This not only enhances robustness against noise but also 
introduces a layer of uncertainty representation that aligns with real-world operational 
variability. 

At the core of this methodology is a hybridized sensor fusion strategy that combines 
signal preprocessing with adaptive state modeling. Input signals from diverse sources, 
such as cameras or wearable sensors, undergo smoothing techniques to mitigate 
abrupt transitions and noise, ensuring smoother and more reliable data interpretation. 
This preprocessing step is complemented by a fuzzy finite state machine (FFSM), 
which dynamically models operations as overlapping states with varying activation 
levels, rather than discrete transitions. The FFSM’s ability to handle partial activations 
and ambiguous conditions makes it particularly well-suited for industrial scenarios 
where tasks may involve overlapping phases or unanticipated deviations. However, 
recognizing the limitations of static rule sets in conventional FFSMs, the proposed 
approach introduces an evolving structure mechanism that enables the system to learn 
and adapt to new patterns without compromising interpretability. This adaptive 
component ensures that the framework remains responsive to worker behavior while 
retaining the transparency and efficiency required for real-time deployment. By 
synthesizing these elements, the solution aims to deliver a scalable, interpretable, and 
computationally lightweight approach to operation recognition in dynamic industrial 
settings. 

The core of the proposed framework is a structure‑evolving fuzzy finite‑state machine 
(SEFFSM) that marries real‑time sensor fusion with adaptive reasoning. Incoming 

sensory streams (captured from vision systems, wearable accelerometers, or industrial 
instrumentation) first undergo a pre‑processing stage that smooths abrupt transitions 
using decaying‑tail functions (Gaussian or exponential). This step mitigates impulsive 
noise and ensures that subsequent state updates reflect gradual, physically plausible 
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changes in the worker’s activity. The pre‑filtered signals are then mapped onto fuzzy 

linguistic variables (e.g., Active, Inactive) via membership functions, yielding degrees 
of activation that encode uncertainty rather than hard binary labels. 

With fuzzy input values, the SEFFSM operates on a set of fuzzy states that can coexist 
with partial activation. Transition rules are encoded as fuzzy implications whose firing 
strengths depend on both the current state’s degree of truth and the input of 
memberships. Each rule carries a user‑defined weight, allowing domain experts to 
encode prior knowledge or priorities. The system’s output is computed by aggregating 
contributions from all concurrently active rules, thereby producing a smooth, 
interpretable response that captures the continuous nature of industrial operations. 

To remain robust in the face of novel or evolving worker behaviors, the SEFFSM 
incorporates an online structure‑evolution mechanism. When the aggregate firing 
strength of all active rules falls below a configurable threshold, the system recognizes 
that its current rule set inadequately describes the observed transition. In such cases, 
a default fallback state is invoked, and the observed pre‑ and post‑state pair (along 

with the corresponding sensor readings) is logged for later review. A lightweight 
rule‑generation routine then proposes candidate transitions, which experts can validate 
based on frequency, consistency, and contextual relevance. This incremental learning 
approach preserves interpretability while granting the system the flexibility to adapt to 
unforeseen task variations, all while maintaining computational efficiency suitable for 

real‑time industrial deployment. 

 

Figure 1: Structure-Evolving Fuzzy Finite State Machine 

Figure 1 depicts a Structure-Evolving Fuzzy Finite State Machine (SEFFSM) 
representation, illustrating how industrial operations (such as tool usage or task 
execution) are modeled as fuzzy states with gradual transitions rather than rigid 
discrete steps. The diagram features a central default state (d) and five operational 
states (q1 to q5), each corresponding to specific tasks like "Grabbing Glue Gun" or 
"Screwing the Screw," as defined in the accompanying table. Arrows between states 
(e.g., R12, R23) represent fuzzy transition rules, where the system dynamically 
evaluates the degree of activation for each state based on sensor inputs, such as 
motion patterns or tool interactions, pre-processed via smoothing techniques (e.g., 
Gaussian decay) to mitigate noise. The dashed loops (e.g., R11, R22) indicate self-
transitions with partial activation, reflecting the overlapping or ambiguous nature of 
real-world operations, while the default state (d) serves as a fallback for unrecognized 
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transitions, enabling the system’s adaptive learning mechanism. This aligns with the 
SEFFSM’s core principles—fuzzy logic for uncertainty handling, pre-filtering for 
robustness, and structure evolution to incorporate new patterns—ensuring real-time 
interpretability and scalability in dynamic industrial environments such as bus 
production. 

 

4.2 Computer vision techniques 

Inverse Perspective Mapping (IPM) and Multi-View Image Stitching work together to 
create a seamless top-down representation of an environment from camera images 
from different angles. IPM is the mathematical process that eliminates the perspective 
inherent in standard cameras by re-projecting pixels from a 2D image plane onto a 
common ground plane as seen in Figure 2(a). Once each individual camera   has been 
transformed via IPM, Multi-View Image Stitching is used to align and merge these 
overlapping projections into a single, cohesive map Figure2(b).  

 

 

Figure 2: Multi Camera Perception 

 

An ArUco marker (often called an ArUco code) is a square landmark used in computer 
vision to help robots and cameras understand their position in space. These markers 
that are attached to different objects (e.g. robots, robotic arms, human pose) as seen 
in Figure 2(b) are designed specifically for fast and reliable 3D tracking. They are used 
as fixed reference points to calculate three distinct pieces of information: position 
(relative to the camera), orientation (the angle of the marker), and localization (the 
absolute position within a space). One major issue with ArUco code localization is 
occlusion, which can cause a total loss of tracking if the line-of-sight is interrupted. 
Because the algorithm requires a clear view of all four corners and the internal grid to 
calculate a pose, therefore small obstruction, like a shadow or a passing object, will 
prevent the marker from being detected entirely. 

 

4.3 Deviation Detection 

In the Artwork/Petratex context, deviation detection must operate in highly variable, 
human-centric production environments, where work orders change frequently; 
manual operations dominate, and expert know-how plays a central role. The proposed 
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approach treats deviation detection not as rigid error checking, but as a continuous 
alignment process between a planned reference procedure and the observed 
execution of a work order at a workstation, using multimodal sensor fusion. 

4.3.1 Reference Method: Normative Backbone with Expert Variability 

Each work order is represented through a two-layer reference method. 
The normative layer encodes the work-instruction backbone: mandatory steps, 
optional steps, admissible sequences, tool–machine–material constraints, and safety-
critical conditions. This layer defines what must happen to ensure quality and 
compliance. 
The empirical layer is derived from expert operator demonstrations, captured during 
teaching or simulation sessions. It models typical execution patterns, step durations, 
micro-actions, and common adaptations observed in real production. 

This separation allows the system to distinguish non-compliant deviations from 
legitimate operator variability, a critical requirement in textile manufacturing where 
adaptation is often necessary. 

4.3.2 Sensor Fusion Focused on Evidence of Task Completion 

Rather than relying on fine-grained gesture classification, the system uses sensor 
fusion to infer evidence that a task step is being executed or completed. Inputs may 
include video and depth cameras (operator posture, hand–object interaction, 
workstation zones), tool or material identification, and machine telemetry when 
available. Minimal operator inputs (e.g. start, pause, blocked) are used to increase 
robustness and explainability. 

These heterogeneous signals are fused into a step-level belief score, representing the 
likelihood that a given work-instruction step is currently active or completed. 

4.3.3 Online Plan–Execution Alignment 

Deviation detection is performed through online alignment between the planned task 
graph and the incoming evidence stream. The task planner continuously maintains 
hypotheses about the current step, allowing temporal flexibility and alternative 
sequences defined in the reference method. 

Deviations are detected as violations of constraints, rather than simple mismatches, 
and are classified as: 

• Hard deviations, such as skipped mandatory steps, wrong tools or materials, or 
unsafe machine states; 

• Soft deviations, including unusual timing or uncommon action patterns that 
remain within acceptable bounds. 

This mechanism supports both structured automotive-like procedures and flexible 
textile workflows. 

4.3.4 Deviation Handling and Adaptive Task Planning 

Detected deviations are immediately contextualized and linked to actionable 
responses. Hard deviations may trigger guidance, operator feedback, or task 
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interruption, while soft deviations are logged for monitoring or coaching. Where 
necessary, the task planning tool can perform local replanning, proposing recovery 
paths, alternative sequences, or controlled rework aligned with the work order 
objectives. 

Repeated, expert-validated variations are candidates to be incorporated into the 
empirical layer, enabling continuous refinement of work instructions and scalable 
knowledge transfer. 

4.3.5 Conclusion 

By combining a dual-layer reference method with sensor fusion and online plan–
execution alignment, the proposed approach enables robust, explainable, and human-
centred deviation detection. It supports quality assurance and training at Petratex 
without over-constraining operators, while progressively formalizing expert know-how 
into reusable digital work instructions—fully aligned with the goals of the Artwork Task 
Planning and Teaching Instructions framework. 

4.4 Task Re-Planning 

 

Figure 3: Human-Robot collaboration demo in a shared workspace 

Given that we are gathering information about the environment, we want aim to use it 
for a robot assistant that is both context-aware, inherently safe, and reactive to dynamic 
changes in the workspace (See Figure 3: Human-Robot collaboration demo in a shared 
workspace). To achieve this, we propose coupling a robust graph-based 
representation of motion tasks with a high-frequency reactive control layer. 

At the core of our solution is a method we call the Gaussian Graph. Instead of 
memorizing a single, fixed path for a specific task, our system breaks down human 
demonstrations or predefined trajectories into a network of small, stable motion 
regions. These regions can be seen as "steppingstones" of valid movement spread 
across the workspace. By connecting them based on their direction and proximity, we 
create a navigable roadmap of the robot's capabilities. This allows the robot to "stitch" 
together different parts of previously learned tasks to form entirely new trajectories. For 
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example, if a worker requests a tool at a new location, the robot can intelligently 
combine the beginning of one motion with the end of another to reach that specific 
target, effectively adapting to the new context instantly without needing to be retaught. 
Notably, the context does not have to be goal location only and can contain any other 
information. The context simply determines the valid motion regions, so tool positions, 
body posture or assembly instructions are inherently compatible. Crucially, this 
navigation is strictly confined to areas where the robot has learned safe behavior, 
ensuring it never attempts to move through unverified or dangerous parts of the 
workspace. 

Now given the high-level plan of motion regions, we employ a low-level reactive 
controller based on dynamical systems [15]. While the Gaussian Graph determines the 
path, this layer ensures that the execution is safe. The first part to achieve this is that 
the low-level controller computes vector fields that lead towards the goal location. 
Therefore, the robot movement becomes stable and can be combined with compliant 
control, such that the work can move the robot by hand if needed without disturbing 
the robot’s task. Further, we utilize obtained distance fields using RGB-D cameras to 
create a continuous representation of the surroundings [16]. This allows the robot to 
smoothly adjust its motion to maneuver around obstacles and humans that are in the 
same space without stopping its motion. By combining the context-aware planning 
using the Gaussian Graph and the fast-acting, safe controller we aim to achieve a 
robotic assistant that is both robust enough to handle changing tasks but at the same 
time aware enough to work safely alongside humans. 

The method is integrated into a ROS2 node that controls a robot manipulator by 1￼.  

 

 

 
1 The code is open source and can be found at https://github.com/KilianFt/DSStitchingNode 

https://github.com/KilianFt/DSStitchingNode
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5 Preliminary Results  

5.1 Sensor Fusion based on Fuzzy Finite State Machines (FFSM) 

The proposed SEFFSM solution for real-time operation recognition in industrial 
environments has been successfully implemented as a laboratory demonstrator at 
IFAK, showcasing its efficacy in dynamic, sensor-driven task monitoring. This hybrid 
framework, combining fuzzy logic with adaptive state modeling, enables robust and 
interpretable operation identification by transforming raw sensor inputs (e.g., from 
vision systems or wearable devices) into gradual, linguistically meaningful states. The 
system’s ability to handle partial activations, ambiguous transitions, and incremental 
learning (via a fallback default state and expert validated rule evolution) ensures 
scalability and real-time responsiveness, critical for applications like context-aware 
assistance systems for bus production. The approach has been documented in the 
peer-reviewed article (Real-Time Operation Identification Using a Structure Evolving 
Fuzzy Finite State Machine"), published at the 2025 IEEE 8th International Conference 
on Industrial Cyber-Physical Systems (ICPS). 

5.2 Tablet-Based Deviation Detection at Sewing Workstations 

As a preliminary result of the implementation of the proposed approach to 
JVC/Petratex a software application was developed and deployed on tablets installed 
at individual sewing workstations at JVC. This implementation serves as an initial proof 
of concept for runtime comparison between reference work instructions and actual 
operator execution, focusing on usability, learning support, and deviation awareness 
in a real production environment. 

The application presents a dual-pane user interface, explicitly designed to support 
operator understanding and self-correction: 

• Reference Execution Area (left panel): 
Displays the digital work instruction associated with the current work order and 
textile piece. This includes structured step descriptions and a reference video 
illustrating the correct execution of the sewing operation, as defined during 
expert teaching or instruction authoring. 

• Runtime Execution Area (right panel): 
Displays a live or recorded video stream capturing the actual operation 
performed by the operator at the workstation. 

This side-by-side layout enables immediate visual comparison between the expected 
and observed execution, reinforcing learning through direct observation. 
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Figure 4: dual-pane user interface 

During operation, the system continuously analyses the runtime video stream and 
generates movement descriptions and action indicators derived from the operator’s 
interaction with the workstation. These descriptions are compared against the 
reference work instruction, taking into account: 

• the sequence of operational steps, 

• the relative timing and duration of each step, 

• and the alignment between observed actions and expected instruction 
phases. 

Detected differences between the reference execution and the observed execution are 
automatically signaled to the operator, without interrupting the production flow. The 
system does not enforce hard stops at this stage but instead focuses on awareness 
and learning. 

When deviations are detected, the operator can access the specific video frames or 
segments where the differences occur. This allows the worker to review their own 
execution in direct comparison with the reference instruction, fostering self-guided 
learning and procedural understanding. 
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Figure 5: Analyzing video frames or segments where the differences occurred 

This interaction model supports: 

• on-the-job training for less experienced operators, 

• reinforcement of correct techniques, 

• and reflection on alternative execution strategies. 

Importantly, the system treats deviations primarily as learning opportunities, rather 
than immediate errors, which is consistent with the JVC/Petratex production context 
where controlled variability and operator adaptation are common. 
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5.3 Task re-planning 

 

Figure 6: Robot demonstrator with contextual trajectory stitching method 

For contextual task replanning, we have developed the core method that represents a 
workspace as a task and simplifies learning from demonstrations with a worker. In this 
work, we prove that our graph representation converges towards goal locations and 
show how to effectively combine different demonstrations. Further, we tested the 
method on a pick and place task with a UR3e2 where an operator gives two 
demonstration sets: 1) the robot moving from package to picking box A and 2) the robot 
picking box B (See Figure 6: Robot demonstrator with contextual trajectory stitching 
method). It is able to stitch together the demonstrations and form a sequence of first 
moving towards box B, picking it and then moving back towards the package to drop 
it. Importantly, as mentioned before, the path the robot takes is represented as a vector 
field, so it is robust to disturbances. Further, note that the task can be changed online 
at any point which enables smooth task re-planning to integrate with context-aware 
worker systems. Future work contains the extension of this demonstrator to handle 
picking more robustly and integrate compliant controllers with obstacle avoidance to 
smoothly handle collaborative work. 

Positioning within the Artwork Approach 

This preliminary implementation validates key assumptions of the Artwork deviation 
detection strategy: 

• that visual comparison between reference and runtime execution is intuitive for 
operators, 

• that timing- and sequence-based deviation detection can be meaningfully 
applied in textile sewing operations, 

 
2 https://www.universal-robots.com/products/ur3e/ 
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• and that deviation feedback can be delivered in a non-intrusive, operator-
centric manner. 

While the current solution relies mainly on video-based analysis, it establishes the 
foundation for future integration with additional sensor modalities (e.g. machine 
signals, tool identification) and tighter coupling with the Task Planning Tool for adaptive 
guidance and replanning. 
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6 Conclusions and Future Work 

This deliverable has advanced the project from environment sensing toward context-
aware task planning, demonstrating how perception outputs can be transformed into 
actionable task-level reasoning. By integrating detection, localization, and intention 
prediction into planning processes, the work establishes a scalable foundation for 
adaptive decision-making in complex industrial environments. The presented 
approaches address key industrial requirements related to flexibility, safety, and 
operational robustness across the targeted industries. 

The results contribute directly to the project KPIs by enabling measurable 
improvements in task efficiency, error reduction, and system responsiveness, while 
maintaining compliance with safety and privacy constraints. The proposed planning 
concepts are designed to operate under realistic industrial conditions and will be 
validated in representative scenarios within truck production, bus assembly, and textile 
manufacturing. These validation scenarios provide a structured framework for 
assessing performance, robustness, and user acceptance in real operational contexts. 

This work prepares the transition to the next project phase, where a closed-loop, 
context-based worker assistance system will be implemented. In this phase, task 
planning will be tightly coupled with execution and feedback, allowing the system to 
continuously adapt based on observed worker actions and environmental changes. 
This closed-loop integration will enable KPI-driven validation of end-to-end 
performance, demonstrating tangible benefits in safety, productivity, and worker 
support within industrial pilot deployments. 
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