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Abstract 

This deliverable defines the ELFMo Methodology, a comprehensive, lifecycle-based 
framework for the conception, development, operation, and retirement of Large 
Foundation Model (LFM)–enabled Generative AI (GenAI) products in industrial and 
enterprise contexts. Responding to the challenges of unclear governance, and emerging 
regulatory constraints, the methodology treats GenAI systems as evolving socio-
technical products rather than isolated models or tools. 

The document presents a structured lifecycle spanning development and operation 
phases, covering use case definition, KPI selection, architecture design, model selection 
and benchmarking, data preparation, adaptation, evaluation, assurance, deployment, 
monitoring, continuous improvement, and controlled retirement. Risk management, 
quality assurance, and regulatory compliance are embedded as cross-cutting concerns 
throughout the lifecycle. 

In addition, the deliverable positions the methodology within the wider LFM ecosystem, 
outlining representative model classes, service providers, development and monitoring 
tools, and deployment options by way of example rather than prescription.  
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1 Introduction 

1.1 Context 

The rapid emergence of Large Foundation Models (LFMs) and Generative AI (GenAI) 
technologies is transforming the way digital products and services are conceived and 
deployed. While these technologies enable unprecedented flexibility and capability, 
their adoption in industrial and enterprise contexts has been characterised by 
fragmented experimentation, ad-hoc tooling, and limited lifecycle governance. A ‘wild 
west’ of digital product creation. In parallel, regulatory expectations around trustworthy, 
transparent, and accountable AI systems are increasing, particularly within the 
European context. 

Within the ELFMo project, these developments motivate the need for a coherent,  
lifecycle-based methodology that enables organisations to move beyond isolated pilots 
toward sustainable, governed GenAI products. This deliverable responds to that need by 
positioning LFM-enabled GenAI systems as evolving socio-technical products 
embedded within organisational, technical, and regulatory environments.  

1.2 Objectives 

The primary objective of Deliverable D4.1 is to define and document the ELFMo 
Methodology, a comprehensive, lifecycle-based framework for the conception, 
development, operation, and retirement of LFM-enabled GenAI products. 

Specifically, this deliverable aims to:  

• Provide a structured lifecycle model that integrates technical, business, and 
governance considerations 

• Enable risk-informed decision-making across all stages of GenAI product 
development and operation 

• Embed quality assurance, regulatory compliance, and trustworthiness as cross-
cutting lifecycle concerns 

• Situate methodological guidance within the practical realities of the 
contemporary LFM ecosystem. 

D4.1 does not introduce new algorithms or standalone tools. Its contribution lies in 
structuring and consolidating the results to date of WP2 and WP3 into a coherent, end-
to-end process. The deliverable shows how the methods, techniques, metrics, and 
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governance mechanisms developed across these work packages can be aligned and 
orchestrated within a single lifecycle framework. 

1.3 Target Audience 

This deliverable is published at PU (public) level and is therefore intended for a broad 
audience: 

• Consortium partners, especially technical partners in WP2 and WP3, including 
industrial solution providers, AI service providers, and tool developers.  

• External stakeholders, including: 

o Industry and commercial actors, seeking reliable methods for LFM 
adaptation and evaluation. 

o Research peers and the scientific community, interested in advancing 
benchmarking practices (see Section 3.6 of this deliverable).  

o Standardization bodies and policymakers, interested in technical 
baselines for compliance with European regulation (EU AI Act, GDPR).  

1.4 Related documents 

Readers may consult the following documents for complementary context:  

• D1.1 Use cases description and requirements - Defines the industrial use cases 
addressed by the ELFMo project and specifies their functional, technical, 
business, and regulatory requirements, together with initial KPIs that guide 
subsequent development and validation activities 

• D2.1 Research baseline for model training and benchmarking – defines the 
technical foundations of WP2 and serves as the baseline for this deliverable.  

• D2.2 Initial release of benchmarking techniques - Presents the first operational 
framework for selecting, adapting, training, and benchmarking Large Foundation 
Models for enterprise use, defining reproducible evaluation methodologies, 
performance metrics, and efficiency-oriented practices to support evidence-
based model comparison. 

• D3.1 Research baseline for risk, quality and conformity assessment tools and 
procedures – provides additional baselines relevant for WP2 and WP3 activities. 
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• D3.2 Risk, quality and conformity assessment methods, risk indicators and 
quality metrics - Describes the initial set of risk assessment methods, quality 
indicators, and conformity metrics developed in ELFMo, providing practical 
approaches for human-in-the-loop governance, KPI-based evaluation, 
trustworthiness assessment, and continuous monitoring across LFM-enabled 
systems. 

• FPP (Full Project Proposal) – details the broader project rationale and innovation 
objectives 

2 The ELFMo Methodology: Lifecycle for LFM-enabled 
GenAI Products 

 

Figure 1: ELFMo GenAI Product Lifecycle 

Figure 1 illustrates the end-to-end lifecycle defined by the ELFMo methodology, 
differentiating development and operation phases. It highlights iterative feedback loops 
driven by performance, feasibility, and scope changes, as well as continuous 
improvement during operation. While iterations are inherently possible, between any 
stages, the figure highlights the most important ones. The lifecycle integrates technical, 
business, and governance considerations and explicitly supports revalidation and 
controlled retirement of GenAI solutions. 

The Development stages are further described in Section 2.2 and the Operational phases 
in Section 2.3. 
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2.1 Rationale for a Lifecycle-based Methodology 

The rapid emergence of LFMs has fundamentally altered the landscape of AI-enabled 
product development. Unlike traditional machine learning systems, LFMs exhibit a high 
degree of generality and adaptability, enabling powerful new applications. However, they 
also exhibit non-deterministic behaviour and are opaque thus amplify technical, 
organisational, and regulatory risks. In industrial practice, this has led to a proliferation 
of isolated proofs-of-concept, ad-hoc integrations, and experimental deployments that 
often fail to transition into sustainable, trustworthy products. 

The ELFMo project addresses this gap by advocating a lifecycle-based methodology that 
treats LFM-enabled GenAI systems not as isolated models or tools, but as evolving socio-
technical products embedded in organisational, legal, and market contexts. A lifecycle 
perspective ensures that decisions made during early experimentation, such as model 
selection, data usage, or architectural patterns are systematically linked to long-term 
operational, compliance, and business implications. 

Although the ELFMo lifecycle is presented as a sequence of stages for clarity (Figure 1), 
it is not intended to prescribe a linear or waterfall development process. In practice, LFM-
enabled GenAI products evolve through frequent iteration, partial rework, and parallel 
activities. The methodology is deliberately compatible with agile and incremental 
development approaches, while retaining explicit lifecycle stages to support governance, 
risk management, and decision-making in industrial contexts. Feedback loops driven by 
performance, feasibility, scope change, and operational monitoring enable continuous 
adaptation without sacrificing traceability or assurance. 

2.1.1 Limitations of Ad-hoc and Tool-centric GenAI Adoption 

Current industrial adoption of GenAI is frequently driven by tool availability rather than 
methodological discipline. Organisations experiment with publicly available APIs or 
open-source models without a structured process for evaluating suitability, risks, or 
long-term maintainability. While such experimentation can generate short-term insights, 
it often results in fragmented architectures or craft-like developments (rather than 
systematic workflows and pipelines) that are difficult to scale or govern, unclear 
ownership of model behaviour and failure modes, late discovery of regulatory or data 
protection constraints, and an inability to systematically compare alternative solutions.  

A tool-centric approach also tends to conflate model performance with product success, 
overlooking system-level properties such as robustness, explainability, operational cost, 
and user trust. The ELFMo methodology explicitly counters this tendency by embedding 



Engineering Large Foundational Models for Enterprise Integration   
 

 

 

 

 
ELFMo 9 

 

GenAI capabilities within a broader product lifecycle that integrates technical, 
organisational, and regulatory considerations from the outset.  

2.1.2 Relationship to Risk-based Engineering and MLOps 

The proposed lifecycle draws on established practices from risk-based engineering, 
software product lifecycle management, and Machine Learning Operations (MLOps). 
However, LFMs introduce distinctive challenges that extend beyond classical MLOps 
assumptions. These include limited model transparency, dependency on external model 
providers, evolving behaviour under prompt or data changes, non-deterministic (non-
repeatable) behaviour and heightened regulatory scrutiny. 

In the ELFMo methodology, risk management is not treated as a separate activity but as 
a cross-cutting concern that informs decisions at every lifecycle stage. Early phases 
focus on feasibility and risk identification, development phases emphasise controlled 
adaptation and evaluation, and operational phases prioritise monitoring, governance, 
and continuous validation. 

2.1.3 Positioning within the ELFMo Innovation Objectives 

The lifecycle methodology defined in this deliverable provides the structural framework 
through which the ELFMo innovation objectives are realised. Risk-based decision making 
(Innovation 1) is operationalised through explicit lifecycle gates, KPIs, and evaluation 
criteria. Trustworthy adaptation and integration of LFMs (Innovation 2) is supported by 
structured development and assurance stages. Evidence-based quality and compliance 
assessment (Innovation 3) is embedded across both development and operation phases. 
Finally, fostering open and sovereign AI ecosystems (Innovation 4) is enabled through 
informed model selection, benchmarking, and lifecycle governance. 

By situating individual tools, techniques, and use cases within this unified lifecycle, the 
ELFMo methodology aims to transform fragmented GenAI experimentation into 
repeatable, auditable, and sustainable industrial practice. 

2.2 Development Phase of the ELFMo Lifecycle 

2.2.1 Use Case Definition 

In line with established software and systems engineering practice, the development 
phase of the ELFMo lifecycle begins with a rigorous and explicit definition of the target 
use case. Any structured software development process is fundamentally grounded in a 
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clear understanding of what problem is to be solved and why. In the context of ELFMo, 
this stage establishes the strategic intent, operational context, and feasibility 
boundaries of the proposed LFM-enabled GenAI product, and functions as the primary 
decision gate for determining whether the use of a Large Foundation Model is justified.  

In contrast to exploratory prototyping, use case definition within the ELFMo methodology 
is a structured engineering activity. It requires the articulation of the problem space in 
terms that are meaningful both to business stakeholders and to technical and 
governance actors. This includes identifying the decisions or processes to be supported, 
the role of human users, and the consequences of erroneous or misleading system 
behaviour. 

A critical aspect of this stage is recognising that GenAI and LFMs are not universally 
appropriate solutions. The methodology therefore explicitly supports negative feasibility 
decisions, allowing organisations to reject or defer GenAI adoption when simpler, more 
deterministic, or lower-risk approaches are sufficient. This avoids unnecessary technical 
complexity and mitigates downstream governance and compliance risks. 

Key outcomes of this stage include a clearly scoped problem statement, an initial risk 
profile, and explicit success criteria that can be traced throughout the lifecycle.  

This stage is directly grounded in the risk assessment and decision-support baselines 
established in WP3. In particular, D3.1 defines structured methods for early-phase risk 
identification and feasibility analysis across multiple domains, including consumer 
cybersecurity, telemarketing, and built-environment consultancy. These methods 
support the systematic evaluation of whether LFM adoption is justified by analysing 
privacy exposure, data quality dependencies, security vulnerabilities, and explainability 
requirements.  

Furthermore, D3.1 introduces threat modelling as a core mechanism for anticipating 
misuse, attack vectors, and unintended behaviours at an early design stage. Integrating 
threat modelling into use case definition ensures that security and trustworthiness a re 
treated as first-class design drivers rather than downstream concerns.  

Complementing this, D3.2 provides a structured framework for identifying 
trustworthiness factors through the Trustworthiness Canvas and associated Risk and 
Guardrail Cards. These instruments support workshops and co-creation sessions that 
help stakeholders explicitly surface ethical, legal, and organisational trust requirements 
at the moment the use case is defined.  
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Together, D3.1 and D3.2 ensure that use case definition in the ELFMo methodology is not 
only business-driven but also risk-aware and governance-oriented from its inception. 

2.2.2 KPI Selection 

Once a use case has been defined, its objectives must be translated into measurable 
indicators. KPI selection provides the quantitative backbone for evidence-based 
decision making across the entire ELFMo lifecycle. 

For LFM-enabled GenAI products, KPIs extend beyond classical accuracy metrics. They 
must capture multiple dimensions, including model behaviour, system performance, 
business impact, and trustworthiness. Typical KPI categories include model-level 
performance indicators (e.g. relevance, hallucination rate, robustness), system-level 
indicators (latency, availability, scalability, cost), business-level indicators (productivity 
gains, revenue impact, risk reduction), and governance-related indicators (bias metrics, 
explainability coverage, audit readiness). 

The methodology emphasises KPI traceability: each KPI should be explicitly linked to a 
use case objective and revisited as the system evolves. This ensures that optimisation 
efforts remain aligned with business value rather than drifting toward narrow technical 
improvements. 

In high-volume industrial contexts, such as Customer Experience (CX) operations, it is 
crucial to further distinguish between operational metrics and strategic value. For 
example, while a technical metric like "token generation latency" directly influences the 
"Average Handling Time" (AHT) - a critical operational KPI - optimization efforts must be 
balanced against quality indicators like "First Contact Resolution" (FCR) and "Customer 
Satisfaction" (CSAT). 

A robust KPI framework should therefore pair efficiency targets with quality guardrails. 
For example, a successful Agent Copilot deployment might target a 12-18% reduction in 
AHT, but this success is conditional on maintaining or improving the Net Promoter Score 
(NPS). Furthermore, measurements should account for the "cognitive load" of the 
human operator; an effective LFM solution should not merely speed up the process but 
actively reduce the stress and complexity of information retrieval for the user, which can 
be measured through agent satisfaction surveys and turnover rates. 

The selection of KPIs is closely aligned with the measurement frameworks developed in 
WP3. D3.2 provides concrete methodologies for defining, measuring, and 
operationalising business KPIs, internal performance KPIs, and Service Level Objectives 
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(SLOs). These frameworks demonstrate how technical performance indicators can be 
linked to business value, service quality, and compliance objectives.  

While many of the KPIs in D3.2 originate from business performance scenarios such as 
telemarketing, the underlying methodology is directly transferable to trust-, risk-, and 
compliance-related KPIs. In particular, D3.2 introduces systematic approaches for 
translating abstract trustworthiness goals into measurable indicators, including KRIs 
(Key Risk Indicators) and KCIs (Key Control Indicators), which are essential for lifecycle 
governance of LFM-enabled systems.  

In addition, D3.1 defines how business KPIs and technical monitoring metrics can be 
combined within integrated decision-support frameworks. This supports the ELFMo 
objective of aligning KPI selection not only with model performance, but with 
organisational risk tolerance and regulatory constraints. 

2.2.3 Architecture Design 

Architecture design translates conceptual requirements into a concrete system 
structure capable of supporting the intended GenAI functionality. For LFM-enabled 
systems, architectural decisions are particularly consequential, as they determine not 
only performance and cost but also risk exposure, observability, and regulatory 
compliance. 

This stage addresses system topology (cloud, on-premise, hybrid, or edge), interaction 
patterns such as Retrieval-Augmented Generation or agentic architectures, data flow 
and trust boundaries, and integration with enterprise systems. Unlike traditional 
software, GenAI architectures must explicitly accommodate uncertainty in model 
behaviour and evolving dependencies on external model providers or data sources.  

The ELFMo methodology therefore promotes architectures that support isolation of 
failure modes, monitoring by design, and controlled evolution. Architectural decisions 
are documented and justified in relation to both technical requirements and governance 
constraints. 

This Architecture Design phase translates high-level functional, business, and 
governance requirements into a modular and evolvable system architecture that 
supports both controlled experimentation and stable production operation. Architecture 
design is therefore not only a technical structuring activity, but the point where trust, risk, 
and compliance considerations are concretely embedded into the system. It makes the 
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system’s trust boundaries explicit, including inputs, retrieval sources, tools and actions, 
and outputs, and treats them as first-class design elements. 

Mitigation hypotheses derived from the risk analysis should be implemented directly in 
the architecture through concrete safeguards, with clearly assigned ownership and 
measurable indicators to evaluate their effectiveness continuously. In this way, 
architecture design operationalises risk management: safeguards become architectural 
components rather than external procedures. This ensures that architectural decisions 
are grounded not only in performance and cost considerations, but also in observability 
by design, auditability, and readiness for regulatory compliance across the full system 
lifecycle. 

From a governance perspective, this architectural grounding is reinforced by WP3. In 
D3.2, the Trustworthiness framework introduces the Guardrail Card as a mechanism to 
translate abstract risk mitigation ideas into operational controls. These guardrails define 
explicit responsibilities, success criteria, and review cycles, and are linked to 
measurable Key Control Indicators (KCIs). By embedding these guardrails directly into 
the architecture, governance is not treated as an external layer, but becomes an intrinsic 
property of the system design. 

In addition, D3.1 highlights that architecture design is one of the primary instruments for 
enforcing security, privacy, and compliance by design. Architectural choices around 
deployment topology (cloud, on-premise, hybrid), data flow separation, and dependency 
management directly shape the system’s exposure to risks such as data leakage, 
adversarial manipulation, and regulatory non-compliance. Integrating these 
considerations at design time ensures that assurance and governance objectives are 
implemented proactively rather than retrofitted after deployment. 

Together, these contributions position Architecture Design in the ELFMo methodology as 
the convergence point between engineering, risk management, and governance: the 
stage where system structure, performance, scalability, and cost efficiency are explicitly 
balanced with human oversight, regulatory readiness, and the long-term trustworthiness 
of LFM-enabled GenAI systems. 

2.2.4 Model Shortlisting 

Model shortlisting reduces the broad landscape of available foundation models to a 
manageable set of candidates suitable for the defined use case and architecture. This 
process considers not only functional capability but also long-term sustainability and 
dependency risks. 
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Selection criteria include modality support, adaptability, resource requirements,  
licensing terms, intellectual property constraints, vendor lock-in risks, and ecosystem 
maturity. In regulated or strategically sensitive domains, model sovereignty and 
deployment control are treated as first-class concerns. 

The outcome of this stage is a documented shortlist of candidate models, together with 
explicit rationale for inclusion and exclusion. 

Model shortlisting should be executed as an evidence-informed filtering step that 
narrows the landscape of candidate LFMs based on both capability fit and deployment 
feasibility. WP2 provides the technical foundations for this: D2.2 defines a structured 
selection methodology and criteria for exploring, filtering, and ranking LFMs for 
enterprise integration, including model characteristics, ecosystem maturity, efficiency,  
and constraints relevant to industrial adoption.  

In addition, D2.1 provides supporting baseline considerations for enterprise integration 
- emphasising that shortlist criteria must reflect not only raw capability, but also the 
practicalities of secure integration, maintainability, and operational constraints across 
cloud/on-prem/hybrid environments.  

Finally, WP3 inputs should act as selection constraints rather than after-the-fact checks: 
D3.2’s trustworthiness framing helps translate early trust requirements (e.g., privacy 
expectations, security posture, accountability needs) into explicit “must-have” or 
“exclusion” criteria that influence which candidate models can responsibly proceed to 
benchmarking. 

2.2.5 Model Benchmarking 

Benchmarking provides an evidence-based basis for selecting between shortlisted 
models. Generic public benchmarks are insufficient for most industrial use cases; 
evaluation must instead reflect domain-specific tasks, data characteristics, and risk 
profiles. 

Benchmarking activities may include task-specific performance evaluation, stress 
testing for hallucination and bias, robustness assessment, and cost-performance 
analysis under realistic constraints. Results are used to inform a transparent and 
auditable model selection decision. 

Benchmarking in ELFMo should be treated as the evidence gate between a plausible 
shortlist and a defensible model selection decision. WP2 provides the core 
benchmarking methods: D2.2 defines reproducible benchmarking approaches that 
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combine classical NLP metrics, semantic similarity measures, and LLM-as-a-judge 
strategies, enabling transparent comparison across models and configurations.  

D2.1 complements this by framing benchmarking and validation as part of a broader 
adaptation lifecycle, linking model evaluation to both technical metrics and business 
KPIs, and emphasising that evaluation must account for deployment trade-offs (quality 
vs. latency vs. cost).  

WP3 strengthens benchmarking by ensuring it covers risk and conformity dimensions. 
D3.2 provides methods, indicators, and quality metrics oriented toward trustworthy 
enterprise deployment, and D3.1 establishes baseline procedures for risk- and 
compliance-aware assessment - together ensuring that benchmarking explicitly tests for 
failure modes (e.g., hallucination sensitivity, robustness, misuse risk) rather than only 
average-case performance.  

Finally, WP1 ensures benchmarking remains grounded in real value: D1.1 defines use-
case requirements and KPIs that can be operationalised into domain-relevant evaluation 
scenarios and acceptance thresholds, avoiding over-reliance on generic public 
benchmarks. 

2.2.6 Data Preparation 

Data preparation is a central cost and risk driver in GenAI product development. Data 
may be used for fine-tuning, retrieval, evaluation, or monitoring, each with distinct 
quality and governance requirements. 

Key concerns include data quality, bias, provenance, privacy, and traceability. The 
ELFMo methodology treats data as a lifecycle asset, requiring continuous governance 
rather than one-off preparation. Links between datasets, model versions, and outputs 
are explicitly maintained to support auditability and continuous improvement.  

Data preparation should be treated as a cross cutting, continuous discipline across the 
system lifecycle, not as a one-off preprocessing task. A process and tooling driven 
approach is required to enable systematic curation, automation, and reproducibility of 
datasets. This includes mechanisms to generate derived datasets, such as synthetic 
data or privacy preserving variants, which are especially relevant when real world data is 
scarce or highly sensitive. 

This phase should make data governance an integral part of the system: provenance, 
versioning, access control, and traceability links between datasets, model versions, and 
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evaluation outcomes should be managed as first class artifacts. This is essential to 
ensure auditability and to enable continuous improvement.  

In addition, D2.1 provides the baseline rationale for treating data preparation as a core 
enabler of trustworthy adaptation, highlighting automation of cleaning/normalisation 
workflows and the need to maintain traceability and compliance links between data, 
models, and outcomes across the lifecycle.  

WP3 further constrains this stage by emphasising privacy, governance, and regulatory 
compliance as first-class requirements for any dataset used for fine-tuning, retrieval,  
evaluation, or monitoring - particularly where sensitive or proprietary enterprise data is 
involved. 

2.2.7 Model Tuning and Adaptation 

Model tuning adapts the selected foundation model to the specific use case. Techniques 
range from prompt engineering and retrieval augmentation to parameter-efficient fine-
tuning. 

Model tuning and adaptation should follow a graduated strategy, escalating from 
minimally invasive techniques (prompting, RAG) toward more invasive approaches 
(parameter-efficient fine-tuning) only where measurable benefit justifies added cost and 
risk. WP2 provides the methodological and technical basis for this: D2.1 outlines 
adaptation strategies (including fine-tuning and continuous learning) and frames them 
explicitly in terms of performance, safety, and compliance constraints in enterprise 
settings.  

D2.2 complements this by describing practical approaches for efficient fine-tuning (e.g., 
LoRA/QLoRA and related parameter-efficient methods) and by situating tuning within a 
benchmark-driven workflow so that each adaptation step is evaluated and traceable  
rather than ad hoc.  

From a trustworthiness perspective, WP3 ensures that adaptation is paired with explicit 
mitigation planning. D3.1 and D3.2 provide risk-oriented procedures and trustworthiness 
tools (risk/guardrail framing) that help ensure adaptation does not increase 
unacceptable risk exposure (e.g., privacy leakage, bias amplification, unsafe 
behaviours), and that necessary controls are defined early enough to be integrated into 
both the tuned system and its surrounding workflow. 
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2.2.8 Evaluation 

Evaluation assesses whether the adapted system satisfies functional, non-functional, 
and governance requirements. This includes automated regression testing, system-level 
validation, and human-in-the-loop assessment where appropriate. 

Evaluation results inform the decision to proceed to operational deployment and 
establish baseline metrics for ongoing monitoring. 

Evaluation activities can also include verification that identified risks remain within 
acceptable bounds (KRIs) and that defined guardrails are effective (KCIs).  

WP2 provides the evaluation backbone needed for evidence-based decisions. D2.2 
defines benchmarking techniques and evaluation frameworks (including combinations 
of classical NLP metrics, semantic similarity measures, and LLM-as-a-judge 
approaches) suitable for comparing models and system variants under realistic 
constraints.  

D2.1 further positions evaluation as part of a validation workflow that must reflect 
enterprise deployment trade-offs and lifecycle needs (e.g., quality vs. cost vs. latency, 
and robustness under changing prompts/data/dependencies), ensuring evaluation 
produces decision-grade evidence rather than one-off test results.  

Evaluation should remain anchored to WP1’s use-case requirements and KPIs: 
acceptance thresholds and “definition of done” criteria should be traceable back to the 
operational goals and constraints documented in D1.1, so that evaluation outcomes 
map directly to business value, user impact, and deployment readiness. 

2.2.9 Assurance and Governance 

Assurance and governance activities establish confidence that the system complies with 
ethical, legal, and organisational requirements. These activities include bias 
assessment, explainability measures, misuse prevention, documentation, and audit 
preparation. 

Rather than a final checklist, assurance is treated as a continuous process that extends 
into the operational phase. 

This lifecycle stage is directly supported by the governance frameworks introduced in 
D3.1 and D3.2. D3.1 establishes AI governance as a continuous organisational process, 
encompassing responsibility allocation, transparency requirements, documentation 
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practices, and regulatory alignment. It positions governance not as a final compliance 
check but as an ongoing management activity that evolves with the system.  

D3.2 operationalises this governance perspective through its Governance Policy Card, 
which consolidates multiple guardrails into organisation-wide policies with defined 
ownership, KPIs, and review cycles. This provides a concrete mechanism for scaling 
assurance practices beyond individual projects and embedding them into enterprise 
governance structures.  

The combination of KRIs and KCIs, introduced in D3.2, ensures that assurance is 
measurable, auditable, and continuously verifiable. This directly aligns with the ELFMo 
methodology’s view of assurance as an active lifecycle discipline rather than a static 
certification step. 

2.3 Operation Phase of the ELFMo Lifecycle 

The operation phase of the ELFMo lifecycle addresses the sustained, trustworthy, and 
economically viable use of LFM-enabled GenAI products in real-world environments. 
While development focuses on feasibility and controlled validation, operation confronts 
continuously evolving conditions: changing user behaviour, drifting data distributions, 
evolving regulatory expectations, and rapid advances in foundation model technology. 
As a result, this phase is critical for ensuring that GenAI solutions remain reliable, 
compliant, and aligned with business objectives over time. 

In the ELFMo methodology, operation is not treated as a passive post-deployment state, 
but as an active phase characterised by continuous observation, decision making, and 
controlled evolution. Responsibilities during this phase span technical operations, 
governance, business ownership, and human oversight. 

2.3.1 Packaging and Integration 

Packaging and integration mark the transition from a validated development artefact to 
an operational product component. This stage focuses on productisation rather than 
experimentation, ensuring that GenAI capabilities can be reliably consumed within 
enterprise environments. 

Key concerns at this stage include the definition of stable APIs and service contracts, 
versioning strategies for models and prompts, and integration with existing enterprise 
systems and workflows. Unlike conventional software components, GenAI services 
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often encapsulate probabilistic behaviour, which must be explicitly communicated to 
downstream consumers through interface contracts and documentation.  

Integration activities must also address security, access control, and data handling 
boundaries. In many enterprise contexts, GenAI systems operate across organisational 
or trust boundaries, making it essential to clearly define responsibility for inputs, 
outputs, and decision outcomes. To manage these complexities effectively, integration 
should ideally be mediated through a dedicated orchestration layer rather than direct 
point-to-point connections. In practice, this often takes the form of a "low-code" or "no-
code" process orchestrator that wraps the non-deterministic LFM components within 
deterministic business logic. 

This architectural pattern allows for the standardization of connectors to external 
systems (such as CRMs, ERPs, or ticketing platforms) while maintaining a centralized 
control plane for data flow. By decoupling the LFM inference engine from the core 
business systems via an event-driven bus, organizations can ensure that the stochastic 
nature of Generative AI does not compromise the data integrity of transactional systems. 
Furthermore, this orchestration approach facilitates the implementation of "swappable" 
model backends, allowing the underlying LFM to be updated or replaced without 
disrupting the broader enterprise integration. The ELFMo methodology therefore 
emphasises explicit interface definitions and documentation as enablers of both 
operational robustness and auditability. 

2.3.2 Functional Testing and Regression 

Once integrated, GenAI products must be protected against unintended behavioural 
drift. Unlike traditional software, LFM-enabled systems may change behaviour as a result 
of updates to models, prompts, retrieval data, or even external dependencies such as 
hosted model APIs. 

Functional testing in the operation phase therefore extends beyond conventional test 
cases. It includes validation of representative interaction scenarios, monitoring of 
output distributions, and verification that previously accepted behaviour remains within 
defined tolerances. Regression testing plays a critical role in detecting subtle 
degradations such as increased hallucination rates, loss of relevance, or changes in tone 
or intent. 

The ELFMo methodology promotes risk-based testing strategies, where the depth and 
frequency of testing are proportional to the potential impact of failure. High-impact or 
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safety-relevant use cases require more stringent regression controls and human 
oversight than low-risk informational applications. 

2.3.3 Deployment and Release Strategies 

Deployment and release strategies determine how GenAI products are introduced into 
live environments and how updates are propagated over time. Given the uncertainty 
inherent in probabilistic models, uncontrolled deployment can expose organisations to 
significant operational and reputational risk. 

The methodology therefore advocates controlled deployment mechanisms such as 
staged rollouts, canary releases, shadow deployments, or sandboxed environments. 
These approaches allow organisations to observe real-world behaviour under limited 
exposure before committing to full-scale release. Release decisions are informed not 
only by technical readiness but also by governance approvals and risk assessments.  

Deployment strategies must also account for different operational contexts, including 
cloud-based services, on-premise installations, and hybrid or edge deployments. Each 
context introduces distinct constraints related to latency, data locality, security, and 
compliance. 

2.3.4 KPI Monitoring and Feedback Loops 

Continuous monitoring is central to the operational integrity of LFM-enabled GenAI 
products. Once deployed, systems are exposed to dynamic environments in which both 
data and usage patterns evolve over time. Without systematic monitoring, performance 
degradation or emerging risks may remain undetected until they cause material harm. 

In the ELFMo methodology, monitoring encompasses multiple layers. Model-level 
monitoring tracks behavioural indicators such as relevance, hallucination frequency, 
bias signals, and confidence measures. System-level monitoring addresses latency, 
availability, error rates, and cost efficiency. Business-level monitoring evaluates whether 
the system continues to deliver expected value in terms of productivity, revenue, or risk 
reduction. 

Feedback loops connect monitoring results back to decision-making processes. Alerts,  
dashboards, and review cycles enable timely interventions such as retraining, 
configuration changes, or temporary rollback. Human-in-the-loop mechanisms remain 
essential, particularly for high-impact decisions or ambiguous situations. Human-in-the-
Loop must be defined as a specific protocol. Effective monitoring requires the definition 
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of explicit escalation triggers - scenarios where the system is mandatorily forced to defer 
to human judgment. These triggers should include technical signals, such as low model 
confidence scores, as well as semantic signals, such as the detection of sensitive intents 
(e.g., "intention to cancel" or "complaint to official body") or signs of user frustration 
(sentiment analysis). 

In these scenarios, the system should degrade gracefully from an "Autopilot" mode to a 
"Copilot" mode, presenting the human supervisor with the context and a suggested draft 
rather than taking autonomous action. This feedback loop serves a dual purpose: it  
mitigates immediate operational risk and generates high-quality, annotated data 
("golden datasets") that can be used to retrain the model and reduce the frequency of 
future escalations. 

The monitoring phase builds on the integrated business and model monitoring 
frameworks defined in D3.1. Section 3 of D3.1 describes how data collection, analysis, 
alerting, and corrective actions can be combined into a unified monitoring pipeline that 
covers both technical system behaviour and business-level performance indicators.  

In addition, D3.2 extends monitoring into the governance domain by introducing 
continuous validation of trustworthiness through KRIs and KCIs. These indicators allow 
organisations to verify that identified risks remain within acceptable thresholds and that 
defined guardrails remain effective in real operation.  

By linking KPI monitoring to both operational performance and governance controls, the 
ELFMo methodology ensures that feedback loops support not only optimisation and 
improvement, but also sustained regulatory compliance, risk containment, and trust 
preservation. 

2.3.5 Continuous Improvement 

Continuous improvement transforms operational evidence into actionable change. 
Rather than treating deployment as the end of development, the ELFMo methodology 
positions operation as an iterative learning phase. 

Improvement activities may include incremental model updates, refinement of prompts 
or retrieval strategies, expansion of training or evaluation datasets, and architectural 
adjustments. Importantly, changes are prioritised based on monitored KPIs and risk 
assessments, ensuring that improvement efforts remain aligned with business 
objectives and governance constraints. 
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The methodology also recognises the rapid evolution of the foundation model 
ecosystem. Periodic re-benchmarking against emerging models or techniques enables 
organisations to make informed decisions about upgrading, migrating, or consolidating 
GenAI capabilities. 

2.3.6 Retirement, Revalidation, and Decommissioning 

The final stage of the operation phase addresses the controlled retirement or revalidation 
of GenAI products or components. Unlike traditional software, GenAI systems may 
become unsuitable not only due to technical obsolescence but also due to regulatory 
change, shifts in acceptable risk, or the availability of superior models.  

Retirement decisions are triggered by factors such as sustained KPI degradation, 
unacceptable risk exposure, changes in scope or requirements, or loss of compliance 
with evolving regulatory frameworks. In some cases, revalidation may be sufficient, 
involving renewed evaluation and assurance activities. In others, full decommissioning 
is required. 

The ELFMo methodology emphasises planned decommissioning to preserve audit trails, 
documentation, and organisational knowledge. Controlled retirement ensures that 
GenAI components do not silently persist beyond their intended lifecycle and that 
successor systems can be introduced without unmanaged risk. 

2.4 The LFM Ecosystem: Models, Providers, and Tooling Landscape 

The ELFMo methodology is situated within a rapidly evolving and heterogeneous LFM   
ecosystem. Effective lifecycle-based decision-making therefore requires not only 
methodological guidance, but also a concrete understanding of the surrounding 
ecosystem of models, service providers, development tools, and deployment options. 
This section provides a consolidated, non-exhaustive overview of representative 
ecosystem elements, named by way of example rather than prescription, to support 
informed and pragmatic decision-making across lifecycle stages. 

Rather than attempting an exhaustive or static catalogue, the intent is to illustrate typical 
classes of tools and services currently used in industrial practice, together with the 
trade-offs they introduce in terms of performance, cost, risk, and regulatory compliance. 
Detailed benchmarking, risk assessment, and evaluation techniques referenced here 
are developed further in WP2 and WP3 deliverables, notably D2.2, D3.1, and D3.2. 
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2.4.1 LFM Model Landscape 

The contemporary LFM model landscape spans a spectrum from large proprietary, 
cloud-hosted models to open and open-weight models that can be self-hosted or 
adapted within enterprise environments. 

Representative proprietary model families include models offered through managed 
APIs by major providers (e.g. large general-purpose conversational and multimodal 
models). These models typically provide strong out-of-the-box performance, rapid 
access to state-of-the-art capabilities, and managed scalability. However, they 
introduce dependencies related to vendor lock-in, limited transparency into training data 
and internal model structure, pricing volatility, and potential data sovereignty concerns.  

In contrast, open and open-weight models - for example those distributed via public 
repositories or research-led initiatives - enable deeper inspection, fine-tuning, and 
controlled deployment. Such models are particularly relevant for organisations requiring 
on-premise deployment, stricter data governance, or greater control over lifecycle 
evolution. These benefits are offset by increased responsibility for benchmarking, 
optimisation, and operational management. 

Within the ELFMo lifecycle, model selection is therefore treated as a strategic decision 
rather than a purely technical one, informed by use-case criticality, regulatory exposure, 
operational constraints, and long-term sustainability. WP2 contributes systematic 
benchmarking techniques for comparing model capabilities, while WP3 provides 
complementary risk and compliance evaluation criteria. 

2.4.2 Service Providers and Hosting Options 

Beyond the models themselves, the LFM ecosystem includes a diverse range of service 
providers offering hosted inference, managed fine-tuning, orchestration, and monitoring 
capabilities. Examples include hyperscale cloud platforms providing integrated AI 
services, specialised AI platform providers offering model hubs and lifecycle 
management, and system integrators delivering bespoke GenAI solutions.  

Managed services can significantly reduce time-to-market, particularly during early 
development and pilot phases. They often provide built-in scalability, security features, 
and integration with existing enterprise tooling. At the same time, reliance on external 
service providers raises considerations related to data transfer, jurisdictional 
compliance, service availability, and long-term cost predictability. 
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The ELFMo methodology therefore encourages explicit evaluation of hosting and service 
models as part of architectural design and assurance activities. Hybrid approaches  - 
combining externally hosted inference with internally managed data pipelines or 
governance layers - are commonly viable and allow organisations to balance agility with 
control. Such decisions are revisited during operation as usage patterns, regulatory 
expectations, and cost structures evolve. 

2.4.3 Development, Orchestration, and Integration Tooling 

Across the LFM lifecycle, a growing ecosystem of software tools supports development,  
adaptation, orchestration, and integration. Typical examples include:  

• Prompt and workflow orchestration frameworks, which enable structured 
composition of prompts, tools, and model calls; 

• Retrieval-Augmented Generation (RAG) toolkits, integrating vector databases 
and document pipelines; 

• Model experimentation and evaluation environments, supporting rapid 
comparison of prompts, models, and configurations; 

• Data preparation and annotation tools, facilitating dataset curation and quality 
control. 

In industrial practice, such tools are frequently combined rather than used in isolation. 
From an ELFMo perspective, tooling choices are guided by their ability to support 
traceability, reproducibility, and lifecycle integration, rather than by raw feature  
richness. WP2 provides concrete guidance on toolchains supporting benchmarking and 
adaptation, while WP3 focuses on tooling that enables evidence collection for risk and 
conformity assessment. 

Crucially, given the pace of ecosystem change, the methodology avoids hard 
dependencies on specific products. Instead, it emphasises modularity, open interfaces, 
and the ability to substitute tooling components as requirements evolve.  

2.4.4 Monitoring, Governance, and Assurance Tooling 

Operational GenAI systems require continuous visibility into model behaviour, system 
performance, and emerging risks. A parallel ecosystem of monitoring and governance 
tools has therefore emerged, addressing aspects such as output evaluation, drift 
detection, policy enforcement, and audit support. 
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Representative examples include: 

• Model and output monitoring platforms tracking quality, bias indicators, and 
behavioural drift 

• Observability tools capturing latency, throughput, and error characteristics 

• Governance artefacts and tooling, such as model cards, system cards, and 
audit logs 

• Human-in-the-loop review systems enabling escalation and oversight for high-
impact decisions. 

These tools are particularly relevant during the operation phase (Section 2.3), where 
continuous assurance replaces one-off validation. WP3 deliverables elaborate methods 
and indicators for risk, quality, and conformity assessment that can be instantiated using 
such tooling. 

2.4.5 Deployment and Runtime Ecosystem 

The deployment ecosystem for LFM-enabled GenAI products spans cloud, on-premise, 
edge, and hybrid environments. Runtime considerations include latency constraints, 
hardware availability (e.g. GPU, accelerator access), energy efficiency, and security 
boundaries. 

Examples of runtime components include lightweight inference engines, 
containerisation platforms, workload routing mechanisms, and hardware abstraction 
layers. Increasingly, enterprises deploy mixed strategies in which different models or 
configurations are selected dynamically based on workload characteristics or risk 
profile. 

Within the ELFMo lifecycle, deployment is treated as a revisitable decision rather than a 
terminal state. Deployment choices directly influence the feasibility of monitoring, 
governance, and compliance activities, and are therefore tightly coupled with 
operational assurance. 

2.4.6 Implications for Lifecycle-based Decision Making 

The diversity and rapid evolution of the LFM ecosystem reinforce the central premise of 
the ELFMo methodology: sustainable GenAI adoption requires structured, lifecycle-wide 
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decision-making. No single model, provider, or tool is universally optimal, and premature 
standardisation on specific technologies can introduce long-term risk. 

By situating lifecycle activities within a concrete but non-prescriptive view of the LFM 
ecosystem, this section complements the methodological guidance in Sections 2.2 and 
2.3. Together, these elements provide a foundation for informed technical, 
organisational, and strategic decisions, supporting the development of GenAI products 
that are not only performant, but also trustworthy, compliant, and economically viable.  
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3 Conclusions 

This deliverable has introduced the ELFMo Methodology, a structured, lifecycle-based 
approach for the conception, development, operation, and retirement of Large 
Foundation Model (LFM)–enabled Generative AI products in industrial and enterprise 
contexts. The methodology responds to the growing need for systematic, risk-informed, 
and governable approaches to GenAI adoption, moving beyond ad-hoc experimentation 
toward sustainable productisation. 

D4.1 establishes the conceptual and methodological foundations of the ELFMo 
approach. It defines a coherent lifecycle spanning development and operation, embeds 
risk management, quality assurance, and regulatory considerations as cross-cutting 
concerns, and situates lifecycle decisions within the realities of the contemporary LFM 
ecosystem. By doing so, it provides a common reference framework for technical, 
organisational, and governance stakeholders across the consortium. 

The document deliberately focuses on structure, principles, and decision logic rather 
than exhaustive prescriptions or tool-specific guidance. Representative models, 
services, and tools are discussed by way of example to illustrate typical ecosystem 
patterns, while avoiding premature standardisation in a rapidly evolving technological 
landscape. This positions the methodology to remain robust as models, platforms, and 
regulatory expectations continue to evolve. 

The ELFMo Methodology is intended to be refined, validated, and operationalised in 
subsequent project stages. In particular, Deliverable D4.3 will build on this foundation 
by incorporating concrete lessons learned from project use cases, deeper integration 
with WP2 tooling and benchmarking results, and tighter alignment with WP3 risk, quality, 
and conformity assessment methods. Together, these future contributions will 
transform the methodological framework defined here into a fully instantiated and 
empirically validated approach for trustworthy GenAI adoption. 

In this sense, D4.1 should be understood not as a final specification, but as a reference 
baseline that enables consistent dialogue, informed decision-making, and structured 
evolution across the ELFMo project and beyond. 


