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1.​ Executive Summary of Deliverable 
This delivery provides an in-depth analysis of WP4 (model reengineering). Further, it is the base of the 
implementation of WP4. The objective of this executive section is to inform of the project's results, highlight 
significant findings, and recommend actionable steps moving forward. Overall, the analysis shows the 
different capabilities of LLM-based approaches vs. the use of mathematical models, which suggests 
combining the strengths of both techniques.  Further, the summary defines the context and interfaces with 
which WP4 interacts with other work packages.  
 
This deliverable specifies the computational modeling framework developed in Work Package 4 (WP4) of 
the MONALISA project. Its primary objective is to define a unified, formally grounded approach for 
representing, extracting, and analyzing system behavior across the full lifecycle—from natural-language 
requirements and design documents to runtime execution traces. 
 
WP4 addresses a key industrial challenge: ensuring consistency between intended system behavior 
described in informal documentation and realized behavior observed in execution logs. To this end, the 
work combines formal Models of Computation (MoCs) with large language model (LLM)–assisted 
extraction techniques, enabling automated translation from both textual and trace-based inputs into 
analyzable formal models. 
 
The deliverable positions WP4 as a central integration layer within the MONALISA analysis pipeline. 
Harmonized trace data provided by WP3 and conceptual specifications from multiple sources are ingested 
by WP4, transformed into formal models, and then passed to WP5 for verification, semantic analysis, and 
root-cause evaluation. This establishes end-to-end traceability from requirements to execution-level 
evidence. 
 
A limited but expressive set of MoCs is selected based on industrial relevance, toolchain maturity, and 
suitability for automated generation. These include UML and SysML models for structural, behavioral, and 
process-level representation, as well as Petri Nets and Timed Automata for detailed concurrency and 
real-time analysis. Each MoC is defined with precise syntax and semantics and mapped to standardized 
interchange formats to ensure interoperability and downstream tool support. 
 
The methodological framework integrates three key elements: 
 
(1) LLM-based natural-language formalization, which extracts structured models from informal 
requirements and specifications; 
(2) trace-based model inference, which reconstructs behavioral models from execution traces; and 
(3) formal metamodel definition, providing a shared semantic foundation across modeling formalisms. 
 
To support implementation and integration, the deliverable defines a common core metamodel and a set of 
deterministic APIs for trace ingestion, model generation, behavioral inference, and formal verification. 
These interfaces enable reproducible transformations and seamless interaction between modeling and 
analysis components. 
 
In conclusion, this work establishes a scalable and coherent modeling foundation for MONALISA, enabling 
systematic comparison of conceptual designs and observed system behavior. The defined framework 
supports advanced analysis tasks, including conformance checking, anomaly detection, and timed property 
verification. Next steps include finalizing model profiles per use case, implementing the defined services, 
and piloting end-to-end workflows across selected industrial scenarios.  
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2.​ Introduction 
This deliverable provides an in-depth analysis of the specification and design of unified 
computational models developed in Work Package 4 (WP4) of the Mona Lisa project. 

The objective of this section is to inform the consortium of the project's results, highlight significant 
conceptual findings, and outline actionable next steps for model integration and validation. 

Overall, the analysis demonstrates that formalized models of computation (MoCs)—supported by 
large language models (LLMs) — based translation from natural-language and trace-based 
inputs can serve as a coherent foundation for analysis, verification, and cross-domain interoperability 
within the project. This approach enables consistency checking between conceptual system 
descriptions and their realized behaviours captured in trace logs. 

This summary defines the context of WP4 in relation to other tasks and work packages: 

●​ WP3 provides data in Google Trace Format and JSON, along with the relevant data 
interfaces, serving as the primary inputs to this task.​
 

●​ WP4, through Task 4.1, specifies the unified metamodels, syntax, and semantics for a 
selected set of Model of Computation (MoC) models.​
 

●​ WP5 will consume these models for analysis, verification, and root-cause evaluation.​
 

The methodology combines formal modeling, metamodel definition, and 
machine-learning-assisted model extraction, enabling industrial use cases to be represented and 
analyzed within a harmonized computational framework. 

2.1 Objectives of the WP4 

The overarching goal of WP4 is to establish a unified framework for representing and analyzing 
computational behavior across different application domains. By leveraging formal models of 
computation, WP4 enables a systematic comparison of conceptual system designs and their 
real-world implementations, thereby supporting the identification of discrepancies, root causes of 
design deviations, and optimization opportunities. 

2.1.1 Specific objectives of Task 4.1 – Model Definitions and Platform 

Task 4.1 focuses on defining a coherent set of models of computation that capture the relevant 
aspects of all project use cases. The task pursues the following objectives: 

●​ Identify and formalize a limited but expressive set of MoCs that can represent the dynamics of 
various industrial systems.​
 

●​ Define unified data structures and programming interfaces to ensure interoperability among 
WP3 (Trace Data), WP4 (Computation Models), and WP5 (Analysis and Verification).​
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●​ Establish the formal syntax and semantics of each selected MoC.​
 

●​ Apply natural language processing and LLM-based methods to extract and align formal 
models from textual specifications.​
 

●​ Defining algorithms to extract a higher-level representation of trace logs.​
 

●​ Create a foundation for subsequent analysis tasks, including anomaly detection, correlation 
analysis, timed property verification, and design-space exploration. 

The relationships between the work packages are presented in Figure 1. 

 

 
Figure 1. Interaction between the analysis work packages and their role within the overall pipeline. 

 
 

 

 

9 



 
 
 

3.​ Input Sources and Data Flow 
The inputs to WP4 originate from three primary sources: 

1.​ Conceptual, design, and requirements documents are natural-language descriptions of 
system requirements, design specifications, and operational scenarios. LLM-based 
transformation pipelines will translate these textual descriptions into structured, formal models 
in accordance with predefined MoCs. These sources typically do not exist as simple text files 
in a single location; they may be scattered across several systems and tools, such as Jira, 
PM tools, Word documents, and Wiki pages.​
 

2.​ Test cases and test logs are typically stored in semi-structured documents that can be 
processed by an LLM.​
 

3.​ Trace Logs and Runtime Data – Actual system execution traces are collected by industrial 
partners and harmonized by WP3 into a Google Trace Format [6] and JSON. These 
standardized trace files serve as the empirical foundation for deriving behavioral models that 
represent realized system behavior. 

The relationship between the sources is illustrated in the following data flow: 

●​ WP3 provides harmonized trace data via standardized interfaces.​
 

●​ WP4 ingests both textual and trace inputs.​
 

●​ LLMs are applied to generate formal representations in MoCs.​
 

●​ Suitable algorithms generate a higher-level representation of the trace file.​
 

●​ The resulting models are then analyzed and compared to detect inconsistencies, performance 
bottlenecks, or design flaws.​
 

●​ WP5 uses these models for deeper analysis and verification and provides the results to WP6. 

 

 
Figure 2. The Data Flow from WP2/WP3 to WP5 
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4. Methodology and Model Formalization Approach 
The methodological framework of WP4 combines formal modeling, model transformation, and 
machine learning components into a unified workflow. 

4.1 Natural Language Processing and Formalization 

LLMs (such as GPT-based architectures) are used to interpret informal requirements and transform 
them into well-structured models compliant with selected MoCs. The workflow involves: 

●​ Information extraction from textual sources using domain-specific prompts and ontologies;​
 

●​ Mapping of linguistic constructs (requirements, constraints, relationships) to model elements 
(states, transitions, parameters);​
 

●​ Generation of metamodel-compliant outputs (e.g., UML/SysML XMI files or Petri Net 
structures).​
 

LLM can serve as a semantic bridge between natural language and formal representation. 

4.2 Trace-Based Model Extraction 

For behavioral analysis, WP4 processes trace logs in the standard format delivered by WP3. These 
traces are transformed into executable or analyzable models. The applied model-specific algorithms 
assist with pattern recognition, event classification, and the identification of synchronization and 
causal relationships between observed events.  

4.3 Formalization and Metamodel Definition 

Each selected MoC is formally defined by: 

●​ A metamodel specifying its elements, relationships, and constraints;​
 

●​ A domain-specific syntax, expressed either as a DSL or ontology;​
 

●​ A mathematical semantics, providing precise meaning to computational constructs.​
 

This document introduces the structure and rationale for these MoCs and provides the foundation for 
implementation in later deliverables. 
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5. Specifications of the Models of Computation 

5.1 Rationale and Selection Principles 

Model extraction from specifications, designs, and test cases uses LLMs because these documents 
are written in natural language. The inferred models depend on the needs of the use case providers. 
The table in the following subsection lists the inferred models for each use-case provider.  

Similarly, model inference from trace logs is use-case-specific. The table also lists the models inferred 
from trace logs for each use case. 

The selection balances: 

●​ Faithfulness to industrial processes (concurrency, resources, timing),​
 

●​ LLM-friendliness (stable syntax, taxonomy, and metamodel targets),​
 

●​ Toolchain maturity (existing verifiers/simulators),​
 

●​ Comparability (ability to align conceptual vs. realized models). 

5.2 Overview of the Applied Models 

For both trace logs and requirements documentation, a wide range of models is available. In 
engineering practice, SysML [2] and UML [1] are widely used; however, several other modeling 
languages are also suitable for process management. Given their widespread adoption and graphical 
representability, this project focuses on SysML/UML models; however, in some cases, more detailed 
models, such as timed automata [5] or Petri Nets [3], may also be used based on the needs of the use 
case providers. These models are supported by multiple tools, so diagram rendering during visual 
analysis and output interpretation is straightforward. 

The selected models are as follows: 
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Input source 

(Document or trace log) 
Recommended 

MoC(s) 
Typical 

diagrams/forms 
Primary target Fit for industrial processes Key analyses enabled 

Trace log Message 
Sequence Charts / 
UML Sequence 

Lifelines, messages, 
combined fragments 

XMI Excellent (interfaces, timing 
approximations) 

Ordering/ 
latency conformance, 
protocol check 

Timed automata Clocks, invariants, 
guards 

JANI [4]  Excellent (real-time behavior) Timed property verification, 
schedulability 

Petri Net Places, transitions, 
tokens 

PNML [3] Excellent (concurrency, 
buffers) 

Ordering/ 
latency conformance, 
protocol check 

Requirements  
& Conceptual docs 

UML Use Case & 
Activity 

Use Case; Activity 
(control/data flows) 

XMI Excellent (process narratives) Flow completeness, 
pre/post-condition 
consistency 

UML/SysML State 
Machine 

Statecharts with 
orthogonal regions 

XMI / SCXML [7] Excellent (mode logic, 
interlocks) 

Reachability, deadlock 
absence, and guarding 
conditions 

 
Table 1: Selected Mocs 
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5.3 MoCs Description 

5.3.1 UML Sequence / Message Sequence Charts (MSC) 

●​ Fit. Interface-level causal order, request/response patterns, and retry schemes.​
 

●​ From Google Trace Format. Map event streams to lifelines (components), messages (event 
pairs), and combined fragments (alt/loop/par).​
 

●​ Serialization. XMI.​
 

●​ Analyses. Protocol conformance, latency budgets, and timeout detection. 

5.3.2 UML Use Case & Activity 
 

●​ Use Case. Captures actors, goals, and interactions; good for early conformance anchors.​
 

●​ Activity. Encodes control/data flows, decision/merge, fork/join; ideal for process structure and 
exception paths.​
 

●​ Serialization. XMI.​
 

●​ LLM mapping. Paragraph → Actor/Action/Object/Guard tuples → Activities with partitions 
(swimlanes).​
 

5.3.3 UML/SysML State Machine 
 

●​ Scope. Modes, interlocks, error handling, concurrent regions (orthogonal components).​
 

●​ Serialization. XMI (tooling) and SCXML [7] (execution/monitoring).​
 

●​ LLM mapping. Conditional phrases → guards; temporal adverbs → timers/timeouts; failure 
phrases → error states.​
 

●​ Analyses. Reachability, deadlock/safe state checks; alignment with trace-derived automata.​
 

5.3.4 SysML Structure + Parametric 
 

●​ Block Definition/Internal Block for structure and interfaces; Parametric for constraints (e.g., 
throughput = f(buffer, takt, uptime)).​
 

●​ Serialization. XMI.​
 

●​ Analyses. What-if and sensitivity (hooks for WP5 quantitative studies). 
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5.3.4 Timed automata 
 

●​ Fit. Real-time control (PLC/embedded), sequencing with hard timing constraints.​
 

●​ From Google Trace Format. Extract states by trace clustering; infer guards/invariants from 
inter-event times; model timeouts as clock constraints.​
 

●​ Serialization. JANI [4] (neutral) or a TA-specific interchange.​
 

●​ Analyses. Timed property verification, schedulability, and deadline misses. 
 

5.3.5 Petri Net 
 

●​ Fit. Industrial processes with buffers, shared resources, concurrency, and blocking.​
 

●​ From Google Trace Format.  Activity labels → transitions; resources/buffers → places; token 
counts from WIP/queue states; timestamps → Timed PN.​
 

●​ Serialization. PNML.[3]​
 

●​ Analyses. Liveness, boundedness, throughput, bottlenecks, and conformance checking 
(align traces to PN).​
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5.4 Metamodels and Programming Interfaces (WP4–WP3–WP5) 

5.4.1 Core Metamodel (common layer) 
 

Minimal shared vocabulary across MoCs to aid LLMs and adapters: 

Entity: {id, name, type, attrs} 

Relation: {source, target, kind, attrs} 

Event: {id, timestamp, actor, label, payload} 

Constraint: {scope, expr, kind: [temporal|resource|safety|prob]} 

Metric: {name, scope, definition} 

TraceRef: {event_id ↔ model_element} 

 

5.4.2 Specific Metamodel Hooks 
 

●​ UML/SysML (XMI): profiles for industrial domains; stereotypes for timing/criticality.​
 

●​ SCXML: runtime hooks for state observers (monitoring).​
 

●​ Petri (PNML): place/transition annotations (resource, buffer size, cost).​
 

●​ Timed Automata (JANI): clocks, invariants, guards; property specs (TCTL).​
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6. API description 

6.1 POST /predict_row 

Purpose 

Single log row anomaly prediction with optional debug metadata. 

Request body (JSON) 

{ 

"timestamp": "2026-01-08T10:00:00", 

"level": "ERROR", 

"source": "orders-api", 

"message": "Unhandled exception..." 

} 

Response  (JSON) 

{ 

"is_anomaly": true, 

"explanation": "<LLM explanation in Hungarian>", 

"metadatas": { ... }   // empty object if debug is OFF 

} 

Behaviour 

●​ Converts the request into an internal row dict and calls check_log_anomaly. 
●​ If TOGGLE_DEBUG == 0 (debug OFF): returns only is_anomaly and explanation, with 

metadatas as an empty {}. 
●​ If TOGGLE_DEBUG == 1 (debug ON): check_log_anomaly returns (is_anom, explanation, 

metadata) and the metadata field is populated with model‑related metadata (e.g., retrieved 
documents, scores, etc.). 
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6.2 POST /predict_file 

Purpose 

Batch anomaly prediction over an uploaded CSV file. 

 

Content type: multipart/form-data 
 
Request: upload a file to the file field. 
 
Expected CSV columns: 

●​ timestamp 
●​ level 
●​ source 
●​ message 

Behavior: 

●​ Reads the uploaded CSV into a pandas DataFrame.​ 
●​ Runs predict_dataframe(df) to apply anomaly detection row by row. 
●​ predict_dataframe appends at least two new columns to each row: 

○​ anomaly (boolean) 
○​ explanation (string, LLM explanation)​ 

Response: 

●​ Returns a CSV file (text/csv) as an attachment via StreamingResponse. 
●​ The filename is prefixed with the currently selected LLM model name:​

 predicted_<CURRENT_MODEL_NAME>_<original_filename>.csv. 
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6.3 POST /set_model 

Purpose 

Set the default Ollama LLM model used by the API. 

Query parameter: 

●​ model (Enum LLMModel): selectable list of available Ollama models (e.g. llama3.1, 
mistral, etc.), exposed as a drop‑down in Swagger.​ 

Behavior: 

●​ Updates the global CURRENT_MODEL_NAME to the selected value. 
●​ Re‑creates the global llm instance via get_llm_for_current_model(), so subsequent 

calls to /predict_row and /predict_file use the newly selected model. 

Response (JSON): 

{ 

"current_model": "llama3.1", 

"message": "LLM model set to llama3.1" 

} 
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6.4 POST /set_embedding 

Purpose 

Set the default embedding model and associated Chroma collection. 

Query parameter: 

●​ em_model (Enum EmbeddingModel): selectable list of embedding models (e.g. 
nomic-embed-text, etc.), shown as a drop‑down in Swagger.​ 

Behavior: 

●​ Updates CURRENT_EMBEDDING_NAME to the selected embedding model name. 
●​ Re‑creates the global embeddings instance via 

get_embedding_for_current_model(). 
●​ Re‑initializes the global vectordb as:​

 

vectordb = Chroma( 

`persist_directory="./log_rag_db",` 

`collection_name=CURRENT_EMBEDDING_NAME,` 

`embedding_function=embeddings,` 

) 

●​ This means the active RAG index (Chroma collection) is switched to the one that matches 
the selected embedding function.​ 

Response (JSON): 

{ 

"current_model": "nomic-embed-text", 

"message": "Embedding model set to nomic-embed-text" 

} 
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6.5 POST /toggle_debug 

 
Purpose: 

Enable or disable global debug mode. 

Query parameter: 

●​ debug (Enum DebugFlag): 
○​ 0 → OFF (default) 
○​ 1 → ON​

 Exposed as a 0/1 drop‑down in Swagger.​ 

Behavior: 

●​ Sets the global TOGGLE_DEBUG integer to 0 or 1. 
●​ When TOGGLE_DEBUG == 1, endpoints like /predict_row return additional metadata 

(e.g., retrieved context, raw LLM info), and any debug‑only logging you implemented is 
activated. 

Response (JSON): 

{ 

"debug": 1, 

"message": "Debug flag set to 1" 

} 
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6.6 POST /add_csv_to_vectordb 

Purpose: 

Add CSV rows as documents to the current Chroma collection. 

Content type: multipart/form-data 

Request: upload a file to the file field. 

Expected CSV columns (recommended): 

●​ timestamp 
●​ level 
●​ source 
●​ message 

Behavior: 

●​ Reads the uploaded CSV into a pandas DataFrame.​ 
●​ For each row, build a Document: 

○​ page_content: a text representation of the log row using row_to_text(row) 
○​ metadata: a dict containing selected fields (e.g. timestamp, level, source). 

●​ Calls vectordb.add_documents(docs) so that all new documents are embedded with the 
currently active embedding model and stored in the current Chroma collection (defined by 
CURRENT_EMBEDDING_NAME)​ 

Response (JSON): 

{ 

"added_rows": 123, 

"collection_name": "nomic-embed-text", 

"message": "Successfully added 123 documents to collection 
'nomic-embed-text'.The collection was {was_len} long, now {curr_len} long." 

} 

Usage notes: 

●​ The target collection and embedding function are determined by the last call to 
/set_embedding. 

●​ After calling /add_csv_to_vectordb, subsequent /predict_row and /predict_file requests will be 
able to retrieve context from the newly added documents via the shared vectordb. 
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7. LLM Pipelines: Prompts, Guards, and Validation 
 

●​ Schema-constrained generation. Use JSON/XMI/PNML/JANI schemas to force valid 
structures.​
 

●​ Dual extraction. ​
 

a.​ Requirements → specs (SysML/UML).  
b.​ Traces → behavior (PN/TA/Seq).​

 
●​ Cross-validation. Regenerate from model to English summary → compare to source text.​

 
●​ Semantic guards. Ontology terms (actors/resources) must be reused consistently.​

 

Property scaffolding. Auto-draft properties (e.g., “No buffer overflow”, “Deadline ≤ D”) for WP5 
verification. 
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8. Conclusions and Next Steps 
This extension provides actionable guidance for selecting and applying MoCs to both NL 
requirements and traces. Immediate next steps: 

1.​ Select models applicable to the use cases. 

2.​ Map the different traces to the MoC models. 

3.​ Freeze XMI/PNML/JANI/SCXML schema profiles. 

4.​ Implement the reengineering module/service. 

5.​ Implement trace adapters and minimal property checks. 

6.​ Pilot two use cases end-to-end (NL→model, trace→model).  

7.​ Integrate WP5 verifiers and produce the first discrepancy report. 
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