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1. Executive Summary of Deliverable

This delivery provides an in-depth analysis of WP4 (model reengineering). Further, it is the base of the
implementation of WP4. The objective of this executive section is to inform of the project's results, highlight
significant findings, and recommend actionable steps moving forward. Overall, the analysis shows the
different capabilities of LLM-based approaches vs. the use of mathematical models, which suggests
combining the strengths of both techniques. Further, the summary defines the context and interfaces with
which WP4 interacts with other work packages.

This deliverable specifies the computational modeling framework developed in Work Package 4 (WP4) of
the MONALISA project. Its primary objective is to define a unified, formally grounded approach for
representing, extracting, and analyzing system behavior across the full lifecycle—from natural-language
requirements and design documents to runtime execution traces.

WP4 addresses a key industrial challenge: ensuring consistency between intended system behavior
described in informal documentation and realized behavior observed in execution logs. To this end, the
work combines formal Models of Computation (MoCs) with large language model (LLM)-assisted
extraction techniques, enabling automated translation from both textual and trace-based inputs into
analyzable formal models.

The deliverable positions WP4 as a central integration layer within the MONALISA analysis pipeline.
Harmonized trace data provided by WP3 and conceptual specifications from multiple sources are ingested
by WP4, transformed into formal models, and then passed to WPS5 for verification, semantic analysis, and
root-cause evaluation. This establishes end-to-end traceability from requirements to execution-level
evidence.

A limited but expressive set of MoCs is selected based on industrial relevance, toolchain maturity, and
suitability for automated generation. These include UML and SysML models for structural, behavioral, and
process-level representation, as well as Petri Nets and Timed Automata for detailed concurrency and
real-time analysis. Each MoC is defined with precise syntax and semantics and mapped to standardized
interchange formats to ensure interoperability and downstream tool support.

The methodological framework integrates three key elements:

(1) LLM-based natural-language formalization, which extracts structured models from informal
requirements and specifications;

(2) trace-based model inference, which reconstructs behavioral models from execution traces; and

(3) formal metamodel definition, providing a shared semantic foundation across modeling formalisms.

To support implementation and integration, the deliverable defines a common core metamodel and a set of
deterministic APIs for trace ingestion, model generation, behavioral inference, and formal verification.
These interfaces enable reproducible transformations and seamless interaction between modeling and
analysis components.

In conclusion, this work establishes a scalable and coherent modeling foundation for MONALISA, enabling
systematic comparison of conceptual designs and observed system behavior. The defined framework
supports advanced analysis tasks, including conformance checking, anomaly detection, and timed property
verification. Next steps include finalizing model profiles per use case, implementing the defined services,
and piloting end-to-end workflows across selected industrial scenarios.
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2. Introduction

This deliverable provides an in-depth analysis of the specification and design of unified
computational models developed in Work Package 4 (WP4) of the Mona Lisa project.

The objective of this section is to inform the consortium of the project's results, highlight significant
conceptual findings, and outline actionable next steps for model integration and validation.

Overall, the analysis demonstrates that formalized models of computation (MoCs)—supported by
large language models (LLMs) — based translation from natural-language and trace-based
inputs can serve as a coherent foundation for analysis, verification, and cross-domain interoperability
within the project. This approach enables consistency checking between conceptual system
descriptions and their realized behaviours captured in trace logs.

This summary defines the context of WP4 in relation to other tasks and work packages:

e WP3 provides data in Google Trace Format and JSON, along with the relevant data
interfaces, serving as the primary inputs to this task.

e WP4, through Task 4.1, specifies the unified metamodels, syntax, and semantics for a
selected set of Model of Computation (MoC) models.

e WP5 will consume these models for analysis, verification, and root-cause evaluation.

The methodology combines formal modeling, metamodel definition, and
machine-learning-assisted model extraction, enabling industrial use cases to be represented and
analyzed within a harmonized computational framework.

2.1 Objectives of the WP4

The overarching goal of WP4 is to establish a unified framework for representing and analyzing
computational behavior across different application domains. By leveraging formal models of
computation, WP4 enables a systematic comparison of conceptual system designs and their
real-world implementations, thereby supporting the identification of discrepancies, root causes of
design deviations, and optimization opportunities.

2.1.1 Specific objectives of Task 4.1 - Model Definitions and Platform

Task 4.1 focuses on defining a coherent set of models of computation that capture the relevant
aspects of all project use cases. The task pursues the following objectives:

e Identify and formalize a limited but expressive set of MoCs that can represent the dynamics of
various industrial systems.

e Define unified data structures and programming interfaces to ensure interoperability among
WP3 (Trace Data), WP4 (Computation Models), and WP5 (Analysis and Verification).
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e Establish the formal syntax and semantics of each selected MoC.

e Apply natural language processing and LLM-based methods to extract and align formal
models from textual specifications.

e Defining algorithms to extract a higher-level representation of trace logs.

e Create a foundation for subsequent analysis tasks, including anomaly detection, correlation
analysis, timed property verification, and design-space exploration.

The relationships between the work packages are presented in Figure 1.
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Figure 1. Interaction between the analysis work packages and their role within the overall pipeline.
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3. Input Sources and Data Flow

The inputs to WP4 originate from three primary sources:

1. Conceptual, design, and requirements documents are natural-language descriptions of
system requirements, design specifications, and operational scenarios. LLM-based
transformation pipelines will translate these textual descriptions into structured, formal models
in accordance with predefined MoCs. These sources typically do not exist as simple text files
in a single location; they may be scattered across several systems and tools, such as Jira,
PM tools, Word documents, and Wiki pages.

2. Test cases and test logs are typically stored in semi-structured documents that can be
processed by an LLM.

3. Trace Logs and Runtime Data — Actual system execution traces are collected by industrial
partners and harmonized by WP3 into a Google Trace Format [6] and JSON. These
standardized trace files serve as the empirical foundation for deriving behavioral models that
represent realized system behavior.

The relationship between the sources is illustrated in the following data flow:
e WP3 provides harmonized trace data via standardized interfaces.
e \WP4 ingests both textual and trace inputs.
e LLMs are applied to generate formal representations in MoCs.
e Suitable algorithms generate a higher-level representation of the trace file.

e The resulting models are then analyzed and compared to detect inconsistencies, performance
bottlenecks, or design flaws.

e WP5 uses these models for deeper analysis and verification and provides the results to WP6.
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Figure 2. The Data Flow from WP2/WP3 to WP5
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4. Methodology and Model Formalization Approach

The methodological framework of WP4 combines formal modeling, model transformation, and
machine learning components into a unified workflow.

41 Natural Language Processing and Formalization

LLMs (such as GPT-based architectures) are used to interpret informal requirements and transform
them into well-structured models compliant with selected MoCs. The workflow involves:

e Information extraction from textual sources using domain-specific prompts and ontologies;

e Mapping of linguistic constructs (requirements, constraints, relationships) to model elements
(states, transitions, parameters);

e Generation of metamodel-compliant outputs (e.g., UML/SysML XMI files or Petri Net
structures).

LLM can serve as a semantic bridge between natural language and formal representation.

4.2 Trace-Based Model Extraction

For behavioral analysis, WP4 processes trace logs in the standard format delivered by WP3. These
traces are transformed into executable or analyzable models. The applied model-specific algorithms
assist with pattern recognition, event classification, and the identification of synchronization and
causal relationships between observed events.

4.3 Formalization and Metamodel Definition

Each selected MoC is formally defined by:
e A metamodel specifying its elements, relationships, and constraints;
e A domain-specific syntax, expressed either as a DSL or ontology;

e A mathematical semantics, providing precise meaning to computational constructs.

This document introduces the structure and rationale for these MoCs and provides the foundation for
implementation in later deliverables.

11
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5. Specifications of the Models of Computation

5.1 Rationale and Selection Principles

Model extraction from specifications, designs, and test cases uses LLMs because these documents
are written in natural language. The inferred models depend on the needs of the use case providers.
The table in the following subsection lists the inferred models for each use-case provider.

Similarly, model inference from trace logs is use-case-specific. The table also lists the models inferred
from trace logs for each use case.

The selection balances:
e Faithfulness to industrial processes (concurrency, resources, timing),
e LLM-friendliness (stable syntax, taxonomy, and metamodel targets),
e Toolchain maturity (existing verifiers/simulators),

e Comparability (ability to align conceptual vs. realized models).

5.2 Overview of the Applied Models

For both trace logs and requirements documentation, a wide range of models is available. In
engineering practice, SysML [2] and UML [1] are widely used; however, several other modeling
languages are also suitable for process management. Given their widespread adoption and graphical
representability, this project focuses on SysML/UML models; however, in some cases, more detailed
models, such as timed automata [5] or Petri Nets [3], may also be used based on the needs of the use
case providers. These models are supported by multiple tools, so diagram rendering during visual
analysis and output interpretation is straightforward.

The selected models are as follows:

12
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Input source Recommended Typical Primary target Fit for industrial processes Key analyses enabled
(Document or trace log) MoC(s) diagrams/forms
Trace log Message Lifelines, messages, | XMl Excellent (interfaces, timing Ordering/
Sequence Charts / | combined fragments approximations) latency conformance,
UML Sequence protocol check
Timed automata Clocks, invariants, JANI [4] Excellent (real-time behavior) | Timed property verification,
guards schedulability
Petri Net Places, transitions, PNML [3] Excellent (concurrency, Ordering/
tokens buffers) latency conformance,
protocol check
Requirements UML Use Case & Use Case; Activity XMI Excellent (process narratives) | Flow completeness,

& Conceptual docs

Activity

(control/data flows)

pre/post-condition
consistency

UML/SysML State
Machine

Statecharts with
orthogonal regions

XMI / SCXML [7]

Excellent (mode logic,
interlocks)

Reachability, deadlock
absence, and guarding
conditions

Table 1: Selected Mocs

13
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5.3 MoCs Description

5.3.1 UML Sequence / Message Sequence Charts (MSC)

Fit. Interface-level causal order, request/response patterns, and retry schemes.

From Google Trace Format. Map event streams to lifelines (components), messages (event
pairs), and combined fragments (alt/loop/par).

Serialization. XMI.

Analyses. Protocol conformance, latency budgets, and timeout detection.

5.3.2 UML Use Case & Activity

Use Case. Captures actors, goals, and interactions; good for early conformance anchors.

Activity. Encodes control/data flows, decision/merge, fork/join; ideal for process structure and
exception paths.

Serialization. XMI.

LLM mapping. Paragraph — Actor/Action/Object/Guard tuples — Activities with partitions
(swimlanes).

5.3.3 UML/SysML State Machine

Scope. Modes, interlocks, error handling, concurrent regions (orthogonal components).
Serialization. XMI (tooling) and SCXML [7] (execution/monitoring).

LLM mapping. Conditional phrases — guards; temporal adverbs — timers/timeouts; failure
phrases — error states.

Analyses. Reachability, deadlock/safe state checks; alignment with trace-derived automata.

5.3.4 SysML Structure + Parametric

Block Definition/Internal Block for structure and interfaces; Parametric for constraints (e.g.,
throughput = f(buffer, takt, uptime)).

Serialization. XMI.

Analyses. What-if and sensitivity (hooks for WP5 quantitative studies).

14
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5.3.4 Timed automata

e Fit. Real-time control (PLC/embedded), sequencing with hard timing constraints.

e From Google Trace Format. Extract states by trace clustering; infer guards/invariants from
inter-event times; model timeouts as clock constraints.

e Serialization. JANI [4] (neutral) or a TA-specific interchange.

e Analyses. Timed property verification, schedulability, and deadline misses.

5.3.5 Petri Net

e Fit. Industrial processes with buffers, shared resources, concurrency, and blocking.

e From Google Trace Format. Activity labels — transitions; resources/buffers — places; token
counts from WIP/queue states; timestamps — Timed PN.

e Serialization. PNML.[3]

e Analyses. Liveness, boundedness, throughput, bottlenecks, and conformance checking
(align traces to PN).

15
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5.4 Metamodels and Programming Interfaces (WP4-WP3-WP5)

5.4.1 Core Metamodel (common layer)

Minimal shared vocabulary across MoCs to aid LLMs and adapters:

Entity: {id, name, type, attrs}

Relation: {source, target, kind, attrs}

Event: {id, timestamp, actor, label, payload}

Constraint: {scope, expr, kind: [temporal|resource|safety|prob]}
Metric: {name, scope, definition}

TraceRef: {event id - model element}

5.4.2 Specific Metamodel Hooks

e UML/SysML (XMI): profiles for industrial domains; stereotypes for timing/criticality.

e SCXML: runtime hooks for state observers (monitoring).
e Petri (PNML): place/transition annotations (resource, buffer size, cost).

e Timed Automata (JANI): clocks, invariants, guards; property specs (TCTL).

N
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6. APl description

6.1 POST /predict row

Purpose

Single log row anomaly prediction with optional debug metadata.
Request body (JSON)

{

"timestamp": "2026-01-08T10:00:00",

"level": "ERROR",
"source": "orders-api",
"message": "Unhandled exception..."

}
Response (JSON)
{

"is anomaly": true,

"explanation": "<LLM explanation in Hungarian>",
"metadatas": { ... } // empty object if debug is OFF
}

Behaviour

e Converts the request into an internal row dict and calls check_log_anomaly.

N

MONALISA

e If TOGGLE_DEBUG == 0 (debug OFF): returns only is_anomaly and explanation, with

metadatas as an empty {}.

e If TOGGLE_DEBUG == 1 (debug ON): check_log anomaly returns (is_anom, explanation,
metadata) and the metadata field is populated with model-related metadata (e.g., retrieved

documents, scores, etc.).

17
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6.2 POST /predict file

Purpose

Batch anomaly prediction over an uploaded CSV file.

Content type: multipart/form-data
Request: upload a file to the file field.

Expected CSV columns:

e timestamp
o level

e source

e message

Behavior:

e Reads the uploaded CSV into a pandas DataFrame.
e Runspredict_dataframe(df) to apply anomaly detection row by row.
e predict_dataframe appends at least two new columns to each row:

o anomaly (boolean)

o explanation (string, LLM explanation)

Response:

e Returns a CSV file (text/csv) as an attachment via StreamingResponse.
e The filename is prefixed with the currently selected LLM model name:
predicted_<CURRENT_MODEL_NAME>_<original_filename>.csv.

18
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6.3 POST /set model

Purpose
Set the default Ollama LLM model used by the API.
Query parameter:

e model (Enum LLMModel): selectable list of available Ollama models (e.g. 11ama3.1,
mistral, etc.), exposed as a drop-down in Swagger.

Behavior:

e Updates the global CURRENT_MODEL _NAME to the selected value.
e Re-creates the global 11minstance via get_l1lm_for_current_model(), so subsequent
callsto /predict_rowand /predict_file use the newly selected model.

Response (JSON):

{

"current model": "llama3.1l",

"message": "LLM model set to llama3.1"

}

19
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6.4 POST /set embedding

Purpose
Set the default embedding model and associated Chroma collection.
Query parameter:

e em_model (Enum EmbeddingModel): selectable list of embedding models (e.g.
nomic-embed-text, etc.), shown as a drop-down in Swagger.

Behavior:

e Updates CURRENT_EMBEDDING_NAME to the selected embedding model name.

e Re-creates the global embeddings instance via
get_embedding_for_current_model().

e Re-initializes the global vectordb as:

vectordb = Chroma (
‘persist directory="./log rag db",’
‘collection name=CURRENT EMBEDDING NAME, °

‘embedding function=embeddings, °

e This means the active RAG index (Chroma collection) is switched to the one that matches
the selected embedding function.

Response (JSON):

{

"current model": "nomic-embed-text",

"message": "Embedding model set to nomic-embed-text"

}

20
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6.5 POST /toggle debug

Purpose:
Enable or disable global debug mode.
Query parameter:

e debug (Enum DebugFlag):
o B — OFF (default)
o 1—0ON
Exposed as a 0/1 drop-down in Swagger.

Behavior:

e Sets the global TOGGLE_DEBUG integer to @ or 1.

e When TOGGLE_DEBUG == 1, endpoints like /predict_row return additional metadata
(e.g., retrieved context, raw LLM info), and any debug-only logging you implemented is
activated.

Response (JSON):

{

"debug": 1,

"message": "Debug flag set to 1"

}

21
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6.6 POST /add csv_to vectordb

Purpose:

Add CSV rows as documents to the current Chroma collection.
Content type: multipart/form-data

Request: upload a file to the file field.

Expected CSV columns (recommended):

e timestamp

o |evel

e source

e message
Behavior:

e Reads the uploaded CSV into a pandas DataFrame.
e For each row, build a Document:
o page_content: a text representation of the log row using row_to_text(row)
o metadata: a dict containing selected fields (e.g. timestamp, level, source).
e Calls vectordb.add_documents(docs) so that all new documents are embedded with the
currently active embedding model and stored in the current Chroma collection (defined by
CURRENT_EMBEDDING_NAME)

Response (JSON):

{

"added rows": 123,

"collection name": "nomic-embed-text",

"message": "Successfully added 123 documents to collection
'nomic-embed-text'.The collection was {was_len} long, now {curr_ len} long."

}
Usage notes:
e The target collection and embedding function are determined by the last call to
/set_embedding.

e After calling /add_csv_to_vectordb, subsequent /predict_row and /predict_file requests will be
able to retrieve context from the newly added documents via the shared vectordb.

22
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7. LLM Pipelines: Prompts, Guards, and Validation

e Schema-constrained generation. Use JSON/XMI/PNML/JANI schemas to force valid
structures.

e Dual extraction.

a. Requirements — specs (SysML/UML).
b. Traces — behavior (PN/TA/Seq).

e Cross-validation. Regenerate from model to English summary — compare to source text.

e Semantic guards. Ontology terms (actors/resources) must be reused consistently.

Property scaffolding. Auto-draft properties (e.g., “No buffer overflow”, “Deadline < D”) for WP5
verification.

23
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8. Conclusions and Next Steps

This extension provides actionable guidance for selecting and applying MoCs to both NL
requirements and traces. Immediate next steps:

1.

2.

Select models applicable to the use cases.

Map the different traces to the MoC models.

Freeze XMI/PNML/JANI/SCXML schema profiles.
Implement the reengineering module/service.

Implement trace adapters and minimal property checks.
Pilot two use cases end-to-end (NL—model, trace—model).

Integrate WP5 verifiers and produce the first discrepancy report.

24
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