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1.​ Executive Summary of Deliverable 
This delivery provides an in-depth analysis of WP5 (semantic analysis). Further, it is the basis for the 
project's implementation of that work package. The objective of this executive section is to inform of 
the project's results, highlight significant findings, and recommend actionable steps moving forward. 
Overall, the analysis outlines the two main categories of analysis (root cause analysis and predictive 
analysis), which shows the versatility of MONA LISA.  Further, the summary defines the context in 
which WP5 interfaces with upstream work packages (WP3, WP4) and visual analytics (WP6) as 
downstream output.  
 
This deliverable D5.1 lays the foundation of ML and AI-based analysis of requirements and data, 
coming from diverse sources, and made available by MONA LISA’s use case providers. The deliverable 
lists down the inputs (format, source etc.), the details of the intended analysis and the desired 
outputs from each use case provider. The deliverable then further gathers the inputs from MONA 
LISA solution providers, with the aim to summarize the solution offerings, and to pave the way for 
upcoming solution development in WP5. The deliverable has identified two broad categories of 
analysis from the input of use case providers: (1) automated root cause analysis of defects and (2) 
predictive analytics. The solution providers aim to target these analysis categories through their 
expertise in ML and LLM-based solutions, with a particular emphasis on data extraction, processing 
and validation. This deliverable ends with a brief recap of state of the art on MONA LISA-relevant 
analysis.     
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2.​ Introduction 
The main objective of work package 5 is to provide the semantic layer for MONA LISA's analytics 
and business logic. This WP receives various data (e.g., code traces and logs) from the 
infrastructure (WP3) and models from the model reengineering layer (WP4) and performs 
advanced analyses using methods from the subdomains of Artificial Intelligence (AI), e.g, 
Machine Learning (ML), Retrieval Augmented Large Language Models (RA LLM) and model-based 
approaches from WP4. The analysis then presents results for the visual front end (WP6). Figure 1 
shows the interactions of various WPs with WP5.  
 

 
Figure 1. Interaction between the analysis work packages (WP4, WP5) and their role within the overall 

pipeline. 
 
WP5 has following two objectives: 

●​ Objective 1: Semantic data integration using Knowledge Graphs and Language Models. 
Developers map data sources and analysis tools based on their knowledge of data 
semantics with assistance from ontology-based data access tools using domain-specific 
knowledge graphs (KG). Additional automation will be developed through Large 
Language Models (LLMs). 

●​ Objective 2: Data analysis with ML and Retrieval-augmented LLMs. The aim is to integrate 
the semantically unified data model with both ML and LLM backends and tools. These 
tools and libraries will provide the analysis capabilities of the MONA LISA solution, giving 
users new insights into data traces. 

 
The purpose of D5.1 is to define the foundations to enable exchange of data between the use 
case providers and the solution/knowledge providers towards ML and LLM based data analysis. 

 

3.​ Inputs, Types of Analyses and Outputs 
In this section, we list, for each use case, the inputs, the details of the analyses, and the outputs. 
The motivation is that this will serve as the basis for defining the semantics of data exchange 
among WP3/WP4 utilities, the specific analysis toolkit, and the output for WP6. 
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3.1 Use case domain 1 – Infrastructure, Mobility & Logistics 

3.1.1 Alstom 

Root cause analysis. 

3.1.1.1 Inputs 

●​  Tickets (Business ticketing tool Dr MITRAC, SharePoint predating Dr MITRAC) 

o    A submitted product-issue ticket, including attached log files 

o    Related tickets, including resolved ones 

●​ Logs (plain text, not structured) 

o    safeprime.log - safety-related log 

o    hmi_runtime.log - HMI application level log  

o    cm_processmonitor.log - start of application log 

●​ Product documentation (Configuration Management tool, Dimensions, SharePoint) 
●​ Source code (GitLab) 
●​ FWIs - Defects, Change Requests and Feature Requests (Engineering Workflow 

Management system) 

3.1.1.2 Type of Analyses 

AI-supported analysis using Large Language Models (LLMs) for natural language understanding and 
Retrieval-Augmented Generation (RAG) to combine ticket/log retrieval with generative reasoning. 

3.1.1.3 Outputs 

●​ Log visualisation 
●​ Root cause analysis 

o   Identification of causes, through logs, tickets, and documentation 

●​ Solution or mitigation proposals 

3.1.2 CNET 

Improve estimation of remaining useful life (RUL) of equipment and optimisation of needed 
maintenance, and improve visualisation techniques, and digital twin development. 
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3.1.2.1 Inputs 

●​ Structured output (JSON) 
○​ Measurements from sensors 
○​ Device state data 
○​ Logs 

3.1.2.2 Type of Analyses 

The use case will apply AI-supported visual analytics, unified trace data storage, and model-based 
behaviour analytics to enable continuous monitoring and assessment throughout the lifecycle.  

3.1.2.3 Outputs 

●​ Log visualisation 
●​ System status analysis 
●​ RUL analysis 

3.1.2.4 Architectural Diagram 

Figure 2. CNET’s use case. 
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3.2 Use case domain 2 – High-tech Equipment and Industrial 
Operations Technology 

 3.2.1 Eli Alps 

3.2.1.1 Inputs 

Logs exported into csv format. The logs are well-formed and also human-readable. They contain the 
event identifier, the event source, and the description.  
 

3.2.1.2 Type of Analyses 

●​ AI-supported analysis 
●​ Root cause analysis 
●​ Error detection and localisation 

 

3.2.1.3 Outputs 

Visual analysis to support error localisation and root-cause explanation.  

 
Figure 3. Eli Alps’ use case for automated log analysis. 

 
 

 

12 



 
 
 

 3.2.2 Bilecik Demircelik 

3.2.2.1 Inputs 

This section defines the data acquisition strategy, analytical framework, and output mechanisms 
for the Induction Furnace use case at Bilecik Demir Çelik (BDÇ). By utilizing the MONALISA 
platform, the objective is to shift the facility's maintenance paradigm from a reactive 
model—where actions are taken solely after failure—to a predictive, data-driven strategy. 

The system specifically targets three high-impact operational challenges identified in the domain 
analysis: 

●​ Refractory Lifecycle Prediction: To mitigate the safety risks of molten-metal leakage 
and optimize the furnace lining replacement schedule, currently managed through 
imprecise manual measurements. 

●​ Earth Leakage: To detect and predict earth leakage failures by correlating ground 
leakage signals with cooling system anomalies, effectively mitigating risks associated with 
insulation degradation and water leaks. 

●​ Code 39 Faults: To analyze and prevent generic electrical faults that cause undefined 
system stops, isolating root causes. 

The architecture integrates high-frequency sensor telemetry with discrete operator logs to 
transition from reactive maintenance to predictive analytics. 

The system aggregates heterogeneous data streams ranging from high-frequency automated 
PLC signals to manual operator entries regarding failure modes. Furthermore, the system 
incorporates raw material inputs regarding scrap composition. This includes data on the type of 
scrap charged to the furnace, but the input is currently low-granular and lacks a detailed 
classification structure. 

3.2.2.1.1 Sensor Data (Time-Series) 

The system leverages a comprehensive array of continuous sensor telemetry acquired directly 
from the furnace PLCs and persisted in an MS SQL Server environment. Currently, this dataset 
comprises approximately 116 distinct signal tags available through existing SCADA screens. 
However, operators do not actively monitor the entire spectrum of data simultaneously; their 
focus is typically limited to a subset. While the current SCADA visualization primarily serves for 
real-time observation of these primary metrics, the MONALISA platform uses the full 
high-dimensional dataset for historical trend analysis and predictive modeling. The data is 
predominantly encoded as IEEE 754 floating-point numbers for analog measurements and 
signed 32-bit integers for electrical metrics. 

The sensor data landscape covers the following critical categories, each selected for its relevance 
to the target failure modes: 
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●​ Water Flow and Temperature Data: The system monitors the entire cooling circuit to 
generate thermodynamic profiles critical to analyzing all three target failure modes. 
The telemetry includes Return Water Flow Rates collected from multiple distinct cooling 
lines to ensure comprehensive coverage of the furnace geometry. Additionally, the 
system tracks Melting Unit Cooling Water Inlet and Outlet Temperatures to calculate 
thermal gradients. These hydraulic and thermal metrics are essential for identifying 
refractory thinning (heat-transfer efficiency), predicting impending water leaks (Earth 
Leakage), and providing the necessary thermodynamic context to isolate root causes of 
generic system trips (Code 39). 

●​ Electrical Parameters: The system continuously monitors critical electrical parameters, 
specifically Phase Currents, Phase Voltages, and power consumption metrics (Active, 
Reactive, Apparent Power). These inputs are indispensable for analyzing all three 
target failure modes, as they reveal electrical imbalances, arcing, and surges indicative 
of Refractory failure, Earth Leakage, and Code 39 faults. 

●​ Operational Status Signals: This category comprises binary flags and discrete-state 
indicators that provide context for continuous streams. Key signals include the Ground 
Leakage Detector, which directly alerts the system to insulation breaches, and various 
fault flags associated with operational stops. These signals serve as ground-truth labels 
for training predictive models to detect earth leakage and system trips. 

3.1.1.2.2 Operational Failure Logs (Event Data) 

Programmable Logic Controllers (PLCs) accurately identify system stop occurrences and timing, 
but lack the semantic capability to determine the underlying cause. Consequently, manual 
operator classification is required to provide context for each downtime event. Operators enter 
these failure codes via the interface screens shown in Figure 4. This discrete-event data is 
persisted in an MS SQL Server environment that is physically separate from the server hosting 
the high-frequency sensor telemetry. The system maps these manually entered codes to the 
three target operational challenges based on historical correlation analysis: 
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Figure 4. Operator downtime login screen. 

Refractory Lifecycle: The system explicitly filters for failure modes that directly and adversely 
affect the refractory lining's lifespan. These events are categorized as critical stressors that 
accelerate degradation. Key indicators include structural failures such as RF-04 (Furnace 
Burn-through) and RF-05 (Defective Lining/Sinter Cracking), as well as high-impact electrical 
events like RF-01 (Coil Puncture due to Arcing) and RF-02 (Internal Coil Arcing). Furthermore, 
the analysis incorporates operational deviations such as RF-03 (Furnace Overflow) and RF-10 
(Humidity/Leaks), along with water-related failures like ELG-02 (Coil Water Leakage) and 
ELG-03 (Hose Burst), all of which directly compromise the lining's integrity. 

Earth Leakage : This category focuses on detecting insulation failures and cooling-system 
breaches that compromise furnace safety. The log analysis identifies specific failure modes that 
directly result in ground faults. These include water-system failures such as ELG-02 (Coil Water 
Leakage), ELG-03 (Hose Leakage/Burst), and ELG-04 (Faraday Ring & Elbow Leak), as well as 
electrical insulation failures such as ELG-05 (Coil Burn/Insulation Weakness). Furthermore, the 
dataset includes refractory failures that physically damage the coil isolation, specifically RF-01 
(Coil Puncture due to Arcing) and RF-04 (Furnace Burn-through), which are critical 
contributors to Earth Leakage incidents. 

Code 39: While often appearing as a generic electrical fault, "Code 39" is frequently a 
symptomatic manifestation of critical underlying failures. To disambiguate this signal and isolate 
the root cause, the analysis explicitly correlates it with specific high-severity events. These 
include electrical arcing and puncture events such as RF-01 (Coil Puncture due to Arcing) and 
RF-02 (Internal Coil Arcing), as well as operational anomalies like RF-03 (Furnace Overflow) 
and RF-08 (Loss of Sinter Heating). Furthermore, a significant overlap is observed with leakage 
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indicators, including ELG-01 (Ground Leakage Trip) and ELG-02 (Coil Water Leakage), 
confirming that Code 39 often acts as a precursor or secondary indicator for complex system 
failures. 

3.2.2.1.3 Refractory Measurements 

Refractory lining thickness is the primary indicator of furnace health. In the current operational 
workflow, the lining is initially installed using a fixed-geometry mold (template) within the coil, 
thereby establishing an initial thickness. Actual wear measurements are not performed 
continuously; instead, manual inspections with a measuring rod are performed only after a 
specific sequence of casting cycles (heats). This manual method is sporadic and low-precision, 
yielding only rough depth estimates at a limited set of points. With the project, more regular 
controls will be initiated, ensuring systematic data acquisition to accurately track degradation 
trends. 

3.2.2.1.4 Raw Material 

Scrap Input: Data regarding the raw scrap charged into the furnace. Currently, inputs are 
categorized into broad classes with low granularity (poor differentiation between scrap types), 
which introduces variability in the melting process. 
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Figure 5. Scrap input screen. 

Scrap input entries are provided in Figure 5. 

 

3.2.2.2 Type of Analyses 

The analytical framework is structured to serve both immediate operational needs and long-term 
predictive maintenance goals, categorized as follows: 

3.2.2.2.1 Real-Time Descriptive Analysis (SCADA Monitoring) 

 The SCADA screen, illustrated in Figure 6, serves as the primary interface for real-time 
monitoring. Although the induction furnace infrastructure generates a comprehensive stream of 
telemetry, not every data point flows through to the central monitoring screens. To enable 
operators to maintain immediate situational awareness, only a subset of critical operational 
parameters is tracked in real time. 

  

 

Figure 6. SCADA monitoring. 
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To facilitate deeper observation, the interface visualizes trend analysis using line graphs 
plotted against timestamps. As shown in Figure 7 this allows operators to observe signal 
behavior over time rather than relying solely on instantaneous values. 

 

Figure 7. Trend analysis. 

3.2.2.2.2 Historical Data Access and Reporting 

The separate .NET-based web server functions as a repository for simple operational data, 
specifically the operator-classified failure logs and status inputs. As illustrated in Figure 8, the 
interface generates summary graphics, such as the total downtime per furnace, enabling 
management to visually assess key performance metrics. Furthermore, the interface shown in 
Figure 9 allows users to filter data by date ranges and export the filtered logs to Excel for 
manual auditing. While the platform supports these basic descriptive visualizations, currently, no 
ML or Deep Learning DL algorithms are deployed for automated anomaly detection or 
predictive analysis. 
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Figure 8. Website summary graphics. 

 

Figure 9. Export report. 

3.2.2.2.3 Chemical Composition and Wear Analysis 

The system also integrates results from laboratory analyses of the molten metal's chemical 
composition, which are made accessible through the same .NET web interface. This chemical 
data is analyzed alongside Scrap Input records to identify correlations with Refractory 
Thickness. By linking raw material quality and resulting chemical properties to wear rates, the 
system aims to identify specific inputs that accelerate lining degradation. 

3.2.2.3 Outputs 

Upon project completion, our goal is to establish a holistic system that integrates Anomaly Detection 
and Root Cause Analysis into a fully traceable environment. The key outputs of this system include: 
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●​ Predictive Alerts derived from Anomaly Detection algorithms that scan high-frequency 
sensor data to identify irregularities and flag potential issues before system downtime 
occurs. 

●​ Automated Root Cause Analysis (RCA) reports that correlate operational failure logs 
with sensor telemetry to pinpoint the exact sequence of events and the root cause of the 
failure. 

●​ Unified Trace Traceability on Trace Compass, allowing engineers to visualize and track 
analytical results, signal trends, and event logs on a single, synchronized timeline. This 
harmonized data will also serve as the foundation for future LLM-Based Trace 
Analytics, where LLM’s utilize the middleware-provided data to interpret complex trace 
files. 

4.​ Tool, Technology & Knowledge Providers’ Role 
In this section, we capture the capabilities of tool, technology, and knowledge providers to 
showcase their existing capabilities (infrastructure, data exchange setup, specific data schema, 
API reuse) or the development of new technologies or capabilities important for achieving WP5 
objectives, in terms of the use-case data extracted in Section 3 above. The motivation is to match 
the tool, technology & knowledge providers’ competencies with the data exchange setup and 
analysis required from the use case providers. 

4.1 Evosoft 

Evosoft will present information obtained from the middleware to the end user via APIs and transfer 
trace data to Eclipse Trace Compass in formats agreed upon in WP3, such as Google Trace Event or 
the Common Trace Format. Data extraction will be managed through APIs tailored to project 
requirements, such as RESTful APIs, while the middleware infrastructure is planned to use FIWARE or 
similar technologies. Furthermore, within the scope of WP6, Evosoft is responsible for integrating any 
additional visualizations required for visual analytics by combining them with data retrieved from the 
middleware layer, and for developing the platform integrations and tests for the visualization tools. 

4.2 Lider 

Lider Teknoloji Geliştirme (LTG) will develop a dedicated service to extract SCADA and downtime 
analysis data currently flowing into MS SQL servers and other databases, and to transfer it to the 
middleware layer, such as FIWARE. LTG will perform the necessary data harmonization to convert 
these heterogeneous data streams into a suitable format for the middleware, which will subsequently 
serve as the primary input for Alpata’s ML/DL-based predictive analysis. Additionally, LTG is 
responsible for ensuring that this data is extracted and processed in real-time to enable immediate 
visualization and monitoring of the system's status. 
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4.3 Mälardalen University 

4.3.1 DRACONIS (Design Rule Analysis and Checking Of Norms in IEC & Simulink) 

DRACONIS is a static analysis framework that automates the review of block-based, safety-critical 
software, particularly in domains such as railway systems. It automates design rule checks for 
graphical development tools such as Simulink and Function Block Diagrams (FBD). 
 
The overall toolchain is shown in Figure 10. The current version allows users to input models, which 
are then parsed into an intermediate representation. Given a model, the analyzer component 
extracts metrics and performs dataflow analysis to establish a baseline for the analysis results. If any 
changes are made to the analyzed files, a delta analysis will be triggered, prompting DRACONIS to 
indicate which checks need to be redone.  
 
 

 
Figure 10. DRACONIS toolchain. 

 
Analysis reports can be delivered in one of two formats: either the tool presents the report in a 
structured text format, or via the accompanying web application, which also includes a visual model 
rendering and report review capabilities. 

4.3.1.1 Extensions 

In the project, MDU will extend DRACONIS with an API frontend and expand its analysis capabilities to 
support root-cause analysis of failure logs. 
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4.3.2 NALABS 

NALABS processes a collection of documents that include requirements and generates a list of 
metrics and quality scores for each requirement. This tool is available as a desktop application with a 
graphical user interface. It requires the requirements to be formatted in an Excel file, with each 
requirement listed in a separate row. To operate the tool, users must provide information regarding 
the requirement ID and specification columns. An example of the result view is shown in Figure 11. 
Metrics are shown in individual columns, and identified issues are highlighted and color-coded by 
context. 
 

 
Figure 11. The GUI interface of NALABS. 

 
NALABS is also prepared as a command-line interface (CLI). The CLI variant supports both Excel and 
JSON as input and outputs the result in JSON. A working Python environment is needed to install and 
run the NALABS CLI. 

4.4 Progim 

Progim will design Trace UML models and architectures to establish the structural framework for data 
tracking and simulation, ensuring alignment with industrial requirements. Furthermore, they will play 
a critical role in the validation phase by leveraging their deep domain knowledge to compare and 
verify the outputs of the developed applications, specifically conducting rigorous testing for Root 
Cause Analysis and Anomaly Detection to ensure the analytical results accurately reflect real-world 
industrial scenarios. 

4.5 University of Szeged 

The University of Szeged, Department of Software Engineering, will serve as a technology provider, 
leading the research and development of advanced anomaly detection methodologies grounded in 
both statistical modeling and machine learning. Their work builds on substantial practical experience 
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in detecting and analyzing anomalies in real-world systems, including consistency verification of 
network packet streams, identification of zero-day cyberattacks, and monitoring of smart metering 
infrastructure. This expertise extends to detecting irregular electricity consumption patterns and fuel 
theft, leveraging both online (streaming) data and offline, retrospectively available datasets. In 
addition, the department will contribute cutting-edge expertise in applying large language models to 
formalize naturally expressed models, enabling the transformation of informal, human-readable 
descriptions into precise, machine-interpretable representations. This capability will further support 
systematic model comparison, consistency analysis, and validation, ensuring that heterogeneous 
models can be rigorously evaluated and aligned within a unified analytical framework. 

4.6 HCL 

HCL is a technology provider in MONA-LISA, mostly through two tools for the development of 
real-time software in C++: 

●​ Code RealTime is available for IDEs that support Visual Studio Code extensions (e.g., Cursor, 
Eclipse Theia, DevOps Code, and of course, VS Code itself). Code RealTime is available in both 
commercial and community editions (free for non-commercial use). 

●​ Model RealTime, available for the Eclipse IDE. Model RealTime is a commercial tool. 
 
Both these tools share the same run-time library, and HCL will extend it with a new tracing capability. 
This enables capturing run-time traces from real-time applications developed with these tools. For 
details on how this works, see this page. 
 
Captured traces can be visualized as sequence diagrams in Code RealTime, and a limited set of 
analysis capabilities will also be provided in that tool. For more advanced analysis and visualization, 
the traces can be translated by open source scripts, for example to the Google Trace Event format, 
which is the key tracing format used in MONA-LISA. 
 

4.7 Alpata 

Alpata will facilitate the integration of LTG-provided data into the middleware layer and 
subsequently leverage it to develop Machine Learning and Deep Learning models tailored for 
Root Cause Analysis and Anomaly Detection. They will establish the operational pipeline for 
these models in alignment with the MONA LISA Infrastructure, ensuring seamless data 
processing and interoperability. The insights and outputs generated by these analyses will serve 
as the foundational input for the visualization and interactive analytics components in WP6. 

5.​ Summary of Analysis needs and available tools, 
technology and knowledge 

This section summarizes the analysis needs from the use case providers and the tools, technologies 
and knowledge that will shape the solutions. 
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5.1 Summary of analysis needs in MONA LISA 

Table 1 summarizes the analysis requirements in MONA LISA. 
 

Table 1. Types of MONA LISA analysis 

Use case provider Type of analysis 

Alstom Automated root cause analysis of defects 

Eli Alps Automated root cause analysis of defects 

Bilecik Demircelik Automated root cause analysis of defects & predictive analysis 

CNET Predictive analysis of remaining useful life 

 

5.2 Summary of available analysis tools, technology and 
knowledge in MONA LISA 

Table 2 provides a summary of the available tools, technology and knowledge in MONA LISA. 
 

Table 2. MONA LISA tools, technology and knowledge 

Tools, technology and 
knowledge provider 

Description 

Evosoft Final-layer visualization of processed data and analytics development 

Lider Data extraction and processing for analysis 

Mälardalen University Extensions of tools DRACONIS and NALABS for automated root cause analysis 

Progim Validation of automated root cause analysis and anomaly detection solutions 

Uni. of Szeged Anomaly detection and LLM-based data transformation 

HCL Capture and analysis of runtime traces from realtime applications developed in 
Code RealTime and Model RealTime tools 

Alpata Machine learning and deep learning models for automated root cause analysis and 
anomaly detection 
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