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Modelling standards and software for digital twins
OpenSCALING will improve simulation-based processes and scalable digital
twins. One essential part are extensions of the following existing modelling
standards that are in wide-spread use for the development of digital twins
and are utilized to describe and to exchange dynamic multi-domain models, in
particular from the mechanical, electrical, thermal, fluid, control, energy, building,
automotive, aerospace domains. The underlying mathematical description are
differential, algebraic and discrete equations:

• The Modelica language standard defines an open object-oriented language
with 2-dim. object diagrams to model complex, dynamic systems on a
high level supporting acausal connections of components defined by first
principle equations. This standard is developed since 1997, is supported
by > 10 tools, and is in widespread industrial use. Modelica tools support
export of causal Modelica models as FMI components (see next item).
A large class of advanced Modelica libraries has been developed in the
ITEA EUROSYSLIB project. Developments towards decarbonized energy
systems for buildings, district energy systems and factories are often
performed with the large, open source Modelica Buildings library.

• FMI (Functional Mock-up Interface) is the leading, open standard to
exchange dynamic models on a low level using a combination of (a) an
XML-File to define the interface of a parameterized input/output block,
(b) a dynamic link library to define the executable code that is accessed
via a C-API, and (c) other resources all packed together in a zip-file.
This standard was developed in the ITEA MODELISAR project and was
afterwards further improved1 2. It is supported by > 180 tools and plays a
key role in many industries for collaborative workflows and comprehensive
cross-domain system level analysis, optimization and virtual tests.

• The SSP (System Structure & Parametrization) open standard is used
to define complete systems consisting of one or more connected FMI
components including their parameterizations. It is supported by nearly
10 tools. Developments performed in the SetLevel project extend SSP with

1Blochwitz, Otter, Akesson, Arnold, Clauß, Elmqvist, Friedrich, Junghanns, Mauss,
Neumerkel, Olsson, Viel (2012): Functional Mock-up Interface 2.0: The Standard for Tool
independent Exchange of Simulation Models. DOI 10.3384/ecp12076173.

2Junghanns, Blochwitz, Bertsch, Sommer, Wernersson, Pillekeit, Zacharias, Blesken, Mai,
Schuch, Schulze, Gomes, Najahfi (2021): The Functional Mock-up Interface 3.0 - New Features
Enabling New Applications. DOI 10.3384/ecp2118117.
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quality assessment information to support a Credible Simulation Process
Framework.

• eFMI (Functional Mock-up Interface for embedded systems) is a recent open
standard intended as exchange format for workflows and tool chains from
physical models to embedded production code. An eFMI component is FMI
compliant and can therefore be simulated by FMI tools to perform Software-
in-the-Loop testing. Utilizing an eFMI component on an embedded device
requires however dedicated tool support for eFMI. This standard was
developed in the ITEA EMPHYSIS project 3. The first tools with eFMI
support are currently coming to the market.

• The ISO 10303-243:2021 MoSSEC (modelling and simulation information
in a collaborative system engineering context) standard is an industrial
effort to make progress in the representation of the elements “that together
comprise a set of "results" for a study including the audit-trail of what
is to be done, and what has been done, and evolution”, enabling “the
representation of the definitions of models and key values that are part of
the modelling” among others to allow the proper reuse of simulation models
in a collaborative system engineering environment. Currently, some initial
reference implementations can be found in the standard. LOTAR (LOng
Term Archiving and Retrieval) is an international consortium with the
prime objective to create and deploy the EN/NAS 9300 series of standards
for long-term archiving and retrieval of digital data in the aerospace domain.
The LOTAR MBSE workgroup suggests the usage of Modelica, FMI and
SSP as a basis 4.

Other important tools for simulation-based processes and digital twins:

• MATLAB and Simulink to design, simulate and deploy input/output blocks
and especially controllers.

• Simscape to model and simulate multi-domain physical systems.
• Open source packages from the Julia ecosystem such as ModelingToolkit.jl

or Modia.jl provide high-level descriptions of multi-domain models. The
available model libraries are currently very limited when compared with
Modelica or Simulink/Simscape. Advantage is the easy combination with
many open-source Julia packages, e.g., for error propagation or machine
learning.

Multi Physics Simulation
OpenSCALING addresses the field of system simulation which is characterized by
the interaction of sub-models from different physical domains. Current industrial

3Lenord, Otter, Bürger, Hussmann, Le Bihan, Niere, Pfeiffer, Reicherdt, Werther (2021):
eFMI: An open standard for physical models in embedded software. DOI 10.3384/ecp2118157

4Coïc, Murton, Mendo, Williams, Tummescheit, Woodham (2021): Modelica, FMI and
SSP for LOTAR of Analytical mBSE models: First Implementation and Feedback. DOI
10.3384/ecp2118149.
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trends result in new challenges for multi-physics simulations:

• Automotive: HVAC-systems of electric vehicles do not provide a comfort
function for the passengers only. Keeping the battery system at the right
temperature level is essential for a correct function and a long battery
lifetime. In contrast to combustion engines which produce enough waste
heat, electrical vehicles must generate extra heat which directly reduces the
range. Heat pumps and very efficient HVAC-systems are countermeasures.
This leads to more complex and larger multi-physics system models, which
are challenges for simulation tools, and to higher requirements to the
accuracy of models, which increases the modelling effort and requires
expert knowledge.

• Buildings and Energy: Also, in these fields a trend to larger simulation
models with more subsystems coming from different physical domains can
be observed. The energy field has to consider the interactions between
different kinds of energy production like fossil, wind and solar energy. State
of the art buildings have multivalent sources for electrical energy, heating,
and cooling which are coordinated by energy management systems. To
assess the efficiency of such systems, simulations over the whole year are
necessary to consider the seasonal weather effects. Simulation tools are
confronted with large-scale models which have to be computed extremely
fast.

• All industries: The necessity to include sub-models from different domains
leads to an increased exchange of simulation models via FMI. The concept
of Terminals, introduced with FMI 3.0 in 2022, simplifies the error-proof
interconnection of FMUs due to bus and physical connectors for the
modeller. But the FMI 3.0 Terminals concept is based on causal connectors.
The selection, which signal becomes an input or an output still needs to
be negotiated between the involved parties. Inappropriate constellations
lead to algebraic loops over large parts of the combined models which
often leads to numerical problems and/or a reduction of the computational
performance. The OpenSCALING innovation regarding acausal FMU-
interconnections will significantly improve this situation.

Artificial intelligence for modelling and simulation
Following the rapid progress in the field of machine learning in computer vision,
classification and further in the last decade, industrialization of these approaches
and methodologies already happened or is ongoing. However, the use of machine
learning in modelling and simulation for the generation of hybrid models, a
combination of physical equations and neural networks, started with the approach
of NeuralODEs in 2018 5 and physics-informed neural networks (PINNs) in 2019

5Chen, Ricky TQ, et al. (2018): "Neural ordinary differential equations." Advances in
neural information processing systems. https://doi.org/10.48550/arXiv.1806.07366
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A NeuralODE is an ordinary differential equation, where a neural network defines
the right-hand-side. If the right-hand-side is a combination of neural networks and
physical equations no term has become established yet. Within OpenSCALING
the term PeN-ODEs (Physics enhanced NeuralODEs) is used since these models
can be trained with the same methods as NeuralODEs, however contain explicit
physical formulations. In this way, for example, previously constant parameters
can be replaced by NNs that can in principle depend on arbitrary other quantities.
Another way to utilize NNs is to improve the state derivatives computed using
physical equations to match measurement data before passing them to the ODE
solver. The gradients with respect to the NN parameters, required for training,
can either be computed using AD (Automatic Differentiation) through the solver
or sensitivity analysis methods for ODEs. In contrary, for PINNs the physical
equations are used as a regularization term in the loss and the model itself is
a neural network without any physical equations. This difference can be in
turn used to classify different approaches to integrate physical knowledge into
hybrid models. Typically, using physical equations inside the model leads to a
better extrapolation capability, especially in presence of time-dependent inputs.
However, if low computational effort is favoured often models without physical
equations are employed. In the recent years many approaches for generating such
fast surrogates have been developed. However, testing and validation is in most
of the cases done using academic examples. Within project PHyMoS selected
approaches, e.g., Proper Orthogonal Decomposition and MeshGraphNets, are
investigated in industrial use cases. While great potential has been proven,
upscaling to LSS results in unacceptable training times if no application specific
measures are taken. After showing the potential of hybrid modelling in academia
in the recent years this approach was evaluated in first use cases among different
domains from climate modelling, simulation of the human cardiovascular system,
modelling of fluid flows to driving simulation. Within the ITEA project UPSIM
accuracy boosts up to 40% on validation data were shown for the hybrid modelling
of a brake system as PeN-ODEs in form of a NeuralFMU and comparable results
for PeN-ODEs of a vehicle’s vertical dynamics. Current restrictions of FMI
hinder to develop and train more sophisticated architectures for NeuralFMUs that
would enable upscaling hybrid modelling with FMUs to more complex systems.
Vice versa for the integration of NNs into Modelica models there is no standard
allowing a seamless integration in the according system simulation standards.
Currently, open standards like NNEF (Neural Network Exchange Format) or
ONNX (Open Neural Network Exchange) lack either tool support, sufficient big
community, required feature set or suitability for usage in embedded systems.
This is in turn also a challenge for the integration of fast surrogates generated
with AI methods, e.g., using the aforementioned methods from PHyMoS, into a
larger system context.

6Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. "Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations”. https://doi.org/10.1016/j.jcp.2018.10.045.
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Moreover, recently, the question of uncertainty quantification (UQ) was also
raised for hybrid modelling 7, however, an according methodology or toolset
available for industry is missing.

To conclude, it is shown that using AI in modelling has the potential to become
the standard approach for complex systems. What is still missing for a quicker
and wider adoption is on the one hand better support by tools and standards,
e.g., extending FMI to represent PeN-ODEs instead of ODEs. On the other hand,
adoption of UQ methods for according models respectively training methods that
can handle large-scale systems are required to apply the available technology for
credible models of complex systems.

Credible digital twins
In the ITEA UPSIM project several elements for credible digital twins are devel-
oped, such as the Credibility Development Kit. Partially, the Credible Simulation
Process Framework from the SetLevel project is utilized that integrates simula-
tion with SSP models into the development and quality assessment of automated
driving functions. In both projects emphasis is on the management process to
develop credible digital twins. There is a huge literature on other aspects of
credible models, such as calibration, verification, validation, uncertainty analysis,
sensitivity analysis, Monte Carlo Simulation, Design of Experiments etc... 8 9
10. All these methods are typically not integrated in a modelling software. For
example, the uncertainty information is usually defined in the tools that perform
uncertainty analysis, and not in the models where the information naturally
belongs to.

7Psaros, Apostolos F., et al. "Uncertainty quantification in scientific machine learning:
Methods, metrics, and comparisons." arXiv preprint arXiv:2201.07766 (2022). https://doi.org/
10.48550/arXiv.2201.07766

8Law (2019): How to build valid and credible simulation models. DOI:
WSC40007.2019.9004789.

9NASA 2019: NASA Handbook for Models and Simulations.
10Riedmaier, Danquah, Schick, Diermeyer (2021): Unified Framework and Survey for Model

Verification, Validation and Uncertainty Quantification. DOI 10.1007/s11831-020-09473-7.
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