
WP2 Deliverable 2.6:
Technical Specification Report
WP2: Requirements Analysis

Project Name: 22017 CAPE
Status: Draft (v1.0)
Contributors
	Names
	Organization

	Ilyoung Chong
	KAIST

	Bernard Min
	IDB

	Ismail Uzun
	Inosens

	Aylin Yorulmaz
	KoçSistem (27.01.2025)

	Ali Osman Baykuş
	Inosens(29.01.2025)

Reviewers
	Names
	Organization

	Ismail Uzun
	INOSENS

	Ilyoung Chong
	KAIST

	
	

Document History
	Version
	Date
	Author
	Changes

	v0.1 - Initial Version
	10.12.2024
	
	

	v1.0 - Final Version
	28.02.2025
	
	

	
	
	
	

Table of Contents

1.	Introduction	3
2.	Technical Capabilities of CAPE Project	4
3.	Technical Specifications of Five Use Cases in CAPE	7
3.1		Use Case 1: Intelligent Shopping Assistance and Recommendation System	7
3.1.1	System Overview	7
3.1.2	Functional Requirements of Use Case 1 	9
3.1.3	Non-Functional Requirements of Use Case 1	9
3.1.4	Technical Implementation Considerations	10
3.1.5	Deployment and Maintenance 	10
3.2		Use Case 2: Using Facial Emotion Recognition and User Profiles to Generate In-Store Product Recommendations	11
3.2.1	System Overview 	11
3.2.2	Functional Requirements of Use Case 2 	12
3.2.3	Non-Functional Requirements of Use Case 2	13
3.2.4	Technical Implementation Considerations	13
3.2.5	Deployment and Maintenance 	14
3.3		Use Case 4: Trust Enabling IoT Environment and Smart Working Area	15
3.3.1	System Overview of AI-DSP (AI enabled Disaster Safety Platform)	15
3.3.2	Functional Requirements of AI-DSP in Use Case 4 	16
3.3.3	Non-Functional Requirements of AI-DSP in Use Case 4	16
3.3.4	Technical Considerations to Implement AI-DSP	17
3.3.5	Deployment and Maintenance 	17
3.4		Use Case 5: Enhancing Employee and Customer Experience Through AI-Powered Monitoring and Analysis	20
	3.4.1	 System Overview 	20
	3.4.2	Functional Requirements of Use Case 5	21
	3.4.3	Non-Functional Requirements of Use Case 5	23
	3.4.4	Technical Implementation Considerations	25
	3.4.5	Deployment and Maintenance 	26
	3.4.6	Conclusions on Use Case 5	28
4	Conclusions	29

[bookmark: _heading=h.gjdgxs]

1. [bookmark: _Toc191684708][bookmark: _Toc191686226]Introduction
This document outlines the technical specifications for the CAPE project. It serves as a comprehensive guide for the design, development, and implementation of challenges of providing better shopping experiences and work environments for employees. The specifications detailed herein are intended to develop personal experiences, improve the health and performance of robots/kiosks, and offer alternative opportunities and technologies not widely available in the market. Paricularly, this document specifies the technical specification to support the solutions on three major problems and fourteen minor challenges related to resource and movement management, employee identification and tracking, privacy and trustworthiness, customer engagement, intelligent search, communication (HCI), and mood recognition and facial expressions.
As shown in Figure 1, four use cases described in the project and involve the use of various technical descriptions such as artificial intelligence, deep learning, blockchain, and the Internet of Things to improve the shopping experience, generate personalised product recommendations, enhance employee and customer satisfaction, create a trustworthy IoT environment for smart manufacturing, and monitor and analyse customer and employee feedback.
This report encompasses the following key areas for four use cases:
· System Architecture: A high-level overview of the system, including its major components and their interactions of four use cases.
· Functional Requirements: Detailed descriptions of the system's functionalities and expected behaviors.
· Non-Functional Requirements: Specifications for performance, security, reliability, and other quality attributes.
· Interface Specifications: Definitions of interfaces between different system components and external systems.
· Data Model: Description of the data structures, formats, and relationships used within the system.
· Technology Stack: Specification of the programming languages, frameworks, libraries, and tools employed.
The innovative features of each use case involve specific technologies and systems such as smart dialogue systems, facial emotion recognition, IoT-based recommendation systems, trust management and control technology, customer communication platform, and employee tracking through passenger flow management cameras and biometric functionality kiosks/robots.
Based on Figure 1 deliverable D2.6 includes technical specifications related to the main technologies, applications, and main directions applied in the four use cases performed in the CAPE project.
[image:]
Figure 1 High level CAPE solotion structure
2. [bookmark: _Toc191684709][bookmark: _Toc191686227]Technical Capabilities of CAPE Project
In the description of technical specification of CAPE, the following technical capabilities as shown in the below are incated through the development of 5 use cases.
· Functioning Robots/Kiosks with Hardware and Software layers:
These robots/kiosks will be built with five significant functionalities: sensing, actuation, communication, cognition, and multi-functionality. Also, standards for data exchange between robots/kiosks with open online services, other retail store systems, and services will be developed by partners within the project scope.
· Functioning Integrations:
These are focused to develop fucntioning integrations between facility systems and sensors such as RFID, microphone, cameras, barcode reader, accelerometer, gyroscope, compass, LIDAR, ultra-sonic, temperature, gas, encoder, touch screen sensors, so that robots and kiosks can interact with customers, employees, and the environment at the highest level.
· Cybersecurity assurance and trustworthy data management system:
The system aims to deliver trusted conditions for testing, assessing, reporting, and certifying IoT security robustness, in line with the European Union Cybersecurity Act certification assurance levels “basic,” “substantial,” and “high” for IoTs that range from consumer IoTs to a range of IoTs supporting safety and trustworthy function for its customers or IoTs designed as to support mission-critical working areas.
· Smart Dialogue System:
The system will use voice interaction for kiosks and hybrid voice and visual interaction for mobile robots.
· Smart Recommendation System (SRS):
The SRS will also provide customers with information about the in-store location of the recommended products.
· Deep Learning-Based Embedding Model for Recommendations:
This will enable accurate recommendations for new users and items by linking them to latent factors based on their attributes. Also, in a model to enable transparency, this will provide explanations in a way that humans can understand and foster trust.
· IoT Trustworthiness Provisioning Platform:
An IoT platform provides trust management and control, trust-based IoT data management, and trust-based IoT ecosystem resource operation management. This platform will be developed by the IoT trust enabler.
· Trustworthiness Estimation Technology:
This technology will be developed to maximise the performance of operational actions based on collected IoT data and devices. This technology will be developed by the task responsible for checking the feasibility and versatility of implementation technology.
· IoT Artificial Intelligence Data Processing, Analysis and Modelling:
This algorithm will take into consideration stakeholders' expectations in the IoT ecosystem and provide an integrated trustworthiness of IoT data. This output will be developed by the task responsible for deriving IoT data trustworthiness.
· Employee Tracking System:
It supports passenger flow management (PFM) cameras and biometric functionality kiosks/robots to track employee movements and identify them. It will use computer vision and image processing techniques, biometric data such as facial recognition, and PFM cameras to identify the employee's position and identity.
· Text-based Analytics Algorithms:
It will support to analyse chat conversations coming from social media and instant messaging channels. The algorithms will be integrated to web-based Communication and Support Application and give insightful reports on customer feedback.
· Anomaly Detection Algorithms for Robotic Operation:
This will be developed using machine learning and deep learning techniques such as neural networks and LSTMs. It will monitor key parameters such as battery health forecasting, building ventilation monitoring, kiosk/robot motion anomaly detection, and robot vibration/noise anomaly detection.
· Acoustic Analysis:
This will be developed tol involve analysing the pitch, loudness, and duration of speech to identify changes that may indicate stress. It will also include prosodic analysis to create features about the rhythm, intonation, and stress patterns of the speech and linguistic analysis to analyse the content of speech.
· Human-computer interaction through dialogue considering Users Intentions:
This will support a software solution that encompasses human-computer interaction and a recommendation system with intelligent search. Furthermore, it provides a methodology for combining text-based input with facial emotional detection software in order to obtain insights about user intention and expand existing user profiles will be developed.
· Localization based Recommendation System:
This is a system which robots serve with voice using localization information provided by store mapping combined with planogram. The customers will be informed by voice about recent campaigns for a specific aisle which they are getting closer to by robots. The robot will be able to tell customers about the recent campaigns for the aisles they are standing by.

3. [bookmark: _Toc191684710][bookmark: _Toc191686228]Technical Specifications of Four Use Cases in CAPE
This technical specification is a crucial blueprint for the system of use cases in CAPE project. It outlines the technical requirements, design, and implementation details to ensure a uase case target solution. Here's a breakdown of four use cases.

[bookmark: _Toc191684711][bookmark: _Toc191686229]3.1	Use Case 1: Intelligent Shopping Assistance and Recommendation System
3.1.1 [bookmark: _Toc191684712][bookmark: _Toc191686230]System Overview
[bookmark: _Toc191684713]3.1.1.1	Purpose:
The objective of this Technical Specification is to define the system requirements and architectural framework for Use Case 1. The system aims to enhance the in-store customer experience in Koçtaş and Defacto retail stores through Smart Dialogue Systems (SDS), a Smart Recommendation System (SRS) and Location Based Campaigning (LBC). It will enable efficient product inquiries and navigation via kiosks and mobile robots, as well as provide personalized product recommendations and capaignings based on customer behavior, inventory data and indoor location.

[bookmark: _Toc191684714]3.1.1.2	Description:
The proposed system consists of two main components:
· Smart Dialogue System (SDS): Enables customers to ask questions about products through kiosks and mobile robots. The kiosks will use voice-based and text-based interaction, while mobile robots will support hybrid voice and visual interactions.
Smart Recommendation System (SRS): Provides customers with personalised recommendations for matching and complementary products based on their selected items, available inventory, customer purchase history, and seasonality. It will also guide customers to the location of recommended products in the store.

[bookmark: _Toc191684715]3.1.1.3	Architecture
The system follows a modular architecture, comprising
· Client-side: Kiosks and mobile robots equipped with speech recognition, NLP, NLU and visual interaction modules.
· Server-side: A centralized backend that processes customer queries, manages recommendations, and communicates with store databases.
· APIs: Integration between SDS, SRS,LBC and store inventory systems via RESTful APIs.

3.1.2 Functional Requirements of Use Case 1
· Customers should be able to interact with kiosks and robots using natural language.
· Kiosks must support visual interaction, voice-based and text-based interaction; robots must support both voice and visual interaction.
· The system should process customer queries and retrieve product-related information.
· The SRS should generate recommendations based on selected products, inventory, and customer behavior.
· The system must fetch and display real-time inventory data.

3.1.3 Non-Functional Requirements of Use Case 1
· Performance: The system should process customer queries within seconds and provide product recommendations within seconds
· Scalability: Must support concurrent interactions in multiple store locations without performance degradation
· Security: Customer interactions and data must be protected using encryption and authentication mechanisms.
· Usability: Kiosks and robots should offer intuitive and user-friendly interfaces for seamless interaction
· Reliability: The system must ensure robust fault tolerance.
· Maintainability: Modular components and well-documented code for easy updates and troubleshooting
· Portability: The system should be deployable on Windows based kiosks and mobile robot platforms
3.1.4 Technical Implementation Considerations
· Technologies:
· Programming Languages: Python (for NLU, NLP and ML models), JavaScript (for UI components
· Frameworks & Libraries: Rasa (for chatbot development), TensorFlow/PyTorch (for ML models), Flask/FastAPI (for backend API)
· Tools: MongoDB (for storing conversations)
· Coding Standards:
· Follow PEP 8 for Python-based development
· Use REST API best practices for backend services
· Testing Requirements:
· Unit Tests for SDS and SRS modules.
· Integration tests for API communication.

3.1.5 Deployment and Maintenance
· Deployment Environment:
· Hardware: Kiosks, mobile robots with speech processing units.
· Software: on-premises-based backend, store database servers.
· Network: Secure Wi-Fi and internal communication protocols for seamless data transfer.
· Deployment Process:
· Set up local servers for SDS and SRS processing.
· Install software components on kiosks and robots.
· Conduct deployment tests before live usage.
· Maintenance Plan:
· Regular software updates to improve SDS accuracy and recommendation quality.
· Performance monitoring to ensure optimal response times.
· Customer feedback integration for continuous system enhancement.

3.2.2 Functional Requirements of Use Case 2
· Customers should be able to interact with virtual assistants using natural language.
· Virtual Assistants must support voice-based and text-based interaction.
· Generate personalized product suggestions based on customer profile and inventory.
· Detect and analyze customer facial expressions to assess emotional reactions to product recommendations, adapting recommendations based on detected emotions.

3.2.3 Non-Functional Requirements of Use Case 2

3.2.4 Technical Implementation Considerations

3.2.5 Deployment and Maintenance

· DB Interface
· File System
· Data Interface
· SOP & Event Handling
· Anormaly Dtetection
· Object Detection
· Video Source Management
· Extended Hardware Management
· Priority Governancing

· Data Managing capability
· MLOps Engine
· File System
· Database

· Collects real-time and batch data from multiple sources, such as in-store devices, surveys, and feedback forms.
· Uses tools like Apache Kafka for streaming data and RabbitMQ for event-driven data handling.

· Performs real-time analytics using big data frameworks like Apache Spark or Apache Flink.
· Implements deep learning models (BERT, CNN, LSTM) for sentiment analysis, stress detection, and contextual analysis.
· Integrates with GPU-accelerated processing for efficient model execution.

· Combines NoSQL databases (e.g., MongoDB, Cassandra) for unstructured data with ACID-compliant relational databases (e.g., PostgreSQL) for structured data.
· Ensures encrypted data storage and supports dynamic scaling.

· Provides RESTful APIs for system interactions, including data analysis, real-time feedback, and anonymization.
· Features OAuth 2.0 authentication, role-based access control, and secure data transmission protocols.

· Uses containerization (Docker) and orchestration (Kubernetes) for consistent, scalable deployments.
· Supports both on-premises and cloud environments for flexible infrastructure utilization.

· Includes centralized logging systems (e.g., ELK stack) and monitoring tools (Prometheus, Grafana) for performance tracking.
· Employs advanced encryption and anonymization techniques to ensure data privacy and regulatory compliance.

· Processor (CPU): A 16-core or higher processor is recommended for processing large datasets. Server-grade processors like Intel Xeon or AMD EPYC are preferred.
· RAM: High memory capacity is essential. A minimum of 128 GB RAM is recommended as NLP tasks and deep learning model training can be memory intensive.
· GPU: GPU acceleration is required for deep learning models (e.g., BERT, CNN, LSTM). High-performance GPUs like NVIDIA Tesla V100 or A100 are recommended.
· Storage: SSD storage is preferred, with at least 1 TB capacity to ensure quick access to large volumes of data (e.g., complaints, interactions, model output).
· Multi-Core Processors: Processors with 16 or more cores are required for parallel processing of NLP and deep learning algorithms. High clock speeds (at least 3 GHz) are also important for faster data processing.
· Processor Speed: A minimum speed of 3.5 GHz is essential for handling large data volumes and model training.

· Bandwidth: At least 1 Gbps internet connection is required for fast transfer of large datasets. A 10 Gbps connection is recommended for extremely large data workloads.
· Low Latency: Network latency should be kept under 50 ms for real-time analysis and interventions, especially for rapid customer interaction feedback.

· NoSQL Databases: Due to the complexity of complaint and customer interaction data, flexible and scalable NoSQL databases (e.g., MongoDB, Cassandra) are recommended.
· Data Streams: Real-time data flow systems like Apache Kafka or RabbitMQ are required for efficient data collection and processing.
· Data Integrity and Security: ACID-compliant databases should be used to maintain data integrity. Additionally, encrypted connections via SSL/TLS protocols are necessary to ensure customer data security.

· Server-Side OS: Linux-based systems (Ubuntu, CentOS) are preferred for their stability, security, and performance.
· Software Frameworks:
· Python is the primary language for NLP and machine learning applications, leveraging libraries such as TensorFlow, PyTorch, and Scikit-learn.
· Tools like Docker/Kubernetes are essential for containerization and orchestration to ensure portability and scalability.
· Big data processing and real-time analytics platforms like Apache Spark or Apache Flink are recommended.
· RESTful APIs should be created to collect customer interaction data (e.g., from in-store devices, surveys, and feedback forms).
· APIs should process NLP models (e.g., BERT, LSTM) for sentiment analysis, location detection, and stress analysis.
· APIs must enable real-time detection of negative interactions and facilitate immediate intervention using CNN and LSTM models.
· Special APIs for anonymizing customer and employee data must be implemented.
· All customer and employee data in databases and networks should be encrypted.

· Data Analysis APIs: APIs must run NLP models (e.g., BERT, LSTM) to analyze customer interactions, perform sentiment analysis, detect locations, and assess stress levels.
· Real-Time Feedback APIs: These APIs should detect negative customer interactions and enable immediate intervention, integrated with CNN and LSTM models.
· Data Anonymization APIs: Dedicated APIs must anonymize customer and employee data to allow secure analysis while protecting personal information.

· Data Encryption: All customer and employee data must be encrypted in databases and during network transmission. End-to-end encryption is essential.
· Anonymization Techniques: Models like BERT and LSTM should operate on anonymized data using algorithms like k-anonymity and L-diversity.

· BERT (Bidirectional Encoder Representations from Transformers): Used for sentiment analysis and context understanding from customer complaints.
· CNN (Convolutional Neural Networks): Suitable for fast classification of complaints.
· LSTM (Long Short-Term Memory): Applied to time-series data and long-term context tracking, especially for stress and workload analysis.
· Real-Time Analysis: These models require appropriate parallelization and GPU support for timely analysis.

· Response Times:
· Real-time analysis APIs must respond within 50 milliseconds to ensure timely interventions during customer interactions.
· Data anonymization and NLP model execution (e.g., BERT, LSTM) should not exceed a processing time of 1 second per request.
· Throughput:
· The system must handle at least 10,000 API requests per second to support large-scale customer interactions and data streams.
· The data pipeline (e.g., Kafka) should process and deliver 1 GB of data per minute without delays.

· Handling Increased Load:
· The architecture must support horizontal scaling to handle increased traffic, ensuring that additional servers or GPUs can be added without downtime.
· NoSQL databases (e.g., MongoDB, Cassandra) should dynamically scale to manage surges in data, supporting 50% growth in data volume annually.
· Future Growth:
· The system must accommodate additional features (e.g., more NLP models or new APIs) without requiring major architectural changes.

· Authentication:
· All APIs must implement OAuth 2.0 or equivalent protocols to authenticate users and applications securely.
· Authorization:
· Role-based access control (RBAC) must be implemented to restrict sensitive operations (e.g., data decryption) to authorized personnel only.
· Data Security:
· All data in transit and at rest must be encrypted using AES-256.
· Sensitive customer and employee data must be anonymized before processing using industry-standard techniques like k-anonymity and L-diversity.
· Compliance:
· The system must comply with data privacy regulations such as GDPR and CCPA, ensuring customer rights to data protection and access.

· Ease of Use:
· The APIs must have intuitive and well-documented interfaces, enabling developers to integrate them with minimal effort.
· Accessibility:
· Provide comprehensive monitoring dashboards and real-time alerts for system administrators to track performance and resolve issues quickly.
· The user interface (UI) for API management tools should support multiple languages for global accessibility.

· Uptime:
· Ensure 99.99% system availability, allowing a maximum downtime of approximately 52 minutes per year.
· Fault Tolerance:
· Implement redundancy for all critical components (e.g., servers, GPUs, databases) to avoid single points of failure.
· The system must automatically failover to backup servers or data centers during hardware or network failures.

· Modularity:
· The system should follow a microservices architecture, where each API or function operates independently to simplify debugging and updates.
· Code Clarity:
· All code must adhere to industry best practices, with sufficient inline documentation and version control.
· Update Management:
· Deploy changes using CI/CD pipelines to automate testing and deployment, reducing manual intervention and downtime.

· Operating Systems: The solution must run seamlessly on Linux-based distributions like Ubuntu and CentOS.
· Hardware Platforms: Support for deployment on both on-premises servers and cloud environments (e.g., AWS, Azure, GCP).
· Containerization: Use container technologies like Docker to ensure applications can run on diverse hardware configurations without reconfiguration.

· Programming Languages:
· Python for primary development due to its strong ecosystem for machine learning, NLP, and deep learning (TensorFlow, PyTorch, Scikit-learn).
· JavaScript/TypeScript for building user-facing interfaces or API integration where needed.
· Frameworks and Libraries:
· Deep Learning and NLP: TensorFlow, PyTorch, Hugging Face Transformers, and SpaCy for training and deploying NLP models like BERT, CNN, and LSTM.
· Big Data Processing: Apache Spark or Apache Flink for large-scale data processing and real-time analytics.
· API Development: Flask or FastAPI for lightweight APIs, with options like GraphQL for more complex data queries.
· Containerization and Orchestration: Docker for containerization and Kubernetes for managing distributed deployments.
· Data Streaming: Apache Kafka or RabbitMQ for real-time data processing and event-driven architectures.
· Databases:
· NoSQL Databases: MongoDB or Cassandra for handling flexible and scalable data.
· Relational Databases: PostgreSQL with ACID compliance for structured data where needed.
· Security:
· Libraries for encryption like PyCryptodome (Python) or OpenSSL for database and network data encryption.

· Code Style:
· Follow PEP 8 (Python) and ESLint/Prettier configurations for JavaScript/TypeScript.
· Documentation:
· Every module and API endpoint must have inline documentation using tools like Sphinx (Python) or JSDoc (JavaScript).
· Maintain an updated API documentation using OpenAPI (Swagger) for RESTful APIs.
· Version Control and Branching:
· Git workflows with a clear branching strategy (e.g., GitFlow) to streamline collaboration and code review.
· Error Handling:
· Implement structured logging (e.g., Python’s logging library or Logstash for ELK stack) and centralized error reporting through tools like Sentry.
· Code Reviews:
· Mandatory code reviews for all pull requests to ensure maintainability and adherence to standards.

· Unit Tests: Test individual functions, modules, and machine learning pipelines using pytest for Python or Jest for JavaScript.
· Integration Tests: Test interactions between components such as APIs, databases, and machine learning models to ensure seamless communication. Tools: Postman, Newman, or Pytest-Django.
· System Tests: Validate the end-to-end functionality of the system, including real-time feedback loops and the scalability of APIs under high traffic.
· Performance Testing: Test the system’s ability to handle large datasets, real-time streaming, and parallel processing using tools like Apache JMeter or Locust.
· Security Testing: Conduct regular vulnerability scans using tools like OWASP ZAP or Nessus.
· Automated Testing: Leverage CI/CD pipelines (e.g., GitHub Actions, Jenkins) to run automated test suites for every code update.

1. Preparation and Configuration:
· Set up the hardware environment with required specifications, including servers, GPUs, and network configurations.
· Install necessary operating systems, libraries, and software frameworks.
2. Containerization:
· Package applications, APIs, and services using Docker for consistent deployment across environments.
3. Orchestration:
· Deploy containers in a Kubernetes cluster to ensure high availability, scalability, and fault tolerance.
4. Database Initialization:
· Configure NoSQL and relational databases, ensuring ACID compliance and encryption for sensitive data.
5. Model Deployment:
· Deploy trained NLP models (e.g., BERT, CNN, LSTM) into the production environment using TensorFlow Serving or TorchServe.
· Integrate models into APIs for real-time processing.
6. Load Testing:
· Perform stress and performance testing to ensure the system can handle the expected load (e.g., real-time analytics, large datasets).
7. Security Validation:
· Conduct security testing to identify and mitigate vulnerabilities.
8. Go Live:
· Gradually roll out the system using blue-green deployment or canary releases to minimize risks.
9. Monitoring and Logging:
· Implement monitoring tools (e.g., Prometheus, Grafana) and centralized logging systems (e.g., ELK stack) to track system performance and identify issues.

1. System Updates:
· Software: Regularly update frameworks, libraries, and operating systems to their latest stable versions.
· Models: Periodically retrain NLP and machine learning models using updated datasets to maintain accuracy.
2. Monitoring and Alerts:
· Monitor system health, resource usage, and performance metrics using automated tools.
· Set up alert systems for anomalies (e.g., latency spikes, memory usage thresholds).
3. Bug Fixes and Enhancements:
· Use a version control system (e.g., Git) and a ticketing system (e.g., Jira) for tracking bugs and new feature requests.
4. Backup and Disaster Recovery:
· Regularly back up databases and critical application components.
· Implement disaster recovery strategies (e.g., hot failover, automated backups, and restore procedures).
5. Security Maintenance:
· Conduct regular security audits and patch vulnerabilities promptly.
· Rotate encryption keys periodically and enforce strong authentication protocols.
6. User Support and Documentation:
· Provide detailed technical and user documentation for system operators and end-users.
· Maintain a help desk or support team for resolving user issues and queries.
7. Scalability Management:
· Regularly assess system performance under increased load and scale hardware or cloud resources as needed.

4 Conclusions
This document describes technical specification and requirements in terms of specific technologies and system capabilities of each use cases such as smart dialogue systems, facial emotion recognition, trust enabling smart working area in terms of AI-based disater and safety provisioning platform, enhancing employee and customer experience through AI-powered monitoring and analysis.
Thus, this document indicates the directions to develop and implem the technical features related to the main technologies, applications in the four use cases performed in the CAPE project.

17

image2.png
Tools

Tool 1 (07 - Kogtas)

Tool 2

Tool 2

Model Development input ETL Module 2 Search Text
(Product
Gode, User
ds) By
© v D Facry
Q= f—
e User T Hisory [PAT] nkod sovicos__,
f— Model » oost)
Proprecasing Lyd
0b Storage
(=) (=) e
Rosponse Fospanse
. y (Produe [o (Frodoes
i
Location Based Campaigning (Kogias) AV DB Updats
]
Campalgning AP1
avoe Gonvrsati Summary
R
Locaton o -
Wb App BE (nosens -
Kogtas)
& Locaton-set A3
o [e——> S —— Wit App.
| . = on- Backend < .
R
Mongo DB Robot
Frowal
Robet
Rospanse Mongo DB
(Campeian
ormetien) Gonverstion, Gonversaton Histor, Too Responces
Products,Productormaton
Users, Useransactons
Gonversation Ghatbot
‘Web App BE (Inosens - Kogtas) User Interface
ETL oduie
i
— |
Converatons
Data Factory Tool 1
oput Robat
essoveos_| TN
- T
ost) Lv. srosucti, Rasa (fhatoot)
et Moo bp ity
anai sower
1 input-

Kiosk

image3.png
'ML Mode Pipeline
Model Evaluation Model Performance Comparison
Model Training Model Deployment
Data Preproccesing Model AP Endpoint
Model Deployment
Y

Data Query

Y

Defacto DB

Model
Development

WS wil be used to retrieve
datas

Recommendation
webservice
e

Recommendation Model
Webservices (WS)

Chathot Backend

Rasa v Flask

Chatbot s APl
[Infrastructure

Kiosks

Interface

Conversations will be inix Server Appli
s pication
updated on MongoDB SRl Chatbot Chatbot APLf| | ace for

Backend ’_> user intents

Chatbot wil be updated |
based on user feedbacks:

Data

Visualization User/Bot Defacto DB
Conversations

MongoDB

Data Layer

image4.png
Global Federated
ol

Recammendation
Models
cotaporstve- Hyoria Content.
Fiteing Agortm Basedt
Recammendation
modet

Inttigent Processing e

Moast

o0s

product
informai

Datapase

image5.png

image1.png
Trustworthis

Al partners

—

=f=f-=]
O DD BT Integration

—_

Facility Syste

GDPR Protection

((())) ::i::d er .

Sensing

Smart phone and
ial channels

) Kiosk with

Sensing & R many sensors i
Interaction ") and actuators
-2ty

> Robot with

many sensors ¢——

Edge modules of

partner solutions

‘Omnichannel
Customer

Communicatio
nand Support

System
Teknasyon

Tracking
Tav

loT, Al based trust
measurement and
blockchain solutions
Korean consor.

Identific:

Device health, data management, security

Smart services, tools

Use Case 1
Intelligent Shopping
Assistance and
Recommendation System

Use Case 2
Using facial emotion
recognition and user
profiles to generate in-store
product recommendations

Use Case 3
loT Based Smart
Recommendation System

Use Case 4

Trust Enabling loT
environment and Smart
Working Area

Use Case 5
Enhancing Employee and
Customer Experience
through Al-Powered
Monitoring and Analysis

Sensing, Integration and Interaction
Data Sources

Use cases solutions

image6.png

image7.png
f..3CcAPCS

