

SmartDelta

Automated Quality Assurance and Optimization in Incremental

Industrial Software Systems Development

D5.5 - SmartDelta Visualization Dashboard

Submission date of deliverable: Feb 28, 2025

Edited by: Bilge Özdemir (Dakik), Ural Sezer (Dakik), Ömercan Devran (Arçelik), Martin Hess

(Software AG), Yuriy Yevstihnyeyev (Vaadin), Zulqarnain Haider (Alstom), Jean Malm (Mälardalen

University), Yazmin Andrea Pabon Guerrero (UC3M), Asif Khan (Ontario Tech), Abhishek Shrestha

(Fraunhofer), Andreas Dreschinski (Akkodis), Benedikt Dornauer (University of Innsbruck), Johannes

Weinzerl (c.c.com, Austria), Mircea-Cristian Racasan (c.c.com, Austria), Hakan Kılınç (NetRD),

Akramul Azim (Ontario Tech)

Project start date

Project duration

Project coordinator

Project number & call

Project website

Contributing partners

Dec 1, 2021

36 (+6) months

Dr. Mehrdad Saadatmand, RISE Research Institutes of Sweden

20023 - ITEA 3 Call 7

https://itea4.org/project/smartdelta.html & https://smartdelta.org/

SmartDelta WP5 partners

Version number V1.0

Work package

Work package leader

Dissemination level

WP5

Bilge Özdemir - DAKIK

Public

Description

This deliverable reports on the development of the SmartDelta dashboard as

well as individual dashboards developed by project partners that visualizes

software quality characteristics across versions, identifies problematic areas,

and provides optimization recommendations for the SmartDelta project.

https://itea4.org/project/smartdelta.html
https://smartdelta.org/

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 2 of 30

Executive Summary

The SmartDelta Visualization Dashboard represents a critical component of the SmartDelta project,

serving to monitor and optimize software quality across different versions. This deliverable outlines

the development of an interactive, data-driven dashboard that integrates findings and metrics from

Work Packages 2 through 4, providing stakeholders with a comprehensive view of software

evolution. To present different metrics from different use cases on a unified dashboard, the Vaadin

charts library was utilized, enabling the visualization of diverse data representations within a single

interface.

The primary objective of the SmartDelta Visualization Dashboard is to illustrate the progression of

various quality characteristics, such as code complexity, technical debt, performance bottlenecks,

and architectural maintainability. By leveraging cutting-edge technologies like the Vaadin platform

and partner-contributed visualization tools, the dashboard offers a flexible and customizable

solution for software analytics.

The SmartDelta Visualization Dashboard also showcases a collaborative effort, with partners

contributing diverse visualizations and analytical perspectives tailored to their specific use cases.

This deliverable reports on these individually developed dashboards, which include code quality

dashboards, project similarity metrics, resource utilization analysis, anomaly detection, and

technical debt tracking. These contributions highlight the dashboard's versatility in addressing

various software analysis needs within the SmartDelta ecosystem.

Overall, this deliverable represents a significant milestone in the project, providing a powerful tool

for continuous software improvement, data-driven decision-making, and effective collaboration

among partners. By combining the Vaadin-based dashboard with partner-specific visualizations,

stakeholders gain access to a comprehensive software analytics solution that fosters data-driven

insights and informed decision-making throughout the software development lifecycle.

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 3 of 30

Table of Contents

Executive Summary ..2

1. SmartDelta Dashboard Overview ...4

1.1. Introduction ..4

1.2. Vaadin Dashboard Component..4

1.3. Technical Architecture and Data Access ..5

1.4. Adding Visualizations and Repository Collaboration ..5

1.5. Licensing and Deployment Flexibility..6

2. Visualizations of SmartDelta Dashboard ...6

2.1. Software AG...6

2.2. Vaadin ...7

2.3. cc.com & UIBK ...8

2.4. Izertis... 10

3. Individual Visualizations of SmartDelta Project .. 11

3.1. Alstom ... 11

3.2. Akkodis .. 13

3.3. eCamion .. 15

3.4. NetRD ... 19

3.5. Kuveyt Türk.. 21

3.6. GlassHouse ... 23

3.7. Team Eagle ... 24

3.8. Arçelik ... 25

4. Tools .. 27

4.1. Detangle (Cape of Good Code) ... 27

4.2. SoHist (University of Innsbruck, c.c.com) ... 27

4.3. Architecture Analysis and Visualization Tool (Fraunhofer) ... 28

4.4. EPS Cybersecurity Anomaly Detector (Glasshouse Systems and Ontario Tech University) . 29

4.5. DRACONIS (Mälardalen University and Alstom) ... 30

5. Conclusion.. 30

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 4 of 30

1. SmartDelta Dashboard Overview

1.1. Introduction

This section provides a comprehensive overview of the SmartDelta-Dashboard solution, detailing

its key components, technical architecture, and collaboration strategies. It explains the design and

functionality of the Vaadin Dashboard Component, outlines the underlying data access logic, and

offers guidance on adding visualizations and collaborating via the repository. In addition, the section

covers licensing details and flexible deployment options to ensure that partners can build,

customize, and deploy rich, interactive dashboards tailored to their needs.

1.2. Vaadin Dashboard Component

Within the SmartDelta-Dashboard, the Vaadin Dashboard Component is an important element that

streamlines the creation of interactive dashboards. The component was developed within the project

scope. It offers a versatile, user-friendly interface supporting both static and dynamic layouts.

Developers can define dashboards declaratively for fixed interfaces or leverage dynamic, data -

bound configurations that empower end users to adjust widget placement and sizing interactively.

Figure 1. Dashboard component example layout

Key Features:

• Static & Dynamic Modes:

o Supports declarative dashboards for fixed layouts and dynamic dashboards that

render widgets based on live data.

o Dynamic dashboards include an editable mode, enabling users to move, resize, and

remove widgets.

• Responsive Grid Layout:

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 5 of 30

o Automatically arranges widgets into adaptive columns and rows.

o As the dashboard’s width changes, columns adjust and widget positions reflow

accordingly.

• Intuitive Widget Management:

o Provides built-in controls for adjusting column and row spans.

o In editing mode, widgets can be manipulated via drag & drop, keyboard commands,

or accessible move and resize options.

• Flexible Configuration & Persistence:

o Offers comprehensive configuration options including spacing, dense layout

preferences, and customizable column/row settings.

o Supports persistence and reloading of dynamic configurations for personalized,

user-specific dashboards.

• Multi-Platform Integration:

o Available for both Java and TypeScript ecosystems with support for React, Lit, and

Vaadin Flow, ensuring seamless integration in diverse development environments.

• Internationalization:

o Built-in localization support allows easy adaptation of dashboard text and messages

for various languages and regions.

This component delivers a robust and adaptable solution that combines ease of use with powerful

customization capabilities. For an in-depth exploration of its technical features and configuration

options, please refer to the Vaadin Dashboard Documentation:

https://vaadin.com/docs/latest/components/dashboard.

1.3. Technical Architecture and Data Access

The SmartDelta dashboard solution is implemented as a Spring Boot-based web application that

leverages a PostgreSQL database, either hosted remotely (e.g., on DigitalOcean) or run locally, to

provide a flexible demo and development environment. Each partner is assigned unique credentials

tied to a dedicated database schema, ensuring that while collaborators may view others’ schemas

for context, direct data modifications remain strictly confined to their own areas. Additionally, a

special aggregator role is available for secure, read-only access to consolidated views across all

partners.

To streamline data management, the project integrates jOOQ, which abstracts complex SQL

operations and offers type-safe access to database entities. This integration simplifies routine tasks

such as querying records, allowing partners to focus on developing visualizations. Moreover, any

changes to the database schema, such as adding or modifying tables, can be easily accommodated

by regenerating jOOQ classes using Maven (simply run mvn generate-sources), as detailed in the

repository’s instructions.

The source-code is available at: https://github.com/vaadin/smartdelta-dashboard/. For access,

please contact yuriy@vaadin.com.

1.4. Adding Visualizations and Repository Collaboration

Partners can extend the dashboard by adding custom views that display tailored visualizations and

metrics. The repository is organized into dedicated packages for each partner (e.g., cc_uibk,

software_ag, vaadin, etc.), ensuring a modular structure where UI components (built with Vaadin)

and service classes coexist. For example, each package includes a default view along with

corresponding service classes, such as CpuNodeService.java in the cc_uibk package, that

https://vaadin.com/docs/latest/components/dashboard
https://github.com/vaadin/smartdelta-dashboard/
mailto:yuriy@vaadin.com

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 6 of 30

demonstrate jOOQ usage for efficient data access. This modular structure simplifies an individual

partner’s contributions.

Detailed instructions for adding or configuring visualizations are provided within the repository.

These guidelines cover tasks from generating jOOQ classes and adjusting Maven configurations to

running the application locally.

1.5. Licensing and Deployment Flexibility

Partners have full access to all features of the Vaadin platform, including Vaadin Charts and the

aforementioned Vaadin Dashboard components.

Vaadin Charts is a library designed for creating interactive, visually appealing data visualizations

in Vaadin applications. It supports a wide range of chart types, including line, bar, pie, scatter, and

other chart types, making it suitable for various data presentation needs. With integration into

Vaadin applications, it enables dynamic updates, real-time data visualization, and smooth user

interactions. Built on top of Highcharts, Vaadin Charts provides extensive customization options,

allowing developers to create sophisticated, responsive charts. For further details, please refer to

the Vaadin Charts Documentation: https://vaadin.com/docs/latest/components/charts.

Both the Vaadin Charts and Dashboard components are commercial products, with commercial

licenses provided to the partners for the duration of the project. This arrangement ensures that

partners have access to the advanced features offered by the platform.

In addition to the shared demo setup, partners can deploy local versions of the application. By

adjusting database connection settings, such as switching from a remote DigitalOcean database to

a local instance, and, if needed, removing views from other col laborators, partners can work with

their own real data. This enables the application to be used in a local production environment for

visualizing specific metrics without sharing them with other partners. Such flexibility supports both

collaborative demonstrations and isolated production deployments.

2. Visualizations of SmartDelta Dashboard

This section presents a collection of visualization examples contributed by our partners, serving as

demonstration prototypes that showcase the dashboard’s analytical and interactive capabilities.

Each visualization is developed using simulated datasets that mirror realistic scenarios, thereby

highlighting potential analytical perspectives and design flexibility without compromising sensitive

information. These examples illustrate how diverse data representations can be achieved using the

SmartDelta Dashboard, while visualizations incorporating actual operational data remain securely

hosted within each partner’s local production environment to ensure data confidentiality and

compliance.

2.1. Software AG

Visualizations Used: Bar and line charts

Illustrates: Code quality trends, Code rework recommended, Commit impact analysis, Code and

design repetition & reuse potential

Technology Stack: Vaadin platform, Atlassian Jira, SonarQube

Key Features:

The dashboard shows KPIs relevant to the management grouped into the following categories:

https://vaadin.com/docs/latest/components/charts

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 7 of 30

• Code Quality: Current size of code base, overall code quality and its trend over time for

selected products. Allows to assess the overall complexity and quality of products and their

evolution over time.

• Code Rework Recommendations: Size of low-quality code per product that might require

rework and corresponding trend over time. Allows to estimate the amount of rework needed

to improve code quality.

• Commit Impact Analysis: Number of code commits detrimentally affecting code quality

and their frequency over time. Allows to assess the quality of latest commits and track the

quality of the development activities over time.

• Repetition and Reuse: Number of solved issues with similar descriptions implemented with

similar or different code as well as number of open issues similar to already solved ones.

Allows to estimate the amount of repetition done so far and the available potential for reuse.

Dashboard:

Figure 2. Prototype of the SAG dashboard

2.2. Vaadin

Visualizations Used: Pie charts, bar charts, timelines, spline charts, and grid views.

Illustrates: Issue classifications (by type, impact, and severity), API comparisons, refactor

suggestions, and performance trends.

Technology Stack: Vaadin Platform

Key Features:

• Overview Metrics: Displays summaries of issue classifications by type, severity, and

impact, as well as progress on API migrations and refactoring activities.

• Interactive Visualizations: Pie charts, bar graphs, and spline charts enable users to

monitor trends, identify bottlenecks, and make informed decisions.

• Updates Summary: Highlights changes and areas requiring attention, streamlining

prioritization during development cycles.

Dashboard:

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 8 of 30

Figure 3. Prototype of the Vaadin dashboard

2.3. cc.com & UIBK

Visualizations Used: Line charts, time-series graph, data distribution plots

Illustrates:

• Evolution of Technical Debt and Code Quality Issues (SoHist Analysis)

• Resource Utilization of Time-Series Data (BLIDS Sensors, Server Cluster)

Technologies:

• Apexcharts for SoHist

• Seaborn for long - time data evaluation

• Grafana for short - time data visualisation

• Vaadin Charts for testing its functionalities

Key Features:

• Track software quality evolution by visualizing e.g., technical debt, code smell density, and

test coverage over time

• Analyse large-scale historical and real-time data using time-series graphs and statistical

modeling

• Detect anomalies in system behavior through real-time monitoring and rule-based alerting

Visualizations for new Insights:

• SoHist with Apexcharts

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 9 of 30

Figure 4. Example Project SoHist (UIBK)

• Seaborn for long - time data evaluation

Figure 5. Visualising sensor properties with Python Libraries (left: temperature per sensor, right: sensor

version changes over a year)

Dashboard:

• Grafana for short(er) - time data visualization

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 10 of 30

Figure 6. Visualization for the overview of the sensors

• Testing Vaadin Charts

Figure 7. Vaadin charts visualising how individual commits on the main branch affects the code quality

2.4. Izertis

Visualization Used: Bar and line charts

Illustrates: Project similarity metrics, quality metrics, artifact reusability, test effectiveness

Technology Stack: SONATA, Vaadin platform

Key Features:

• Project Similarity Analysis

o Displays matching requirements between current and historical projects

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 11 of 30

o Shows artifact distribution across similar projects by type (project management,

code, documentation)

o Presents defect patterns and classifications from comparable projects

• Quality Metrics Overview

o Visualizes defect distributions by category (functionality, security, performance)

o Tracks project costs and resource allocation across similar implementations

o Enables custom metric definition and monitoring for specific project needs

• Interactive Reporting

o Provides detailed artifact analysis with filtering capabilities

o Presents bug reports and correlation with project characteristics

o Offers customizable views for different stakeholder needs

Dashboard:

Figure 8. General view of Izertis Dashboard

3. Individual Visualizations of SmartDelta Project

3.1. Alstom

Visualizations Used: Code Quality Dashboards; bar charts, tables and graphical renderings of

models.

Illustrates: Code guideline violations. Nr of models passing and failing checks, software deltas

Technology Stack: DRACONIS (python, Django)

Key Features:

• Overview of the quality of a given set of block models.

• Graphical and semantic deltas between model variants.

• Fast feedback to stakeholders through edit-time check reports (development) and

downloadable excel documents (review process).

Dashboard:

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 12 of 30

Figure 9. Report view for a block model

Figure 10. Delta visualization of two variants

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 13 of 30

Figure 11. Overview of the ongoing review status

3.2. Akkodis

Visualizations Used: Pie charts; bar charts, Clustering map, UML state diagrams, custom

visualization types (Execution Flow State Diagram, Log Similarity Matrix, Event Flow Diagram)

Illustrates: Repository insights, software delta & evolution

Technology Stack: PlantUML, Streamlit, dash/plotly

Key Features:

• Compare git commits

• Show repository insights and clustering of artefacts

• Identify similarities or deltas among models

• Generate models from requirements

• The Architecture Analysis and Visualization Dashboard (ref. Section 2.3) computes and

visualizes various architectural views.

Dashboard:

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 14 of 30

Figure 12. Prototype of dashboard showing repository insights with delta view

Figure 13. Prototype showing clustering of repository artefacts using topic modelling

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 15 of 30

Figure 14. Prototype using custom visualization showing semantic structure of a document (ISO 15118-2)

Figure 15. UML state machine visualization with delta highlighting

3.3. eCamion

Visualizations Used: line graph, histogram, box plot diagram

Illustrates: Health and performance of charging stations, anomalies, failure detection

Technology Stack: JavaScript libraries (MaterialUI, Axios, ReCharts, and ChartJS), NodeJS,

ReactJS, Python Flask, PostgreSQL database.

Key Features:

• Display charging station usage

• Charging Station cell health and cabinet health, alert to notify abnormal sensor reading

• Prediction of hourly energy delivered by charging station

Dashboard:

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 16 of 30

Figure 16. Charging station cabinet health overview shown in eCamion Dasboards

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 17 of 30

Figure 17. Historical record of charging sessions for each charger

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 18 of 30

Figure 18. Charging Station battery cell health report. Abnormal sensor readings are highlighted in red

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 19 of 30

Figure 19. Charging Station energy delivery prediction

3.4. NetRD

Visualizations Used: Line chart, bar chart, radar chart, pie chart, scatter plot, tabular

representation

Illustrates: Microservice dependencies and interactions over time, Identification of performance

bottlenecks, Insights into how changes in architecture affect software quality

Technology Stack: DIA4M, React Flow, D3.js, Node.js

Key Features:

• Service Mapping Feature: The service mapping feature includes handling file uploads,

reading the CSV file, extracting columns, filtering data, generating output with nodes and

edges to be visualized and used as input in other analytics related modules.

• Anomaly Detection Feature: Anomaly detection is an important aspect of system monitoring,

especially to identify irregularities in log data that may indicate possible system failures or

security breaches. This process uses a mixture of statistical methods and domain-specific

heuristics to improve detection accuracy.

• Service Health Feature: The Services Health Summary UI in DIA4M redefines the way

DevOps engineers analyse microservice performance through a visually engaging table with

embedded line graphs. This interface provides a comprehensive view of critical metrics for

each service.

• Logs Comparison Feature: The Log Comparison feature facilitates the analysis of existing

logs in relation to those in previous versions and enables users to discern changes and

patterns in log data. Using the "Horizontal Comparison" method, the tool clusters messages

based on their instances in each log file and then compares these clusters, highlighting

differences and similarities. This approach allows for a detailed examination of log data and

supports selective analysis of specific log areas of interest , increasing the ability to

effectively understand and monitor log changes.

Dashboard:

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 20 of 30

Figure 20. Service mapping by log file

Figure 21. Anomaly detection with scoring

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 21 of 30

Figure 22. Each service`s health status in a single view

Figure 23. Logs comparison feature

3.5. Kuveyt Türk

Visualizations Used: Network diagram, bubble chart, line chart, pie chart, radar chart, timeseries

chart.

Illustrates: Code quality metrics (code quality, code smell, code coverage, technical debt, delta

analysis), performance metrics, maintainability metrics (knowledge distribution, knowledge islands,

dependency & coupling metrics, architecture maintainability), deployment and process metrics (bug

resolution time, feature vs. bug distribution)

Technology Stack: Detangle, Grafana

Key Features:

• Establish correlation between production performance metrics and software quality metrics.

• Analyse, locate and measure Technical Debt and knowledge distribution issues.

• Track trends in architectural maintainability and software extensibility.

• Identify key contributors, knowledge silos, and potential risks in development teams.

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 22 of 30

• Provide time-series analysis of software quality and deployment impact over multiple

versions.

Dashboard:

Figure 24. Breakdown of the features and bugs

Figure 25. Static code quality metrics

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 23 of 30

Figure 26. Technical debt metrics

Figure 27. Developer analysis

3.6. GlassHouse

Visualizations Used: Time series chart, area curve, scatter lot, line graph.

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 24 of 30

Illustrates: Key performance indicators such as Mean Time to Detect (MTTD) and Mean Time to

Respond (MTTR), incident response times, threat prioritization, anomaly detection

Technology Stack: Python, Flux

Key Features:

• Centralized Dashboard:

o Real-time Monitoring: Instantaneous updates that allow teams to monitor KPIs as

they evolve.

o Customizable Views: Users can tailor the dashboard to display the most relevant

metrics and alerts for their specific role or operational focus.

o Interactive Drill-Down: Beyond high-level overviews, users can click into specific

charts or metrics to see more granular data, helping in root-cause analysis.

o Alerting & Notifications: With integration to ServiceNow and other systems, the

dashboard can trigger alerts based on pre-defined thresholds or detected

anomalies.

o quickly identify inefficiencies, optimize incident response processes, and prioritize

threats effectively.

Dashboard:

Figure 28. Grafana dashboards to analyse key KPI metrics

3.7. Team Eagle

Visualizations Used: Line graph, histogram, scatter plot, pie chart

Illustrates: Software quality assurance and compliance to structured coding conventions

Technology Stack: JavaScript libraries (MaterialUI, Axios and ChartJS), NodeJS, ReactJS, Python

Flask, Azure Repos, Azure DevOps.

Key Features:

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 25 of 30

• Display potential SQA-related issues found within the codebase

• Identifies issue types, vulnerabilities, severities, and possible resolutions

• Visualizations of system metrics, fault detection, and predictive insights

• Integration with event-driven data processing pipelines for daily monitoring

Dashboard:

Figure 29. Team Eagle QA Dashboard Homepage

3.8. Arçelik

Visualizations Used: Pie charts, line charts, radar charts,

Illustrates: Product quality metrics, code smells, vulnerabilities, technical debt, process-oriented

metrics, and test coverage

Technology Stack: Qlik

Key Features:

• The metric dashboard integrates data from:

o Azure DevOps

o SonarQube

o Jira

o Statuspage

o Google Analytics

• Provides a comprehensive view of IT software processes and quality metrics

• Tracks key indicators:

o DevSec percentage (ATRT)

o PR cycle times

o Code quality

o Incident response

o Deployment frequency

• Enables data-driven decision-making by:

o Visualizing trends

o Identifying bottlenecks

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 26 of 30

o Ensuring continuous improvement in software development and operations

Dashboard:

Figure 30. Metric Dashboard: The issues linked with the related pull requests

Figure 31. Metric Dashboard: Product Metrics

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 27 of 30

4. Tools

4.1. Detangle (Cape of Good Code)

DETANGLE analyzes the effectiveness of software development strategies, detecting the efficiency

of individual software developers and software teams and the evolution of their products over the

years to provide detailed and dynamic reporting. With these reports, customers will be able to

understand the importance of their developers in a particular module or a whole project. With its

creative feature-based effort and quality analysis, DETANGLE reveals unbalances between R&D

effort and the commercial worth of features. Software development and business may work together

taking into consideration the DETANGLE analysis and heated debates to become data-driven, fact-

based business judgments.

Input to the tool: Project Repository and Issue Tracker

Output of the tool: Software Quality Metrics

Webpage: https://capeofgoodcode.com/

Version: Released (Closed source)

Contact person: Egon Wuchner (wuchner@capeofgoodcode.com)

4.2. SoHist (University of Innsbruck, c.c.com)

Technical debt is often the outcome of short-term judgments taken during code creation, which

can result in long-term maintenance costs and risks. In this approach, assessing the project's

development and comprehending various effect factors is critical. Fortunately, code analysis tools

such as the well-known SonarQube can assist in the prioritizing process for reducing technical

debt. Therefore, we introduced two new visualization approaches:

Given SonarQube's industrial relevance in 2023 and the demand for extended (historical) analysis

functionality, we decided to create SoHist. This new tool addresses SonarQube's limitations and

provides extended historical code analysis capabilities, such as the evolution of TD over time.

After the execution of SonarQube analysis, the user can access the code quality history and use

the two available SoHist visualizations – Code Evolution and Weighted Code Evolution

Significance.

• Visualization 1- Code Evolution: SoHist enables simultaneous viewing of multiple code

quality metrics. When the user hovers over a specific time, the corresponding timestamp is

highlighted across all metric charts. This facilitates easy comparison of the metrics.

• Visualization 2 - Weighted Code Evolution Significance: This visualization introduces a

novel approach to address the challenge of individual project demands and prioritization of

specific SonarQube’s main metrics. The Weighted Code Evolution Significance serves as

an indicator of the significance of changes in relation to weighted categories.

Input to the tool: Credentials to GitLab Repository

Output of the tool: Complete GIT-History Quality Assurance Analysis with SonarQube and

Visualization for Interpretation of Technical Debt

Webpage:

• Publication on ITEA website: https://itea4.org/news/smartdelta-offers-solution-for-retr o-

perspective-code-analysis-in-technical-debt-management.html

https://capeofgoodcode.com/
mailto:wuchner@capeofgoodcode.com
https://itea4.org/news/smartdelta-offers-solution-for-retro-perspective-code-analysis-in-technical-debt-management.html
https://itea4.org/news/smartdelta-offers-solution-for-retro-perspective-code-analysis-in-technical-debt-management.html

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 28 of 30

• Paper:

https://www.researchgate.net/publication/370489799_SoHist_A_Tool_for_Managing_Technica

l_Debt_through_Retro_Perspective_Code_Analysis

• GitHub Repository: https://github.com/bdornauer/sohist

Version: v2

Source or Binary Link: https://github.com/bdornauer/sohist

Instruction manual or tutorial for the tool:

https://github.com/bdornauer/sohist/blob/main/README.md

Type: OpenSource

Contact person: benedikt.dornauer@uibk.ac.at

4.3. Architecture Analysis and Visualization Tool (Fraunhofer)

The architecture visualization tool computes various architectural views based on the input files.

The data analysis module of the tool takes a set of log files that capture data from state machine

executions as input and analyzes them to compute various architectural diagrams. These include:

• An Execution Flow State Diagram that captures the runtime behaviour of a model based

on the log file data

• A Log Similarity Matrix which is a heatmap that shows pair-wise similarity between each

pair of ingested log files.

These views are computed in a textual format (markdown-like syntax and dataframes) and are

stored in a database.

A graphical representation of the computed diagrams is then available through a web-based

visualization dashboard. As can be seen in the figure below, the dashboard provides options to

select processed folders (1) and files within those folders through a g rid-view (2). Selection of files

then generates the corresponding view (3). The similarity matrix (5) is generated at folder-level and

is available from the "folder-level views" tab (4).

Figure 32. Visualization dashboard showing file selection grid with file-level and folder-level views.

https://www.researchgate.net/publication/370489799_SoHist_A_Tool_for_Managing_Technical_Debt_through_Retro_Perspective_Code_Analysis
https://www.researchgate.net/publication/370489799_SoHist_A_Tool_for_Managing_Technical_Debt_through_Retro_Perspective_Code_Analysis
https://github.com/bdornauer/sohist
https://github.com/bdornauer/sohist
https://github.com/bdornauer/sohist/blob/main/README.md
mailto:benedikt.dornauer@uibk.ac.at

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 29 of 30

Additionally, the dashboard provides functionality to construct an Event Flow Diagram (6),

illustrating the relationships among state machines based on shared events. Users can drag and

drop multiple .ceps files, which define state machines, into the input widget in the UI. These files

are then processed to extract both outgoing and incoming events associated with the state

machines defined by each .ceps file. The resulting diagram displays state machines as nodes and

uses event connections as edges.

Figure 33. Architecture Visualization Dashboard – Execution Flow State Diagram.

These diagrams are helpful in visualizing the run-time behaviour of a state machine and aid in fault

diagnosis. For example, when a fault occurs, the corresponding log file can be analyzed, allowing

users to observe the sequence of events graphically via the execution flow state diagram. Further,

the similarity matrix facilitates the identification of similar logs from previous runs, aiding in the

discovery of similar faults. As a result, these diagrams provide valuable insights for initial quality

control, effectively localizing faults and supporting the diagnostic process.

Input to the tool: Folder containing log files.

Output of the tool: Sequence diagrams and heatmaps at file and folder level.

Version: 0.2.0

Source or Binary Link:

https://github.com/SmartDeltaFraunhoferFOKUS/Architecture_Visualization_Tool

Instruction manual or tutorial for the tool:
https://github.com/SmartDeltaFraunhoferFOKUS/Architecture_Visualization_Tool/wiki

Additional information:

Contact person: abhishek.shrestha@fokus.fraunhofer.de

4.4. EPS Cybersecurity Anomaly Detector (Glasshouse Systems and Ontario

Tech University)

The Internet is a cyber world consisting of more data than humanly imaginable. Every time someone

accesses the Internet from one of their devices, they create a detailed trail of events from the

moment they begin until the moment they stop. These events are essential to understand what is

happening in a network. Keeping track of millions of events is not a process that can be done

https://github.com/SmartDeltaFraunhoferFOKUS/Architecture_Visualization_Tool
https://github.com/SmartDeltaFraunhoferFOKUS/Architecture_Visualization_Tool/wiki

Deliverable 5.5

 © 2025 SmartDelta Consortium Page 30 of 30

manually but instead requires the help of software known as Security Information and Event

Management (SIEM) solutions. SIEM solutions have been a game changer in the past two decades.

However, as the amount of data being generated daily grows exponentially, the current

configuration of SIEM solutions falls behind in capability. A growing trend in software solutions is

the use of artificial intelligence, specifically machine learning to help make processes more efficient.

This trend is starting to be adopted in the cybersecurity space but still requires more innovation.

This tool utilises querying and data processing techniques that feed into an unsupervised model

and can help an analyst quickly detect anomalies that other measures would have otherwise

missed.

Input to the tool: EPS information

Output of the tool: Anomalies, visualization on detected anomalies, resource usage visualization

Version: V1.0

Type: Closed

Additional information:

Contact person: jgardiner@ghsystems.com, agil@ghsystems.com

4.5. DRACONIS (Mälardalen University and Alstom)

DRACONIS acts as a static analysis framework for block-based development models used in the

context of quality assurance. The primary use of the tool is to check the quality and extract

metrics from 61131-3 Function Block Diagrams. DRACONIS can also compute a semantic and

graphical delta report between multiple versions of models. DRACONIS comes prepackage with

both a command-line interface and a web application, allowing different stakeholders to analyse,

review and generate reports for models. It supports external metrics-based tools through offline

analysis and upload to the web application.

Input to the tool: Function-block Diagrams in POU format

Output of the tool: Reports – text and Excel

Webpage & Instruction manual for the tool: https://github.com/jean-malm-mdh/draconis

Version: 0.4

Contact Person: Jean Malm (jean.malm@mdu.se)

5. Conclusion

SmartDelta Visualization Dashboard represents a crucial milestone in the project, delivering a

powerful and flexible platform for analyzing and optimizing software quality. Through its centralized

Vaadin-based dashboard, stakeholders can access a unified interface that presents diverse metrics

and visualizations from different use cases within the SmartDelta ecosystem. By leveraging the

Vaadin charts library, the dashboard enables the seamless integration and visualization of various

data sources, facilitating a comprehensive understanding of software evolution and quality

characteristics.

Moreover, this deliverable reports on the individually developed dashboards contributed by

partners, each tailored to specific analytical requirements. These partner-contributed visualizations,

ranging from code quality dashboards to resource utilization analysis and anomaly detection,

demonstrate the versatility and extensibility of the SmartDelta Visualization Dashboard. Presented

with these specialized dashboards, stakeholders gain access to a rich software analytics

environment that fosters collaboration, data-driven decision-making, and continuous improvement

efforts.

mailto:jgardiner@ghsystems.com
mailto:agil@ghsystems.com
https://github.com/jean-malm-mdh/draconis
mailto:jean.malm@mdu.se

	Executive Summary
	1. SmartDelta Dashboard Overview
	1.1. Introduction
	1.2. Vaadin Dashboard Component
	1.3. Technical Architecture and Data Access
	1.4. Adding Visualizations and Repository Collaboration
	1.5. Licensing and Deployment Flexibility

	2. Visualizations of SmartDelta Dashboard
	2.1. Software AG
	2.2. Vaadin
	2.3. cc.com & UIBK
	2.4. Izertis

	3. Individual Visualizations of SmartDelta Project
	3.1. Alstom
	3.2. Akkodis
	3.3. eCamion
	3.4. NetRD
	3.5. Kuveyt Türk
	3.6. GlassHouse
	3.7. Team Eagle
	3.8. Arçelik

	4. Tools
	4.1. Detangle (Cape of Good Code)
	4.2. SoHist (University of Innsbruck, c.c.com)
	4.3. Architecture Analysis and Visualization Tool (Fraunhofer)
	4.4. EPS Cybersecurity Anomaly Detector (Glasshouse Systems and Ontario Tech University)
	4.5. DRACONIS (Mälardalen University and Alstom)

	5. Conclusion

