

SmartDelta

Automated Quality Assurance and Optimization in Incremental

Industrial Software Systems Development

D1.6 - SmartDelta in Industrial Environments - Use Case

Report

Submission date of deliverable: Feb 28, 2025

Edited by: Nicolas Bonnotte (Akkodis, Germany), Andreas Dreschinski (Akkodis, Germany), Martin

Heß (Software AG, Germany), Robin Gröpler (ifak, Germany), Abhishek Shrestha (Fraunhofer

FOKUS, Germany), Benedikt Dornauer (University of Innsbruck, Austria), Johannes Weinzerl

(c.c.com, Austria), Mircea-Cristian Racasan (c.c.com, Austria), Mehrdad Saadatmand (RISE,

Sweden), Muhammad Abbas (RISE, Sweden), Jean Malm (Mälardalen University, Sweden),

Zulqarnain Haider (Alstom, Sweden), Muhammad Nouman Zafar (Mälardalen University, Sweden),

Hakan Kilinc (NetRD, Turkey), Volkan Karsan (Kuveyt Türk, Turkey), Selahattin Furkan Karahan

(Kuveyt Türk, Turkey), Merve Can Kuş (Kuveyt Türk, Turkey), Andrea Pabón-Guerrero (Universidad

Carlos III de Madrid, Spain), Can Balcı (NetRD, Turkey), Yuriy Yevstihnyeyev (Vaadin, Finland),

Ömercan Devran (Arcelik, Turkey), Baykal Mehmet Ucar (Arcelik, Turkey), Youhan Monsoon Fu (eCAMION,

Canada), Emanuel Remneantu (TWT GmbH, Germany), Md Asif Khan (Ontario Tech University, Canada), Hyon

Lee (Ontario Tech University, Canada)

Project start date

Project duration

Project coordinator

Project number & call

Project website

Contributing partners

Dec 1, 2021

36 months

Dr. Mehrdad Saadatmand, RISE Research Institutes of Sweden

20023 - ITEA 3 Call 7

https://itea4.org/project/smartdelta.html & https://smartdelta.org/

WP1 Partners

Version number V1.0

https://itea4.org/project/smartdelta.html
https://smartdelta.org/

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 2 of 165

Work package

Work package leader

Dissemination level

WP1

Nicolas Bonnotte (Akkodis)

Public

Description

This deliverable reports the final evaluation results of WP1 on the application of

the SmartDelta methodology and tools to the use cases.

Executive Summary

SmartDelta engages in collaborative research with a diverse range of industrial partners,

encompassing sectors such as railway, e-mobility, telecommunications, finance and banking,

enterprise software, logistics, personal mobility, and cybersecurity. The objective of WP1 is to integrate

the disparate use cases into a unified approach that aligns their definition, development, and

evaluation with the overarching objectives of SmartDelta.

In the initial phase of WP1, the specifications of the use cases were established, including the

evaluation criteria, requirements, and the current state of existing systems (Year 1). Subsequently, a

preliminary series of experiments is conducted via WP 2, 3, and 4, resulting in an intermediate

evaluation and set of recommendations (Year 2). In the final year of the project, the present evaluation

is performed.

This report presents the final evaluation of the tools developed and applied within the SmartDelta use

cases, as well as their integration into the SmartDelta methodology. The objective was to provide both

qualitative and quantitative feedback, evaluated against the project's key performance indicators

(KPIs).

Each of the 11 use cases provides a comprehensive evaluation and recommendations for the

implementation of SmartDelta in industry. This offers a detailed overview of the project's achievements

and benefits across the various industrial domains involved.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 3 of 165

Table of Contents

Executive Summary ... 2

Document Glossary ... 6

1. Introduction .. 7

2. Evaluation Objectives .. 9

a. SmartDelta Methodology ... 9

b. Requirements, metrics and KPIs... 9

3. Use-Case 1 from Alstom ... 10

a. Use-Case Description ... 10

b. Link to SmartDelta Methodology ... 13

c. Tools descriptions ... 14

d. Visualization .. 16

e. Use-Case evaluation Setup .. 20

f. Evaluation results ... 23

g. Recommendation for industry adoption .. 26

4. Use-Case 2 from Akkodis ... 27

a. Use-Case Description ... 27

b. Link to SmartDelta Methodology ... 32

c. Tools descriptions ... 34

d. Visualization .. 38

e. Evaluation setup .. 42

f. Evaluation results ... 43

g. Recommendation for industry adoption .. 49

5. Use-Case 3 from eCAMION .. 54

a. Use-Case Description ... 54

b. Link to SmartDelta Methodology ... 55

c. Tools descriptions ... 55

d. Visualization .. 56

e. Evaluation Setup ... 58

f. Evaluation results ... 59

g. Recommendation for industry adoption .. 60

6. Use-Case 4 from NetRD ... 60

a. Use-Case Description ... 60

b. Link to SmartDelta Methodology ... 62

c. Tools Descriptions ... 62

d. Visualization .. 63

e. Evaluation Setup ... 66

f. Evaluation results and Recommendation for industry adoption ... 67

7. Use-Case 5 from Kuveyt Türk ... 70

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 4 of 165

a. Use-Case Description ... 70

b. Link to SmartDelta Methodology ... 75

c. Tool Description .. 76

d. Visualization .. 77

e. Evaluation Setup ... 82

f. Evaluation results ... 83

g. Recommendation for industry adoption .. 84

8. Use-Case 6 from Software AG .. 84

a. Use-Case Description ... 84

b. Link to SmartDelta Methodology ... 86

c. Tools descriptions ... 88

d. Visualization .. 90

e. Evaluation Setup ... 91

f. Evaluation results ... 93

g. Recommendation for industry adoption .. 101

9. Use-Case 7 from c.c.com .. 101

a. Use-Case Description ... 101

b. Link to SmartDelta Methodology ... 103

c. Tools descriptions ... 104

d. Visualization .. 106

e. Evaluation Setup ... 107

f. Evaluation results ... 108

g. Recommendation for industry adoption .. 110

10. Use-Case 8 from Glasshouse ... 110

a. Use-Case Description ... 110

b. Link to SmartDelta Methodology ... 112

c. Tools descriptions ... 114

d. Visualization .. 115

e. Evaluation setup .. 115

f. Evaluation results ... 116

g. Recommendation for industry adoption .. 117

11. Use-Case 9 from Izertis .. 118

a. Use-Case Description ... 118

b. Link to SmartDelta Methodology ... 119

c. Tools descriptions ... 121

d. Visualization .. 122

e. Evaluation Setup ... 124

f. Evaluation results ... 125

g. Recommendation for industry adoption .. 126

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 5 of 165

12. Use-Case 10 from Vaadin ... 126

a. Use-Case Description ... 126

b. Link to SmartDelta Methodology ... 127

c. Tools Descriptions ... 129

d. Visualization .. 135

13. Evaluation Setup ... 137

14. Evaluation Results .. 141

a. Recommendation for industry adoption .. 153

15. Use-Case 11 from Arcelik ... 154

a. Use-Case Description ... 154

b. Link to SmartDelta Methodology ... 154

c. Tools description ... 155

d. Visualization .. 156

e. Evaluation Setup ... 159

f. Evaluation results ... 160

g. Recommendation for industry adoption .. 161

16. Industrial Use-Cases and Project KPIs results ... 161

17. Implications for Industry .. 164

18. References .. 165

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 6 of 165

Document Glossary

Acronym Definition

AST Abstract Syntax Tree

AI/ML Artificial Intelligence/ Machine Learning

CI/CD Continuous Integration / Continuous Delivery

CIT Combinatorial Interaction Testing

CPaaS Communications Platform as a Service

DataOps Data Operations

DevOps Development (Dev) and Operations (Ops)

ECU Electronic Control Unit

EFP Extra-Functional Property

FinTech Financial Technology

FM Feature Modelling

FR Functional Requirement

FODA Feature-Oriented Domain Analysis

IoT Internet of Things

IPR Intellectual property rights

MBT Model-Based Testing

MLOps Machine Learning Operations

NFP Non-Functional Property

NFR Non-Functional Requirement

NLP Natural Language Processing

OEM Original Equipment Manufacturer

OVM Orthogonal Variability Modelling

PaaS Platform as a Service

PLE Product Line Engineering

QA Quality Assurance

QIP Quality Improvement Paradigm

RCS Rich Communication Services

RL Reinforcement Learning

SPLE Software Product Line Engineering

UC Use Case

UCaaS Unified Communication as a Service

V&V Verification and Validation

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 7 of 165

1. Introduction

The SmartDelta project encompasses 11 use cases (see table 1 below), which span various industry

domains. Each use case has been designed with the objective of deriving benefits from participation

for the use-case provider. To ensure that the SmartDelta solutions can provide effective support for the

selected industrial use cases, a requirements baseline has been established for each case, taking the

technology, processes involved and business requirements into account (pre-conditions). The

evaluation criteria and values have been set against the baseline values during WP1 and throughout

the project as a whole. These criteria are aligned with the KPIs of the SmartDelta project, thereby

ensuring that the evaluations are meaningful reflections of the project's performance.

The SmartDelta tools and methodology [1] have been developed with the objective of satisfying the

criteria and achieving them. The methodology development is conducted in conjunction with

continuous evaluation, a strategy that has been demonstrated to be an effective means of elaborating

the SmartDelta methodology in a step-by-step manner (see Figure 1 below), thereby ensuring its

suitability for industrial applications.

Figure 1: Step-by-step industrial evaluation setup and contribution to the Methodology

This document is organized into three main sections.

Section 2 outlines the evaluation framework and environment at the project level, with a particular

focus on the SmartDelta Methodology and the metrics employed for the evaluations.

Sections 3 to 13 are use-case specific, presenting the use-case definition, tools and methodology

integration, along with the evaluation results and recommendations for industrial domain adoption. An

exhaustive list and basic use-cases description is provided in the table 1 below.

The document concludes with an overview of the project KPIs and an examination of their implications

for the software industry in the sections 14 and 15.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 8 of 165

Table 1: SmartDelta use-cases

Use Case ID Country Partner Domain Topic

UC1 Sweden Alstom Railway Quality in agile
model-based
system and
product line
engineering

UC2 Germany Akkodis eMobility Charging
communication
controller
software for
electrical vehicle

UC3 Canada eCAMION eMobility High quality and
cybersecure
software in
deployable
energy hubs

UC4 Turkey NetRD Telecommunicati
on

AI based fault
and performance
analysis in cloud
communication
services

UC5 Turkey Kuveyt Türk Banking
and Finance

Continuous
improvement of
code quality,
security, and
performance in
core
banking software

UC6 Germany Software AG Enterprise Softwa
re

Continuous
security and
quality
improvement in
enterprise
software

UC7 Austria c.c.com

Logistics and
Personal
mobility

Continuous
quality monitoring
& improvement in
automated
traffic detection
software

UC8 Canada GlassHouse Cybersecurity Continuous
improvement of
cybersecurity
solutions

UC9 Spain Izertis Enterprise Softwa
re

Semantic
matchmaking

UC10 Finland Vaadin Software
development
platform

Continuous
quality, security,
and performance
improvement in
software
development
platform

UC11 Turkey Arcelik Home
Appliances

Measure
Software Product
and Process
Quality of
Enterprise
Solutions

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 9 of 165

2. Evaluation Objectives

a. SmartDelta Methodology

The SmartDelta approach entails the development of automated solutions for the assessment of

product deltas within a continuous engineering context. To facilitate comprehension of the

interconnections between specific processes and solutions, a software delta management

concept, designated as the SmartDelta Methodology, has been created (see figure 2 below). The

SmartDelta Methodology is presented in detail with examples in the SmartDelta D2.4 - SmartDelta

Methodology Users and Developers Guidelines i

Figure 2: SmartDelta Methodology diagram

The present document offers a comprehensive evaluation of the SmartDelta methodology in a

variety of use cases, with the objective of assessing the methodology's adaptability across

multiple industrial domains.

b. Requirements, metrics and KPIs

SmartDelta’s performance is measured through four main sets of KPIs (See Table 2 below) .

Table 2: SmartDelta main sets of KPIs

KPI ID Project KPI Family

1 Key Innovation related KPIs

2 Unique selling proposition KPIs

3 Progress on market access KPIs – exploitation and

deployment

4 Progress on market access KPIs - dissemination

The Use-Cases Evaluations presented in this report are related to the ID 1 (Key Innovation) and

ID 2 (Unique selling proposition) and can be found in the section 14.

The use-cases and the considered software are defined through functional and non-functional

requirements. At their definition, each requirement has been mapped with the project KPIs.

Therefore, each Use-Case performs an evaluation based on the requirements. The SmartDelta

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 10 of 165

performance is measured by considering all requirements contributing to the KPIs. One example

of this linkage is shown in the Figure 3.

Figure 3: Use-Case requirement and project KPIs

3. Use-Case 1 from Alstom

a. Use-Case Description

Alstom is evolving mobility worldwide and making it easier for people to connect with one another.

However, people choose to travel, they’ll find an Alstom product ready to transport them. Our vast

offering of public transit products (e.g., high speed trains) that’re smarter than ever.

Alstom answers the call for more efficient, sustainable, and enjoyable transportation everywhere.

Our vehicles, services and, most of all, our employees are what make us a global leader in

transportation. We partner with customers, local organizations, and all stakeholders to help build

communities and improve quality of life wherever we do business. Alstom is present in more than

70 countries, with 250 sites among them. Our 70,000 employees push mobility forward by creating

rail transportation products adapted for the travellers of today and tomorrow. In the fiscal year ended

2020/2021, we posted sales of 14 billion Euro with an order backlog of 74.5 billion Euro.

(1) One Use-Case Requirement

supports more than one

project KPI

(2) If a requirement is met, then

it contributes to the project

KPI’s success

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 11 of 165

Figure 4: Alstom employee global presence

Challenges and motivation:

The Alstom use case is related to four main challenges that are structured into four user stories as

follows.

Story A: Delta between product line features and customer needs

Figure 5: Customer requirements liked to produce features, past projects, or new features

Alstom in Västerås meet new customer requirements through modifying previous project solutions

or modifying standardized “product” hardware and software solutions known. Controller firmware

products provide an abstraction to support implementation of the train functions to fulfil the customer

requirements. Standardized control algorithm products are adapted to suite hardware products been

controlled. Both the hardware products and control algorithm products are usually modified to meet

new customer requirements. Customer requirements are analyzed by advance engineers for

correlation and differences with our standard product and past projects, sometimes within a very

short timeframe due to bid submission and development deadlines. Bidding process is between 1

month to 12 months. Requirement analysis within projects takes 1 to 3 months. This process

requires the system engineer to manually correlate all standard product features, past projects, and

the current customer requirements. This process is extremely di fficult, time consuming and error

prone. Therefore, this user story requires innovative solutions that could aid the bidding and reuse

process at Alstom.

Story B: Functional requirements quality and verifiability

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 12 of 165

 Figure 6: Customer requirements functionally verified manually

To ensure the customer requirements are verified, every customer requirement is broken down and

linked to the relevant new and existing features. The features relevant to software control are broken

down and linked to control requirements. All software requirements are linked to the relevant software

implementation within the control software. To ensure the implemented software satisfies each

requirement, at least one test is performed on the software, known as a functional test. The functional

tests enable the verifier to demonstrate the software behaves as specified in the requirements. All links

from the control requirements to the implemented software and functional tests must be traceable to

satisfy European railway standard EN50657 up to safety integrity level 2 (SIL2). The functional tests are

currently created and reviewed manually. Testers must review the requirements and create relevant test

cases which will sufficiently test the control software. This use story attracts innovative solutions to

enable semi-automated requirements quality evaluation and verification.

Story C: Code quality and Delta between manual and automatic test review, design review

and code review

When designing software control solutions with a block diagram approach, the designs should be

developed according to a specific set of rules and standards to ensure a higher reliability of the

code generated and readability of the design. One approach used in Alstom is to use a functional

block programming language using a design and coding standard enabling compliance to EN50128

or EN50657 up to safety integrity level 2 (SIL2). Depending on the designing tool used, the Alstom

design standard is a combination of Alstom-specific designing guidelines and either:

1. Phoenix Contact Multiprog development environment based on IEC-1131

2. MATHWORKS Simulink

A combination of automatic and manual design and code reviews are performed to ensure the

software artifacts have been developed against the Alstom software design and coding standar d.

Therefore, this user story will focus on bringing more automation to the code analysis and review

process.

Story D: Incorporating product line updates into existing applications.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 13 of 165

While the product line software evolves, the software artifacts evolve with each baseline and release

which the projects using the product line need to consider. The evolution of these software artifacts

between baselines could be either of the following:

− Clone – no changes to the software artifact.

− Change – changes performed on the software artifact.

− Removed – the software artifact is removed from the product.

− New – a software artifact is added to the product.

Within Alstom, the projects copy and own the product line at the start of their project. Once the

project has copied the product line, they need to consider how to handle the product line to meet

their project needs without affecting the product line. Within SmartDelta project, this user story aims

at supporting the experts merge the desired product line changes into their project without negatively

affecting the project application specific changes, that would be extremely beneficial

b. Link to SmartDelta Methodology

Alstom instantiates the overall SmartDelta methodology that spans across the in -house

development life cycle for the customer delivery projects. Within the Requirements Engineering, the

Alstom User Story A contributes to requirements extraction, allocation, similarity analysis, and

quality. For Incremental development, requirements-driven reuse identification aids in the reuse of

components to reduce the lead time of development and avoid redundant efforts. For Quality

Assurance, User Story C contributes automated code review and automated test case generation

from requirement models. Furthermore, User Story C also contributes quality assurance via

automated design rule checking on the implementation models. Finally, User Story D focuses on

the product dimension of the methodology by supporting product evolutions across product line

variants. All four user stories contribute to visualization by visualizing output results. The four user

stories are realised with various tools that are developed in SmartDelta project. Below, we briefly

summarize each of the tools in relation with the four user stories.

Figure 7: Mapping of the SmartDelta Methodology on the Alstom use-case (dotted lines shows mapping for

Alstom).

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 14 of 165

c. Tools descriptions

To address the existing tool limitations described in the User Stories, the following solutions were

proposed during the SmartDelta project. A description of each tool is included in the next section.

Figure 8: The SmartDelta Methodology for the Alstom use-case mapped to the V model

Key Tools and Their Roles in the Alstom Use-Case

REQ-I – a tool for customer needs identification for tender documents

ReqIdentifier (REQ-I) formulate the requirement identification problem as a binary text classification

problem. It uses various state-of-the-art classifiers based on traditional machine learning, deep

learning, and few-shot learning for requirements identification from large tender documents ., the

tool can process a text entry or a PDF document to extract text from it using Optical Character

Recognition (OCR). Once, all the textual entries of the tender documents are available, a BERT

language model-based classification pipeline is fine-tuned on the input text. In query mode, text or

a PDF file can be given as input to the tool, and it outputs a PDF file with highlighted requirements.

REQA – a tool for allocation of requirements to teams for implementation

Once requirements are identified, they need to be allocated to various development and testing

teams for implementation. The REQA tool combines traditional AI with deep learning to allocate

requirements and generate supplementary information to support engineers in well-informed

allocation. The REQA tool has two modules named Assigner and Augmenter:

The Assigner module uses large language models with statistical classification to recommend the

allocation of the requirements to various teams that are likely to accept the allocation,

The Augmenter module uses lexical similarity-based clustering to generate cased based

explanations to support the recommendations of Assigner and in turn, a well -informed allocation.

VARA+ – a tool for reuse identification

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 15 of 165

VARA is variability-aware requirements reuse analysis method which aims to automate product's

assets reuse analysis and thus helps teams achieve quick and quality delivery of software systems.

The tool uses state-of-the-art natural language processing and machine learning algorithms to

predict existing product's assets that can be reused to realize the new customer requirements. In

addition, VARA also compute various metrics (readability index, complexity and subjectivity etc.) on

the quality of requirements that help in writing better requirements.

VARA takes all existing requirements and their links to software components implementing them,

as input to fit/train a content-based recommender--- driven by clustering. In query mode (steps can

be followed with blue arrows), unseen customer requirements are used as input to recommend

reuse based on similarity with neighbouring existing requirements.

TIGER+ – a tool for test case generation and execution

TIGER uses the model-based testing concept to perform the concretization of abstract test cases

and the generation of test scripts. It consists of three parts:

Modelling and Abstract Test Case Generator: GW (Graph Walker) takes as an input the model

file in JSON/GraphML format and generates the abstract test cases by traversing through the model

elements (i.e. states and transitions) based on a generator algorithm (such as random, quick

random, Astar, etc.) and a stopping condition (such as edge coverage, vertex coverage, etc.).

Test Case Generator: The test case concretizer converts abstract test cases into concrete by

mapping the logical signal names with their technical counterparts and corresponding values.

Testers and developers use these logical names as initial names of the signals in the ear ly phases

of development. Later in the development, technical signal names became available that represent

the actual signal names used by the SUT for its normal operations. Hence, the test case concretizer

extracts the test data i.e. (variable names and their respective values) from the generated abstract

test cases (available in a JSON file), extracts the required information about technical signal names

from an XML file, and maps the logical signal names with technical signal names and their

corresponding values based on defined mapping rules.

Test Script Generator: Once the abstract test cases are converted into concrete test cases, the

test script generator generates the test script in C# language using the implementation details of

the SUT (i.e. script format, libraries, and methods to be executed on the target test execution

platform, SIL & HIL). The generated test script contains two types of steps for each test case, forcing

the input signals and verifying the expected output signals, to validate the expected behaviour of

the SUT.

DRACONIS – a framework for static analysis

DRACONIS is a static analysis framework. It is separated into three steps: Intermediate

representation generation, analysis and reporting.

The intermediate representation is generated either directly through model transformations from

the source models, or by converting the models to JSON, which is then parsed by the framework.

The analysis core supports analyses based on metrics or dataflow information. The tool supports

design requirement checking by instantiating requirements as analysis rules (commonly called

“checkers”) as a named combination of queries. Additional checks can be provided through

configuration files, where the checker behaviour is defined using a subset of python. This allows

multiple user configurations to be used, supporting for instance low-cost checks that may be run on

every change to more extensive configurations which are part of the final validation work. After the

analysis is performed, the tool stores the model instance and the analysis report in a database. In

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 16 of 165

cases where the model is then changed, a delta analysis is performed to recommend what analyses

will need to be re-run.

The framework additionally supports upload of analysis results performed offline through JSON

format, which will be added as additional metrics. Thus, some support for stand-alone tools such as

https://github.com/jean-malm-mdh/fbd-complexity-tool exists.

DRACONIS can produce result outputs both in pure text-based format as well as a structured report,

including a rendered image of the model. The web application provides functionality for reviewing

and annotating the reports as well as viewing some statistics.

The usage of DRACONIS allows the automated generation of reports based on some existing

design rules, which in turn accelerates starting the review process, and by automating the tedious

parts manual validation effort can then be focused on cases where a human is most needed.

Implementation Details

• Python-based analysis backend. Developed against Python 3.9

• Adapters: PLC adapter uses ANTLR4 parser framework, Simulink adapter generates into

JSON format.

• Django Web Application exposing report review interface and API functionality.

• Command Line Interface for batch uploading and generating textual reports.

The implementation of the tool can be found at https://github.com/jean-malm-mdh/draconis

d. Visualization

DRACONIS. Most of DRACONIS’ visualisation facilities are accessed through the web application.

Figure 9 shows the report view for a block model. Checks are first grouped by whether they pass or

fail, to ensure the user can quickly get an overview of the status. Users may then add review the

different reports by adding comments. Additionally, a graphical rendering of the model is shown to

the right of the reports, giving the developer contextual information such as comment blocks. In

Figure 10 we see the remaining information: Variable information, metrics, as well as dependency

chains of endpoint variables.

Figure 9: Top half of DRACONIS’ model report view. To the left is the report side, and a rendering of the model

can be seen to the right (continuing off-screen). The user may the buttons in the action column to leave comments

or classify reports.

https://github.com/jean-malm-mdh/fbd-complexity-tool
https://github.com/jean-malm-mdh/draconis

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 17 of 165

Figure 10: Bottom half of DRACONIS’ model report view displaying data in tabular form. The full set of variables is

sorted and printed. Core and additional metrics are displayed separately. The dependency analysis shows the

dependencies from function block network endpoints (internal feedback variables, and outputs) backwards.

Users may also download an excel report, which contains a summary of checker reports, their

feedback, the metrics and the rendering. This allows the analysis results to be disseminated in a

document-driven way-of-working process.

DRACONIS can also perform a diff analysis of two models. If differences are detected, a summary

of the differences is written out in plain text, and a visual comparison is highlighted by overlaying

the different model renderings, where a red colour marking the graphical differences detected.

Figure 11 and 12 show these two views for a small illustrative example.

Figure 11: Textual summary of a diff analysis between two variants of the same base model, where the newer

model has been rewritten to use the SAFE variant of unsigned int datatypes.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 18 of 165

Figure 12: The graphical differences highlighting the changed input port properties. The original variants are

presented alongside the diff to allow the user to investigate the change in the same view.

TIGER+. The TIGER framework uses visualizations that display the finite state machine model (from

Graphwalker as shown in Figure 13) and the generated test. It highlights the states, transitions, and

guard conditions derived from the system requirements, showing traceability from requirements to

test elements.

Figure 13. An example test model shown in Graphwalker within the TIGER framework.

Each model element (node or edge) is linked to the corresponding requirement so engineers can

track coverage and confirm that all essential behaviour is represented. The visualization also shows

the status of generation and optimization runs.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 19 of 165

Figure 14. A representation of an abstract test case and its actions.

(i)Dashboard Solution

DRACONIS. As it is primarily an analysis framework, DRACONIS’ internal dashboard is focused

on showing an overview of the ongoing review status and is built into the web application. This

allows stakeholders to get an overview of the code quality on a checker level and the review

effort. These views are shown in Figures 15. and 16 respectively.

Figure 15: A graph of the number of models that have passed and failed the specific checks respectively. Basic

interactivity for filtering the data based on labels exists.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 20 of 165

Figure 16: Graph showing the number of reports that have been attended to by a user. All reports will start with

the status unreviewed, and then get other statuses upon being interacted with.

Visualisation requirements

TIGER+.

In industrial practice, especially for safety-critical systems like the TCMS system, these

visualizations in TIGER+ ensure testers, developers, and validators understand which requirement

is tested and when it transitions in the model. This is particularly useful during audits or

certification steps, where visual confirmation of requirement coverage helps verify compliance with

standards such as EN 50128 or EN 50657.

e. Use-Case evaluation Setup

Each tool included in the Alstom use case was evaluated within SmartDelta. The tools are

evaluated against technical KPIs.

REQ-I.

We focused the evaluation on the effectiveness of the requirements identification process. To achieve

this, we considered five already annotated tender documents from Alstom. These five documents were

annotated by experts, and requirements among the documents were identified. In addition, to allow

replication, we also considered a public dataset.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 21 of 165

Figure 17: Considered data from REQ-I evaluation

As shown in Figure 17, in the industrial data, around 1680 requirements were identified by experts, while

the rest of the 1293 text chunks were considered to be additional supporting information. We use five-

fold validation to avoid model overfitting and enable generalizability of the results. On average 2378

textual chunk were considered across the five folds for training various classifiers for requirements

identification.

Considered classifiers included traditional classifiers, deep language models, and few-shot classifiers.

For traditional classifier, we feed term-frequency inverse document frequency (TF-IDF) based vectors

to the classifiers Support Vector Machines (SVM), Logistic Regression (LR), Decision Tree (DT),

Random Forest (RF), and Naïve Bayes (NB). For a fair comparison and tuning, we applied random multi-

search optimization to select the optimal hyperparameters. SVM and LR achieved better results on

evaluation metrics when trained with normalized and reduced TF-IDF vectors using PCA. However, the

rest of the ML pipelines---RF, DT, and NB---performed better with normalized TF-IDF vectors without

PCA-based dimensionality reduction. In addition, we also consider a baseline random pipeline (W.

Rand.) that classifies input as a requirement or not based on their frequency distribution in the dataset.

For deep language model-based classifiers, we considered the seminal GLoVE and FastText based

embedding for the LSTM classifier. We considered the REQ-I approach based on BERT uncased model

and few other variants of the approach SciBERT, RoBERTa, XLMRoBERTa (XRBERT), DistilBERT

(DisBERT), and XLNet.

Finally, for few-shot classifiers, we considered MiniLM and S-BERT-based classifiers with only 10% and

20% of the data to evaluate their performance of “few” shot classification.

As typical in the NLP domain, pre-processing of the input text might impact classification performance.

Therefore, we also consider the datasets both with (pipeline with names starting with “p”) and without

pre-processing.

We use the standard evaluation metrics for text classification, as follows:

- Accuracy (A) is the ratio of the number of correct predictions and the total predictions.

- Precision (Prec. Or P) is the ratio of correct positive predictions and the total number of positive

predictions.

- Recall (Rec. Or R) quantifies the number of correct positive predictions from all possible positive

predictions.

- F1 score (F1) is the harmonic mean of precision and recall.

We report the macro and weighted average across the fold for all our evaluation metrics.

REQA.

The REQA tool for requirements allocation to teams was evaluated on 1680 requirements that were

already allocated to various teams at Alstom. As shown in Figure 18, the requirements were allocated

to 15 different teams at the company responsible for developing various sub-systems. We use five-fold

validation to avoid model overfitting and enable generalizability of the results. On average 1344

requirements were considered across the five folds for training various classifiers for requirements

allocation.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 22 of 165

Figure 18: Considered data for REQA evaluation

Considered classifiers for comparison included traditional classifiers and classifiers based on deep

language models. For traditional classifiers, we feed term-frequency inverse document frequency (TF-

IDF) based vectors to the classifiers like the setup for REQ-I but instead of Naïve Bayes we use the

multi-class version (MNB). In addition, we also consider a baseline random pipeline (W. Rand.) that

classifies input as a requirement or not based on their frequency distribution in the dataset.

For deep language model-based classifiers, we considered the seminal FastText based embedding for

the LSTM classifier. We considered the REQA approach based on SciBERT model and few other

variants of the approach BERT base, and RoBERTA.

We use the same evaluation metrics as of REQ-I.

VARA

Figure 19: VARA evaluation procedure

Old Evaluation: As shown in Figure 19, the evaluation process considered a requirements repository

originating from two projects and containing 188 high-level requirements linked to software components

implementing them. The data was randomly split to consider 75% of the requirements for training.

Clustering-based Content-based recommenders are then trained on the training set and evaluated on

the test set. The considered recommendation pipelines consider a random, the VARA approach (TF-

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 23 of 165

IDF), Doc2Vec trained (D2VT), Doc2Vec pre-trained (D2VW300), FastText trained (FTT), and FastText

pre-trained (FTW300).

New Evaluation: After the old evaluation, resulting in around 78% average accuracy for the VARA

approach, the tool is also exploited at another department at Alstom. In this case, the tool was used for

in-project reuse identification. The evaluation considers two projects with varying numbers of

requirements among which 80% of requirements were used for training and 20% for testing and

validation.

We used the standard metric accuracy (A) and exact match ratio (E) for the evaluation of our pipelines.

A recommendation is correct if the recommendations generated by the pipeline contains the ground

truth. In our case, accuracy is calculated as the ratio between the total number of correct

recommendations and total instances in the test set. In addition, we use a stricter evaluation metric (i.e.,

exact match percentage). This is calculated using the ratio between the number of exactly correct

recommendations (where the ground truth is ranked on the top of the list of recommendations) and the

total number of instances in the test set.

DRACONIS. For evaluating the speedup of the review process, the tool was applied on a set of

real function block diagrams provided by Alstom, with the full analysis and upload time sampled 5

times per model. This was evaluated against the current way-of-working, where a developer would

produce the same information from the development tool.

TIGER+. The evaluation framework for TIGER+ follows a model-based testing process integrated

with the GraphWalker tool for test case generation and execution. The process starts with defining

system requirements. These requirements are translated into a model representing the system

under test. Abstract test cases are generated from the model and optimized by TIGER+ to remove

redundancies while preserving fault detection effectiveness. The requirements for the evaluation

setup are as follows: generate MC/DC-adequate test suites while ensuring efficient coverage of

system requirements, achieve high requirement coverage with a minimized number of test cases,

and maintain or improve the fault detection rate after test suite optimization.

f. Evaluation results

REQ-I. Results from the evaluation on the Alstom use-case show that the tool could identify requirements

in large documents with an average F1 score of 0.82%. Our results also confirm that few-shot classifiers
can achieve comparable results with an average F1 score of 0.76 on significantly lower samples, i.e.,
only 20% of the data.

REQA. Results from the evaluation show that REQA can allocate the requirements to different

teams with a 76% F1 score when considering requirements allocation to the most frequent teams.

Information augmentation provides potentially useful indications in 76% of the cases.

VARA. Evaluation of VARA+ shows that the tool can recommend reuse with an average accuracy

of around 82% and can reduce the lead time of the propulsion software system. In addition, the

qualitative evaluation also shows that the recommendations produced by the tool are valuable and

insightful.

TIGER+. TIGER+ improved test execution efficiency in the Alstom use case by reducing the size of

the model-based test suite while maintaining high fault detection effectiveness. TIGER+ identified

and removed redundant test cases, reducing the test suite size by approximately 85% to 92%. The

optimized test suites maintained a fault detection rate of 95% to 100%, comparable to manually

created test suites, while lowering execution costs.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 24 of 165

DRACONIS. With respect to the review process speedup, the evaluation was performed on a dataset

of 51 function block diagrams of varying complexity, with a total number of over 1100 function blocks.

Using the command line interface, the entire analysis and upload to the web app process took 17.89s

(sampled over 5 uploads) with a single user action. Once uploaded, generating an excel report out of

the results and rendered model can be done in four clicks, from the starting point of the application.

In comparison, for the manual process we observed generation times of between 5 and 10 minutes per

model, depending on the complexity and size of the model. This included performing the same reviews,

computing/finding the metrics and dependency information and putting the information into a report form.

Table 3: KPIs overview table

Requirem

ents
Tool

Solutio

n

partner

KPI Definition

KPI

Base

Values

KPI Target

Values

KPI

achieved

Values

UC1.FR1 TIGER+ MDU

The success is to reduce the cost

of translating input requirements

into architecture/Design and

functional tests. In Alstom today,

majority of this process is manual.

This solution shall conform to

safety standards

EN50657&EN50128 if a human is

not kept in the loop.

100% 40% 70%

UC1.FR2 TIGER+ MDU

The success is to reduce the cost

of verifying a software package

through a smart verification

tool/processes ensuring

redundant testing is removed.

Today, a full set of tests are

performed on the software

package, no matter the number or

types of changes. This solution

shall conform to safety standards

EN50657&EN50128 if a human is

not kept in the loop.

100% 80% 72%

UC1.FR3 DRACONIS MDU

The success is to reduce the cost

of identifying the similarities and

differences between two software

packages. The software packages

are usually very similar. Key

metrics on the types of differences

between software packages is

very important. The current

process today is to manually

review the changes between two

software packages and record if

the changes affects interfaces,

functionality, documentation or

testing. This solution shall

conform to safety standards

EN50657&EN50128 if a human is

not kept in the loop.

functional

ity

identical

models

10

minutes

per

model.

 identical

models &

code

takes 1

minute

per

package

functionality

identical

models 20

seconds

per model.

 identical

models &

code takes

1 minute

per

package

functionalit

y identical

models

less than 5

seconds

per model.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 25 of 165

UC1.FR4

VARA+

REQA

REQI

RISE

The success is to reduce the cost

of identifying the similarities and

differences between two

requirement sets. Key metrics on

the types of differences between

two sets of requirements is very

important. Today, a manual

review of the two requirement sets

is performed. This solution shall

conform to safety standards

EN50657&EN50128 if a human is

not kept in the loop.

100% 20% 20%

UC1.FR5 DRACONIS MDU

The success is to reduce the cost

of identifying the gaps in the

conformance and compliance

when verifying software packages.

Key metrics on the types of gaps

is very beneficial. Today, a

manual review of the activities

performed vs the activities

requested is performed

highlighting the gaps in different

tools, e.g. excel. This solution

shall conform to safety standards

EN50657&EN50128 if a human is

not kept in the loop.

20

seconds

to 20

hours

dependin

g on

task.

a minute to

clearly see

which

compliance

gap exists

in the

code/model

s.

less than 1

second

UC1.FR6 DRACONIS MDU

The success is to process

software packages which can

generate around 1 million lines of

code.

N/A,

waiting

for tool.

1 million

lines of

code and/or

300 models

300+

models

UC1.FR7 All All

The success is to reduce the time

(hence cost) a defect is

discovered in the whole software

design process. Defects can be

created through all development

steps from requirement mistakes

to coding errors. Alstom detects

different defects are different

stages of the development

process, but generally in the

design review or testing steps.

This solution shall conform to

safety standards

EN50657&EN50128 if a human is

not kept in the loop.

100% 50% 33%

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 26 of 165

C1.FR1: The KPI measures the reduction of the cost associated with the input requirements

translation to architecture models and functional tests. We have measured 30% reduction of cost,

which was mainly contributed by the functional tests generation from requirements. However, the

former step of translating requirements to architectural models has not been fully achieved, which

potentially could contribute to further cost reduction to achieve the targeted 60% reduction. The

measurement is carried out by selecting a set of requirements which has been manually translated into

models and functional tests by experienced engineers in contrast with the activities/steps carried out

by the tool to generate the functional tests.

UC1.FR2: The KPI measures the reduction of the cost associated with the verification of software

package. We have achieved 28% reduction in cost thanks to TIGER+ tool. Similar to the UC1.FR1, the

measurement is carried out by selecting a set of requirements, for which the experienced testers

performed the test case design, implementing test case scripts and executing the test cases to verify

the software package. The cost (measured in terms of time) is compared with to the time taken by the

TIGER+ tool to verify and generate test reports for the same data set.

UC1.FR3: The KPI measures the reduction of cost associated with identifying the similarities between

two software packages mainly to identify the differences between two models. This delta identification

is essential to enable the reuse of software with ease in the projects. Moreover, this supports the

identification of the change impact for example in iterative development a clear visualisation of the

delta (such as interfaces, functionality etc.) between two versions of same models results efficient

planning of change impact. We have measured that this delta is highlighted and can be followed with

DRACONIS tool in less than 5 seconds for the diverse models of complexity.

UC1.FR4: The KPI measures the reduction of cost associated with identifying the similarities between

two requirements set. For measurement, we have selected a set of requirements which has been

estimated by experience manager for identification of similar requirements in the existing project base.

The VARA+ tool chain is applied on the same set of requirements which provides the results in few

mins. However, these results need to be manually reviewed (human in the loop) by experience

manager for conformance. Considering both the review time and execution time of VARA+, we have

achieved 80% cost reduction in contrast with the manual approach.

UC1.FR5: The KPI measures the reduction of cost associated with identification of compliance gaps in

the software package mainly related to code review. For measurement, we have selected a sample of

ten models (of diverse complexity) which are manually reviewed by the experienced verifier and

recorded the cost associated to this activity. The same models are then fed to the DRACONIS tool,

where we have measured that the results can be visualised in less than 1 second for each model.

UC1.FR6: The KPI measures the scalability of the solution. We have measured that the DRACONIS

tool can practically process and generate the code review results for 300+ models with a single input.

UC1.FR7: The KPI measures the overall cost reduction in identifying the defects spanning across

different phases of the software development. To measure this, we have considered the other KPIs

which are addressing the reduction in three stages of the over development cycle i.e., requirements

engineering, implementation and verification respectively. The reduction measured on each of these

stages is then summed – we have measured an overall reduction of 67%.

g. Recommendation for industry adoption

Even for experienced engineers, it is difficult and time-consuming to manually identify the specific

product feature or previous products which complies with new customer requirements, since each

standard product has over a hundred features and Alstom has over a thousand solutions within

our past projects linked to 100 to 10000 requirements in each project (as highlighted in Story A

and D). Tools like REQA, REQ-I and VARA, can analyse and bridge the gap between existing

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 27 of 165

product line features and customer needs. The evaluation results show that these tools can

provide, in many cases, a good requirements identification and mapping that can aid the

engineers in their work.

When a project starts and it takes a product or similar project solutions as a base for

development, they also inherit all the associated test cases and verification results. Since each

project or product iteration has a unique set of customer requirements , the links from customer

requirements to implementation need to be created and verification activities need to be

performed again (as highlighted in Story B). Currently, these tests are created and reviewed

manually. Tools like TIGER+ can support with the test-case generation and execution and the

evaluation results show that the tool can speed-up the testing activities by reducing the number of

tests while maintaining a high fault detection rate. To be adopted in the industry, the evaluation

suggests that organizations should ensure that the requirements are well-structured and

traceable, as the effectiveness of TIGER+ relies heavily on the quality of input requirements and

models. Investing in training for engineering teams to create accurate models and properly uti lize

the Gherkin-like DSL will improve the use of TIGER+. It is recommended that companies validate

the generated FSM models for syntactic and semantic correctness to prevent the propagation of

modeling errors. Regular reviews of requirement traceability and coverage metrics through the

TIGER+ visualizations will help monitor test suite effectiveness. While adopting TIGER+,

companies should avoid relying solely on automated test suite optimization without proper manual

review. Although TIGER+ significantly reduces test suite size, some context-specific test cases

may be necessary to cover edge cases.

The control software is developed according to a specific set of rules and standards to ensure a

high readability of the design and reliability of the generated code. To check that the block

diagrams used to produce the software are developed according to the coding standard, a set of

design and code reviews are performed (as highlighted in Story C). While many of these check

require manual review, tools like DRACONIS have supported the automatic checking through

static analysis of different design requirements.

Overall, the constellation of tools included in the SmartDelta methodology effectively addresses

the company’s needs as outlined in the use case. However, further evaluation is required before

their industrial adoption.

4. Use-Case 2 from Akkodis

a. Use-Case Description

Challenges and Motivation

Starting Point: The Challenges of Developing the EvaCharge Product

The EvaCharge product operates in a highly competitive and fast-paced environment, specifically

within the rapidly evolving market for electric vehicle (EV) charging. EvaCharge is an ISO 15118 -

compliant controller designed for both electric vehicles and charging stations (see figure). Its

development faces unique challenges driven by the complexity and dynamism of the EV charging

ecosystem. Since its launch in 2014, EvaCharge has established a strong foothold in the market,

with over 170 customers and more than 35,000 installations across 35 countries on 5 continents.

This extensive adoption underscores the product's versatility and reliability in various charging

scenarios, from individual users to large-scale commercial applications (see figure 20)

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 28 of 165

 Figure 20: EvaCharge worldwide footprint

The Evolving Market of Electric Vehicle Charging

The EV charging market is still relatively young, but it is growing and transforming at an

extraordinary pace. This evolution is fuelled by advancements in technology and the increasing

adoption of electric vehicles across various sectors, including passenger cars, buses, trucks, and

even specialized vehicles like agricultural machinery. Several key trends are shaping the market:

1. Higher Power Rates:

 The industry is moving towards ultra-fast charging solutions capable of delivering higher

power rates. This is critical to reducing charging times and enhancing the overall user

experience, particularly for long-distance travellers and commercial fleet operators.

2. Simplified Authentication and Billing:

 Modern EV charging systems prioritize seamless user experiences, offering easy

authentication methods such as Plug & Charge (enabled by ISO 15118) and streamlined

billing processes. These innovations make charging as convenient as traditional refuelling.

3. Dynamic Scheduling and Pricing:

 Smart charging infrastructure enables dynamic scheduling and pricing models. This not

only maximizes resource utilization but also provides users with flexible options tailored to

their specific needs and energy availability.

4. Convenience and Flexibility:

 The market demands charging solutions that are convenient and adaptable to various

user scenarios. Whether it’s home charging, public fast-charging stations, or depot

charging for commercial fleets, the infrastructure must accommodate diverse needs.

5. Smarter Charging Planning:

 Advanced algorithms and AI are increasingly employed to optimize charging schedules.

This ensures vehicles are charged efficiently while minimizing stress on the electrical grid

and leveraging periods of low electricity costs.

6. Grid-Friendly Charging:

 As the adoption of EVs increases, their collective impact on the grid becomes significant.

Charging solutions are now designed to support grid stability through load balancing,

vehicle-to-grid (V2G) technologies, and integration with renewable energy sources.

7. Diverse Use Cases:

 The market is expanding beyond passenger vehicles. Solutions are being developed for

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 29 of 165

specialized applications, such as pantograph charging for buses and trucks, wireless

charging for convenience, and even solar-integrated systems for off-grid scenarios.

8. High Connectivity and Service Integration:

 Modern charging solutions emphasize connectivity, allowing integration with a wide range

of services. These include navigation systems, fleet management software, energy

management systems, and even smart home devices. This connectivity supports smarter,

more autonomous charging behaviour.

Figure 21: EvaCharge ecosystem

The figure 21 illustrates the evolving ecosystem of the EvaCharge product, highlighting new use

cases and the integration of additional components and standards. As the ISO 15118 standard

evolves beyond its initial implementation, new features like Vehicle-to-Grid (V2G) routing,

advanced charging protocols, and enhanced communication methods such as OppCharge and

VDV261 are introduced. These developments build on older standards like DIN 70121, increasing

the overall system complexity.

Key elements shown include:

• EvaCharge EV (onboard vehicle controller) and EvaCharge EVSE (charging station

controller), both supporting powerline and wireless communication.

• Compatibility with multiple communication layers, including CAN and Ethernet, for

seamless interaction between vehicles, chargers, and the grid.

• Integration with OCPP (Open Charge Point Protocol) for global connectivity and remote

management.

• Advanced use cases like pantograph charging for buses, underlining the system’s

versatility across different vehicle types and applications.

This interconnected setup demonstrates the growing sophistication of EV charging infrastructure,

aiming to provide smarter, more efficient, and grid-friendly charging solutions.

However, the challenges EvaCharge faces are not confined to the EV charging domain alone.

Broader difficulties stem from the general software development field, which is currently grappling

with a well-documented shortage of skilled software developers. This industry-wide constraint

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 30 of 165

exacerbates the task of developing high-quality, feature-rich software under tight deadlines.

Combined with the ever-increasing demand for faster development cycles and more sophisticated

product capabilities, these factors place significant pressure on development teams to do more

with less.

This dynamic environment presents several significant challenges:

1. Limited Software Development Resources:

 A critical constraint in our context is the shortage of skilled software developers. Given

the high demand for rapid product innovation, this limitation hampers our ability to scale

efficiently and meet market expectations.

2. Accelerated Development Timelines:

 To remain competitive in this disruptive market, new features and product variants must

be developed and released at an increasingly rapid pace. Traditional development

methods struggle to meet these demanding timelines.

3. High Variability Across Product Lines:

 The EvaCharge product portfolio includes numerous variants to cater to diverse customer

segments and comply with different regulatory environments. Managing this level of

complexity within constrained timeframes adds significant pressure to our development

processes.

4. Necessity for Agile Development Practices:

 In such a dynamic market, agility is essential. We must quickly adapt to changing

requirements and market conditions. However, our existing practices do not fully exploit

the potential of agile methodologies to streamline development.

Motivation: The Need for an Advanced Development Framework

These challenges underscore the need for innovative tools and methodologies that can optimize

resource utilization, accelerate development cycles, and manage product variability effectively.

Addressing these goals is critical to maintaining our competitiveness and ensuring efficient scaling

of our development efforts.

Goals: Applying Advanced Tools in a Real-World Use Case

To tackle these challenges, we are working with research partners who are developing advanced

tools based on a corpus-based development approach with AI support. Our role is to provide a

real-world use case that involves defining specific requirements, supplying relevant data, and

engaging in productive discussions to ensure the tools are tailored to address our needs. The

core principles of corpus-based development include:

1. Comprehensive Storage of Software Artifacts:

 The approach emphasizes organizing and storing all development artifacts—such as

source code, requirements, specifications, and models—in a structured and accessible

format within Git repositories. This practice ensures that each artifact is readily avail able

for reference and reuse.

2. Avoidance of Binary Files:

 Binary files are avoided wherever possible, favoring text-based formats instead. This

enables efficient version control, making it easier to track, diff, and merge changes across

the development lifecycle.

3. Direct Integration of Requirements and Specifications:

 Requirements and specifications, often derived from external standards like ISO 15118,

are directly incorporated into the repositories alongside code. This integration enhances

traceability and enables a consistent view of the project’s scope and details.

The corpus used in our EvaCharge use case comprises:

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 31 of 165

• Requirements and Specifications sourced from the ISO 15118 standard, which governs

electric vehicle charging communication protocols.

• C++ Source Code implementing the core functionality of EvaCharge.

• UML State Machine Models that enable simulation and testing of complex system

behaviors.

Through this structured corpus, developers gain efficient access to information, enabling the AI

tools to deliver meaningful recommendations for reuse, code generation, and impact analysis.

Applying AI to Enhance Corpus-Based Development

The tools developed by our research partners target specific goals that address the challenges in

our use case:

1. Efficient Reuse of Existing Software Artifacts:

 The tools create a repository of reusable software artifacts. Using AI, they can identify

and recommend existing components, reducing redundant development efforts and

accelerating project timelines.

2. Automated Generation of Software Artifacts from Requirements:

 The tools leverage AI to transform high-level requirements into functional software

components, streamlining early development phases and helping ensure alignment

between requirements and implementation.

3. Streamlined Change Management:

 The tools support seamless planning and integration of changes by automatically

identifying affected components within the repositories, providing optimized strategies for

their modification.

4. Incorporation of Software Metrics in Decision-Making:

 The tools use metrics such as code complexity, test coverage, and maintainability to

guide changes in ways that maintain or improve system quality.

5. Visualization of Changes at the Model Level:

 Through visual representations, the tools enable stakeholders to grasp the scope and

implications of modifications quickly, which enhances communication within agile teams.

Conclusion

In this project, our role is to provide a comprehensive use case for testing and refining these

advanced tools. Through the application of corpus-based development and AI-powered

capabilities, we aim to evaluate the tools’ effectiveness in solving real -world challenges

associated with the EvaCharge product. This collaboration not only promises to improve our own

development practices but also contributes valuable insights that will advance the ongoing

development and refinement of these cutting-edge tools.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 32 of 165

b. Link to SmartDelta Methodology

The Akkodis use case and its associated developments exemplify the methodology outlined in the

SmartDelta framework, specifically within the context of incremental development, as illustrated in

the Figure 22:

Figure 12: Akkodis Use Case: Mapping to Methodology

Overview of the Incremental Development Approach

The incremental development approach implemented in the SmartDelta framework utilizes tools and

methodologies to enhance software development processes. This approach is designed to help

developers manage the increasing complexity of modern software systems, especially in dynamic and

rapidly evolving domains such as electric vehicle charging.

Initial Query and Artefact Retrieval

The process begins with a manually written query. This query—comprising a topic, keywords, or a full

sentence derived from a requirement or specification—serves as the starting point for retrieving

relevant software artefacts from the project corpus. These artefacts include:

• Requirements and Specifications

• Models (e.g., UML state machine models)

• Source Code

The SmartTrace tool acts as the retriever, searching the structured project corpus (e.g., Git

repositories) for artefacts that align with the query. SmartTrace returns artefacts deemed relevant to

the new requirement or feature under development.

Iterative Review and Refinement

Once retrieved, the artefacts are reviewed by developers to ensure their relevance to the current task.

If necessary, developers can refine their query to retrieve additional or more precise artefacts. This

iterative process ensures that a comprehensive and contextually relevant set of artefacts is gathered,

providing a solid foundation for the subsequent development stages.

Contextual Model Generation

After identifying and validating relevant artefacts, the identified models are utilized to provide critical

context for the model generation process conducted by Reform tool. This process supports the

creation of new artefacts or updates existing ones, ensuring alignment with project goals and

adherence to established requirements and specifications.

Tools and Workflow

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 33 of 165

The Figure 23 outlines the tools and workflow underpinning this incremental development

approach as part of the SmartDelta methodology.

Figure 22: Example Workflow and corresponding tools

Key Tools and Their Roles

SmartMetrics: Responsible for indexing artefacts into a central repository for efficient retrieval. This

includes embedding generation, labeling, and storing software metrics.

SmartTrace: Retrieves artefacts from the repository based on developer queries. SmartTrace ensures

the retrieval of specifications, models, and code essential for implementing new features or changes.

ReForm: Leverages retrieved models to generate or adapt artefacts. This tool ensures the

consistency of newly created or updated artefacts with overarching project goals and requirements.

With this step, the Retrieval-Augmented Generation (RAG) pipeline is completed.

GSR: Provides a comparison between two models by calculating deltas at the branch or module

(subgraph) level and measuring similarity. These features help developers analyze changes, assess

their impact, and plan subsequent code-level development.

Visualization: Supports developers with visualization and interaction capabilities. Its intuitive frontend

highlights deltas identified by TWT and displays software metrics to facilitate decisions based on

quality and architectural considerations.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 34 of 165

Conclusion

This integrated, tool-supported methodology enables a structured and efficient approach to

incremental development. By automating the retrieval and generation of artefacts and providing

robust tools for analysis and validation, the SmartDelta framework significantly improves

developer productivity and ensures high-quality outcomes in complex software projects.

c. Tools descriptions

Four tools have been developed from scratch.

GSR – Graph Similarity Recommender (TWT-Tool)

The GSR tool facilitates the automatized comparison of State Machines with transitions defined by ISO

standards, quantifying their similarity and identifying deltas. This analysis is essential to track the

evolution of normative requirements over time or to recognize reuse opportunities. Manual comparison

of State Machines, especially across numerous instances, is labor-intensive and impractical. By

leveraging hierarchical decomposition based on ISO standards, GSR improves efficiency and enhances

analysis quality.

The tool is implemented in python and the input for the tool consists of two State Machines in Json

format, as well as a hierarchical modularisation of the ISO standard. This modularization is used to

decompose the State Machines into submodules that are being compared. This reduces the runtime of

the comparison. Currently, the modularization must be prepared once as a preprocessing step.

Additionally, a converter makes it possible to also use State Machines in ceps format. However, the tool

does not support nested State Machines as input, meaning State Machines containing states that are

themselves State Machines.

The output of the tool is also a Json file that contains the decompositions of the input State Machines. It

also contains mappings between the states and transitions of the State Machines, indicating the deltas.

Finally, the output Json contains similarity values between the submodules of the State Machines,

including the overall state machines. Note that the tool does not consider guards and actions yet. The

tool version used for the evaluation is GSR V1.0.

For more information on the GSR Tool, see chapter 4.3 of D4.5.

SmartSearch (SmartMetrics & SmartTrace)

SmartMetrics and SmartTrace are two Python-based tools that work together to offer a smart

search functionality for project users. SmartMetrics scans and indexes the Git repositories of a

project and stores all calculated data in a PostgreSQL database, enhanced by vector search

functionality using the pgvector extension. The scanning process loops over all commits, branches

and files, allowing for a comprehensive analysis of the entire history of each repository. This

analysis can be used to detect trends and degradations. Each compatible file is analyzed

depending on its type and configuration. It is possible to calculate software metrics, dense vector

embeddings using sentence transformers, and semantic data generated by large language

models (LLMs). Based on this data, diagrams can be generated using dashboard technologies like

Plotly to create Python-based interfaces that run in a browser, or by connecting to common tools

like Grafana and performing SQL queries on the data.

Using an LLM to create tags and a short paragraph to describe the file content introduces a

common representation that enables the retrieval of all kinds of file types with a single query. The

query itself is performed by the tool SmartTrace, which is a command-line-based tool that has

also been integrated into the browser-based interface developed by Fraunhofer (see next section).

SmartTrace runs 5 search streams consisting of vectors searches (cosine, L2, dot product) and

the PostgreSQL full text searches named tsvector and tsquery. The results will be merged

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 35 of 165

according to the score of each result. The following Figures 24 and 25 provide an overview of

SmartMetrics and SmartTrace and their connections.

Figure 23: SmartMetrics and SmartTrace Architecture

Figure 25: SmartTrace integrated in UI

SmartMetrics

Input: git repositories, configuration

Output: data stored in database

Tech: Python, Sentence Transformer Embedding Models, LLM (GPT-4o, Llama3)

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 36 of 165

Limitations: TRL 3, only basic software metrics as example implemented, semantic indexing

needs improvement for more accurate search

SmartTrace

Input: smartmetrics database

Output: search results based on query and settings

Tech: Python, PostgreSQL, Hybrid search

Limitations: TRL 3

Architecture Analysis and Visualization Tool (Fraunhofer)

The Architecture Analysis and Visualization Tool can be used to extract various architectural

views from a variety of input file types. Specifically, the tool analyzes .ceps and log files to

produce three unique views: the execution flow state diagram, the log similarity matrix, and th e

event flow diagram.

• The Execution Flow State Diagram analyzes individual log files within the input folder

and generates state transitions captured in the log file.

• The Log Similarity Matrix is a heatmap that depicts the similarity among log files within a

folder.

• Finally, the Event Flow Diagram shows the relationship among various state machines

described in the .ceps file.

 The general workflow is as depicted in the Figure 26 below:

Figure 26: General Workflow of the Architecture Visualization Tool.

As shown in Figure 16, the architecture views are initially computed in a textual format (except for the

Events Map Diagram) through the analysis module as markdown-like syntax and data frames and are

stored in a database for persistent access. The graphical representations of the computed diagrams are

then available through a web-based visualization dashboard.

The tool is publicly available on GitHub at:

https://github.com/SmartDeltaFraunhoferFOKUS/Architecture_Visualization_Tool . The steps to

install and use the tool, along with the technologies used, are explained in detail in the README

and Wiki.

ReForm Tool - Automated Requirements Formalization (IFAK)

ReForm is a tool that automatically transforms textual requirements into structured state machine

models. It processes requirements from ISO 15118 and similar standards, ensuring formalized and

machine-readable representations. The tool uses language models (sentence-transformers) to

generate vector embeddings for all stored requirements. These embeddings are stored in a FAISS

vector database, enabling fast and efficient similarity searches. When a new requirement is

provided, ReForm retrieves the most similar existing requirements and their state machine models.

https://github.com/SmartDeltaFraunhoferFOKUS/Architecture_Visualization_Tool

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 37 of 165

This retrieval-augmented generation (RAG) pipeline provides context to generate a new state

machine. It converts the new requirement into a JSON-based state machine model using a recent

large language model (Llama 3). The model consists of states, transitions, events, guards, and

actions, ensuring a complete representation. The newly generated state machine is then merged

into the existing system model.

The tool supports customization of embedding models and inference models, making it adaptable

for different domains and use cases. The tool improves requirement traceability, consistency, and

automation in system modeling. It reduces manual effort in formalizing requirements, increasing

efficiency and accuracy. ReForm is useful for engineers, researchers, and developers working on

requirement-based modeling. Its structured approach makes requirement analysis and system

design more scalable and automated.

Input: requirement (JSON)

Output: state machine model (JSON)

Tech: pytorch, sentence-transformers, langchain, faiss, llama-cpp-python, Llama 3

Limitations: TRL 3, the accuracy depends on the provided examples (RAG) and language model

The tool will be made publicly available on Github:

https://github.com/ifak-prototypes/nlp_reform

Figure 27: Pipepline of ReForm tool for automated model generation.

https://github.com/ifak-prototypes/nlp_reform

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 38 of 165

d. Visualization

The use case brings together a range of tools developed within the SmartDelta project to address various

requirements, including resolving architectures from textual data, identifying similarities or deltas among

models, and generating models from requirements. The web-based integrated environment, which

provides a graphical interface for easier execution of these tools, also offers a range of visualization

options to make the results more accessible. The visualization options available within the integrated

environment are discussed below:

1. Visualizing the input models: Tools like GSR require users to input state machines in

JSON format. These model definitions can become quite complex, especially where there

are large number of states and transitions. To help users easily verify the input state

machines, the web-based tool offers visualization options. It leverages PlantUML1 to

generate visual representations of the state machines defined in the input JSON files (Figure

28).

Figure 28. Visualize input state machine.

2. Delta Visualization:

Full View: The GSR tool generates a JSON formatted output that details the similarities

between the input models. This JSON is highly expressive, allowing users to identify specific

states and transitions that have been added, removed, or changed between state machines

being compared. This information is then utilized to create a visualization of the delta between

the state machines. States are segmented in accordance to the corresponding modules defined

within the GSR tool.

1 https://plantuml.com/

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 39 of 165

Figure 29: Delta visualization showing “Full View”.

As illustrated in Figure 29, the visualization displays all states within their respective modules,

providing a detailed view. States and transitions present in one state machine but absent in the

other are highlighted in green, while those differing between the two models are highlighted in

red. This colour coding also applies to edges. The tool leverages PlantUML to generate these

visualizations.

Compact View: The delta visualization window also offers an option to collapse the

visualization, displaying only the modules while hiding all states within them. Incoming and

outgoing edges to and from the modules are still plotted, but edges that connect states solely

within a module are hidden.

Figure 30: Delta visualization showing “Compact View”.

Modules containing exclusively green or red states are highlighted accordingly (see Figure 29

and Figure 30). Modules containing both green and red states are coloured red. Collapsing the

view to show only modules simplifies the visualization, making it easier to interpret differences

when both input state machines have a large number of states and transitions, which can

otherwise make the diagram difficult to navigate.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 40 of 165

3. The Visualization Dashboard: The visualization dashboard is a Streamlit2 web application that

attaches to a MySql database with a pre-populated data. The data is inserted during the

execution of the diagram analysis and storage (see Figure 31) process. The dashboard offers a

tabbed view, enabling intuitive navigation across various visualization components and

configuration options.

Figure 31: Architecture Visualization Dashboard – Execution Flow State Diagram.

As shown in Figure 8, the "file-level view” (2) enables users to select an individual processed file

from within a processed folder (1) and view the Execution Flow State Diagram (3) that captures

the runtime behaviour of a model as captured in that log file. Activities logged during the execution

of a state are displayed alongside the corresponding states. For example, Start v2g state

machine is depicted as an activity that occurred during the execution of the

SupportedAppProtocol state.

2 https://streamlit.io/

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 41 of 165

Figure 32: Architecture Visualization Dashboard – Log Similarity Matrix.

Similarly, "Folder-level view” includes the Log Similarity Matrix (4), a heatmap that depicts

similarity among ingested log files (Figure 32) within the selected folder (1).

Finally, the Event Flow Diagram (5) in Figure 33 illustrates the relationship among state

machines based on the shared events. Users can drag and drop multiple .ceps files, that define

state machines, into the input widget in the UI. These files are then processed to extract both

outgoing and incoming events associated with the state machines defined by each .ceps file. The

resulting diagram displays state machines as nodes and uses event connections as edges.

Figure 33: Architecture Visualization Dashboard – Events Flow Diagram.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 42 of 165

The generated architectural views are helpful for developers and first level QC in fault diagnosis.

For instance, when a fault occurs, the corresponding log file can be analyzed, allowing users to

visually observe the sequence of events via the execution flow state diagram. Additionally, the

similarity matrix facilitates the identification of similar faults from previous logs, aiding in the

discovery of similar faults. As a result, these diagrams provide valuable insights for initial quality

control, aiding in localizing faults and supporting the diagnostic process.

e. Evaluation setup

The tools are evaluated using technical KPIs (refer to the next section, Evaluation Results), which

measure specific functionalities. However, while these technical KPIs provide deep insights into

performance, they do not fully reflect the tools' effectiveness in real -world scenarios. To address

this, the following diagram illustrates potential tool integrations and workflows for achieving a

common goal: incorporating and implementing new requirements into an existing corpus.

The process consists of the following steps:

1. Artefact Retrieval:

o The first step is to retrieve existing artefacts relevant to implementing the new

requirement. Specifically, the focus is on identifying all relevant state machine models

within the corpus.

o This task can be performed manually by the developer or automated using

SmartTrace, which efficiently retrieves artefacts based on a query.

o Remark: In many cases, the retriever (e.g., SmartTrace) will identify multiple relevant

models. It is up to the developer to decide which model to use.

2. Model Modification

o The retrieved artefacts, along with the new requirement, are passed to the ReForm

tool, which outputs a modified model.

o This process can be iterative, allowing developers to use different input models or

make small adjustments to the requirement until an acceptable output model is

achieved.

3. Visualization and Review

o The graphical user interface developed by FOKUS displays the model and highlights

the modifications.

o While direct intervention in this workflow is limited, developers can modify the model

externally if needed.

o Once a requirement is added and the resulting model is accepted, developers can

either continue adding new requirements to the updated model or switch to another

available model.

4. Optional: Model Comparison

o At this stage, the GSR tool can be employed to compare models and assist in

selecting one based on similarity metrics.

o However, as similarity is not always the sole criterion, automatic selection based

solely on similarity is not feasible.

5. Delta Analysis

o After iteratively adding requirements, developers can use GSR to compare the original

and final output models, analyzing cumulative deltas to understand the impact of

changes.

Besides this core workflow, the following steps are available:

• Dashboard Integration

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 43 of 165

o The Dashboard is independent of this workflow but can monitor specific project

aspects. It also serves as an extension for other dashboards, such as those in the Jira

toolchain (Atlassian)

• Visualization Enhancement

o The AVT tool provides an alternative method for visualizing models and their

interconnections. This is particularly useful for inspecting models retrieved by

SmartTrace.

• Model Conversion

Before processing, models must be converted into the appropriate format.

o The GSR and ReForm tools require input in JSON format, while the corpus and AVT

operate in the original CEPS format.

o A converter tool developed by TWT facilitates this transformation.

The experiences, observations, and results obtained through this evaluation setup are detailed in

the next section.

Figure 34: Evaluate tools in context of adding new requirements to existing corpus

f. Evaluation results

UC2.FR_A:

KPI1: Alignment of Similarity Values with User-Defined Similarity

The similarity value of two State Machines computed by the tool is a percentage value between 0%

and 100%, 100% meaning that the State Machines are identical except for possibly different State

names and 0% meaning that in order to obtain one State Machine from the other one, all transitions

have to be deleted or relabelled.

This KPI evaluates whether the similarity values computed by the tool aligns with the similarity defined

by a user. To assess this, we prepared 12 examples of state machines with varying degrees of

similarity. From these, we created four test sets, each consisting of one state machine compared

against eight samples selected from the remaining 11 state machines.

After visualizing the state machines, we manually categorized the pairs into three similarity levels:

High Similarity, Medium Similarity, and Low Similarity. We then applied the GSR tool to these

pairs to compute similarity values, categorizing them as follows based on the computed percentages:

• High Similarity: ≥ 85%

• Medium Similarity: ≥ 60% and < 85%

• Low Similarity: < 60%

The computed categories were compared to the subjective categories. For 29 out of 32 comparisons

(90.62%), the computed category matched the subjective assessment.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 44 of 165

KPI 2: Accurate Allocation of Changes and Conflict Identification

This KPI assesses the tool’s ability to accurately allocate changes and identify conflicts. We generated

10,000 test examples by applying random modifications to a base test example. The possible

modifications included the following:

• Deleting a random edge or node

• Adding a new random edge or node

• Relabelling a random edge or node

We evaluated the tool's performance in two areas:

1. Change Allocation: Verifying if the similarity value of a module is exactly 1 when no changes

were applied to that module.

2. Conflict Identification: Accurately detecting deletions or relabelling applied to any module.

The tool successfully determined these aspects in 99.81% of cases.

KPI 3: Correct Determination of Deltas Between State Machines

This KPI evaluates the accuracy of determining deltas between two state machines. Using the same

10,000 test examples generated for KPI 2, we assessed the deltas between the base state machine

and the modified examples.

The process involved identifying the delta path from the base state machine to the modified example,

then applying the determined deltas back to the base state machine. The resulting state machine was

then compared to the modified example to check for equivalence. This process resulted in successful

matches in 99.98% of cases.

Detailed evaluation results for single requirements and the corresponding KPI are shown in the

table below.

UC2.FR_C:

KPI4: Semantic search functionality covering different artefacts types

The tools offer search functionality for three artifact types: requirements (JSON), models (CEPS

format), and code (C++). All types can be retrieved with a single query, as illustrated in the figure

in the tools description section above. However, it is important to note that our current evaluation

does not provide a measure of the quality of the search results. Due to the absence of a ground

truth, the results obtained cannot be considered definitive. Since users can query using entire

sentences, such as requirements from ISO 15118, the results should not be interpreted as

development recommendations. Different developers may have varying expectations for the

results, making the definition of a ground truth challenging. Additionally, there are many design

alternatives and optimization options to consider, but choosing the right direction remains an open

research question that needs to be addressed in an upcoming project. The current tools serve as

a starting point for further exploration and analysis.

KPI5: Number of Valuable Technical Insights into the Project Repository, Including Semantic

Insights and a Delta View

Diagrams were counted if they provide new technical insights into the repositories and cannot be

generated by other tools. The value or helpfulness of a diagram depends on the project role and

personal preferences. There is one delta view (showing the difference between two commits) and

several diagrams based on semantic information.

By selecting two repositories, two branches, and two commits, the Delta View offers several diagrams

in a side-by-side comparison, including:

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 45 of 165

• Number of commits per time slot, where a time slot may represent a sprint in an agile

development process.

• The types of files that have been worked on.

• The types of changes (added, modified, or deleted lines of code) per user.

• A table showing average values, such as average cyclomatic complexity.

• A time plot showing the evolution of average cyclomatic complexity over time.

• Three diagrams illustrating the evolution of:

o Added lines of code

o Changed lines of code

o Deleted lines of code

Having a list of AI-generated labels and descriptions for model and code files allows for the creation of

the following diagrams (as examples):

• Labels that have been worked on per time slot (sprint), which can be used to identify topics

and semantic trends.

• Evolution of activity rates per label, e.g., identifying the top X labels per time slot and plotting

their evolution over time. This is helpful for tracking the evolution of labels and topics.

• Labels per user, which allows for the identification of experts, single points of knowledge, and

other relationships between labels and users.

During the project, new approaches for visualizing the semantic structure of complex documents, such

as the different parts of the ISO 15118 standard, were explored and tested.

The following figure 35 shows an interactive visualization of the semantic document structure of the

ISO 15118-2 standard after extracting and processing the raw data from the PDF file.

Figure 35: interactive visualization of the semantic document structure of the ISO 15118-2 standard

It is important to note that many aspects were explored during the project, and our experiences with AI

have led to significant progress. Many of the ideas, approaches, and implemented tools were part of

our journey to explore the new possibilities of generative AI in the context of software development.

The functional prototypes currently have a low Technology Readiness Level (TRL) of 3 and are not

intended for use in developing software solutions for production environments. Substantial redesigns

and improved concepts that leverage the latest findings from global AI research are necessary to

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 46 of 165

achieve a level of quality, stability, scalability, and effectiveness. See more in next section

“Recommendations for industry adoption”.

UC2.FR_D:

KPI6: Number of generated /up-to-date architectural views for a variant.

The Architectural Visualization Dashboard from FOKUS currently provides 3 unique architectural

views.

a. Execution flow diagram (Figure 8) uses log files to visualize sequence of events during model

execution.

b. Log similarity matrix (Figure 9) shows similarity among ingested logs in a heatmap.

c. Events flow diagram (Figure 10) visualizes how multiple models are related based on shared

events. The input models are written in .ceps format.

Apart from these, the delta visualizations, that include full view (Figure 6) and a compact view (Figure

7), are available from the integrated environment. These diagrams use the output from the GSR tool

developed by TWT. Thus, a total of 5 different architecture views are offering various levels of

information and insights.

KPI7: Automation of visualizing model changes.

The KPI measures the extent to which the visualization of delta between models is automated across

various tools. The Model changes can currently be visualized in two scenarios:

1. Using the GSR Tool: Users provide models as JSON files, which serve as inputs to the tool.

Once processing is complete, they can visualize the delta between the two inputs.

2. Using the ReForm Tool: Similarly, when executing the ReForm tool from the integrated

environment, users can view the delta between the input and output state machines. They can

also modify requirements iteratively, and after each iteration, the delta between the initial input

and the updated output state machine becomes available for visualization.

In both cases, the visualization module computes delta between models automatically once the tool

execution (GSR or ReForm) is complete.

However, when using the ReForm tool, users can replace the initial input state machine with the

current output state machine and rerun the tool to generate another output state machine. In this

scenario, manual intervention is required. Users must save the final output state machine to disk, open

the GSR tool from the integrated environment, and execute it by providing the initial state machine and

the final output state machine as inputs to view the delta. This step is currently missing from the

automated toolchain. Thus, about 90% of the automation goal has been met, with the final step

requiring user intervention.

UC2.FR_E:

KPI8: Accuracy of generated models.

We evaluated the accuracy of automatically generated state machine models for 72 requirements from

ISO 15118 Part 2 and Part 20, comparing them against manually created models as the ground truth.

Our evaluation used a macro-average accuracy metric, incorporating Levenshtein similarity across key

model properties (source/target state, event, guard, and action), allowing for partial correctness.

We tested different LLMs and selected the 6 currently best-performing models for detailed analysis.

Each model was tested under Zero-Shot (without RAG) and Few-Shot (with RAG) prompting. To ensure

robustness, we conducted three independent runs per model, both with and without RAG, averaging the

results to account for statistical deviations.

The accuracy results revealed significant performance differences. Mistral Small 3 achieved the highest

accuracy at 83.3%, followed by Phi-4 (80.3%), surpassing the target threshold of 80% accuracy. The

other models performed slightly lower but still demonstrated improvements with RAG-based prompting.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 47 of 165

The Levenshtein-based metric provided a more flexible and granular evaluation, tolerating minor

variations in naming, structure, and syntax while still rewarding overall correctness.

Notably, RAG-based prompting consistently improved accuracy, highlighting the benefits of

incorporating relevant context for structured model generation. These findings confirm that our

developed method is effective and generalizable, opening opportunities for further fine-tuning, optimized

retrieval strategies, and hybrid approaches to enhance performance in real-world applications.

Figure 36: RAG-based prompting accuracy

KPI9: Compatibility with existing models.

We evaluated the compatibility of the LLM-generated state machine models with existing models by

integrating them into comprehensive system-wide models. Our deterministic approach ensured that

newly generated sub-models seamlessly merged with the existing model structure.

In all test runs, the integration was 100% successful: the new states were incorporated correctly, and

the LLM consistently recognized and reused pre-existing states from the modeling process. This

confirms that our approach fully meets the targeted compatibility goal, demonstrating the method’s

reliability for extending and refining existing system models.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 48 of 165

Table 4: KPIs overview table

Require

ments
Tool

Solutio

n

partner

KPI Definition
KPI Base

Values

KPI Target

Values

KPI

achieved

Value

UC2.FR

_A

GSR TWT

[tech]- success rate of finding similar

models - in <target value> of all cases

(according to a similarity measure that

still has to be defined)

0 90% 90,62%

GSR: TWT

[tech] - success rate of finding

conflicting models - in <target value>

of all cases (according to a measure

that still has to be defined)

0 90% 99,81%

GSR: TWT
[tech] - success rate of finding all

impacts -in <target value> of all cases
0 90% 99,98%

UC2.FR

_C

 Smart-

Trace
Akkodis

Semantic search functionality covering

different artefacts types
0 2 3

Smart-

Metrics
Akkodis

Number of valuable technical insights

into the project repository including at

least semantical insights and a delta

view

0 8 8

UC2.FR

_D

Visualiz

ation

Fraunho

fer

FOKUS

[tech] number of generated /up-to-date

architectural views for a variant
0 4 5

Visualiz

ation

Fraunho

fer

FOKUS

[tech] automation of visualizing model

changes
0% 90% 90%

UC2.FR

_E

ReForm IFAK
[tech] correct model generation in

<target value> of all cases
0% 70% 83.3%

ReForm IFAK
[tech] high compatibility with existing

models in <target value> of all cases
0% 80% 100%

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 49 of 165

g. Recommendation for industry adoption

The tools developed during this project present significant potential for improving development

efficiency, velocity, and quality in software engineering. Key benefits include:

- Enhanced Efficiency in Artifact Retrieval: The tools facilitate a more efficient process for

finding relevant artifacts across different repositories, reducing the effort required for

developers to access necessary information.

- Automated Model Comparison and Visualization: The ability to automatically compare

models, along with integrated visualization features, streamlines the analysis process and aids

in understanding differences and similarities between various design elements.

- Informed Design Decisions: By reusing and modifying design decisions based on software

quality metrics, teams can make more informed choices that enhance the overall quality of the

software.

- Improved Planning Capabilities: The tools support better planning by providing insights into

quality trends and semantic overviews, such as the distribution of employees across

topics/keywords and domain expertise within the project.

While the methodology shows promise, it is important to recognize that some aspects are use-case

specific, particularly regarding the types of models employed (e.g., UML state machines in CEPS or

JSON format). However, the underlying pipeline is generally applicable to various software

development contexts.

Challenges and Limitations

Despite the advantages, several challenges must be addressed to enable productive usage and

facilitate broader industry adoption:

GSR: Limitations in Model Comparison: The current model comparison for delta calculations has

inherent limitations, particularly regarding the assumptions required for effective model comparison,

such as a common namespace for states and transitions. This may hinder the ability to achieve

accurate comparisons. Additionally, the model comparison tool requires a module definition that is not

readily available, limiting its automatic use. A solution for automatic module calculation is currently

lacking, which restricts usability to prepared environments where module definitions exist.

SmartMetrics and SmartTrace: Quality of Semantic Indexing: The effectiveness of semantic

indexing using large language models (LLMs) heavily depends on the quality of the models and

artefacts being analyzed. Poor code quality, insufficient comments, and outdated documentation can

lead to suboptimal semantic representations, such as embedding vectors, labels, and descriptions.

However, as these challenges are common in many real-world use cases, it is crucial for new

approaches to address and adapt to such constraints effectively.

While the current era of AI-based tools is still in its early stages, the potential for improvement is

immense. Future advancements in AI and machine learning promise significant enhancements to

semantic indexing and retrieval capabilities. Nevertheless, good engineering practices remain

essential to harness this potential and develop tools with production-level maturity that meet real-world

demands.

Challenges in Semantic Search

Semantic search capabilities face several challenges that hinder accuracy and relevance:

1. Merging Multiple Search Streams

a. The system employs five distinct search streams—three vector-based searches

and two text-based searches—which are merged to produce the final results.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 50 of 165

b. These streams often fail to meet user expectations due to the inherent difficulty of

reranking results across different modalities. For example, comparing vector-

based and text-based search scores is complex and may not align with the user’s

personal preferences.

2. Unified Queries for Multiple Artefact Types

a. Conducting a single search query across multiple artefact types (e.g.,

requirements, models, and code) adds further complexity.

b. Identifying optimal strategies for retrieving artefacts across these diverse domains

remains an unresolved challenge.

3. Indexing Consistency

a. Tags generated by LLMs for artefacts are often inconsistent or too generic,

particularly when applied across different artefact types or files.

b. This lack of specificity reduces the utility of the indexing process and hampers

effective retrieval.

Areas for Improvement

To enhance the performance of SmartMetrics and SmartTrace, two primary areas require

further development:

1. Improved Search Quality

a. Efforts should focus on refining the semantic indexing and search ranking

algorithms to deliver more accurate and relevant results.

b. Addressing inconsistencies in tagging and improving the merging logic for multiple

search streams will be critical.

2. Reduced Latency

a. Minimizing latency during retrieval processes is essential for ensuring a smoother

user experience.

ReForm: Artifact Generation Challenges: The ambitious goal of automating requirement-based

change implementation, starting at the model level, presents several challenges that limit the tool’s

practical usage in its current form.

Current Limitations

1. One-to-One Mapping Assumption

a. The ReForm tool assumes a one-to-one mapping between individual requirements

and small state machine models as input for the generation process. However,

this scenario rarely exists in practice.

b. While individual requirements are typically available, existing models are often

larger and represent a set of interconnected requirements, making it difficult to

isolate specific mappings.

2. Sequential Requirement Addition

a. Requirements must be added one by one, which slows the process and limits

scalability.

b. Additionally, the tool’s scope is currently restricted to the model level, without

incorporating knowledge of the broader codebases or technical environment.

Broader Challenges in AI-Based Generation

These limitations highlight a more general challenge for AI-based artifact generation tools:

achieving better integration of the technical context and environment to produce results

aligned with real-world conditions. Key issues include:

1. Pre-Processing of Requirements

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 51 of 165

a. Effective pre-processing of requirements is essential to clarify ambiguities and

provide the tool with improved context awareness.

b. This pre-processing must account for both the explicit requirements and the

implicit assumptions present in the project environment.

2. Comprehensive Context Integration

a. The context for generation spans the entire project environment, including:

i. Requirements

ii. System architecture

iii. Subsystem and interface specifications

iv. Codebases and libraries

v. The overall technical environment

b. Integrating this context effectively remains an open research question. A more

sophisticated approach is needed to align generated artifacts with the

preconditions, constraints, and dependencies inherent to the project.

3. Human-in-the-Loop Processes

a. Maintaining human oversight and involvement is critical to ensuring the generated

artifacts are both relevant and aligned with user expectations. Developing

workflows that balance automation with human input is a key area for further

exploration.

Path Forward

To make tools like ReForm practical and scalable, future development should focus on:

• Addressing the limitations of one-to-one requirement mapping assumptions.

• Exploring methods to incorporate broader project context into the generation process.

• Developing pre-processing techniques that improve the quality and specificity of

requirements before they are fed into the generation tool.

By addressing these challenges, ReForm and similar tools could better support real-world

software development scenarios while aligning with the complexities of modern technical

environments.

General Workflow: Incorporating Verification and Feedback: In complex software development

projects, ensuring alignment between generated artifacts and project requirements demands a

structured workflow. Incorporating mechanisms for verification, human feedback, context awareness,

refinements on different levels. These elements play a pivotal role in improving both the reliability of

generated artifacts and the overall effectiveness of the development process.

Verification and Design-Level Alignment

Verification is fundamental to ensuring that generated artifacts adhere to global architectural

requirements and specifications. This process should occur at multiple levels, including:

1. Design-Level Verification:

a. Ensures compliance with system-wide requirements and architectural constraints.

b. Verifies alignment with established interfaces, subsystems, and overall project

goals.

2. Artifact-Level Verification:

a. Validates generated models or code against specific requirements.

b. Uses formal methods or automated checks to confirm consistency and

correctness.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 52 of 165

By embedding verification mechanisms throughout the workflow, the risk of inconsistencies or

misaligned outputs is significantly reduced, particularly in dynamic and complex environments.

Human Feedback: A Critical Loop

Human input is essential for refining the workflow and addressing limitations in automated

systems. Feedback loops enable developers and domain experts to:

• Provide design decisions that clarify ambiguities in requirements or outputs.

• Identify opportunities for refactoring, improving maintainability and aligning artifacts with

long-term project goals.

• Resolve open questions about trade-offs, constraints, or alternative approaches.

Incorporating verification and feedback mechanisms into the development workflow is

essential for ensuring that design artifacts align with global architectural requirements and

specifications. By integrating human feedback—such as design decisions, addressing open

questions, and identifying opportunities for refactoring—developers can enhance design

choices and improve the quality of artifacts.

Iterative Multi-Stage and Multi-Agent Approaches

Implementing iterative multi-stage or multi-agent strategies can significantly enhance design

decisions and artifact quality. For instance, the "Cocoa: Co-Planning and Co-Execution with AI

Agents" [2] system introduces interactive plans that allow users to collaborate with AI agents

on complex, multi-step tasks within a document editor. This approach harmonizes human and

AI efforts, enabling flexible delegation through co-planning and co-execution phases.

By adopting such collaborative frameworks, development processes can become more

adaptive and responsive to the dynamic needs of software projects, leading to more robust

and well-aligned outcomes.

1. Iterative Workflow:

a. Incorporates cycles of generation, verification, feedback, and refinement.

b. Promotes gradual improvement of artifacts by systematically addressing errors,

ambiguities, or omissions in each cycle.

2. Multi-Agent Setup:

a. Specialized Agents: Different agents can be designed to perform distinct tasks,

such as semantic analysis, artifact generation, verification, and optimization.

b. Collaboration and Coordination: Agents can exchange intermediate outputs,

sharing context and updates to refine the results collectively. For instance:

i. One agent generates models based on requirements.

ii. Another verifies the consistency of generated models with system

architecture.

iii. A third agent suggests optimizations or refactoring opportunities.

3. Dynamic Adaptation:

a. Agents adapt based on feedback from verification and human reviewers, ensuring

the workflow remains responsive to evolving requirements or project conditions.

b. Facilitates exploration of multiple alternatives for changes, allowing the system to

converge on the most suitable solution.

Maturity: The tools developed within the SmartDelta project are currently in prototype form, exhibiting

limited functionality and a Technology Readiness Level (TRL) of approximately 3. This indicates that

they have been validated in a laboratory environment but require significant advancements to reach

production-level maturity. To enhance these tools, it is recommended to develop production-ready

versions from scratch, leveraging insights gained from the research prototypes rather than building

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 53 of 165

upon the existing codebase. This approach will facilitate the introduction of new features, improve

usability, and enable deeper integration into existing development environments.

Usability: To fully realize the potential of these tools, a comprehensive and general-purpose user

interface is essential. This interface should streamline the entire artifact generation workflow while

fostering effective collaboration between AI agents and human developers.

Key Features of the User Interface

1. Workflow Management

a. The interface should support all stages of the artifact generation process,

including:

i. Requirements Clarification: Allow users to refine and clarify requirements,

ensuring they are well-defined for the generation process.

ii. Specification and Design Management: Facilitate the organization and

visualization of specifications and design elements, maintaining alignment

with overarching project goals.

iii. Final Artifact Generation: Provide a seamless transition from design to the

generation of models or code.

2. Change Impact Visualization

• The interface should dynamically display deltas at all levels of the project, including:

o Specifications: Highlight modifications to requirements or functional

descriptions.

o Documentation: Identify changes in textual artifacts.

o Models: Visualize differences in state machine or architectural models.

o Code: Show the effects of changes at the implementation level.

• These visualizations will help developers assess the implications of new or modified

requirements, facilitating informed decision-making.

3. Collaboration Between AI Agents and Humans

a. To support the complex cooperation between AI agents and human developers,

the interface should:

i. Enable real-time feedback and adjustments.

ii. Offer clear explanations for AI-generated outputs, enhancing trust and

transparency.

iii. Allow for flexible delegation of tasks, enabling humans to step in or modify

outputs as needed.

These challenges highlight the need for continued investment in research and development to create a

user interface that not only enhances usability but also transforms the way developers interact with AI-

driven tools.

Summary

The current results should be viewed as initial steps toward harnessing generative AI-based

technologies to address the complexities of software development. Generative AI presents promising

capabilities, with many applications currently focused on simpler use cases, such as code snippet

generation and chat assistance, which are functioning effectively at scale. However, the AI revolution

is just beginning, and its ultimate trajectory remains uncertain. What is clear, though, is that it has the

potential to revolutionize the way we develop software-based systems—a transformation that is

urgently needed, given the challenges our existing approaches face in managing increasing

complexity.

In the automotive industry, for example, software-related issues have resulted in years of delays,

billions of euros in losses, and a decline in market revenue due to ongoing software problems.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 54 of 165

Emerging innovations in generative AI are set to create better opportunities, fundamentally altering

how we manage software projects and develop software.

The activities undertaken in the Akkodis use case are crucial to this transformation. Identifying relevant

existing resources, such as software artifacts, is the first step toward effective reuse. The ability to

compare, rate, visualize, and utilize retrieved artifacts for generation represents essential process

steps in this journey.

Our research conducted within the SmartDelta framework (in the context of Akkodis) will be

instrumental in facilitating future advancements and ensuring our participation in the global AI race.

However, it is important to recognize that the implementation of generative AI-based tools in software

development will differ from the SmartDelta approach. This distinction arises primarily from the rapid

evolution of technologies, which necessitates the swift development of prototypes to keep pace. By

learning from these prototypes and applying that knowledge and experience, we can create solutions

that are well-suited for productive environments.

5. Use-Case 3 from eCAMION

a. Use-Case Description

Electric Vehicles have become more prevalent on the roads in recent years, and EV charging

infrastructures have been growing rapidly to support the growth of EV cars on the road. EV

charging infrastructure is a developing area of research and development, with IoT technology

enabling real-time communication between the EV charging unit and the Charging Station

Management System (CSMS).

At eCamion, real-time data collected from the charging stations are used in three different ways to

provide additional insight to the charging station operators.

1. Charging Station Health Monitoring

Using sensor data collected from the charging station and its battery, operators can monitor the

availability, anomalies and battery’s health down to the cell level.

2. Charging Station Usage Monitoring

The dashboard offers an overview of charging station usage, presenting key metrics and insights

to help estimate the station's popularity.

3. Energy Consumption Rate Prediction

Using the load profile of each charging station, the dashboard provides the predicted energy

consumption rate at hourly intervals.

As the EV charging industry rapidly evolves, eCamion’s charging stations are expected to undergo

continuous development to enhance communication, energy efficiency, and functionality.

Specifically, in collaboration with SmartDelta, we have considered the development of a Charging

Station Management System (CSMS) and a charging station analysis dashboard.

The CSMS serves as a central server that communicates with charging stations and collects real -

time performance metrics. Its development is fast-paced, driven by an active industry community

and ongoing enhancements from eCamion’s development team. Through our collaboration with

SmartDelta, we are also evaluating the improvements introduced with each CSMS implementation

to assess their impact and effectiveness.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 55 of 165

b. Link to SmartDelta Methodology

Figure 37: eCamion and the SmartDelta Methodology

Using SmartDelta methodology, we have established KPIs to track the quality of subsequent

product variations. Following the SmartDelta methodology, our development focuses on

recommendation and predict where our ML model is applied to predict the energy load of a

charging station. Based on the evaluation KPI of the model, suggestions can be made to apply

different models. Lastly, the predicted output from the model, along with other charging station

usage and sensor data are visualized using the management dashboard.

c. Tools descriptions

Our management dashboard analyzes the health and performance of charging stations.

Commercial charging stations are often installed outdoors, exposed to weather and other

environmental factors. Swift action in response to anomalies is crucial for effective maintenance.

Using real-time data from the station’s sensors, owners are notified of temperature or voltage

anomalies, enabling proactive inspections and preventing failures.

Tracking charging station performance is essential for future development and cost -saving

measures. The dashboard provides insights such as station popularity, usage patterns, and

predicted trends, helping owners make informed decisions.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 56 of 165

d. Visualization

The visualization features planned for the tool aim to present a comprehensive view of system health

through historical data and detailed summary statistics. This includes measurements of key physical

parameters at charging sites and stations, such as component temperatures, humidity, dew points,

voltages, and power delivery. Additionally, outdoor readings at corresponding site locations are

incorporated to evaluate the impact of external environmental factors on the system's physical

characteristics.

In its current stage of development, the Figure 38 below represents a few examples of the

visualizations intended for inclusion in the final version.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 57 of 165

Figure 38: eCamion’s visualization examples

Dashboard solution

The data collected to characterize various system health parameters is stored within a PostgreSQL

database. Raw data from the database tables are queried, processed, and prepared for use by a suite

of Python scripts and modules. These scripts are utilized by a Python Flask server, which functions as

the system's backend for the dashboard tool.

The dashboard's frontend is built in NodeJS and leverages the ReactJS framework. Several

JavaScript libraries have been employed for visualization components, including MaterialUI, ReCharts,

and ChartJS, with additional libraries expected to be integrated as development progresses.

Visualisation requirements

The dashboard visualization requirements focus on providing clear, actionable insights across various

aspects of system performance and usage. Key elements include:

Forecasted Demand:

• Visualizing the demand forecast for the next week, showing maximum, minimum, and peak

demand hours.

• Including uncertainty bands and allowing room to easily plug in additional metrics or data

sources with features like tabs for better organization.

System Health:

• Monitoring temperatures for cells and cabinets, including average, max, and min values over

time, compared with external temperatures.

• Flagging unusual temperature deviations and analyzing cell voltage spreads to identify

modules that most reduce station capacity.

Station "J" Insights:

• Tracking the number of sessions and cumulative session times to gauge popularity.

• Reporting power delivery stats and flagging deviations in max or average power.

• Incorporating temperature analysis similar to the system health section.

Environmental Context:

• Adding historical weather data (like temperature and humidity) for each site and comparing it

to internal humidity sensor readings in cabinets.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 58 of 165

The goal is to deliver a dashboard that's not only scalable but also intuitive, helping users identify

trends and anomalies more easily.

e. Evaluation Setup

The evaluation of the tool focuses on availability and latency between the communicating systems.

The assessment considers three aspects of charging station functionality: communication latency

between the Charging Station Management System (CSMS) and the charging station, authorization

latency, and the availability of the dashboard tool.

To measure communication latency, the CSMS was configured with an SQL database that records

charging station data obtained through the communication protocol. By comparing the timestamps of

the charging station’s authorization request and the recorded payment time, the requirements for

UC3.FR4, FR5, and FR17 were met. Similarly, the EV charger’s availability status was compared,

meeting the requirements for UC3.FR8 and FR9.

The latency of price settings was measured through a manual test using a single charging station.

Price changes were applied, and the timestamp reflecting the change in the CSMS was recorded,

ensuring compliance with UC3.FR6, FR10, and FR11.

eCamion’s charging station provides sensor data indicating cell and cabinet health. This data is sent to

the CSMS through configured messages and recorded in the SQL database. By comparing the

timestamps of records from both the charging station and the CSMS, transmission latency was

measured, satisfying UC.FR17.

To evaluate the availability of the visualization dashboard, which is hosted on AWS Kubernetes, AWS

downtime metrics were referenced to obtain data for UC.FR1.

Figure 39: Charging Station Management System

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 59 of 165

f. Evaluation results

Requirement Tool
Solution

partner
KPI Definition

KPI Base

Values

KPI

Target

Values

KPI

achieved

Value

UC3.FR4

UC3.FR5

UC3.FR17

Tool A eCamion

The EV charging authorization

(non PnC) latency should not

exceed 30 sec after the user has

completed payment at the

terminal

The EV charging authorization

must have at least a success rate

of 99% to ensure the quality of

service

2 min 30 sec 15.0 sec

UC3.FR8

UC3.FR9
Tool A eCamion

The EV charger availability status

must reporting latency no more

than 20s

The reservation must have a

latency for no more than 15s

2 min 15s 13.5 sec

UC3.FR6

UC3.FR10

UC3.FR11

Tool A eCamion

The monetary transaction details

must be reflective to the pricing

setting with a max age of 2 min

5 min 2 min 2.418 sec

UC3.FR17 Tool A eCamion

Considering the real-time charger

status reporting for eCAMION’s

JuleNet operation, the latency

shall not exceed 1 min

5 min 1 min
15.0 sec

UC3.FR1 Tool A eCamion

It must be made for a high

available application (max annual

down time </= 5 min)

60 min 5 min

0 sec (no

downtime

recorded)

UC3.FR4, UC3.FR5, UC3.FR17: The authorization latency of the EV charging station is measured

from the time the client completes payment to the start of energy delivery. With an initial KPI target of

30 seconds, our system recorded a median latency of 15 seconds.

UC3.FR8, UC3.FR9: The KPI accounts for latencies in both charger reservation and charger

availability. Since a successful reservation implies availability, the KPI was measured for charger

availability. With a target of 2 minutes, our system recorded a median latency of 13.5 seconds.

UC3.FR6, UC3.FR10, UC3.FR11: The KPI measures the latency between a price change made in the

Charging Station Management System and its application at the EV charging station. Measurements

were conducted manually, with 10 trials performed on a charging station, and the average latency was

recorded.

UC3.FR17: The KPI ensures that all charging station statuses are recorded by the Charging Station

Management System. With a target latency of 1 minute, we observed a median latency of 15.0

seconds.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 60 of 165

UC.FR1: The dashboard tool should have no more than 5 minutes of downtime annually. Our

evaluation of the AWS Kubernetes environment, where the dashboard application is hosted, found no

recorded downtime.

g. Recommendation for industry adoption

The dashboard provides potential in health monitoring and AI prediction to improve charging system

performance. In health monitoring, using the dashboard, the analyst can flag the charging system

based on issues such as:

• Temperature deviation which could indicate fan failure, voltage spreads causing reduced

capacity

• Low system voltage due to insufficient power

• Water damage caused by high humidity or low dew points

These diagnostics enable faster response and repair, minimizing system downtime.

Using the AI prediction trained on charging station usage data, the prediction adds value by identifying

peak hours and expected demand, allowing for external battery to be charged during the off-peak

hours.

The current limitation of the dashboard is that health monitoring would identify issues only after they

occur. However, further work can be done to incorporate AI to predict the faults before the failure, thus

increasing the availability of the system.

The SmartDelta methodology has been a valuable framework for our EV charging station infrastructure

development, particularly in an industry that demands rapid innovation. Given the fast-paced evolution

of EV technology and the necessity for frequent enhancements to remain competitive, SmartDelta

provides a structured approach for evaluating each new variation of our product.

By leveraging SmartDelta’s methodology, we ensure that each incremental change or new feature is

assessed for its impact on system performance, reliability. This approach enables efficient iteration

and validation of functionalities without compromising system stability.

6. Use-Case 4 from NetRD

a. Use-Case Description

CPaaS Overview: Platform as a Service (PaaS), which is one of the service models of cloud

computing, is a cloud-based application development platform, so that service providers can create,

develop, and deploy their applications instead of knowing the resource utilizations by their

applications. In the PaaS model, network, server, storage, and other services required for the

customer's application development processes are provided and maintained by cloud provider 3.

CPaaS, is based on PaaS, is a cloud-based development platform that allows developers to embed

real-time communication services such as video, chat, and voice to their services. In this model,

application developers do not need to build their own backend infrastructure for communication

stack. It offers a development framework to build real-time communication features by employing

APIs (Application Programming Interface) and integrated development environments.

3 C.M. Mohammed, S. Zeebaree, "Sufficient Comparison Among Cloud Computing Services: IaaS,

PaaS, and SaaS: A Review", International Journal of Science and Business, 5, issue 2, p. 17-30,

2021.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 61 of 165

CPaaS Platform Worked On: CPaaS, a telecommunications platform with a high number of

microservices, developed in a technology company, operating in 5 different data centers located in

4 different continents, is a software platform that provides communication services to users through

a scalable, microservice architecture-based platform by making use of PaaS, which is one of the

popular cloud computing models. On the other hand, it can also offer VoIP (Voice over Internet

Protocol) APIs on the same platform so that companies can use them in line with their own needs 4.

Problem and Challenges: Debugging and problem addressing process varies according to the

components in the CPaaS platform, which contains many microservices and consists of many

different components. Table 3 provides some sample issues in CPaaS and the components where

these errors were observed. In addition, the time spent by the operations engineers for addressing

and fixing errors is given in percent. Although these values vary according to the experience of the

engineers in charge, they have been obtained from the Jira data where the CPaaS project is

managed.

Table 3: Example Fault Components and Addressing/Recovery Durations

According to the Table 3, the most difficult errors to address for operations teams are in the fields

Routing and Services and are reported directly from user scenarios as they include service

functions. The main reason for the challenge here is the need to detect microservice interactions.

For example, for debugging process in a basic call scenario, all interacting microserv ices and their

behaviours must be known and understood. This creates a time handicap for a solution with a high

number of microservices. On the other hand, it has been observed that the time required for

troubleshooting user scenarios is related to knowing the relationship between the scenario and

microservices.

Debugging Approach for User Scenarios: Figure 40 presents a flowchart of a DevOps engineer's

approach to troubleshoot observed errors in user scenarios. After Kubernetes system health check

and failed API identification, the next step is to examine the user's REST request and check routing

rules on the gateway. Then, starting from the logs of the first microservice to which the request was

sent, a log analysis is performed in a chained manner, considering the interactions with other

microservices. The biggest handicap in this approach is the time it takes to detect the interaction

between microservices. The fact that the values given for Routing and Services in Table 3 have the

highest time spent proves this handicap.

4 K. Aktaş, H.H. Kilinc, N. Arica, "Microservice Interaction Prediction in Communication Platform as a

Service," 30th Signal Processing and Communications Applications Conference (SIU), Safranbolu,

Turkey, 2022, pp. 1-4.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 62 of 165

Figure 40: DevOps engineer’s debugging approach for user scenarios

b. Link to SmartDelta Methodology

Within DIA4M there is “Delta” tracking in both time (in the sense of version) and space (in the sense

of variant). It allows to compare deltas for two different versions of the same microservice and for

two different microservices.

• Log comparison for microservice versions and variants

• Comparing resources such as memory, cpu for microservice versions

• Latency and trend comparison for microservice versions

Figure 41: Position of the DIA4M tool in the SmartDelta Methodology.

c. Tools Descriptions

DIA4M (Discovery of Interactions and Anomalies for Microservices) is a tool which have been

developed from scratch.

DIA4M is a web-based tool designed to enhance the efficiency of DevOps engineers managing

cloud-based distributed platforms. The tool focuses on mapping microservice interactions and

quickly identifying anomalies and faults, leveraging advanced analytics to automate processes and

address issues in CI/CD processes.

DIA4M aims to provide a comprehensive toolkit that leverages advanced statistical methodologies

to detect critical issues, anomalies, and hard-to-find errors throughout DevOps processes. With

Elastic Cloud Infrastructure that leverages APM agents having auto-instrumentation capabilities for

logging, tracing, and error detection, DIA4M is designed to handle high event rates in both real -time

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 63 of 165

distributed systems and systems with many users5. The primary goal is to automate monitoring data

collection for Continuous Verification, reducing error rates and improving response times without

introducing additional layers of complexity to already intricate systems. One of its most crucial goals

is to minimize troubleshooting time for DevOps engineers by employing state-of-the-art

visualizations and adhering to best practices in UI/UX design. Moreover, DIA4M aims to offer

analytic services at no cost, thereby supporting the open-source community and amplifying its

overall impact.

Figure 42: Conceptual topology of DIA4M.

The tool evaluates quality attributes by analyzing microservice log data to extract patterns and

understand interactions, enabling the identification of anomalies and faults efficiently.

Figure 42 represents the usage scenarios for the DIA4M Topology Interaction Visualizer. The

primary actor is the DevOps Engineer, who can interact with the system through two main methods:

uploading log data via CSV files or integrating with Elastic Cloud. Each method enables the engineer

to perform various core functionalities, such as visualizing outliers, predicting resource usage,

comparing logs, detecting anomalies, identifying faults, predicting failures, monitoring trends,

comparing log file pairs, and using a GPT-based troubleshooting guide.

d. Visualization

DIA4M has many modules and features. Visualization is done according to the requirements. The

four key features and visualizations that distinguish the tool from others are as follows.

Service Mapping Feature: The service mapping feature includes handling file uploads, reading the

CSV file, extracting columns, filtering data, generating output with nodes and edges to be visualized

and used as input in other analytics related modules. As shown in Figure 43, DIA4M employs a drill-

down approach in its service mapping, using node-based visualizations to adhere to user

experience principles by avoiding information overload in a single view. It offers the ability to adjust

the strength between nodes using a slider interaction.

Compared to other well-known service maps, a unique feature of DIA4M's mapping visualization is

its flexibility. As the number of services and their dependencies increase, the mapping still maintains

its clarity for DevOps engineers by offering the ability to change the distance between nodes using

a slider interaction.

5 Elastic. Elastic apm documentation. Accessed: 10-Dec-2024. [Online].

Available: https://www.elastic.co/docs/current/integrations/apmhow-to-

use-this-integration

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 64 of 165

Figure 43: Service mapping by log file

Anomaly Detection Feature: Anomaly detection is an important aspect of system monitoring,

especially to identify irregularities in log data that may indicate possible system failures or security

breaches. This process uses a mixture of statistical methods and domain-specific heuristics to

improve detection accuracy. Anomaly scores derived from logs guide DevOps engineers in

identifying areas that require attention, as shown in Figure 44.

Figure 44: Anomaly detection with scoring

Service Health Feature: The Services Health Summary UI in DIA4M redefines the way DevOps

engineers analyse microservice performance through a visually engaging table with embedded line

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 65 of 165

graphs as shown in Figure 45. This interface provides a comprehensive view of critical metrics for

each service.

Figure 45: Each service`s health status in a single view

Logs Comparison Feature: The Log Comparison feature facilitates the analysis of existing logs in

relation to those in previous versions and enables users to discern changes and patterns in log

data. Using the "Horizontal Comparison" method, the tool clusters messages based on their

instances in each log file and then compares these clusters, highlighting differences and similarities.

This approach allows for a detailed examination of log data and supports selective analysis of

specific log areas of interest, increasing the ability to effectively understand and monitor log

changes, as shown in Figure 46.

Figure 46: Logs comparison feature

Visualisation requirements

There are 9 functional requirements for this use case. The 10th requirement is related to the

visualization of the first 9 FRs.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 66 of 165

Figure 47: Visualization requirements

e. Evaluation Setup

DIA4M users can easily select their microservice monitoring type with these three selections:

● Directly from Kubernetes Cluster

● Via a Cloud Provider (Amazon Web Services, Google Cloud, or Microsoft Azure)

● Via Localhost

Additionally, four different monitoring systems are available for better visualization and analysis for Cloud

Provider and Localhost selections, which are Prometheus, SigNoz, Zabbix, and Datadog.

Figure 48: Evaluation setup environments

In addition, to prove whether the microservices are running after new version deployments, we used

Vercel Deployment Management as a third way.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 67 of 165

Figure 49: Vercel setup environments

f. Evaluation results and Recommendation for industry

adoption

The evaluations and recommendations made by the DevOps team are as follows. Only the points

where additional development is requested, and recommendations are reported here. General

evaluations and KPI targets are reported to have been met.

Product Implementation Sample#1: CPU & Memory Metrics for Microservices

CPU usage, memory usage and image sizes of microservices can be observed in a single, dynamic

designed, modern looking dashboard. Any microservice can be selected in CPU Usage and Memory

Usage tables for comparison. Also, their time ranges can be adjusted from “last 30 minutes” to “last 1

year”. Further, zoom in and zoom out features exists for checking detailed analysis for DIA4M users. All

selected microservices’ cpu and memory usages can be seen as timestamp log files format in the tables

below. In addition, all selected microservices’ docker image sizes, which shows their diskspace, are

observable.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 68 of 165

Figure 50: CPU usage, memory usage and image sizes of microservices

Recommendation#1: Heap memory usage and memory breakdowns can be added. Typically, heap

memory usage refers to the memory (RAM) usage of virtual machines in an environment using

hypervisor or virtual machine technologies. The hypervisor manages the memory usage of the system

and balances the amount of memory allocated to each virtual machine with the total memory capacity

of the physical machine.

Product Implementation Sample#2: Vercel Deployment Management for Release Branch

Tracking

The Vercel Deployment Management module in the DIA4M Tool provides an efficient and secure

way to manage and monitor microservice deployments. By leveraging Vercel's free and user-friendly

platform, this feature simplifies the deployment process, particularly for tracking release branches.

This integration allows users to observe the deployment status of their microservices and ensures

that non-release branches are flagged with warnings to maintain proper version control.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 69 of 165

Figure 51: Vercel Deployment Management Module

Recommendation #2: Information about where the branches are deployed can be added. This

information can be retrieved from the pipeline config. Targeted IP address can be shown, and GIT

link can be added to Latest Commit.

Product Implementation Sample#3: Anomaly Detection Module

The Service Anomaly Detection module aims to enhance monitoring capabilities by implementing a user-

friendly and dynamic anomaly detection system. The system provides insights into service metrics and

anomaly scores, allowing users to identify and respond promptly to unexpected deviations in

performance.

Figure 52: Anomaly Detection

Recommendation #3: There should be a notification mechanism such as email and sms for

anomalies. These notifications should be configurable according to the anomaly score. In addition,

a link should be added to access the logs related to the anomaly.

General Recommendation: The developed solution is a successful solution that analyzes and

monitors microservices in detail. The solution can be developed to give and receive

recommendations for small actions. For example, it should be able to give suggestions such as

“restart the system if you see this alarm”.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 70 of 165

7. Use-Case 5 from Kuveyt Türk

a. Use-Case Description

Banking Systems Overview: Banking systems are platforms that store all customer, account,

transaction, and system configuration information for a bank. Unlike other systems, transactions

are extremely fast, and system and service continuity is nearly 100%. Additionally, data

consistency and high levels of system and data security are essential. Another distinction is that

banking services can be accessed through distribution channels such as ATMs, the internet, and

mobile devices. With the widespread use of these channels, the importance of continuity and

security has increased.

Banking System Worked On: The BOA Banking Platform enables the entire banking system,

including channels, to operate on a single platform. This integrated system not only speeds up

processes but also reduces IT operation and investment costs, offering a significant advantage,

especially in new product development.

BOA is a comprehensive banking platform that allows all necessary banking functions to operate

on a single platform. Currently, it is actively used by six banks and two financial institutions. It

incorporates the participation finance knowledge and corporate capabilities that Kuveyt Türk has

accumulated over more than 30 years. Additionally, it has been developed by a highly

experienced technology team. It is the most up-to-date and stable banking software package

actively working in the market. It is continuously updated to meet customer needs, global trends,

security requirements, and rapid technological advancements. Approximately 650 qualified

engineers are actively working on the product, ensuring it remains a robust and current banking

platform.

The platform is currently active in Kuveyt Türk, Emlak Katılım, Vakıf Katılım, Destek Bank, Golden

Global banks, Turkcell Finansman, and TOM Digital companies in Turkey, as well as KT Bank AG

in Germany. Some modules are also operational in Kuwait Finance House in Kuwait. It is a

banking software product approved by the Turkish Banking Supervision and Regulation Authority

(BDDK) and the German banking regulator BaFin.

The platform includes modules for core banking, loans, treasury, foreign trade, international

banking, payment systems, CRM, campaign management, financial control, accounting, digital

banking (mobile (iOS, Android), internet), direct banking, branchless banking, ATM, XTM, call

center, telephone banking, corporate integrations, collections management, human resources,

administrative services, purchasing management, mobile sales automation, budget management,

artificial intelligence models, and all other modules a bank might need. It continues to serve more

than 10 business channels with over 10,000 screens, more than 1,500 business intelligence

reports, and over 1,200 business processes.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 71 of 165

Figure 53: Banking Backend Framework

In addition to all these features, BOA can be considered one of the pioneering low-code platforms.

Its infrastructure modules are entirely definition-based, making it very easy to develop new

modules or update existing ones. The application architecture is straightforward and easy to

understand. It has been developed by incorporating the best practices from PMI, Agile, COBIT,

ITIL, Owasp, VISA, MasterCard, ISO, and other international standards and global experiences. It

does not require purchasing additional licenses to operate. The application update (DevOps) cycle

is simple and is managed with the software that comes with it. BOA includes an application called

BCP (BOA Change Protocol) for data model and application updates. Data dictionary and data

model management, as well as software development lifecycle management (SDLC), are handled

through its internal modules. Errors and performance issues that arise during operation are

automatically detected, and a bug report is generated for the relevant developer through the

responsibility management system to resolve them. Source codes are continuously scanned using

CAST and SonarQube applications, and critical findings are addressed to ensure ongoing

improvements in code quality. Its modular structure allows for easy installation.

One of the primary advantages of BOA is that it simplifies complex banking transactions into a

plug-and-play format in the digital environment. Its simple structure allows for quick setup from

scratch, and the operating cost is very low. It is also an easy system to learn.

Additionally, BOA has a comprehensive infrastructure that ensures business modules operate

stably, securely, and with high performance. Business process management, digital document

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 72 of 165

management, central authorization, logging, scheduled task management, definition-based

application infrastructures (such as accounting, commission, receipt, etc.), information

management, corporate mobile application platform, in-office document management (BOA

Cloud), central transaction management (limit, authorization), and fraud management

infrastructure modules all work in a definition-based and performance-oriented manner.

One of the most significant advantages of the BOA platform is its security. Leveraging the best

international experiences, security analyses and tests are conducted separately for each module

and channel. The security analysis and testing process is naturally integrated into the entire

development process. Advanced NT, SSL, and multi-factor authentication methods are active

options in BOA. Oauth2 features include data encryption, single-point authentication, and regional

IP restriction.

Another advantage is the emphasis on performance at all levels of BOA. It is designed to be

easily scalable, and areas that could cause bugs and performance issues are made accessible for

developers. Thanks to these superior features, in its early years of development, BOA achieved

the highest number of transactions per second, with 14,200 transactions per second, in tests

conducted at Microsoft Redmond laboratories, setting a world record.

The BOA™ brand represents the application software infrastructure that forms the core of banking

applications developed by Kuveyt Türk. The Core Banking Platform (BOA) features a 3 -tier

architecture (database servers, application servers, and branch servers). The client side includes

WPF, React, Android, iOS, and ASP.NET, while the middle tier uses C# (WCF), and the data tier

uses MSSQL.

Motivation: Monitoring code quality and security in the banking system is crucial, especially given

the recent cyber-attacks targeting banks with security vulnerabilities. Ensuring the continuity of the

banking system is therefore essential.

Typically, banks that offer individual services aim for an average continuity rate of 99.99%. To

achieve this, they allow for a maximum of 52.56 minutes of service interruption per year. This

99.99% continuity rate, often referred to as "four nines," equates to 52.56 minutes of downtime

annually. A slightly lower continuity rate of 99.9%, known as "three nines," translates to 8.76 hours

of downtime per year, which is considered quite lengthy for the banking sector. In 2021, the total

downtime across all systems amounted to 480 minutes, with 180 minutes attributed to A Class

interruptions (affecting all channels) and 300 minutes to B Class interruptions (affecting only one

channel).

Efforts have been initiated to reduce both the duration and frequency of these interruptions. It has

been determined that the most effective way to address this issue is by enhancing code quality,

security, and performance.

Goals: Our BOA Banking infrastructure framework (Business Oriented Architecture) will be used in

the use case. BOA is used as a banking framework in many banks in Turkey and the Middle East.

BOA has a Monolithic Architecture, avoiding unnecessary stratification and over architecture as

much as possible, while providing visual experiences that make life easier for users with a service -

oriented, performance and traceable infrastructure.

In such large multi-channel systems, any unnecessary added layer to the architecture later returns

as maintenance cost and flexibility issues. On the other hand, overly primitive designs negatively

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 73 of 165

affect rapid automation, horizontal scalability, parameterization, and standardization in software

development processes.

It is essential that the system supports horizontal scalability with a physical 3-tier architecture. Here,

it was possible to design and host core business processes in logical units in the middle layer, and

to take the burden of transaction management and orchestration from the data layer. The

architecture supports the "Service Bus" topology to allow software development automation. In this

way, it is possible to design "strongly typed" transfer objects or contracts for declarative

programming of requests flowing on the Service Bus. Business processes can be designed quickly

with the "software generating" engines of the system

Figure 54: Business Processes

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 74 of 165

Figure 55: Business Services

Transaction management is automatically managed by the engines of the system, not by the

software development teams. Otherwise, nested, and distributed transactions, which increase

transaction times, make it impossible to manage the system. In the data layer, there is a minimum

business, if possible close to zero, in this layer atomic simple objects are used. The front-end

architecture was standardized as much as possible and designed in a declarative model to support

switching between different front-end technologies.

Kuveyt Türk Main Banking Program (BOA) consists of approximately 14.8 million lines of code in

total, of which 85% is .NET and 10% is SQL based. The BOA Framework receives approximately

100 GB of data and 45 TB of system log data per month. ELK structure is used to collect system

log data. In test environments, Jenkins is used for compilation and Azure is used for building the

source code, DevOps is used for deployment. In the live environment, Azure DevOps is used for

both compilation and deployment. DevOps techniques are used in code deployments and

SonarQube application is used to analyze code quality. Also Fortify is used for Code Security.

Increasing the quality of code between versions is one of our important business requirements.

Problems and Challenges: Deployments are carried out monthly, incorporating numerous

changes each time. The goal is to shorten the intervals between these versions, necessitating

continuous integration and continuous improvement.

Each deployment involves approximately 1,000 DLL changes across about 50 channels and 100

different applications. Thousands of files undergo code changes between the monthly

deployments, and hundreds of requests and calls are logged in the demand call system.

Monitoring code quality, security, and performance changes between these versions poses a

challenge. Sometimes, efforts to enhance code quality and security can negatively impact the

system's overall performance, while also increasing its size and complexity.

The SonarQube application, used for code quality, provides outputs for code analysis, code

review, code quality, and code coverage. However, it does not assist with static code analysis and

delta analysis, nor does it offer personnel-based reports by analyzing commit histories in projects.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 75 of 165

There is no correlation between code quality and the performance of the work done, and it does

not propose design improvements for future structures based on this association.

System performance monitoring and analysis of changes between versions are conducted using

traditional methods. Performance metrics for cross-version requests need to be analyzed.

User Stories: The focus is on analyzing code quality and performance within the BOA (Business

Analytic Architecture) core banking platform, which involves a substantial amount of code,

logging, journal entries, and performance metrics. It is essential to manage the deltas that arise

between deployments. There are two stories below.

Story A: Code Quality Measurement Approach:

A Software Development Engineer is involved in various tasks and makes code changes across multiple

projects. While they can use code quality tools to monitor the analysis of these projects, they cannot track

the differences in code quality metrics between two versions. Similarly, they are unable to follow the

results of static code analysis or review design proposals for future projects. Based on personal commit

history, it is also not possible to observe code quality metrics on an individual or project ba sis.

Story B: Cross-version Performance Detection:

When a performance issue or system interruption occurs after a version transition, it is the responsibility

of the infrastructure engineer to identify the problematic code blocks. However, tracking all the code

changes made after deployment is a challenging task for the engineer.

Firstly, pinpointing the source of the performance issue is essential. This requires generating reports using

traditional methods, which involve metrics such as the average request time and the number of errors.

This process is time-consuming, and traditional methods do not support delta analysis.

Although pre- and post-version comparisons are conducted monthly during each deployment process, it is

not possible to compare the deltas of version changes.

b. Link to SmartDelta Methodology

Extracting, analysing and visualization of the request performance data & code quality metrics of

the main banking system is done.

Placement in the SmartDelta-Methodology:

• Condition Assessment

• Prediction

• Visualization

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 76 of 165

Figure 56: Kuveyt Türk Use Case - Mapping to Methodology

c. Tool Description

DETANGLE®, a software suite to analyze software and locate and measure Technical Debt and

knowledge distribution issues in R&D projects, with the following capabilities:

 - Identify the Technical Debt that really endangers the future of the software.

 - Know the effort required to get the Technical Debt under control

 - Locate all code and architecture quality issues to efficiently counteract it

 - Examine the organization as a cause for quality problems

 - Maintain the ability to innovate by limiting maintenance effort

DETANGLE is an ideal fit for our specific scenario as it seamlessly supports our objective of

establishing a correlation between production performance metrics and software quality metrics. Our

plan involves utilizing DETANGLE's software quality metrics while contributing our performance

metrics for seamless integration within the DETANGLE dashboards.

Figure 57: Kuveyt Türk Use Case and DETANGLE

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 77 of 165

The reference architecture is as below.

 Figure 58: Reference architecture with DETANGLE

d. Visualization

Kuveyt Türk has monthly deployment cycle and software deployments can impact performance

metrics. By analyzing these metrics monthly, we can effectively correlate changes over time.

Detailed breakdown of the features and bugs were mentioned as below. We have provided insights

into the total effort invested and how that effort has been distributed across different issue types during

each monthly period.

Figure 59: Visualization

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 78 of 165

Static code quality metrics integrated from Sonarqube. These metrics provide valuable insights into the

quality of our codebase

Figure 60: Visualization and metrics from Sonarqube

In the timeseries below, we keep a close eye on specific projects and their PDI (primary debt index)

values, allowing us to delve deeper into the details when we seek to enhance our project's

extensibility.

Figure 61: PDI Visualization

 Regarding architectural maintainability of our project, these metrics provide insights into how

manageable it is to maintain our project. In simpler terms, it tells us how straightforward it is to identify

the specific code segment responsible for a bug and how likely we are to fix it without having to make

extensive changes to multiple code modules.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 79 of 165

Figure 62: Architectural maintainability visualization

By utilizing various technical debt metrics, we gain the ability to track the amount of effort and time

required to address issues within our codebase. This proactive approach allows us to systematically

reduce the technical debt that accumulates over time in our project.

 Figure 63: Technical debt metrics visualization

For virtually every metric, we can observe trends in the quality metrics as they evolve over time. This

allows us to zoom in on specific time ranges and conduct a more detailed examination of our project.

As an illustration, we'll look at some performance indicator metrics and their trends.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 80 of 165

Figure 64: Visualization of quality metrics over time

Moving on to another aspect of our developer analysis, we have a dedicated page featuring a network

diagram. This diagram visually illustrates the knowledge-sharing dynamics among our developers with

respect to code modules. In this visualization, circles represent contributors, squares represent code

modules. You can see “Furkan” as highlighted.

Figure 65: Visualization of developers’ knowledge sharing

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 81 of 165

According to the knowledge sharing dynamics we identified, we can also show knowledge sharing

metrics for folder modules. As you can see in the bubble chart and the table, some projects (folders)

have very high percentage of “LOC Knowledge Island”, which means stated percentage of the folder

module is developed by only one contributor.

Figure 66: example of a LOC Knowledge Island

We can also visualize the network graph with features and files. In the following network diagram,

rectangles represent files and circles represent features. We filter the issues and the files that are not

coupled to each other and show only the problematic ones.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 82 of 165

Figure 67: Visualization of features and files network

Visualisation requirements

There are 5 functional requirements for this use case. The 6th & 7th requirements are related to the

visualization of the first 5 FRs

Table 5: KPIs overview table

Requiremen

t
KPI Definition

KPI

Base

Values

KPI

Target

Values

Description

UC5.FR6
We need to visualize analysed

data
0% 100%

Data table, gauge, horizontal

& vertical line and bar, pie

chart, metrics, time series

can be visualized on

dashboard

UC5.FR7
We need to visualize analysed

data
0% 100%

Dashboards include code

performance & quality

changes for each

deployment, code status

metrics, project quality

metrics, responsibility

metrics, time series for each

deployment. Also dashboard

can be generated by end-

user

e. Evaluation Setup

In Story A, Code Quality Measurement Approach, static code analysis was performed via SonarQube.

By using SonarQube APIs, integration between Detangle and SonarQube was done. Within the scope

of this story, UC5.FR3 and UC5.FR4 requirements are met.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 83 of 165

Within the scope of Story B, Cross-version Performance Detection, Journal and log data were started to

be stored using queuing systems on Elastic Search (ELK) to track and analyze the system performance

(request average duration) after monthly deployments. Integration is made with Detangle in Csv format.

The requirement UC5.FR1 & UC5.FR2 are expected to be met.

Figure 68: Framework journal topology

f. Evaluation results

Table 6: KPIs overview table

Req. Tools
Solution

partner
KPI Definition

Base

Value

Target

Value

Achieved

Value

UC5.FR1 DETANGLE ERSTE
We need to extract performance and log
data

20% 80% 80%

UC5.FR2 DETANGLE

ERSTE

We aim to analyze the performance and
log data between two deployments

0% 100% 100%

UC5.FR3 DETANGLE

ERSTE

We need to correlate the performance and
code quality data

0% 100% 100%

UC5.FR4 DETANGLE

ERSTE

We need to extract code quality data 30% 100% 100%

UC5.FR5 DETANGLE

ERSTE

We need to create personnel and project
based code quality & performance by
interacting check-ins in the code
repository with in-house project
management tools

0% 100% 100%

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 84 of 165

g. Recommendation for industry adoption

We assume high potential for improving efficiency, performance and quality of our main banking

software:

- Easy metric tracking via Detangle

- Architectural quality, project or person-based outputs, technical debt calculation, code quality

calculation, performance tracking

- Correlating and visualizing inputs and metrics will contribute to the development processes.

Challenges:

- Performance data consists of a huge data set and so, the data will be transmitted as a group

in order to prevent possible performance problems.

- In every project step, all shared data must be approved by IT Security Department.

8. Use-Case 6 from Software AG

a. Use-Case Description

Motivation

Enterprises are highly dependent on the availability and reliability of their software in today’s

world. Many functions become impossible or severely slow down when the software cannot be

used or trusted. Software AG recognizes its important place in the industry as a supplier of world-

class enterprise software and strives to provide its customers with high levels of security,

reliability, and quality in the software it provides.

This led to the development of specific policies, controls, and procedures within the company that

rely on design, development, and testing artifacts to ensure given characteristics of the products.

This decade-long focus of the company naturally resulted in high quality, reliable and secure

software for enterprises. However, the artifacts and accompanying controls are often static and

may not well support the intent of the company to provide continuous improvement.

Software AG delivers a multitude of products both for on-premises and cloud use. These products

are delivered by thousands of people producing millions of artifacts. Every event in the lifecycle of

a product is recorded and can be referenced. This daily increasing information could be used to

automatically deliver important insights into the current trends in software quality and security

supporting Software AG’s intention to continuously improve the quality of the software and set the

best possible quality and security standards for the industry.

Challenges

Software AG faces several challenges in the production of enterprise software, especially related

to the massive amount of code and other artifacts accumulated over time. We expect these

challenges are universal for any company that develops a non-trivial amount of software.

1. Repetition of design, code, and tests: There is a large amount of possible reuse of code

fragments, components and tests that is not possible to tackle in a manual way due to the

sheer size of the source base. For instance, there can be issues similar to something already

being developed and developers could save the effort if they would be aware of this.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 85 of 165

2. Code quality: Maintaining high code quality is a key aspect for delivering secure, reliable

and performant software. A common problem in this context is that the code produced could

be sub-optimal and there could be "a better way" but the developers are not aware of this.

One potential way to solve this problem is through training but an automatic system pointing

out changes leading to sub-optimal performance, e.g., based on "Lessons Learnt", could

potentially improve the code even further.

User Stories

Story A: Product development

The developer writes and checks in code on a regular basis. The code adds to the code base of

the product and the suite. It is important for the developer and the management to know that the

code is suitable and properly written to avoid future re-work.

The developer expects that the various tests will confirm that the code is performing as expected

but this confirmation is first available after some time after the developer submits the code. So,

the further away from the developer the testing moves, the more likely it is that a required re-work

would not be done immediately but will have to be scheduled as a new piece of work, lowering the

overall efficiency.

The management is naturally interested in following up on the situation because more re -work and

re-work further down the line means more resources tied up and not going towards the

development of new functionalities. Currently, the management must rely on KPIs such as the

number of tests passed or failed and customer reports to judge the code quality. This feedback is

somewhat retarded and poorly reflects the situation.

Story B: Code re-use and re-factoring

Design and code contain numerous blocks that could be viewed semi-independently from the rest

of the product. These components are often similar between different products and different parts

of one product. The code follows function, so we know that for similar functions we will observe

similar code.

The developers often try to re-use the design and code but lack tool support that would allow to

map the desired design patterns to existing components and code fragments.

Conversely, when a fragment is found that does not properly contribute to the quality of the

software as we expect, there is a pronounced difficulty in finding similar code fragments or

components that would likely benefit from refactoring as well.

Functional requirements

• UC6.FR1: The solution must be able to perform the analysis of the development artefacts

recorded both in semi-formal and natural language shape in an automated manner to

gather the necessary information for further advice on decision taking by management,

development, and testing.

• UC6.FR2: The solution must be able to provide a running estimate of the overall product

code quality and trend for the management.

• UC6.FR3: The solution must be able to provide an actionable indication of the source

code fragment’s quality submitted to it for inspection.

• UC6.FR4: The solution must be able to select existing code fragments that require

refactoring to improve the code quality or security based on existing fixes’ analysis.

• UC6.FR5: The solution must be able to provide suggestions for design and code reuse

based on the natural language description of feature requirements.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 86 of 165

• UC6.FR6: The solution must be able to propose categorizations (labels) for the issues

based on the issue title and description, e.g., determine whether an issue is security

relevant or not.

• UC6.FR7: The solution must be able to provide a ranking of tests within the whole test

base of the product by their relevancy to the feature description and/or code changes.

• UC6.FR8: The solution must be able to suggest tests for reuse based on feature

description and/or code changes.

• UC6.FR9: The solution will provide integration capabilities by supporting scripting and API

calls while returning outputs in formats that allow for automated parsing.

•

Non-functional requirements

• UC6.NFR1: The solution must be able to operate on reasonably complex code bases and

numbers of artefacts (tens of thousands of lines of code).

• UC6.NFR2: The solution must be automatic beyond the installation and configuration stage, i.e.,

not require a constant human input or supervision.

• UC6.NFR3: The solution must have a low false positive rate even at the expense of a high false

negative rate (bias for low noise).

• UC6.NFR4: The solution must be able to operate with reasonable speed with a reasonable

amount of resources, like a single contemporary Intel based server computer

b. Link to SmartDelta Methodology

The SmartDelta methodology provides a structured approach for leveraging deltas between

artifacts generated in software development processes to address challenges in software

development such as software quality management and artifact reuse. The following section

describes in more detail how the SmartDelta methodology, its stages and corresponding tools

(Figure 69) were applied to our use case to

1. reduce the repetition of design and code,

2. leverage Lessons Learnt to improve quality and

3. automatically classify security-related issues for faster treatment.

Figure 69: SmartDelta Methodology stages (red boxes) and tools used in the Software AG use case.

Requirements Engineering

In this stage, we process new incoming issues, such as new feature requests and bug reports, to

identify security-related issues that need to be addressed as fast as possible, and to detect

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 87 of 165

similarities to already completed issues which may point us to reusable software artifacts to

reduce repetition of design and code.

We address the former task by using the Automatic Issue Labeling Tool (AILA) developed by

IFAK. It automatically identifies security-related issues which allows us to prioritize and assign

these issues to corresponding experts for faster treatment. This helps us to fix security-related

issues in less time and frees time of our security experts, which in turn can be spend on other

important tasks.

For the detection of reusable artifacts, we use IFAK’s Automatic Issue Similarity Analysis Tool

(AISA). It allows us to automatically compare incoming issues with all existing ones stored in our

database. This can point us to existing design and code artifacts that could be reused or adapted

to solve the incoming issue. It also enables us to detect duplicate issues more effectively. Through

AISA, we can effectively search our massive and ever-growing base of software development

artifacts, which would not be possible before because of its sheer size. This helps us to effectively

reduce the amount of repetition in design and code, which not only can save time but also helps to

improve the overall code quality.

Quality Assurance

In our use case, we are interested to make use of “Lessons Learnt” to improve the quality of our

code base. A common problem is that the code produced by the developers could be sub-optimal

and there could be "a better way" but the developers are not aware of this. We tackle this

challenge by using the Code Similarity Investigator (CSI) tool developed by TWT, which computes

the similarity between two classes or methods. If we use the tool to compare new code with code

that has been fixed in the past and obtain a high similarity score, it might be the case that the new

code is affected by the same or similar issue. This helps to avoid similar errors across different

products, projects, and development teams. Additionally, the identified fixes can provide hints for

the implementation of better code.

Incremental Development

In this stage, we analyze and use the results obtained in the Requirement Engineering and Quality

Assurance stages to select reusable artifacts and provide developers with guidelines and hints to

improve their code.

For each pair of new and similar existing issues identified, it is now determined, whether the

existing code and tests associated with the existing issue can be reused to implement or solve the

new issue. This step is ideally carried out by the developers who implemented the code and tests

to be reused. They decide whether to use the existing artefacts as-is, modify them, or discard

them in favor of a new implementation.

The process for the detected code similarities to fixed code in the past are processed in a similar

way. The developer receives the detected similar code snippets along with the corresponding

fixes to check if his/her code is affected by the same issue. If so, the developer can improve the

code based on the provided fixes.

Monitoring and Visualizing

In the last stage, we use a dashboard along with standard visualizations to provide information

and insights about the previous stages and related KPIs to the management. This includes, e.g., a

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 88 of 165

line chart visualizing the quality trend of selected products over time or a bar chart illustrating the

number of already used and potentially reusable software artefacts.

c. Tools descriptions

The following section describes the tools used and evaluated in Software AG’s use case. For

further details about these tools, please refer to document D4.5 - SmartDelta Quality Optimization

and Recommendation Methodology.

AILA – Automated Issue Labeling Analysis (IFAK)

IFAK developed a tool for software requirements and issue classification in close collaboration

with Software AG. The recommendations on non-functional properties such as security relevance

will support development and test teams to reduce time spent on security issues identification,

prioritize their requirements and monitor the quality of their software between different versions.

Modern issue tracking systems shall support software development teams to keep track about

possible bugs, feature requests and critical quality issues such as potential security gaps in their

products. Still, a huge effort of advanced security experts is required to review textual issue

descriptions manually and judge on potential risks and decide on the security relevance of the

issues.

Figure 70: Issue classification flow

For solving these issue classification problems, IFAK has conducted thorough studies and

experiments using modern Machine Learning methods and language models such as BERT. One

interesting research aspect is the continual learning approach for training a ML model in iterative

steps throughout several versions of the code development. Usually, there is the so -called

"catastrophic forgetting" which makes it very difficult to train classification tasks incrementally.

IFAK analyzed and evaluated several state-of-the-art approaches that aim to improve this

behavior. They identified that Continual Lifelong Learning approaches, e.g., with Experience

Replay, perform much better than standard Transfer Learning and Multi -Task learning techniques.

Figure 71: Software product quality categories

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 89 of 165

Requirements can be classified into different types depending on the purpose for which they are

needed. For example, requirements can be categorized based on their functional category to

facilitate partitioning and reuse of requirements or based on their quality category to identify non-

functional requirements. IFAK follows the ISO/IEC 25010 software quality attributes: functional

suitability, performance efficiency, compatibility, usability, reliability, security, maintainability,

portability. They use a pre-trained BERT base model as the base model. This model will be further

trained for the request domain to use the domain-specific information.

AISA - Automated Issue Similarity Analysis (IFAK)

IFAK also developed a tool for issue similarity analysis in close collaboration with Software AG.

The recommendations of similar issues and bug duplicates will save time for solving identical

problems and is the basis for supporting the development and test team in the reuse of code and

tests.

There are many approaches in the literature for bug duplicate detection. Some basic approaches

use statistical information based on words such as Bag of Words, BM25 and TF-IDF. More recent

approaches use Machine Learning/Deep Learning models based on syntactic information such as

CNN, Siamese NN and word embeddings. The state-of-the-art are advanced Deep Learning

models based on semantic information, such as Sentence-BERT and other Large Language

Models. IFAK has studied many of those approaches and applied them to publicly available issue

datasets with labelled bug duplicate information.

Most recently, there have been emerging developments for storing the vector embeddings in

common databases, e.g., ChromaDB. This makes it very efficient to obtain different issue

descriptions and related embeddings and calculate the similarity scores between them. As the tool

is intended to work in an industrial context and should be able to process thousands of issues,

IFAK has integrated this solution. As a first step, the tool processes a large corpus of existing

issues and creates the related embeddings. Secondly, the new set of issues are used as input

and the similarity scores to all other issues will be calculated efficiently. In most papers, the top k,

e.g., k = 5, results of the similarity analysis are recommended. However, IFAK uses a different

metric in that they recommend only those issue pairs that have a similar ity score above some

defined threshold, say 0.85. This way, the user will review less false positives (FP) and obtain

more true positives (TP).

Figure 72: Similarity score calculation

CSI - Code Similarity Investigator (TWT)

Code Similarity Investigator (CSI) is a tool designed by TWT to help software developers navigate the

increasing complexity of modern codebases. As software systems grow more intricate, developers

face significant challenges in maintaining code, reusing existing functionalities across projects, and

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 90 of 165

complying with regulations. CSI addresses these difficulties by providing automated support for code

reuse suggestions, identifying suitable opportunities for API replacements, guiding refactoring efforts,

and helping to prioritize test cases. In doing so, it alleviates the burden of repetitive tasks and

streamlines development workflows.

Unlike traditional code similarity tools, which primarily detect syntactic clones, CSI leverages graph-

based code representations to capture semantic nuances. Previous methods, such as CCFinder and

JPlag, have effectively detected exact or near-exact duplicates but often struggle with language

limitations and fail to fully understand deeper code behaviors. Recent advances have introduced

semantic analysis through Code Property Graphs (CPGs), which unify structural (AST), control-flow

(CFG), and data-flow (PDG) information. These graph representations offer more meaningful code

similarity analysis and vulnerability detection, with techniques like GNN-based embeddings further

enhancing the capability to identify functional similarities.

At the core of CSI’s methodology is the use of CPGs to model code sections. By extracting appropriate

subgraphs, the tool concentrates on relevant parts of the code, striking a balance between contextual

richness and computational efficiency. CSI then applies Graph Edit Distance (GED) calculations to

assess how closely two code graphs resemble each other. Since computing GED is NP-hard, the

approach relies on approximate algorithms to maintain practical runtime performance. This allows CSI

to handle large, real-world projects without excessive computational resources.

CSI marks a step forward in automating code similarity analysis. By integrating semantic -rich code

graphs with efficient similarity calculations, it enables developers to more easily maintain large

codebases, accelerate development cycles, and ensure more consistent code quality. Future work

on CSI will focus on expanding testing across diverse code repositories, refining approximation

algorithms for better scalability, and exploring machine learning enhancements.

d. Visualization

Dashboard solution

Figure 73: SmartDelta Dashboard for Software AG's use case

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 91 of 165

Visualization requirements

Apart from the dashboard and corresponding visualization for the management, we did not specify

any additional forms of visualization. The reason for this is that we are planning to use and

integrate the SmartDelta solutions developed for our use case through APIs only and visualize

their outputs using existing tools of our infrastructure such as Jira if necessary. The list of

requirements for the management dashboard is shown in table below.

Table 7: KPIs overview table

Req. ID Title Description

D5.UC6.1

Management

Dashboard -

Overview

The management dashboard provides an overview of different

KPIs for a selection of products. Detailed KPI views can be

opened on demand.

D5.UC6.2
Code Quality

Visualizations

This requirement describes visualizations related to the “Code

Quality” metric. It comprises the following views:

1. Number of artefacts analysed per product

2. Code quality score

3. Code quality score trend

D5.UC6.3

Issue and Code

Similarity

Visualizations

This requirement describes visualizations related to issue and

code similarity analysis. It comprises the following views:

1. Issues (implemented)

2. Issues (implemented)

3. Issues (open)

D5.UC6.4

Test

Recommendations

Visualizations

This requirement describes visualizations related to test

recommendations. It comprises the following views:

1. Test percentage advised

2. Test scenarios absent

3. Test efficiency

D5.UC6.5

Code Commits

Analysis

Visualizations

This requirement describes visualizations related to the analysis

of code commits. It comprises the following views:

1. Number of degrading code commits This view shows the

number of code fragments detected in the recent

2. Frequency of degrading code commit

D5.UC6.6
Bad Code

Visualizations

This requirement describes visualizations related to the “bad

code” metric. It comprises the following views:

1. Size of bad code

2. Size of bad code (trend)

e. Evaluation Setup

The tools developed in the context of Software AG’s use case have been evaluated by Software

AG in separate evaluation setups as described below. Some of these tools have also been used

and evaluated by Vaadin in the context of their use case (UC6, Section 12). For the corresponding

evaluation setups and results, please refer to Sections 1132.E and 12.F respectively.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 92 of 165

AILA – Automated Issue Labelling Analysis (IFAK)

Background

The classification of issues for further processing is a cumbersome and error-prone manual task

that often requires expert knowledge, especially when dealing with issues that are relevant for

security. For this reason, Software AG is interested in automating the issue classification task as

much as possible (UC6.FR6) and thus set the evaluation focus of IFAK’s Issue Classifier on its

capabilities to correctly identify security-relevant issues. These include, e.g., bug reports and

support requests describing security-relevant issues such as recently discovered vulnerabilities or

proposed security enhancements.

Evaluation Methodology

The tool developed by IFAK has been evaluated in two scenarios. First, by IFAK using public data

and second, by Software AG using company-internal data. Since Software AG’s goal according to

requirements is to effectively reduce manual effort by achieving a high degree of automation, the

overall objective of model fine-tuning is to reduce the number of false positives, i.e., those issues

that are not security-relevant but are recognized by the model as security-relevant since those will

be directly manually reviewed.

AISA – Automated Issue Similarity Analysis (IFAK)

Background

Identifying similar or related issues, e.g., to newly created issues is an important prerequisite for

making recommendations for re-using software artefacts such as code and tests. The tool

developed by IFAK, in combination with other solutions, will thus form the basis for fulfilling

Software AG’s requirements UC6.FR5, UC6.FR7 and UC7.FR8.

Evaluation Methodology

This tool has been evaluated by Software AG using company-internal data. To be sure that the

results the tool produces meet the requirements and expectations, the issues marked as similar

have been reviewed manually. This is also necessary to estimate the accuracy of the tool, as

there is no duplication marker or connection between similar issues available in the dataset.

CSI – Code Similarity Investigator (TWT)

Background

When developing new software with similar features to existing products such as product variants,

it is likely that this new software requires some components and functionality, that have already

been developed before. If these parts are constructed in a similar way, it is also likely that if one is

found to expose a security vulnerability, the other one will be affected the same vulnerability as

well. The tool developed by TWT, in combination with other solutions, will thus form the basis for

fulfilling Software AG’s requirement UC6.FR4 by providing suggestions of similar code fragments

to sections, that have already been identified to include vulnerabilities or other issues.

Evaluation Methodology

To evaluate the CSI tool, it has been fed with company-internal data by Software AG. Since the

tools goal is to find similar code fragments or components, the evaluation purpose lies within

reducing the number of false positives and in promoting those fragments to the user that show the

highest similarity. As there are no similarity indicators available in the dataset, the evaluation took

an explorative approach, trying to identify patterns in the tool’s results as well as manual

classification of subsets.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 93 of 165

f. Evaluation results

AILA – Automated Issue Labeling Analysis (IFAK)

Experimental evaluation by IFAK

IFAK trained and evaluated the Issue Classifier on 10k publicly available issues published on the

GitHub repository of Microsoft’s Visual Studio Code IDE. The purpose of this initial evaluation was

to get some initial results regarding the accuracy of the classifier tool before proceeding with the

data of Software AG. It is known from the literature that fine-tuning is helpful due to the ability of

the BERT model to transfer learning, i.e., to transfer the knowledge on which it was trained to a

similar task or similar data. This initial evaluation was conducted on a qualitative basis and

showed promising results, as several security related issues were correctly classified. A more

detailed quantitative evaluation was skipped to focus on testing the model in the context of

Software AG's use case and its data.

Use case-oriented evaluation by Software AG

We evaluated IFAK’s Issue Classifier and its capabilities to generate ML models for predicting

whether an issue is security-relevant or not in multiple steps. Thereby we trained and fine-tuned

different models based on IFAK’s model pretrained on 10k GitHub issues and on the original

BERT model and using different SAG-internal ground truth datasets.

The issues of these datasets have been annotated with a reliable “security flag” indicating that the

issues are either security-relevant or not. The SAG-internal ground truth data comprises the

following datasets:

1. SAG_small – This dataset comprises 936 issues manually labelled as security-relevant or

not by a security expert

2. SAG_small_v2 – This dataset comprises all issues of the SAG_small dataset but contains

12 additional issues that have been added later during the evaluation phase

3. SAG_large – This dataset contains 9508 issues in total. 3986 (~42%) of them are reliably

labelled with CWE labels representing the security-relevant part of the dataset, while 5522

(~58%) issues are related to localization or performance problems that can reliably

considered to be not security-relevant

4. SAG_full – The full dataset represents the union of the SAG_small and SAG_large

datasets containing 10439 issues with confirmed security labels in total

5. SAG_full_v2 – This dataset is equivalent to SAG_full but uses the extended SAG_small_v2

dataset. It contains 10451 issues with confirmed security labels in total

6. SAG_full_v2_noCSO – This dataset contains all issues of the SAG_full_v2 dataset but

those with a CSO label. These issues have been omitted since they are security relevant

but are not related to RnD security issues we are interested in. They often contain

keywords that could be interpreted as an indicator for security-relevant issues such as the

terms "security" or "vulnerability"

The following sections describe the evaluation of the generated and fine-tuned models using

these datasets in detail. Note that our focus according to our requirements is to achieve the

highest level of automation that is possible. Therefore, we are interested in minimizing the number

of false positives, i.e., non-security issues that are reported as being security relevant.

Evaluation and finetuning of IFAK’s 10k GitHub model

To get an initial impression of the accuracy of the base model trained by IFAK on 10k publicly

available GitHub issues, we used it to predict the “security flag” of ~1500 issues with known

Common Weakness Enumeration (CWE) labels. On this dataset, the model achieved a promising

accuracy of ~80%. Therefore, we conducted additional experiments to improve the accuracy

further.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 94 of 165

1. In the first experiment, we fine-tuned the model using the SAG_small dataset using five

epochs. This new model achieved a slightly increased accuracy of ~83% but still

erroneously reported 79 issues as being security relevant (8.4% of the issues). A potential

explanation was that the GitHub issues used for training the ini tial model are too different

from the SAG issues, e.g., regarding their style of writing, keywords, etc.

2. In a second experiment, we thus first finetuned IFAK’s 10k GitHub model with our entire

issue dataset containing ~1 million issues but with uncertain security labels to indirectly

tweak the model towards the issue style used at Software AG, followed by a second fine-

tuning using the SAG_small dataset. While the results of the first finetuning step looked

quite promising with an accuracy of 98.4% (the real accuracy was probably much lower

because of the uncertain labels in the dataset), the results for the f inetuning step on the

ground truth data showed very bad results in comparison with an overall accuracy of only

~52.5%. Moreover, the resulting model was not able to correctly classify any of the real

security-related issues in the dataset.

Table 8: Results for experiments 1 and 2

Input Model Input Data Epochs TN FP FN TP Accuracy

IFAK BERT

GitHub 10k

SAG_small 5 412 79 76 369 83.4%

IFAK BERT

GitHub 10k

995615 issues with

uncertain labels

5 N/A* N/A* N/A* N/A* 98.4%**

IFAK BERT

GitHub 10k +

995615 issues

SAG_small 5 491 0 445 0 52.4%

* The confusion matrix was not created because of a software bug after completing the training

** The real accuracy is very likely much lower since the input data is not reliably labelled

Evaluation and finetuning of the BERT model

Since the highest accuracy achieved in the experiments with the 10k issues GitHub model was only

~83% on the SAG_small dataset, we decided to perform additional experiments using the BERT model

as basis in combination with extended ground truth data (SAG_large and SAG_full datasets) to assess

if this could deliver better results.

As a first step, we conducted the following experiments:

3. We finetuned the BERT model with the SAG_large dataset (9508 issues) using 5 epochs. This

resulted in a very high accuracy of ~98.7%, with only 28 false positives (FP) and 94 false

negatives (FN), respectively. The resulting model was then further tuned in a second step on the

SAG_small dataset with five and 15 epochs. Interestingly, this additional tuning reduced the

accuracy of the model to ~89,2% and ~90,7%, respectively.

This indicates that the classification of the issues in the SAG_small dataset (i.e., issues manually

labelled by a security expert) is much more difficult for the model, especially if it has been

previously trained on a dataset only containing CWE-labelled issues and issues related to

localization and performance problems.

4. In the second experiment, we finetuned the BERT model using 15 epochs on the SAG_full

dataset. This dataset contains the same issues as in the first experiment but this time, they have

been processed in a single step. This model achieved an accuracy of ~97.3% with 158 FP and

122 FN.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 95 of 165

Table 9: Results for experiments 3 and 4

Input Model Input Data Epochs TN FP FN TP Accuracy

BERT SAG_large 5 5494 28 94 3892 98.7%

BERT +

SAG_large

SAG_small 5 N/A* N/A* N/A* N/A* 89.2%

BERT +

SAG_large

SAG_small 15 461 30 57 388 90.7%

BERT SAG_full 15 5855 158 122 4304 97.3%

* The confusion matrix was not created because of a software bug after completing the training

In the second step, we continued the finetuning experiments using the apparently hard to classify

SAG_small dataset and the SAG_full dataset, but this time including 12 additional manually labelled

issues that were not classified correctly in previous experiments. Moreover, we used a different number

of epochs to assess how this will impact the overall accuracy of the models.

5. This time, we tuned the BERT model on the SAG_small_v2 using 5, 10 and 15 epochs. The

highest accuracy of ~94.5% was obtained during the training with 15 epochs with just 9 FP and

43 FN.

6. For the finetuning experiments on the SAG_full_v2 dataset, we selected 20, 25 and 30 epochs.

The highest accuracy on this dataset of ~98,1% was achieved with 30 epochs resulting in 75 FP

and 121 FN.

Table 10: Results for experiments 5 and 6

Input Model Input Data Epochs TN FP FN TP Accuracy

BERT SAG_small_v2 5 485 16 94 353 88.4%

BERT SAG_small_v2 10 481 20 44 403 93.2%

BERT SAG_small_v2 15 492 9 43 404 94.5%

BERT SAG_full_v2 20 5783 240 61 4367 97.1%

BERT SAG_full_v2 25 5826 197 76 4352 97.4%

BERT SAG_full_v2 30 5948 75 121 4307 98.1%

The model generated in experiment 6 was the best performing model so far. But even though the number

of “only” 75 FP appears to be overall low, it is still too high to use the model in a fully automated manner,

as per our requirements.

To further improve the results, IFAK thus suggested to pretrain the BERT model on the entire SAG issue

dataset (1 million issues) to tweak the model towards the “style” of our issues before finetuning it for a

specific purpose such as classification of security relevance. This approach is similar to experiment 2

with the 10k GitHub issues model but this time, the training does take the potentially incorrect security

flags into account and only uses the title and description of the issues.

Evaluation and finetuning of the SAG Base Model

After receiving the updated tool with pretraining support from IFAK, we created a new base model called

SAG Base Model by pretraining the BERT model on our entire issue dataset of ~1 million issues in total.

7. For this last experiment, we finetuned the SAG Base Model using the SAG_full_v2_noCSO

dataset. This dataset is a subset of the SAG_full_v2 dataset, which does not include issues

that are security-relevant but are not related to RnD, the area we are interested in, and thus

could easily be misinterpreted because of keywords such as “security”. First, we tuned the

model using 30 epochs and observed the accuracy trend. The final accuracy of this model was

~95% with only 34 FP. Since the highest accuracy of ~98% was reported for epoch 27, we

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 96 of 165

initiated the tuning step again using 27 epochs. This time, the model only reported 21 FPs and

the overall accuracy increased slightly to ~95.2%.

Table 11: Results for experiment 7

Input Model Input Data Epochs TN FP FN TP Accuracy

SAG Base

Model

SAG_full_v2_noCSO 30 5910 34 479 3933 95%

SAG Base

Model

SAG_full_v2_noCSO 27 5923 21 479 3933 95.2%

AISA – Automated Issue Similarity Analysis (IFAK)

Experimental evaluation by IFAK

For a first experimental evaluation, IFAK identified publicly available issue datasets with duplicate

information from the paper "Duplicate Bug Report Detection: How Far Are We?" (Zhang et al.,

2023). They provided six high-quality datasets from 3 different issue-tracking platforms (GitHub,

Jira, BugZilla). IFAK has chosen the Eclipse and VSCode datasets with 27.583 issues (1.447

duplicates) and 62.092 issues (4.386 duplicates), respectively.

They evaluated the statistical methods TF-IDF and BM25, the word embedding technique

Word2Vec and several Sentence-BERT large language models (paraphrase-distilroberta-base-v1,

sentence-t5-base, all-mpnet-base-v2). As a first measure, IFAK calculated the top k most similar

issues according to the cosine similarity scores. As can be seen in the table below, about 31% of

all duplicates can be recommended as the first best result (using TF-IDF on Eclipse data). This

means, if IFAK provides the first recommendation for all 27k issues, they identify about 500

duplicates. However, it would be an enormous effort for a software engineer to check the large

number of recommendations in view of the relatively low success rate. Furthermore, providing the

top 5 recommendations would mean reviewing 5x 27k issues with only a slightly increasing

success rate of about 700 identified duplicates.

Table 12: Identified issue duplicates in the top k recommendations

Top k # Duplicates % Duplicates

1 511 31.3%

2 594 36.4%

3 645 39.6%

5 706 43.3%

10 774 47.5%

50 958 58.8%

IFAK therefore decided not to use the standard measure used in the literature, but to take the

similarity scores into account. As can be seen in the table below (using S-BERT on Eclipse data),

if IFAK defines a certain similarity threshold and count the duplicate issues among all predicted

issues, the success rate (precision) is much higher. For example, for a score threshold of 0.85 the

number of issues to be reviewed is about 1.000 with more than 400 duplica tes identified. In this

case, the number of identified duplicates compared to the total number of all labelled duplicates

(recall) is about 17%. Since the recall does not increase significantly at lower thresholds, they

considered the value 0.85 to be a good balance between human effort and identified duplicates for

a further round of evaluation at Software AG. It turned out that S-BERT (all-mpnet-base-v2)

achieved the best results compared to all other methods and models. Careful preprocessing of the

issues has also considerably increased the accuracy.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 97 of 165

Table 13: Identified issue duplicates using a similarity threshold

Score TP FP Precision Recall

1.00 237 21 91.9% 9.9%

0.95 296 113 72.4% 12.3%

0.90 352 276 56.1% 14.6%

0.85 424 568 42.7% 17.6%

0.80 586 1248 32.0% 24.4%

0.75 784 2885 21.4% 32.6%

0.70 992 6197 13.8% 41.2%

Use case-oriented evaluation by Software AG

In a first step, pre-processing and filtering rules were determined in a small subset, which then

allowed to exclude obviously irrelevant issues (e.g. automatically generated reports, empty issues,

irrelevant contents) from the results to reduce the number of issues that must be manually

classified as well as increase the share of relevant issues.

In the next step, a time-limited subset was extracted from the dataset for evaluation. This subset

contained about 4,236 issues before applying the filtering rules from the first step. For the manual

classification, an effort of over 600 minutes was put in to classify ~2,334 issues, although the time

spent is likely to be higher, as the tracking of time and issues was added later during the evaluation

process.

During the evaluation, a ratio of about 1:3.5 issues to suggestions was observed. This means that

for every issue, that has been part of the evaluated subset, there were 3.5 suggested similar issues

that have been inspected and classified.

The evaluation was conducted by two persons, who tracked time and issues/suggestions evaluated.

Person A classified 107 issues and suggestions in 14.5 minutes, resulting in a speed of ~7.38 issues

per minute. Person B classified 1,400 issues in 559 minutes, resulting in a speed of ~2.5 issues per

minute. While person A was slightly more familiar with the dataset than person B, it is likely that the

average person’s speed falls somewhere around the average of the two observed speeds. This

implicates an average speed of ~5 processed issues per minute, when the classification is done for

short intervals. The dataset used consists of an average of ~280 issues per day, which would result

in ~56 minutes of work, a person would spend to classify these using the tool as a daily task. The

suggested similar issues from the overall dataset for issues from the subset were classified as ~21%

similar and relevant, ~71% similar but irrelevant and up to 7% as not similar.

The numbers suggest that the tools objective comparison and similar suggestions capabilities have

a low error rate of ~7%, but for our use case only 21% of the suggestions were relevant.

CSI - Code Similarity Investigator (TWT)

Experimental evaluation by TWT

TWT conducted a comparative evaluation of the CSI algorithm using 38 total comparisons: 23 file

comparisons and 15 method comparisons. All method comparisons came from Vaadin, while Vaadin

also provided 9 out of the 23 file comparisons, with the remaining 14 file comparisons contributed by

Software AG. The CSI algorithm assigns each pair of items (files or methods) one of four labels—no,

low, medium, high—indicating perceived similarity.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 98 of 165

TWT converted these labels to numerical rankings from 0 to 3 (no=0, low=1, medium=2, high=3). Each

pair’s accuracy is determined by taking the absolute difference between the programmer’s label

(ranking) and the CSI label. A difference of 0 means complete agreement, 1 indicates mild

disagreement, 2 represents disagreement, and 3 implies strong disagreement.

This process was repeated before and after performing hyperparameter tuning. By comparing how

many comparisons fall under each different category (0, 1, 2, or 3), TWT assesses whether the tuning

helps align the CSI scores more closely with the programmers’ judgment.

For file comparisons, there is a notable improvement after tuning: perfect matches (difference=0) rose

from 5 to 10 out of 23, while no comparisons had a difference of 2 or 3 post-tuning (compared to 3

cases of difference=2 before). This clearly shows that tuning made the CSI algorithm much more

consistent with the programmers’ labels at the file level.

Figure 74: Distribution for the file comparison

For method comparisons, the algorithm’s performance slightly dipped: perfect matches decreased

from 10 to 9, and mild disagreements increased from 5 to 6. Although the decrease is minor, it

suggests that while tuning significantly helped file-level similarity detection, it might require further

adjustments to maintain the same level of performance for method-level comparisons.

Figure 75: Distribution for the method comparison

Use case-oriented evaluation by Software AG

As outlined in the previous section, TWT performed some first experiments using input provided

by Vaadin and Software AG. For these experiments, we provided two different datasets. The first

dataset comprised code submissions written by university students. These were made of small

programs implemented according to formal exercises and allowed the comparison of different

solutions from up to three students per exercise. The advantage of this dataset was that the

included programs had the same functionality according to the exercise specifications but

represent different variations as they were developed by different individuals independently from

each other. In a second step, TWT was provided with another small dataset containing samples

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 99 of 165

for different similarity levels (none, low, medium, high). For this, an excerpt from the first dataset

was combined with some new code samples from company-internal projects. The degree of

similarity of the code samples included in this dataset have been classified manually by a

developer.

After these initial experiments performed on individual, curated files by TWT, we evaluated the

CSI tool on a large dataset containing code from multiple company-internal projects. Here, we

used full software development projects as input, including source files but also supplemental files

that may not be relevant to the tool. The tool’s task, besides comparing the files and calculating

the similarities, was to recognize project structures and ignore irrelevant files. The included

software development projects are implemented in different programming languages like Java and

JavaScript/TypeScript. While the size of the analyzed code base dramatically increased in

comparison to the first experiments by TWT, the projects were still rather small compared to

enterprise software projects in productive use, as they were mainly created for other research

projects or for experimental purposes.

To evaluate the tool’s performance, all files were run through it in an attempt to calculate the

similarity scores for all combinations of files. The results were saved in a CSV file, which was then

inspected regarding the distribution of results to find unusual behavior or accumulations. Neither

were found, but the thresholds between the different classifications, high, medium, low or no

similarity have been adjusted. Also the weighting of the class names in the calculation of the

scores was reduced.

Summary and achieved KPIs

The functional requirements defined for Software AG’s use case along with their KPI base, target and

achieved values are shown in Fehler! Verweisquelle konnte nicht gefunden werden.. Apart from

one skipped requirement and one partially fulfilled KPI, all KPIs achieved their target value.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 100 of 165

Table 14: Functional requirements of the Software AG use case

Req. Tools
Solution

partner
KPI Definition

Base

Value

Target

Value

Achieved

Value

UC6.FR1 all

Automated processing and analysis of

artefacts recorded both in semi-formal and

natural language shape to gather the

necessary information for further advice on

decision taking by management,

development, and testing

0% 100% 100%

UC6.FR2 SoHist UIBK
Running estimate of the overall product

code quality and trend for the management
0% 100% 100%

UC6.FR3 CSI TWT
Actionable indication of the source code

fragment’s quality
0% 100% 80%

UC6.FR4 CSI TWT
Automatic selection of “problematic” code

fragments based on existing fixes’ analysis
0% 100% 80%

UC6.FR5 AISA IFAK

Automatic suggestions for design and code

reuse based on the natural language

description of feature requirements

0% 100% 100%

UC6.FR6 AILA IFAK

Automatic suggestions for issue

categorization (e.g., security labels) based

on the issue’s title and description

0% 100% 100%

UC6.FR7 N/A N/A

Prioritization of tests within the test base of a

product by their relevancy to the feature

description and/or code changes

0% 100% N/A

UC6.FR8
AISA,

CSI

IFAK,

TWT

Suggest tests for reuse based on feature

description and/or code changes
0% 100% 100%

Further details about the achieved KPI values are listed below:

• UC6.FR1: Once setup and configured, all tools work fully automatic without requiring

further manual input. The results reported by the tools still need to be manually

investigated and processed.

• UC6.FR2: SoHist in combination with SonarQube allows us to measure code quality at

specific timepoints and visualizes the overall code quality trend over time.

• UC6.FR3/UC6.FR4: Comparing source code fragments with existing code fragments

known to be affected by a bug or other issue allows us to identify if the input fragments

might also be affected by the same issues and to measure their quality. TWT’s tool CSI

enables this comparison but it is limited to code comparisons on class or method level.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 101 of 165

For our desired application scenarios, this limitation does not have a huge impact . Since

our original requirements target arbitrary unrelated code fragments, however, we consider

them to be partially achieved (80%).

• UC6.FR5: The AISA tool developed by IFAK enables us to assess the similarity of issues

written in natural language. The found similar issues in turn can point us to design and

code artefacts that can potentially be reused to address the corresponding other issue.

• UC6.FR6: The AILA tool developed by IFAK showed very good results in classifying

issues as security-related or not.

• UC6.FR7: This low priority requirement has been finally skipped in favor of focusing on

improving the results for the other requirements.

• UC6.FR8: As outlined above, the AISA and CSI tools allow us to compare issues written in

natural language as well as code to identify similar artefacts. The reported similar

artefacts and their links to tests can point us to tests that could be reused.

g. Recommendation for industry adoption

The application of the SmartDelta Methodology and the associated tools helped us to successfully

overcome the challenges described in our use case. The SmartDelta Methodology not only

provided us with structured guidelines to tackle the challenges, it also demonstrated new ways of

addressing them such as suggesting approaches for the automatic comparison of software

artefacts effectively reducing manual effort. This is key, especially when dealing with massive

amounts of software artefacts that cannot be processed manually due to their sheer size like in

our case.

The tools developed in SmartDelta showed very promising results. AILA enables to automatically

and accurately assign security labels to issues. This leads to faster assignment of issues to the

relevant experts and in turn faster treatment, which helps to improve the overall security and

quality of the software. Moreover, the tool is not only limited to the prediction of security labels. It

could also be used for other classification tasks such as team assignment in general.

The issue and code comparison tools AISA and CSI along with the recommendations from the

SmartDelta Methodology provide the basis for various follow-up tasks and benefits. This includes,

e.g., reuse of artefacts such as design, code, and tests to reduce repetition saving time and costs

as well as code quality assessment and error prevention for improved software quality.

These features enable companies to develop software of higher quality in less time by leveraging

existing knowledge and data as well as reducing manual effort. This results in improved product

quality, reduced costs, faster time to market and ultimately in increased customer satisfaction,

which is relevant for any company developing software, regardless of the company’s size.

9. Use-Case 7 from c.c.com

a. Use-Case Description

Located in Styria, Austria, c.c.com Moser GmbH (hereafter referred to as c.c.com) is specialised in

developing systems for measuring traffic volumes along roads. Therefore, we use (1) Bluetooth- and

Wi-Fi access points to collect information about the number of vehicles passing a specific point of

interest. Subsequently, (2) data is given to the BLIDS IoT Elastic Cloud, (3) which performs

mathematical-statistical models to (4) retrieve traffic density statements via the BLIDS Web platform.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 102 of 165

Figure 764: c.c.com from Measurements to Plattform

Consequently, a large codebase is needed, covering functionalities for individual sensors as well

as for managing the entire pipeline, including data retrieval, computations, and visualization

across different platforms for customers.

Within the SmartDelta project, our business objective had been to improve different individual

quality aspects of their software solution and their monitoring concept, specifically using historical

data. Mainly, we focused during the project progression on the following elements and gained the

insights into

• Anomaly Detection Parameters for Abnormal Behaviour Detection:

In the last years, we had a few times some anomaly – behaviour that was not expected.

This resulted, for instance, in sensor data not being processed properly for a short period.

In a worst-case scenario, the system could fail for a long time e.g. if the sensors are out of

battery. However, in most cases, we were able to detect and resolve issues quickly.

Nonetheless, we continuously strive to improve our approaches. Therefore, we focused on

exploring new methods for runtime anomaly detection and identifying key monitoring

parameters essential for setting effective thresholds and rules.

• Improved Time-Series Visualizations to Represent Quality Assurance Metrics:

We operate multiple BLIDS sensor stations that continuously measure traffic flow and log

sensor condition data. Additionally, our server cluster monitors and provides health quality

metrics. In this way, we aimed to analyse and visualize long historical and real-time data

in WP5.

• Software-Related Retroperspective Quality Insights: On the software level, one

interest was to systematically collect software quality metrics over time, analyze the

evolution of a project's quality, and identify potential areas for improvement. To achieve

this, we required a tool capable of conducting historical code analysis while supporting

multiple programming languages. Specifically, we were interested in how code quality is

correlated to sensor conditions. We did not find a suitable tool that could meet these

requirements, making it difficult to track and compare code quality across various stages

of development if tools like SonarQube had not been employed since the beginning.

Due to changes and provided solutions, we addressed 2 of 4 user stories: Story A: Finding metrics

to detect early critical scenarios on their BLIDS IoT Elastic Cloud, and Story D: Needing a

visualization dashboard to represent quality assurance metrics .

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 103 of 165

b. Link to SmartDelta Methodology

Figure 775: Mapping of c.c.com tool stack, improved by SmartDelta outcomes

During the project, the new SmartDelta methodology was developed as a demonstrator to map

tools and provide insights, helping to identify specific Delta aspects in a software development

lifecycle. In our use case, we can map the different goals to the different stages, as we had a

variety of outcomes.

Specifically, we track our code updates as commits on GitLab. Each change builds incrementally

on the previous version, creating a history of our codebase. By integrating SoHist, we can effectively

monitor quality changes over time. In this case, we address the Incremental Development, Quality

Assurance, and Monitoring and Visualization stages.

Additionally, we employ Nagios, Jaeger, and Prometheus with Grafana to monitor the system and

identify possible abnormal behaviour. Nagios handles anomaly detection with rule-based alerting,

Jaeger facilitates distributed tracing to track request flows across microservices, and Prometheus

collects metrics and enables alerting for proactive system health monitoring. In all these

monitoring solutions, we need the correct parameters to collect and monitor. Therefore, the

Monitoring and Visualisation stage is mainly involved.

Finally, we focused on the visualization aspect. Our efforts centered on (1) the visualization of

code metrics over time (SoHist) (2) the visual analysis of long-term sensor data provided through

logs, and (3) the representation of short-term information for analysis.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 104 of 165

c. Tools descriptions

We have been extensively involved in the development of 1. SoHist v2, building it from the

ground up by actively participating in coding and testing while incorporating feedback from

SoftwareAG. Additionally, we have contributed to 2. deriving industry-relevant insights from

approaches used for runtime monitoring data in anomaly detection. Furthermore, 3. we have

developed a tool to update and test BLIDs sensors with new versions. These contributions

are discussed in more detail below:

1. SoHist

To ensure this high code quality, the open-source software quality framework SonarQube

(Community Edition) can be helpful. Running SonarQube static analysis capabilities, triggered by

a commit on GitHub or GitLab, gives you an "up to date" profile about your current code artifact

and its correlated measurements of technical debts.

Nevertheless, having a current analysis is good, but seeing the projects' total history is even

better. In such a way, you can build up your project´s code quality evolution graph and use it for

other analysis approaches (e.g., finding correlations between code metrics and performance

parameters like CPU usage or energy). SonarQube's intended approach currently leads to

limitations and challenges (see D3.4 - Delta-oriented Quality Assurance Methodology) in

evaluating a whole Git repository, which we tried to resolve with SoHist.

SoHist v1 is a tool that extends SonarQube’s capabilities to provide historical code analysis,

tracking metrics like Technical Debt (TD) over time. It is containerized and deployable via Docker,

integrating SonarQube, a database, SonarScanner, a Git interface, and a web UI. Users connect

SoHist to Git, set analysis parameters, and trigger code analysis. SoHist ensures consistent

metrics across versions and offers two visualizations - Code Evolution and Weighted Code

Evolution Significance - to track and assess code quality changes.

More can be found in Deliverable

• D3.4 - Delta-oriented Quality Assurance Methodology.

• Benedikt Dornauer, Michael Felderer, Johannes Weinzerl, Mircea-Cristian Racasan, and Martin Hess. 2023.

SoHist: A Tool for Managing Technical Debt through Retro Perspective Code Analysis. In Proceedings of the

27th International Conference on Evaluation and Assessment in Software Engineering (EASE '23). Association

for Computing Machinery, New York, NY, USA, 184–187. https://doi.org/10.1145/3593434.3593460

In SoHist v2 (2024), a new quality assessment feature was introduced. This feature leverages a

dataset of over 2,006 SonarQube projects historically evaluated and meet specific quality criteria,

including more than 100 commits, at least 4 contributors, and a minimum of 10 GitHub stars. With

this data, users can benchmark their project’s quality metrics against a broad range of comparable

projects, considering various programming languages and selected quality criteria. A chart

visualizes the distribution of these metrics across other projects, providing insights into key

metrics such as Test Coverage, Code Smell Density, and more.

More can be found in

• Deliverable D4.5 - SmartDelta Quality Optimization and Recommendation Methodology

• Dornauer, B., Felderer, M., Saadatmand, M., Abbas, M., Bonnotte, N., Dreschinski, A., Enoiu, E. P.,

Tüzün, E., Uçar, B. M., Devran, Ö., & Gröpler, R. (2024). SmartDelta Methodology: Automated

Quality Assurance and Optimization for Incremental System Engineering. In Proceedings of the

22nd International Conference on Information Technology: New Generations (ITNG 2025) .

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 105 of 165

2. Approaches for Runtime Monitoring Data for Anomaly Detection (e.g., Nagios, …)

Figure 78: How Industry Tackles Anomalies during Runtime: Approaches and Key Monitoring Parameters

Deviations from expected behavior during runtime, referred to as anomalies, have become

increasingly prevalent due to the growing complexity of systems, particularly in microservices

architectures. Analyzing runtime monitoring data - such as logs, traces for microservices, and

metrics - poses challenges due to the vast volume of data collected. At c.c.com, Nagios is utilized

to detect anomalous behavior through predefined rules and thresholds.

Through the SmartDelta initiative, c.c.com has gained new experience and insights into industry

practices for anomaly detection. Therefore, we have collaborated with the University of Innsbruck

as an academic partner and other industrial partners, in total 12, such as Vaadin, Akkodis or

Hoxhunt. The partners shared valuable insights from their experiences, prompting us to explore

the prevailing approaches in anomaly detection—whether they are predominantly AI-driven or still

largely rule-based. One main objective of this collaboration was to develop a comprehensive list of

parameters that can significantly enhance anomaly detection processes.

More can be found in

• M. Steidl, B. Dornauer, M. Felderer, R. Ramler, M. -C. Racasan and M. Gattringer, "How

Industry Tackles Anomalies during Runtime: Approaches and Key Monitoring

Parameters," 2024 50th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Paris, France, 2024, pp. 364-372, doi:

10.1109/SEAA64295.2024.00062.

3. Rust CLI Tool (individual tool by c.c.com)

Before a temporary BLIDS sensor is sent to a customer with the latest firmware version, we must

test and evaluate its functionality. Prior to SmartDelta, this process was conducted manually in small

steps by a tester, requiring significant human effort. One of SmartDelta's objectives was to automate

this process to reduce manual workload.

To achieve this, we selected Rust as our primary language and developed an automated CLI tool.

After configuring a sensor with the necessary parameters (e.g., name, SSH credentials, SSH

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 106 of 165

server address, Bluetooth count, attenuation, etc.), the client tools can be executed to perform all

required tests, including network connectivity via HTTPS, attenuation checks, SD card verification,

Bluetooth functionality testing and so on.

Afterwards, the sensors can be directly incorporated into the BLIDS pipeline.

Figure 79: Bllids-sensor-checks client tool usage.

d. Visualization

We have collected various data related to:

• Server utilization,

• Individual sensors, and

• The quality of our software artifacts over time.

The observed deltas represent changes in specific properties over time. To analyze these

variations effectively, we explored multiple visualization approaches and identified the most

suitable one for our requirements. Additionally, we have tested Vaadin - see Dashboard Solution

for more details.

(1) We chose Seaborn in Python to initial visualize collected logs exceeding 100GB. This

enabled us to represent individual sensor properties - such as temperature, CPU capacity,

and memory allocation. A key advantage was the ability to preprocess the data given as

logs using pandas before generating visualizations with Seaborn. Given the size of our

dataset, this approach proved to be effective and well-suited to our needs. Thus, we have

also integrated the visualisation into Grafana.

Figure 80: Visualising sensor properties with Python Libraries (left: temperature per sensor, right: sensor version

changes over a year)

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 107 of 165

(2) We have further improved the Grafana's capabilities to enhance visualization features

for the sensors and BLIDS IoT Elastic Cloud, providing a clearer overview of ongoing

changes. Based on our experience, we will continue prioritizing Grafana, as it facilitates

real-time monitoring and dashboard-based visualization without requiring additional

programming.

Figure 81: Enhanced visualization of sensors and BLIDS

So far, we have used and extended Grafana to create time-series visualizations for both

our individual sensors and the entire server cluster. A live-demo is given here. As part of

Work Package 5, we also experimented with Vaadin Charts to evaluate new technologies.

The necessary infrastructure and required licenses were provided by our partner Vaadin.

We created charts that we also implemented in Grafana.

Compared to Grafana, we see the main advantages of Vaadin Charts in its flexibility and

customizability. However, the code-specific setup is significantly more complex, making

integration or replacement within our existing infrastructure impractical.

Figure 82: Comparison with Vaadin solution

(3) Apart from the SoHist provided views to see how individual commits on the main branch

affected the code quality (see Work Package 3 und 4 for details).

e. Evaluation Setup

Our evaluation process was mainly iterative (SCRUM-like), with regular feedback and ongoing

improvements. We worked very closely with our partner, the University of Innsbruck

(subcontracted), ensuring they met our goals and helping them in the research activities. Through

discussions, we identified areas for optimization, refining key components to improve overall

quality, often in overlapping roles as both use case and solution provider, for instance, for SoHist.

https://snapshots.raintank.io/dashboard/snapshot/1VA3vqKzctre8yzTzxwQ1oWLmPOMcxuw?orgId=0

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 108 of 165

To align with WP1's formal requirements and establish a clear evaluation framework, we

conducted an evaluation. This included defining functional requirements and setting KPI values,

which we gathered from technical experts’ experience. This initial input served as the baseline for

evaluating progress.

At the end of 2024, we conducted a reassessment to determine how the requirements and KPIs

had evolved throughout the SmartDelta project. By comparing the initial values (Base Value) to

the results (Achieved Value), we were able to gain insights into how well we had met our

objectives and identify areas for further improvement.

f. Evaluation results

In this hybrid setting, involving academic partners (specifically UIBK) and use case providers, we

supported the work of other partners and learned from each other. Besides that, we pushed our

work to improve in what we do, which is most often code related.

Before this project, we relied solely on Linter tools integrated into our IDEs. However, these tools

did not provide insights into the entire codebase, notably lacking a retrospective view. With

SoHist, we could now connect to our GitLab instance via a user interface, select specific

properties such as a computer or branch, and perform code analysis using SonarQube in the

background, if necessary. As a result, we can gain a history of key code quality aspects in the

different phases of our development. See for details here.

We were also interested in improving our anomaly detection approaches. Thus, we pushed the

research on “How Industry Tackles Anomalies during Runtime: Approaches and Key Monitoring

Parameters.” This allowed us to identify the advantages and disadvantages of AI-based vs.

traditional rule-based approaches. Based on insights from interviews and the literature, we

concluded that we would proceed with the rule-based approach, as the industry has not yet

consistently implemented AI solutions. One of the key outcomes of this activity was finding a

categorized list of parameters (see SEAA paper), along with detailed information, for runtime

monitoring data. By gathering this information, we now have a lot of new insights for future work.

Within SmartDelta, we have also enhanced our visualization approaches for time-related

changes. This included a detailed historical data analysis using Python, which was the foundation

for improving our Grafana visualizations. Additionally, we explored Vaadin Charts as an

alternative and conducted thorough testing. See Visualisation and Requirements for more insights

and charts.

The newly developed CLI tool for testing our temporary BLIDS sensor helped us improve

efficiency by automating previously manual tasks. This saved time and reduced errors, allowing

our team to focus on more important activities and significantly increasing overall productivity.

https://ieeexplore.ieee.org/document/10803340
https://ieeexplore.ieee.org/document/10803340

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 109 of 165

Table 15: KPIs Overview

Tool Partner KPI Definition KPI
Base Value

s

KPI
Target Valu

es

KPI
Achieved

FR1 Jupyter
Notebook

UIBK We aim to extract from sensor
logs at least the following
parameters: power consumption,
the Received Signal Strength
Indicator (RSSI), modem quality
and temperature into an
analyzable data structure for at
least one year.

unstructur
ed log files

analysable
data
structure of
at least
one year

analysable
 data
structure o
f at 1 ½
year

FR2 Jupyter
Notebook

UIBK We aim to analyze in detail the
historical data for at least one
year for each sensor
configuration. We aim to have in
total a data coverage of 90% of all
log files.

0% 90% 100%

FR3 Rust CLI
Tool (individu
al tool by)

- Implementing this functional
requirement will support
software engineers in
comparing/updating software
versions and
configuration settings (Sensor
Testing). This will save 50%
workload spend every week on
those tasks.

30
h/week (su
m)

15
h/week (su
m)

Yes, now 3
h/week
(10%)

FR4 /
FR 5

BLIDS-
Portal Extensi
on + Grafana
Improvement
s

- We expect to get a total overview
of (FR4) each sensor / (FR 5)
sensor cluster utilization. We
want to reduce the current effort
to gather the necessary
information by 75%.

10
h/week (su
m)

2.5
h/week (su
m)

9 h / week

FR6 Metrics
Overview

UIBK
(in coo
p. with
Akkodis
, Vaadi
n, Hoxh
unt)

We aim to find possible metrics
that could be an indicator for
possible anomalies and possible
correlations between those, using
Prometheus and Jäger. Thereby,
we expect to get experience to
reduce the average downtime.

No list of
metrics.

List of
metrics.

List of
metrics.

FR7 Grafana UIBK We aim to have a visual
dashboard that helps to get a
quick synopsis of the sensors'
past and current (live) metrics. In

12 h/ week 2 h/week 8h/week.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 110 of 165

Tool Partner KPI Definition KPI

Base Value
s

KPI
Target Valu

es

KPI
Achieved

multiple circumstances, the
dashboard could reduce the
human effort spent every week by
85 % for those tasks.

FR8 SoHist UIBK We would like to be able to
analyze the whole GIT repository
for each BLIDS IoT sensor version
to be able to find possible
changes for different code quality
aspects.   

0
% analysis 

100 %
of commits

100 %
of commit
s

FR9 Grafana UIBK The visual dashboard should also
contain information about the
past and current BLIDS IoT elastic
cloud measurements. We want to
reduce the current effort to
overview the information provided
by 75%.

4 h / week 1 h / week 3h / week

FR10 n/a n/a The planning effort for new BLIDS
projects is high. One problem is
the approximation of the
increased utilization by each
project. Within SmartDelta, we
assume to reduce the current
time effort spent by 50 % on those
activities

20 h
/ project

10 h /
project

n/a

g. Recommendation for industry adoption

Within the project, we have focused on various aspects to enhance our solutions and systems .

However, we have only leveraged a portion of the potential and knowledge offered by our

numerous partners. In our view, the SmartDelta Methodology now provides a comprehensive

overview that will be valuable in the future for identifying relevant tools and solut ions in the

development lifecycle.

10. Use-Case 8 from Glasshouse

a. Use-Case Description

Glasshouse Systems is enhancing Security Operations Center (SOC) capabilities by integrating

machine learning (ML) models within IBM QRadar to enable real-time anomaly detection and

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 111 of 165

offense prioritization. This initiative aims to improve incident management efficiency and accuracy

by automating key processes, reducing manual effort, and optimizing threat response times.

With a rapidly evolving cybersecurity landscape, SOC analysts must quickly identify and prioritize

threats while handling high volumes of events per second (EPS). The integration of ML-based

anomaly detection within QRadar enables SOC teams to effectively manage cybersecurity events,

reducing noise and ensuring critical incidents receive immediate attention.

Challenges and Motivation

The Glasshouse use case addresses four key challenges structured into user stories:

Story A: Managing High EPS with Precision

SOC environments often handle an overwhelming volume of security events, with logs and alerts

continuously generated from various network and system activities. The challenge lies in ensuring

that SOC analysts can efficiently identify, filter, and prioritize threats while maintaining accuracy

and avoiding alert fatigue. The traditional approach relies on rule-based filtering, where predefined

security rules trigger alerts based on recognized patterns. However, as cyber threats evolve, rule -

based systems often fail to detect complex attack patterns and generate a significant number of

false positives, leading to unnecessary investigations and wasted resources.

With the implementation of ML-enhanced anomaly detection in QRadar, the system can intelligently

differentiate between normal and suspicious activities by learning from historical data. Instead of

relying solely on predefined rules, the machine learning models dynamically adapt to changing

attack behaviors, improving detection accuracy. This reduces the burden on analysts by filtering out

irrelevant alerts and allowing them to focus on truly significant threats. The primary objective of this

use case is to evaluate how effectively ML can increase precision while handling high EPS, ensuring

that security teams remain efficient even as network activity scales.

Story B: Faster Identification of Anomalies

One of the critical requirements of a modern SOC is the ability to detect anomalies in real time and

respond before they escalate into security breaches. Traditional security monitoring tools rely on

predefined indicators of compromise (IoCs) and manual investigation processes, which can lead to

delayed threat detection. In fast-paced attack scenarios, such as zero-day exploits or advanced

persistent threats (APTs), even small delays can result in significant data breaches and operational

disruptions.

The current approach in Glasshouse's SOC involves manually reviewing logs and correlating

security events across multiple platforms. This process is time-consuming and prone to human

error, as analysts must sift through large datasets to distinguish normal variations from real threats.

The integration of machine learning models within QRadar enhances this capability by continuously

analyzing incoming logs, identifying deviations from expected patterns, and flagging anomalies in

real time. The ML models learn from past security incidents, refining their detection capabilities over

time.

This use case aims to measure the effectiveness of ML-enhanced QRadar in reducing the time

between an anomaly’s occurrence and its detection. By leveraging automated anomaly detection,

the system can alert analysts to potential security breaches faster, minimizing response times and

improving overall SOC efficiency. The evaluation will focus on how ML-based detection compares

to traditional rule-based methods in terms of speed and accuracy.

Story C: Accelerated Response to Critical Incidents

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 112 of 165

Identifying security threats is only one part of the challenge; the real test for a SOC is how quickly

and effectively it can respond to incidents once they are detected. In traditional SOC workflows,

security alerts must go through multiple stages, including investigation, triage, and response

coordination, before action is taken. This manual process often results in delays, especially for high -

priority incidents, allowing attackers to inflict damage before containment measures are applied.

The existing response framework at Glasshouse relies on manual offense prioritization, where

analysts assess alerts based on predefined severity levels. However, this approach is not always

effective, as it can misprioritize incidents, causing critical threats to be overlooked while lower-

priority alerts consume valuable time.

By integrating ML-driven offense prioritization into QRadar, the system can automatically rank

security incidents based on their threat level, ensuring that the most critical threats receive

immediate attention. Machine learning algorithms assess multiple risk factors, such as the affected

system’s importance, historical attack patterns, and real-time anomaly scores, to determine the

urgency of each incident.

This use case focuses on measuring the impact of ML-enhanced prioritization on incident response

times. Specifically, it will evaluate how quickly analysts can triage, investigate, and mitigate threats

when offense prioritization is automated, compared to traditional manual methods. The goal is to

accelerate Mean Time to Detect (MTTD) and Mean Time to Respond (MTTR), improving overall

security posture.

b. Link to SmartDelta Methodology

Figure 82: Mapping of Glass House tools, improved by SmartDelta outcomes

The SmartDelta methodology provides a robust framework for implementing solutions in the

Glasshouse use case by emphasizing automated quality assurance and optimization. This approach

enables systematic management of software quality across multiple versions and variants, utilizing

smart analytics to examine development artifacts and operational data, helping identify areas of

quality degradation and improvement. For Glasshouse, SmartDelta's methodology supports the

ongoing refinement of our EPS Anomaly Detection and Offense Prioritization Tools, enhancing SOC

performance through machine learning and real-time data analysis.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 113 of 165

Our use case effectively leverages the SmartDelta methodology’s product, time, and resource

dimensions to improve SOC operations within Glasshouse.

1. Product Dimension: The EPS Anomaly Detection Tool and Offense Prioritization Tool have

been designed with flexibility, catering to specific SOC requirements and aligning each tool’s

version to meet operational needs. By focusing on modular tool enhancements, we efficiently

target unique security requirements in each development stage.

2. Time Dimension: Tracking changes over time allows our team to identify emerging trends and

optimize SOC responses through continuous improvement. This dimension is especially

beneficial in scenarios like anomaly detection and offense prioritization, where identifying trends

in MTTD and MTTR over time supports ongoing adaptation of threat detection measures.

3. Resource Dimension: Automation, artifact reuse, and predictive analysis minimize the

resource load in security operations, ensuring that analysts can focus on critical threats without

sacrificing efficiency. This approach reduces manual processing time, while the meta-

methodology guides the adaptation of resources to meet evolving SOC demands, maintaining

an optimal balance of precision and resource allocation.

Resource-Related Delta Considering SOC Performance

We have implemented machine learning inside QRadar SIEM as an app to help SOC analysts

detect and resolve offenses faster. We have developed two QRadar apps: the EPS Anomaly

Detection Tool and the Offense Prioritization Tool. These tools align with the SmartDelta

methodology by providing automated quality assessments and smart analytics from development

artifacts and system executions.

Our development process involved rigorous and strict stages, including:

• Prototyping: Initial prototype creation to test core functionalities.

• Alpha Version: Developing an alpha version for initial feedback.

• Client Feedback: Incorporating feedback from clients to refine the tool.

• Lab Environment Testing: Extensive testing in a controlled lab environment.

• Production Deployment: Final deployment in a production environment.

We maintain a GitHub repository to push updates, continuously improving the codebase and

implementing software quality best practices.

Software-Related Delta Considering SOC Performance

To ensure efficient memory usage, we evaluated various ML models and selected those that

minimize storage requirements. Initially, some models were cost-prohibitive in terms of

storage. We are now utilizing AQL queries and the ServiceNow API to access data. The

Grafana dashboard is integrated with ServiceNow APIs to provide real-time monitoring and

historical data analysis.

Metrics for Evaluating SOC Performance:

• Ingested Events Per Second (EPS): Evaluate the SOC's ability to process an

increased volume of log records.

• Mean Time to Detect (MTTD): Measure the time from log ingestion to security

incident alerting.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 114 of 165

• Mean Time to Respond (MTTR): Measure the time from incident detection to

response initiation.

By integrating SmartDelta’s meta-methodology into Glasshouse’s tools and KPIs, we align

each development phase to improve SOC resource efficiency and incident response time,

creating a sustainable and adaptable incident management ecosystem.

c. Tools descriptions

Our tools play a vital role in enhancing each stage of the incident management process, ensuring

efficiency and reliability. The EPS Anomaly Detection Tool enables SOC analysts to swiftly

diagnose incidents by analyzing event-per-second (EPS) data, while the Offense Prioritization

Tool helps expedite the escalation of high-priority incidents to relevant teams. ServiceNow

integration supports timely stakeholder communication, and continuous monitoring assists teams

in accurately identifying incident root causes. Real-time alerts facilitate quick resolutions, with

KPIs like MTTD and MTTR guiding effective closure, ensuring quality service and optimized SOC

operations.

EPS Anomaly Detection Tool

• Purpose: Monitors incoming events per second (EPS) to identify anomalies in SOC

environments.

• Implementation: Python-based ML model to detect true and false positives with interactive

charts highlighting potential anomalies.

• Impact: Enables rapid anomaly detection, ensuring the SOC can handle increased EPS

volume without compromising response precision.

Figure 83: EPS tool

Offense Prioritization Tool

o Purpose: Helps SOC analysts prioritize incidents based on risk level,

enhancing response efficiency.

o Implementation: Uses machine learning to assess offenses and assign risk

scores, facilitating faster identification and escalation of critical incidents.

o Impact: Reduces analysis time significantly, allowing analysts to focus on

high-risk incidents and improving overall SOC responsiveness.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 115 of 165

d. Visualization

Figure 84: SOC Dashboard

Dashboard solution

Our SOC dashboards, powered by Grafana, integrate with ServiceNow APIs to visualize key

performance indicators (KPIs) such as Mean Time to Detect (MTTD) and Mean Time to Respond

(MTTR). These visualizations provide a real-time view of SOC performance, enabling analysts to

monitor incident management progress effectively.

Visualisation requirements

The visualization setup is designed to highlight priority incidents, track response times, and

provide historical and current trend analysis. The dashboard simplifies data interpretation,

allowing quick decision-making for resource allocation and response strategies.

e. Evaluation setup

The SOC enhancement solutions implemented within this use case operate on on-premises servers

and are designed to integrate seamlessly with existing SIEM infrastructure. The evaluation process is

structured into three key stages: Pre-Processing, Processing, and Post-Processing.

Pre-Processing

In this phase, log records (EPS) and offense data are collected from QRadar and other integrated

sources. The EPS Anomaly Detection Tool processes raw event logs, filtering out false positives

before the data is passed into the machine learning pipeline. On the other hand, the offense

prioritization tool process the related events of each offense. Key modifications during this stage

include:

• Normalization and parsing of log records for structured analysis.

• Application of anomaly detection models to pre-filter noise.

• Correlation of events to establish potential security incidents.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 116 of 165

Processing:

Once pre-processed, the data is transferred to the AI-powered tools, where ML models analyze event

patterns and predict anomalies and the severity of security incidents. This stage involves:

• Real-time correlation of security incidents using SIEM capabilities.

• Machine learning-driven anomaly detection to prioritize threats.

• Calculation of MTTD and MTTR improvements based on historical benchmark data.

Post-Processing:

In the final phase, evaluation metrics are generated and visualized to assess the effectiveness of

the implemented ML-based solutions. The results are aggregated and compared against baseline

values to measure impact. Key deliverables at this stage include:

• Performance reports showcasing reduction in false positives.

• Comparison of manual vs. automated offense prioritization.

• Visualized dashboards displaying achieved improvements in MTTD and MTTR.

By following this structured evaluation setup, SOC analysts can leverage SmartDelta’s methodology

to assess the efficiency and accuracy of ML-driven offense prioritization, ensuring a more

responsive and adaptive security operations workflow.

f. Evaluation results

Our tools are evaluated based on KPI targets from D1.4:

EPS Anomaly Tool: Successfully implemented in production, with significant improvements in

anomaly detection accuracy.

Offense Prioritization Tool: In beta, this tool demonstrates a 60x faster average risk score

assessment compared to analyst evaluations, effectively reducing Mean Time to Detect (MTTD)

and Mean Time to Respond (MTTR) through prioritized and precise offense escalation.

Table 16: KPIs Overview

Req. Tools
Solution

partner
KPI Definition Base Value

Target

Value

Achieved

Value

UC6.FR1

EPS and

Offense

app

Glasshouse

SIEM Solutions normaly use a metric of Ingested

Events Per Second that define the volume of log

records received to be analyzed. These Events (Log

Records) are then analyzed and correlated by the

SW engines built in to the SIEM to detect Security

Incidents. GHS SOC measure Resource capacity to

handle Security Incidents generated by 3500 EPS.

We expect this capacity to grow by 15% with the

introduction of the SIEM AI/ML Enhancement

functionality.

0% >= 15%
100%

See Explanation

UC6.FR2
Offense

app

Glasshouse

Upon receiving Log Records (Events) by the SIEM,

the SIEM will perform parsing and correlation until it

identifies a potential Security Incident. A SOC

Analyst is then engaged to further triage and

investigate this incident prior to escalating and

initiating incident remediation activities. MTTD is

measured as the time between Log Ingest and

Security Incident alerting. We expect the MTTD to

be reduced by at least 20%

0% <= 20% 100%

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 117 of 165

UC6.FR3
Offense

app

Glasshouse

Upon receiving Log Records (Events) by the SIEM,

the SIEM will perform parsing and correlation until it

identifies a potential Security Incident. A SOC

Analyst is then engaged to further triage and

investigate this incident prior to escalating and

initiating incident remediation activities. While MTTD

is measured as the time between Log Ingest and

Security Incident alerting. MTTR is measured as the

time between the Detection and the initiation of the

Response. We expect the MTTR to be reduced by

at least 20%

0% <= 25% 100%

UC6.FR1 - EPS and Offense App:

The evaluation of FR1 demonstrates that with the introduction of the EPS Anomaly Detection Tool,

the SOC analysts can identify anomalous events more efficiently. While the volume of EPS

remains consistent, the tool helps filter out false positives, significantly reducing the time spent

investigating non-critical incidents. This results in a better allocation of resources, as analysts can

focus their efforts on more relevant and higher-priority incidents, ultimately improving efficiency in

threat detection.

UC6.FR2 - MTTD (Mean Time to Detect):

For FR2, the focus is on reducing the Mean Time to Detect (MTTD), which is the time between log

ingestion and alert generation. With the integration of machine learning models, the system now

makes predictions like those of human analysts but is able to process data 60 times faster. As a

result, the tool can quickly detect and flag potential threats, significantly reducing the MTTD.

UC6.FR3 - MTTR (Mean Time to Respond):

For FR3, the goal is to reduce the Mean Time to Respond (MTTR), which is the time between

incident detection and the initiation of the response. Similar to MTTD (As response as the logical

next step after alerting), the machine learning models predict the prioritization of incidents faster than

human analysts, allowing the SOC team to respond to critical incidents more promptly.

g. Recommendation for industry adoption

The application of the SmartDelta methodology and the associated tools has significantly

enhanced Security Operations Center (SOC) capabilities by improving incident response times,

optimizing resource management, and enhancing overall operational efficiency. The structured

guidelines provided by SmartDelta have proven instrumental in tackling key cybersecurity

challenges, particularly in handling large volumes of security events in real time.

One of the key benefits of this methodology is its ability to automate anomaly detection and

offense prioritization, reducing manual effort and enabling faster, more accurate threat detection.

Traditional SOC workflows often rely on rule-based detection mechanisms, which can be time-

consuming and prone to errors due to alert fatigue and evolving attack techniques. By integrating

machine learning-driven solutions, SmartDelta has introduced a dynamic approach to

cybersecurity, allowing SOC teams to quickly identify, categorize, and respond to threats with

greater precision.

The tools developed within SmartDelta have demonstrated strong potential for industry -wide

adoption. The ML-enhanced QRadar framework enables automatic anomaly detection and offense

prioritization, leading to faster incident response times. By automatically ranking security incidents

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 118 of 165

based on threat severity, SOC analysts can prioritize critical events without being overwhelmed by

a high volume of security alerts. This approach also improves Mean Time to Detect (MTTD) and

Mean Time to Respond (MTTR), ensuring that security teams remain proactive rather than

reactive.

Furthermore, the adaptive learning capabilities of SmartDelta’s tools ensure that SOC teams are

always equipped to handle emerging threats. Unlike static detection rules, which require frequent

manual updates, the machine learning models continuously learn from new security events,

refining their detection capabilities without human intervention. This results in an intelligent SOC

framework that evolves in real time, maintaining high levels of accuracy while reducing false

positives.

Beyond SOC environments, these tools hold potential applications in broader cybersecurity

operations, including automated vulnerability management, intrusion detection, and security

compliance monitoring. Future development could focus on enhancing data in tegration across

multiple platforms, allowing for seamless interoperability with various security information and

event management (SIEM) systems. Additionally, continuous improvements in real -time threat

intelligence processing will ensure that these solutions remain adaptable to the ever-changing

cybersecurity landscape.

By leveraging existing knowledge, data, and automation, companies can significantly reduce

manual effort, lower operational costs, and improve overall cybersecurity resilience. The adoption

of SmartDelta’s methodology and tools positions organizations to enhance their security posture,

accelerate incident response times, and maintain a competitive edge in today’s rapidly evolving

threat landscape.

11. Use-Case 9 from Izertis

a. Use-Case Description

Izertis keeps track of software developments in private repositories. These repositories represent a

valuable asset for the company, yet their potential for reusing software artifacts and automating

deployment and testing processes remains largely untapped. Currently, accessing and leveraging

the information within these repositories is a manual process. During the testing phase of similar

projects, teams must rely heavily on existing documentation and the expertise of the development

team. This approach results in a significant investment of time and resources where new software

development is undertaken.

To address these challenges, Izertis plans to develop a platform to enhance the efficiency or the

testing process: SONATA (Smart SOftware TestiNg MAnagemenT PlAtform). The main goal of

SONATA is to enable efficient searching within Izertis`s developed projects to find developments

like a new project or a new delta. SONATA aims to suggest relevant test cases that should be

included in the new development or delta to ensure its quality.

Story A: Software Artifact Repository Management

Development teams at Izertis regularly create and maintain multiple software projects, each with its

own code repositories, requirements, and test cases. Currently, there's no systematic way to

leverage this valuable knowledge base, leading to redundant work and inefficient resource

utilization.

The development teams need to manually search through existing projects to find similar

implementations or relevant test cases, which is time-consuming and often incomplete. This manual

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 119 of 165

process means that valuable existing solutions might be overlooked, leading to unnecessary

recreation of similar components and test scenarios.

Management is concerned about this inefficiency as it directly impacts project timelines and

resource allocation. Without a proper system to map and connect related projects, the company

cannot fully capitalize on its intellectual property, leading to increased development costs and longer

time-to-market for new projects.

Story B: Semantic Project Similarity Detection

When starting new projects, developers spend considerable time analyzing requirements and

designing solutions that may already exist in similar forms within the company's portfolio. The

current process relies heavily on individual knowledge and memory of past projects, making it

difficult to identify potential code reuse opportunities.

The development team needs an efficient way to match new requirements against existing projects.

Manual searching through documentation is time-consuming and often misses relevant matches,

resulting in redundant development effort and inconsistent solutions across projects.

Management requires better visibility into code reuse opportunities to optimize resource allocation

and maintain consistency across projects. Without automated similarity detection, the company

cannot effectively leverage its existing codebase, leading to increased development costs and

missed opportunities for standardization.

Story D: Automated Testing & Recommendations

When developing new features or modifications, testing teams must manually determine which test

cases to include. This process is subjective and time-consuming, often leading to inconsistent test

coverage across similar components.

Developers and QA teams need guidance on which test cases are essential for new developments,

but currently rely on their experience and documentation review to make these decisions. This

approach can miss critical test scenarios and lead to quality issues being discovered late in the

development cycle.

Management needs assurance that new developments are adequately tested and consistent with

established quality standards. Without automated test recommendations, there's a risk of

insufficient test coverage and inconsistent testing approaches across teams, potentially leading to

increased maintenance costs and quality issues in production.

b. Link to SmartDelta Methodology

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 120 of 165

Figure 85: Tool Mapping with SmartDelta Methodology

In our use case, we employ the SmartDelta Methodology to effectively manage the deltas. Our use case
makes use of all the stages of the methodology.

Requirements Model Extraction:

SONATA takes as input either a natural language query or a PDF document describing software

requirements and uses Natural Language Processing (NLP) techniques and a predefined ontology

of software-related concepts to extract and structure the key information of the inputs. From this

information, SONATA generates a conceptual model represented as a knowledge graph.

The resulting knowledge graph encodes the main entities, relationships, and concepts relevant to

the requirements. This graph is then compared against existing knowledge graph derived from

previously completed projects. By applying semantic matchmaking techniques, the system identifies

which past projects share the most similar requirements and conceptual structures.

Automated Model Generation and Analysis:
SONATA takes a Java code repository as input and uses ANTLR4 to perform lexical and syntactic

analysis. During this process, it extracts classes, methods, attributes, interfaces, relationships, and

other key structural elements from the codebase. Guided by an ontology that defines and

categorizes software concepts, SONATA then stores and organizes this extracted information in a

knowledge graph. By doing so, the system not only captures the logical structure of the code, but

also provides a more comprehensive understanding of its components and their interconnections.

Delta-Aware Text Generation

SONATA operates by comparing the input project’s code structure against previously analysed

repositories. After mapping classes, methods, and components to the knowledge graph, SONATA

identifies those that closely resemble or match existing artifacts from past projects. When such

similarities arise, it checks whether corresponding tests are available and still relevant to the new

project’s context. If tests already exist, SONATA recommends them as a starting point for validation.

By doing so, it aims to accelerate the testing phase and enhance code quality. However, it carefully

considers differences in dependencies, configurations, and usage patterns, since even identical

classes may behave differently in another environment. The system provides recommended tests

that can be adapted or refined as necessary, considering library versions, framework variations,

and any unique domain-specific requirements. Over time, as developers review and confirm which

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 121 of 165

tests prove most reliable and applicable, SONATA refines its recommendations, improving the

overall accuracy and usefulness of this feature.

Similarity Analysis Approaches and recommendations

One effective approach to similarity analysis involves representing code structures as knowledge

graphs and then relying on ontology-driven semantic mappings to relate concepts and entities. This

means that classes, methods, and interfaces are not only extracted, but also placed within a

conceptual framework that expresses their roles, responsibilities, and relationships. By encoding

software artifacts in this manner, SONATA can compare new projects against previously analyzed

repositories more accurately, since it moves beyond simple text matching and focuses on shared

logic, patterns, and functionalities. Models that compute similarity scores can incorporate syntactic,

structural, and semantic dimensions, ensuring that recommendations reflect not only surf ace-level

similarities, but also deeper conceptual alignments. To refine these approaches, it is advisable to

continually update and maintain the ontology so that it remains current with evolving technologies

and architectural trends. It is also important to validate similarity metrics against expert feedback

and project outcomes, adjusting the criteria as needed to improve precision and recall. Over time,

this iterative process of refinement and validation can yield a more stable and reliable similarity

analysis methodology that enhances SONATA’s capacity to recommend the most relevant artifacts,

tests, and best practices for given project.

Monitoring and visualization

A dedicated Grafana dashboard provides a visual interface for monitoring the quality metrics of the

Java repositories under analysis. Integrating data derived from SONATA’s knowledge graph and

complementary static analysis tools presents key indicators. This interface gives developers and

project managers a clear, real-time overview of the software’s health and maintainability. As new

repositories are processed and their metrics are integrated into the dashboard, teams can quickly

are processed and their metrics are integrated into the dashboard, teams can quickly identify trends,

detect potential issues, and make informed decisions to improve the codebase over time.

c. Tools descriptions

• SONATA

Purpose:

SONATA analyzes software repositories and requirements to identify similar projects and recommend

relevant test cases. It addresses challenges in test case creation and code reuse by creating a

semantic understanding of projects through knowledge graphs. The platform reduces manual effort in

identifying appropriate test cases while ensuring testing coverage and quality standards across

projects.

Implementation:

• Utilizes ANTLR4 for Java code parsing and extraction of classes, methods, attributes, and

interfaces

• Implements Natural Language Processing for requirements analysis and similarity detection

• Stores project structures and relationships in Neo4j knowledge graph

• Provides web interface built with Angular for project management and analysis

• Delivers REST API services through FastAPI for backend operations

• Monitors quality metrics through Vaadin dashboard integration

Input data:

• Java source code repositories

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 122 of 165

• Software requirements documents

• Natural language feature descriptions

• Repository URLs for direct analysis

Impact:

SONATA integrates into the development workflow by allowing developers to upload new projects or

connect repositories for analysis. The system automatically processes the input, compares it against

existing projects in the knowledge base, and provides test case recommendations. Quality metrics are

continuously monitored and displayed through the dashboard interface, enabling teams to track

improvements and identify areas needing attention.

Through its ontology-based semantic modeling and similarity analysis, SONATA fosters efficient

code comprehension, better testing strategies, and informed reuse of existing solutions. By

recommending tests already proven effective in similar contexts, it reduces overhead, shortens

the validation phase, and improves overall code quality.

d. Visualization

SONATA's visualization solution focuses on presenting comprehensive project similarity and quality
metrics through an interactive dashboard. The dashboard is implemented using the Vaadin framework,
providing a seamless web-based interface that enables teams to make data-driven decisions about
test case selection and project planning.

Key features include:

• Project Similarity Analysis

 Displays matching requirements between current and historical projects

 Shows artifact distribution across similar projects by type (project management, code,

documentation)

 Presents defect patterns and classifications from comparable projects

• Quality Metrics Overview

 Visualizes defect distributions by category (functionality, security, performance)

 Tracks project costs and resource allocation across similar implementations

 Enables custom metric definition and monitoring for specific project needs

• Interactive Reporting

 Provides detailed artifact analysis with filtering capabilities

 Presents bug reports and correlation with project characteristics

 Offers customizable views for different stakeholder needs

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 123 of 165

Figure 86: Dashboard key features

Table 17: Visualization requirements

Requ ID Use Case Requirement

Requirement

status

D5.UC9.1 The dashboard should show similar projects and the number of
requirements that fit the customer's need

Finished

D5.UC9.2 The dashboard should show the number of artifacts developed by
similar projects, grouped by type(project management, code artifacts,
documentation)

Finished

D5.UC9.3 The dashboard should show similar projects with the number of
artifacts developed and bugs reported

Finished

D5.UC9.4 The dashboard should display the number of defects from similar
projects, grouped by type (Functionality errors, security bugs,
performance defects)

Finished

D5.UC9.5 The dashboard should show the costs of similar projects Finished

D5.UC9.6 The dashboard should display quality metrics for a similar project. The
metrics can be defined by the user

Finished

D5.UC9.1 The dashboard should show similar projects and the number of
requirements that fit the customer's needs

Finished

D5.UC9.2 The dashboard should show the number of artifacts developed by
similar projects, grouped by type(project management, code artifacts,
documentation)

Finished

D5.UC9.3 The dashboard should show similar projects with the number of
artifacts developed and bugs reported

Finished

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 124 of 165

e. Evaluation Setup

Figure 87: Evaluation setup

The evaluation of SONATA was conducted using a two-phase approach that tested both its core
functionalities: model extraction and semantic matchmaking. The setup was designed around two key
components, as illustrated in the diagrams:

Component 1 - Model Extraction and Indexing:

• Source code processing through syntactic/grammar analysis

• Model construction from the analyzed code

• Storage of constructed models in the knowledge graph

• Model indexing for future retrieval

Component 2 - Test Case Recommendation:
1. Source code analysis using the same syntactic approach

2. Model construction from analyzed code

3. Semantic matchmaking against stored models

4. Test case identification and recommendation

For the evaluation, we selected five Java projects with comprehensive requirements specifications and
established conceptual models. This provided a baseline for comparing SONATA-generated models
against real-world implementations. The evaluation was structured to address specific user stories and
their associated KPIs:

User Story A Evaluation:
1. Focus on software artifact storage and indexing (UC9.FR1)

2. Assessment of feature identification from natural language requirements (UC9.FR2)

3. Comparison of SONATA-generated conceptual models against established baselines

User Story B Evaluation:
1. Testing of project suggestion accuracy (UC9.FR3)

2. Validation of similarity calculation between requirements and projects (UC9.FR4)

3. Assessment of conceptual model extraction accuracy (UC9.FR5)

User Story D Evaluation:

• Measurement of effort reduction in test environment setup (UC9.FR6)

• Analysis of test execution and reporting efficiency (UC9.FR7)

• Validation of test case suggestion accuracy (UC9.FR8)

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 125 of 165

• Implementation of visualization requirements (UC9.FR9.1-9.4)

The evaluation setup provided quantitative measures for each KPI, enabling objective assessment

of SONATA's performance against target values.

f. Evaluation results

Table 18: KPIs Overview

Requirement KPI Definition

KPI

Base

Values

KPI

Target

Values

KPI

achieved

Value

UC9.FR1

Percentage of software artefacts (including source

code, use cases, requirements, etc.) from

company projects successfully stored and indexed

in the repository.

0% 90% 70%

UC9.FR2

Percentage of features from natural language

requirements that are correctly identified and

classified by the system.

0% 90% 80%

UC9.FR3

Percentage of development project suggestions

accurately matching the given requirements in

natural language.

0% 90% 80%

UC9.FR4

Automatic and correct calculation of the similarity

degree between requirements and found projects.
0% 95% 90%

UC9.FR5

Accuracy of extracting conceptual models from

source code

0%

90%

accuracy

in

similarity

calculatio

n

90%

UC9.FR6

reduction in effort required to find possible test

environments
100% 40% 40%

UC9.FR7

Reduction in effort required to execute and report

the test results
100% 40% 40%

UC9.FR8

Percentage of accurately suggested test cases for

reuse based on natural language requirements

analysis and based on model similarities

0% 90% 90%

UC9.FR9.1-

9.4
We need to visualize analysed data 0% 100% 100%

Further details about the KPI values are listed below:

• UC9.FR1: While targeting 90% of software artifacts to be successfully stored and indexed,

SONATA achieved 70%. This gap likely reflects initial challenges in processing and indexing

certain types of artifacts, particularly legacy code or non-standard documentation formats.

• UC9.FR2: The system achieved 80% accuracy in identifying and classifying features from

natural language requirements against a target of 90%. This indicates the NLP components

are functioning well but may need refinement for handling complex or ambiguous requirement

descriptions.

• UC9.FR3: With an 80% achievement rate versus the 90% target for matching project

suggestions to requirements, SONATA demonstrates strong but not yet optimal performance

in project similarity detection. This suggests room for improvement in the semantic matching

algorithms.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 126 of 165

• UC9.FR4: The system reached 90% accuracy in calculating similarity degrees between

requirements and projects, coming close to the 95% target. This high achievement validates

the effectiveness of the semantic matchmaking approach.

g. Recommendation for industry adoption

The evaluation demonstrates that SONATA, powered by the SmartDelta Methodology, offers

significant benefits for software development organizations seeking to optimize their testing

processes and leverage existing code assets. The platform has shown promising results in

automating test case identification and code reuse, particularly in enterprise-scale software

development environments.

Challenges remain in several key areas. While SONATA demonstrates strong potential, the

system currently indexes 70% of artifacts against the targeted 90%, particularly struggling with

legacy systems and complex artifact structures. The natural language processing component

shows promise but requires further refinement, currently achieving 80% accuracy when identifying

features from ambiguous or complex requirements. Additionally, when processing large-scale

repositories, performance optimizations are needed to maintain efficient operation at enterprise

scale.

12. Use-Case 10 from Vaadin

a. Use-Case Description

Motivation

Vaadin is an open-source platform designed for building modern, collaborative web applications

for Java backends. Its main products, Flow and Hilla, provide developers with frameworks for

creating secure, scalable, and efficient applications. Vaadin Flow is a full-stack Java web

framework that lets users build modern web applications without writing HTML or JavaScript. Hilla,

on the other hand, is a full-stack framework combining Spring Boot, React, and UI components to

offer both flexibility and productivity.

The applications developed using Vaadin’s frameworks are typically business -critical systems,

catering to hundreds or thousands of users. These applications are characterized by their

complexity and the need for reliable, high-performance solutions. Ensuring continuous

improvement in quality, security, and performance is critical to maintain Vaadin's competitive edge

in the market and to support its large community of developers.

Currently, Vaadin’s development processes involve several manual workflows that, while

essential, are highly time-consuming. Issue triaging relies on manual categorization of reports,

requiring developers to review and assign labels based on their understanding. Similarly,

migrating applications between major versions demands significant manual analysis to identify

and address API changes. Legacy code refactoring is often driven by expert insights rather than

systematic tooling, which limits scalability. Additionally, performance and stability monitoring

primarily depend on manual evaluations of test results, making it challenging to promptly identify

and resolve regressions.

These processes, while effective to some extent, lack the streamlined automation necessary to

scale with the increasing complexity of Vaadin’s frameworks and the growing needs of its

developer community. Enhancing these workflows with automated solutions is essential to

improve efficiency, consistency, and overall quality.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 127 of 165

Challenges

Vaadin faces several challenges in its software development lifecycle, which the solutions

developed within the scope of the SmartDelta project aim to address:

Issue Triaging and Classification

• With thousands of GitHub issues and growing, manual triaging has become resource-

intensive and inconsistent.

• Automating the classification of issues by type, severity, and impact is essential to

streamline backlog refinement, improve planning accuracy, and provide insights into which

parts of the product are affected by the issues.

Major Versions Feature Parity

• Migrating from older versions, such as Vaadin 7 or 8, to the latest versions often

introduces breaking changes and feature mismatches. While framework developers address

these changes at an architectural level, it is the application developers who must handle the

practical implications in their codebases.

• Automating the mapping and replacement of APIs and ensuring parity across versions can

significantly reduce manual effort and improve upgrade efficiency for application

developers.

Legacy Code Refactoring

• Vaadin’s codebase has evolved over two decades, with varying adoption of modern

practices and tools.

• Identifying outdated code and recommending refactoring actions are critical to sustain

maintainability, performance, and security.

Performance and Stability Monitoring

• Refactoring and updates can impact the performance of applications built with Vaadin

frameworks.

• Establishing automated monitoring tools to track performance trends and correlate them

with code changes can help prevent regressions and ensure stability.

The solutions developed within the scope of the project aim to provide actionable insights,

streamline workflows, and enhance the overall development process to address these challenges.

b. Link to SmartDelta Methodology

The SmartDelta Methodology provides a structured approach for managing software quality and

adaptability in incremental software development. It consists of six stages, each addressing specific

challenges in delta management. Vaadin’s use case aligns with these stages, leveraging tools and

practices to address challenges in software development processes (See Figure 88). While the tools

applied in each stage may not always produce tangible outputs for the immediate next stage, they

contribute significantly to the overarching goals and improve the overall quality of subsequent

processes.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 128 of 165

Figure 88: SmartDelta Methodology stages and elements used in the Vaadin use case.

Mapping Vaadin Use Case to SmartDelta Stages

Preconditions Consideration

Vaadin utilizes its established codebase, architecture, and user feedback to define baselines for

product deltas. These preconditions ensure alignment with stakeholder needs and provide a strong

foundation for planning and implementing incremental updates, without the need for external solutions

such as those provided by the SmartDelta Methodology.

Requirements Engineering

Requirements for Vaadin’s products, such as Flow and Flow Components, are documented as GitHub

issues using predefined templates for consistency and completeness. The existing processes

effectively support capturing and managing requirements without the need for external tools such as

those provided by the SmartDelta Methodology.

Incremental Development

Vaadin’s incremental development leverages modular architecture, reusable components, and iterative

enhancements to ensure alignment with quality standards.

Classification tools developed by RISE contribute to labelling issues with type, severity and impact.

These labels, assigned based on internal practices, enable prioritization by identifying high-impact and

critical severity issues, which are given precedence. In addition, type classification provides insights

about which aspect of the product is affected.

The Code Similarity Investigator from TWT supports identifying reusable code fragments and

optimization opportunities, ensuring efficient updates. Moreover, for customer projects, tools such as

Dragonfly and the MTK Analyzer are employed to support incremental development by automating

legacy code migrations. Detangle complements these efforts by identifying areas of technical debt

using meaningful KPIs, such as the Feature Debt Index and metrics reflecting collaboration

challenges.

Quality Assurance (QA)

Incremental changes undergo a structured QA process, which includes unit tests, integration tests,

visual tests, smoke tests, and platform-level validations. The Change-Based Test Selection Plugin

(CBTS) contributes to this process by focusing testing efforts on affected components, reducing

redundant testing. Complementary static analysis tools, such as SonarCloud for detecting code smells

and vulnerabilities and code formatters for ensuring consistent coding style, ensure that code quality

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 129 of 165

standards are upheld throughout development. Additionally, Detangle is utilized within QA to analyze

technical debt and offer metrics-driven insights that help maintain code quality and support continuous

improvement.

Recommend and Predict

The Code Similarity Investigator contributes to identifying reusable components and improvement

opportunities. This tool assists in locating previously optimized or fixed components that align with

current development needs.

In customer projects, Dragonfly and the Modernization Toolkit Analyzer (MTK Analyzer) are leveraged

to automate migrations, ensure feature parity across major versions, and support the integration of

legacy features into new systems. Detangle complements this process by providing metrics-driven

insights into architectural and technical debt hotspots, enabling informed decision-making on

addressing improvements versus ongoing maintenance efforts. Furthermore, the CBTS plugin aids in

predicting test impacts by selecting relevant test cases based on recent changes.

Monitoring and Visualizing

Vaadin’s CI pipeline integrates dashboards that provide real-time insights into critical metrics, including

test results and performance trends. These visualizations help monitor critical components, such as

Flow and Grid, ensuring that bottlenecks and regressions are promptly identified and resolved. This

approach supports continuous monitoring, maintaining the stability and reliability of the development

process.

Conclusion

Vaadin’s processes are aligned with the methodology. Tools developed for issue labelling, static

analysis, code similarity investigation, and modernization support incremental development, quality

assurance, recommendation, and monitoring. This alignment demonstrates a clear approach to

managing updates and maintaining product quality.

c. Tools Descriptions

RISE Classification Tools/Solutions

Purpose

The RISE Issue Classification Tools are designed to automate issue triaging and categorization,

addressing the challenges of manually managing a growing backlog of issues in the software

development lifecycle. These tools aim to improve efficiency by reducing time spent on backlog

refinement sessions and ensuring consistent issue categorization. Specifically, they help Vaadin by

identifying the functionality areas, impact, and severity of issues, making planning and prioritization

more efficient.

Implementation

The tools rely on a combination of fine-tuned language models and traditional machine learning

approaches:

• Issue Prediction

The tool is based on a fine-tuned large language model, i.e., BERT, for automated

classification of issue reports with their category. Certain issue categories or labels are

general, while others are specific to Vaadin.

• Issue Severity

A fine-tuned generative large language model is used for recommending severity levels

(blocker, major, minor) based on issue titles and descriptions. Preprocessing excludes code

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 130 of 165

snippets to reduce noise and improve accuracy, as including code was found to negatively

impact performance.

• Issue Impact

Logistic regression is employed to classify issues into high or low impact categories. While

large language models were tested for this purpose, logistic regression provided better results

due to the small, imbalanced dataset.

The tools are dockerized, and the models are accessed via API calls from a web-based application

(see Figure 89).

Figure 89: UI of the web-application used during evaluation.

Application in Use Case

In Vaadin’s workflow, these tools are intended to be used during backlog refinement sessions by

developers, product managers, and technical leads. The tools are integrated into a web application,

which interacts with the dockerized models to fetch categorization suggestions for reported issues.

Users can review the system-generated labels for functionality area, impact, and severity, and

manually adjust them as needed.

Related KPIs

• UC10.FR_A1: Automatic suggestions for issue functionality area categorization based on the

issue’s minimal reproducible example.

• UC10.FR_A2: Automatic suggestions for issue impact categorization based on the issue’s title

and description.

• UC10.FR_A3: Automatic suggestions for issue severity categorization based on the issue’s

title and description.

Detangle by Cape of Good Code

Purpose

DETANGLE analyzes technical debt in software systems, targeting root causes such as architecture

quality, code quality, process inefficiencies, and knowledge distribution. It aids refactoring by

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 131 of 165

identifying hotspots that hinder maintainability. In the Vaadin use case, it reduces manual effort in

identifying improvement areas, enabling smoother feature implementation and lower bug density.

Implementation

The tool utilizes proprietary data mining and analysis techniques to compute metrics like System

Effort, Maintenance Effort, and Primary Effort. By analyzing historical and current code changes at

various levels (e.g., class, file, folder), DETANGLE predicts and quantifies the effort required to

address technical debt. It also incorporates test coverage data to provide holistic technical debt

analysis. These capabilities are delivered through meaningful visualizations such as graphs showing

feature coupling, cohesion, and architectural extensibility trends.

Application in Use Case

In the Vaadin use case, DETANGLE simplifies managing the complexities of the Flow framework by

analyzing feature and defect coupling across the codebase. It enables developers and technical

leaders to identify tightly coupled modules and prioritize refactoring efforts. The tool provides visual

feedback that highlights areas needing attention, with analyses performed as needed to generate

updated insights.

Related KPIs

• UC10.FR_C1: Analysing, extracting and visualizing the nature of the code change (e.g.,

feature / refactoring / bug) and timeline of the change.

Code Similarity Investigator by TWT

Purpose

This tool automates the analysis of code to identify similarities and recommend reuse opportunities.

The Code Similarity Investigator (CSI) focuses on identifying shared patterns and related structures

within code sections. It addresses challenges in maintaining feature parity and refactoring legacy code

efficiently, enhancing productivity and software quality in incremental development processes.

Implementation

• Uses Code Property Graphs (CPGs) to represent code sections.

• Applies graph-based algorithms to measure similarity.

• Identifies similar code blocks through structural analysis.

Input Data

• Source code from repositories or specific code segments.

Application in Use Case

The tool is integrated into Vaadin's software development workflow to streamline analysis and reuse

processes. Provided in a dockerized format, it features a web interface for easy access by developers,

enabling efficient examination of code for reuse opportunities or refactoring needs. This tool is

intended to maintain high-quality standards and optimize the platform's evolution.

Related KPIs

• UC10.FR_B1: Analysing and listing references to code parts with similar functionality.

• UC10.FR_C2:

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 132 of 165

• Original:

Automatic suggestions for design and code reuse based on natural language description

of change requirements.

• Revised:

Automatic suggestions for design and code reuse based on analysis of selected code

segments, such as methods and classes.

• Explanation of the Change:

The KPI has been updated to better reflect the underlying analysis process. Instead of

relying on natural language descriptions, the revised requirement emphasizes that design

and reuse suggestions are generated by analysing specific code segments. This approach

leverages the identification of reusable patterns more precisely, thereby enhancing the

overall accuracy and relevance of the suggestions provided.

Change-Based Test Selection (CBTS) Plugin by Fraunhofer FOKUS

Purpose

The CBTS Plugin is designed to optimize regression testing by analysing and classifying code

modifications. Its primary goal is to minimize the effort required for regression testing by selecting the

most relevant test cases. This is particularly beneficial for Vaadin products, where frequent updates,

patches, and enhancements are common. The plugin ensures that these changes are thoroughly

safeguarded against unintended consequences by identifying potential side effects.

Implementation

The CBTS Plugin uses change impact analysis techniques to assess modifications at a granular

level (e.g., methods, classes, or components). It applies algorithms that map code changes to specific

test cases, enabling the selection of those most likely to reveal issues caused by the changes (see

Figure 90).

• Data inputs: The tool ingests code-level changes, such as commits, and analyzes the

associated test cases from the repository.

• Processing: A traceability mapping between the codebase and test cases is generated,

leveraging both static and dynamic analysis.

Figure 90: High-level workflow of CBTS

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 133 of 165

Application in Use Case

The CBTS Plugin is currently executed locally with specific configuration settings. This setup allows

developers to evaluate its test selection capabilities in a controlled environment, although it is not fully

integrated into a live CI/CD pipeline.

Related KPIs:

• UC10.FR_B3: Suggest tests for reuse based on feature description and/or code changes.

Dragonfly and Modernization Toolkit Analyzer (MTK Analyzer)

Purpose

Dragonfly and MTK Analyzer are designed to facilitate the migration of applications from older Vaadin

versions (e.g., Vaadin 8) to the latest versions. These tools aim to automate the identification and

transformation of API references that require updates, reducing the manual effort involved in migration

and improving consistency. The main problems addressed include automating code updates,

maintaining functionality parity across versions, and minimizing migration-related errors.

The tools were explicitly developed within Vaadin’s use case to address feature parity across major

releases, ensuring smoother transitions for users of Vaadin 7 or 8 to newer versions with web

component-based front-end stacks. This is critical given the shift from GWT-based to web component-

based architectures.

Implementation

Dragonfly and MTK Analyzer leverage the following technical components:

• Parsing Framework: The tools utilize Java Development Tooling (JDT) and Abstract Syntax

Tree (AST) to analyze and transform Java source code.

• Transformation Handlers: Dragonfly incorporates handlers that parse compilation units

(source files) into AST representations, apply predefined transformation rules, and save

updated code. These rules are tailored to align older API references with the new Vaadin API.

• Integration Modes: Both tools can be used as plugins within Eclipse IDE or independently as

Maven plugins.

• Input and Output:

o Input: Java source code from applications developed using older framework versions,

e.g. Vaadin 7 or 8.

o Output: Updated source code compatible with the latest Vaadin versions or

transformation coverage summaries.

Application in Use Case

In real-world scenarios, Dragonfly and MTK Analyzer are employed during migration projects where

customer applications built on Vaadin 7 or 8 need to transition to newer versions.

• Users: The tools are used by developers and migration specialists within Vaadin and

customer teams.

• Workflow Integration: They are integrated into the development workflow as plugins,

enabling developers to analyse and transform project code directly within their development

environment. The tools also output transformation summaries for review and validation.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 134 of 165

• Impact on Workflow: These tools streamline the migration process by automating repetitive

tasks, identifying migration gaps, and enabling high-level overviews of transformation

coverage.

Related KPIs:

• UC10.FR_B2: Suggest API replacements based on the code/documentation analysis.

Internal Vaadin Performance Monitoring Solutions (Flow Fast Reload and Grid Performance

Boost)

Purpose

The combined solution addresses key performance-related challenges in Vaadin’s Flow framework

and Grid component by targeting both our development workflow efficiency and the runtime

performance experienced by end users. It aims to ensure optimal performance by:

• Automating the detection of performance regressions through integrated regression tests that

continuously monitor key metrics, from reload times during development to the

responsiveness of the Grid component at runtime.

• Improving development efficiency with faster reload times during code iterations.

• Enhancing the runtime performance of the Grid component, which is critical for applications

handling large datasets.

The tools mitigate risks of performance degradation, reduce manual debugging efforts, and provide

actionable insights for developers to maintain high performance standards in user applications.

Implementation

• Flow Fast Reload: This project targets faster reload times in Vaadin Flow applications,

enabling developers to see code changes reflected in the browser almost instantly. It includes:

o Automated tests that measure reload times for Flow apps of various sizes.

o Tools to monitor and identify bottlenecks in reload processes for both small and large

applications.

• Grid Performance Boost: Focused on enhancing the Grid component through:

o Benchmarking tools that run daily, comparing the performance of Grid in different

Vaadin platform versions.

o Key metrics captured include render time, scroll-to-index time, expand time, and

vertical scroll frame time.

Data inputs include continuous integration logs, benchmark results, and telemetry data collected

during automated test runs. Dependencies include the CI infrastructure, and Java-based

benchmarking scripts.

CI/CD Pipeline Enhancements: Continuous refinements have been implemented to streamline and

automate the build and testing processes. These updates introduce additional automated checks and

build configurations that reduce manual intervention and accelerate development cycles. The

enhancements improve overall build reliability and facilitate proactive detection of performance issues,

thereby ensuring a more efficient and stable deployment pipeline.

Application in Use Case

Vaadin’s development teams use these tools to:

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 135 of 165

• Detect and prevent performance regressions during platform updates.

• Analyse trends in reload times and component performance metrics to identify areas for

improvement.

• Test and optimize new features, such as the lazy columns functionality in Grid, before

deployment.

Product managers and developers rely on the benchmark data and visualizations to prioritize fixes and

enhancements. These tools are integrated into the CI/CD pipeline, ensuring consistent monitoring and

proactive resolution of performance issues.

Related KPIs:

• UC10.FR_D1: Extract from CI logs the following data: test failures trends, performance trends.

• UC10.FR_D2: Analyse and list correlations between code changes and test

failures/performance drops.

• UC10.FR_D3: Visualize performance trends over time.

d. Visualization

Dashboard Solution

The visualization solution for Vaadin’s use case focuses on presenting statistical data derived from

automated workflows and analysis tools. While the outputs of the SmartDelta tools are accessible

directly within their respective environments, the statistical data they generate is utilized in the

dashboard to provide actionable insights.

The visualization is implemented as a web application using the Vaadin platform (see Figure 91),

incorporating the newly developed Vaadin Dashboard component. This approach ensures integration

with existing tools while offering an intuitive and interactive interface for exploring key metrics.

Figure 91: Dashboard web-application

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 136 of 165

Key features include:

• Overview Metrics: Displays summaries of issue classifications by type, severity, and impact,

as well as progress on API migrations and refactoring activities.

• Interactive Visualizations: Pie charts, bar graphs, and spline charts enable users to monitor

trends, identify bottlenecks, and make informed decisions.

• Updates Summary: Highlights changes and areas requiring attention, streamlining

prioritization during development cycles.

Visualization Requirements

The dashboard aligns with UC10 requirements, designed to deliver meaningful insights to teams while

supporting the integration of SmartDelta tools.

Table 19: Visualizations Requirements Overview

Req. ID Title Description Status

D5.UC10.1 Management

Dashboard - Overview

The management

dashboard provides an

overview of different

metrics for a selected

product. Detailed

information could be

opened via interaction

with different

components.

Finished

D5.UC10.2 Updates summary Summary header

containing information

on the current state of

the metrics and

changes to those

visualized with badges

Finished

D5.UC10.3 Issue classification by

type

Summary of the labels

available for

classification by

functionality affected

with additional context

of related files and

notes. Pie chart

visualizing the current

distribution of the

issues with possibility

to switch between

confirmed and

suggested labels.

Finished

D5.UC10.4 Impact classification Issue classification by

impact visualized via

pie chart.

Finished

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 137 of 165

Req. ID Title Description Status

D5.UC10.5 Severity classification Issue classification by

severity visualized via

pie chart.

Finished

D5.UC10.6 Functionality

missmatch

Visualization of the

comparison of the API

between source and

target versions: api

aligned; api could be

replaced; api missing;

not confirmed; no

action needed. Source

and target version can

be selected with the

corresponding

component.

Partial implementation

D5.UC10.7 Refactor suggestions Visualization of the

current state of

suggested and

proceeded

refactorizations:

refactored; under

review; discarded.

Partial implementation

D5.UC10.8 Performance -

Overview

Visualization of the

performance trend of

the framework.

Finished

By leveraging the Vaadin platform, including Vaadin Dashboard Components and Vaadin Charts, this

visualization solution provides a user-friendly way to explore the data and insights generated by

SmartDelta tools, enhancing the overall development and decision-making process.

13. Evaluation Setup

This section outlines the evaluation setups for each solution used in Vaadin’s development workflow.

RISE Classification Tools/Solutions

Purpose

Automate issue categorization (functionality area, impact, severity) to reduce manual labelling effort

and improve consistency.

Scope & KPIs

• Targets issues reported in the Vaadin components and Flow backlog.

• Related KPIs:

o UC10.FR_A1 (functionality area),

o UC10.FR_A2 (impact),

o UC10.FR_A3 (severity).

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 138 of 165

Method

1. Label Suggestions: The tool provides label suggestions for new or unassigned issues.

2. Expert Comparison: Developers or product owners compare the automated labels with

manually assigned labels.

3. Data Collection: Collect statistics on correct vs. incorrect classifications and log time saved

vs. manual labelling.

Metrics

• Accuracy: Percentage of correct predictions (per label type).

• Time Savings: Reduction in median time spent on manual categorization.

Team

• Flow and Design System developers.

Detangle by Cape of Good Code

Purpose

Identify and visualize technical debt related to architecture, code quality, and historical change data.

Scope & KPIs

• Analyzes Vaadin’s Flow codebase (including historical commits).

• Related KPI:

o UC10.FR_C1 (nature/timeline of code changes).

Method

1. Qualitative Analysis: Tool outputs metrics like System Effort and Maintenance Effort.

2. Review Sessions: Developers and technical leads interpret DETANGLE’s visualizations (e.g.,

hotspots, debt trends).

3. Feedback Loop: Observed findings guide refactoring priorities.

Metrics

• Qualitative Feedback: How helpful the insights/visualizations are in planning refactors.

Team

• Flow developers.

Code Similarity Investigator by TWT

Purpose

Automate detection of similar code fragments and suggest potential reuse opportunities.

Scope & KPIs

• Analyzes source code across Flow and adjacent modules.

• Related KPIs:

o UC10.FR_B1 (listing code parts with similar functionality),

o UC10.FR_C2 (suggest design/code reuse).

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 139 of 165

Method

1. Code Pair Collection: Select code snippets or classes known to be similar/dissimilar.

2. Tool Execution: Tools generate numeric similarity scores and simple descriptions (Low,

Medium, High).

3. Comparison: Expert manual review checks alignment of tool’s categorization with real

functional overlap.

4. Reuse Suggestions: CSI indicates potential similar modules; experts validate relevance.

Metrics

• Precision & Coverage: For identifying truly similar code fragments.

• Relevance of Reuse Suggestions: How many suggestions developers find applicable.

Team

• Flow and Design System developers.

Change-Based Test Selection (CBTS) Plugin by Fraunhofer FOKUS

Purpose

Select the most relevant test classes/methods for code changes to reduce total regression testing

effort.

Scope & KPIs

• Evaluates how well the tool addresses UC10.FR_B3 (suggest tests for reuse based on feature

description/code changes).

Method

1. Test Identification: Define criteria for selecting tests covering both major and minor code

changes.

2. Tool Execution: Run the CBTS Plugin to automatically select tests while recording

performance metrics such as selection time and execution time reduction.

3. Evaluation: Experts assess the alignment between the tool’s selections and anticipated

coverage.

Metrics

• Time Efficiency: Combines the duration required for test selection with the subsequent

savings in overall test execution time.

• Test Reduction Efficiency: The extent to which the tool reduces the overall regression test

suite.

• Defect Detection Capability: The ability of the selected tests to capture critical defects

compared to a full test run.

Team

• Fraunhofer FOKUS plugin developers.

• Flow developers.

Dragonfly and Modernization Toolkit Analyzer (MTK Analyzer)

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 140 of 165

Purpose

Streamline migration from older Vaadin versions (e.g., 7 or 8) to the latest architecture by

automatically transforming outdated APIs.

Scope & KPIs

• Focus on real-world migration projects requiring API updates.

• Related KPI:

o UC10.FR_B2 (suggest API replacements).

Method

1. Project Selection: Identify candidate applications built in Vaadin 7/8.

2. Tool Execution: Dragonfly or MTK Analyzer scans code for outdated references and applies

transformations.

3. Manual Review: Developers confirm correctness of replacements and note any missed

references.

Metrics

• Coverage: Fraction of outdated references automatically found vs. total references present.

• Accuracy: Fraction of correctly transformed references vs. total transformations applied.

Team

• Vaadin Modernization experts.

• Service Department developers involved in customer migration projects.

Internal Vaadin Performance Monitoring Solutions (Flow Fast Reload and Grid Performance

Boost)

Purpose

Detect performance regressions and improve performance in Flow (fast reload) and Grid components

(for example, rendering and scrolling).

Scope & KPIs

• Monitors continuous integration data for performance changes.

• Related KPIs:

o UC10.FR_D1 (test failures and performance trends in CI logs),

o UC10.FR_D2 (correlation between code changes and performance drops),

o UC10.FR_D3 (visualize trends over time).

Method

1. CI Integration: Automated benchmarks run daily or per commit, tracking reloads times and

grid metrics (for example, rendering and scrolling times).

2. Trend Analysis: Compare new runs to historical baselines; log significant regressions.

3. Correlation: When a drop is detected, the tool highlights recent commits for investigation.

Metrics

• Reload Time Capture: Assesses if the tool captures average or percentile reload times

across different app sizes.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 141 of 165

• Grid Performance Capture: Assesses if the tool captures key grid metrics, such as scroll

latency and rendering time.

• Performance Drop Linking: Evaluates if the tool can link observed performance drops to

corresponding code changes.

• Trend Visualization: Evaluates if the tool effectively visualizes performance trends over time.

Team

• Flow and Design System developers

• Product owners

14. Evaluation Results

Overview

Below is a table presenting the evaluation results against the predefined KPIs for the Vaadin use case

within the project. The table compares the baseline and target values with the achieved results at the

time of the final evaluation.

Table 20: KPIs Overview

Requirement ID KPI Definition Base
Value

Target
Value

Achieved
Value

UC10.FR_A1 Reduction in time required for
categorizing issues functionality areas,
achieved using automatic suggestions
based on the issue’s minimal
reproducible example

0% 70% 30%

UC10.FR_A2 Reduction in time required for assigning
impact label to issues, achieved using
automatic suggestions based on the
issue’s title and description.

0% 70% 30%

UC10.FR_A3 Reduction in time required for assigning
severity label to issues, achieved using
automatic suggestions based on the
issue’s title and description

0% 70% 30%

UC10.FR_B1 Analysing and listing references to code
parts with similar functionality

0%

(No
mapping
exists)

100%

(List of
code parts
created)

100%

UC10.FR_B2 Suggest API replacements based on the
code / documentation analysis

0%

(Manual
listing of
the
suggestion
s)

100%

(Automatic
suggestion
s of API
replacemen
ts)

100%

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 142 of 165

Requirement ID KPI Definition Base
Value

Target
Value

Achieved
Value

UC10.FR_B3 Suggest tests for reuse based on feature
description and/or code changes

0%

(Manual
selection of
tests)

100%

(Automatic
selection of
existing
tests based
on feature
description
and/or
code
changes)

70%

UC10.FR_C1 Analysing, extracting and visualizing the
nature of the code change (e.g., feature /
refactoring / bug) and timeline of the
change.

0%

(Manual
analysis
using
version
control
logs)

100%

(Data is
available
and
visualized)

100%

UC10.FR_C2 Automatic suggestions for design and
code reuse based on analysis of
selected code segments, such as
methods and classes.

0%

(Manual
design and
code re-
use
suggestion
s)

100%

(Automatic
design and
code re-
use
suggestion
s)

100%

UC10.FR_D1 Extract from CI logs the following data:
test failures trends, performance trends

0%

(Unstructur
ed log
data)

100%

(Analysable
data
structure)

100%

UC10.FR_D2 Analysing and listing correlations
between code changes and tests failures
/ performance drops

0%

(Unstructur
ed log
data; no
correlation
listing)

100%

(Correlation
lists are
created;
analysable
data
structure)

100%

UC10.FR_D3 Visualization of the performance trends
over the time

0%

(No data
available)

100%

(Data is
available
and
visualized)

100%

RISE Classification Tools/Solutions

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 143 of 165

The RISE classification tools were evaluated in two rounds to assess their ability to automate issue

categorization for functionality area (UC10.FR_A1), impact (UC10.FR_A2), and severity

(UC10.FR_A3). The combined findings from both rounds are presented below.

First Evaluation Round

Experimental Evaluation (RISE Team)

• Issue Prediction (Tool 1): On a dataset of 4344 issues (15% for evaluation), the model

achieved 75% accuracy for classifying issue type (e.g., bugs, enhancements).

• Issue Severity (Tool 2): On 3472 issues (15% evaluation split), the tool reached 67%

accuracy for recommending severity (blocker, major, minor).

• Issue Impact (Tool 3): With a smaller dataset of 1753 entries, the tool achieved 62%

accuracy in classifying impact (high vs. low).

Use Case-Oriented Evaluation (Vaadin)

• Data: 185 new issues from Flow, Flow-Components, and Web-Components repositories.

• Method: Manual vs. automated label comparison.

• Findings:

• Flow Repository: 81 issues, 18 misclassifications.

• Flow-Components Repository: 59 issues, 7 misclassifications.

• Web-Components Repository: 45 issues, 3 misclassifications.

• Most discrepancies involved nuanced severity markers (e.g., memory leaks for blocker).

Automated labels reduced discussion time, though manual intervention was still frequently

required.

Log Time Summary

During the first evaluation round, the primary focus was on tool accuracy. The average time to classify

an issue showed a 16% reduction, although extensive time evaluation was not the main focus.

Second Evaluation Round

A combined dataset of 151 issues was split so that 70% (105 issues) formed the test set. A few-shot

prompting approach with a generative LLM was used for severity and impact predictions, while

functionality area suggestions continued to be sourced from the previous model.

• Severity Prediction: Accuracy of 65% for classifying issues as major, blocker, or minor.

• Impact Prediction: Accuracy of 73% in distinguishing high vs. low impact.

Log Time Summary

During the second evaluation, detailed log times were captured to assess the impact of label

suggestions on the classification process. Without suggestions, the average time to classify an issue

was 98.7 seconds, while with suggestions it dropped to 73.4 seconds, representing an average

reduction of approximately 25.65%. Similarly, the median classification time decreased from 90

seconds to 63 seconds (a 30% reduction).

These results demonstrate that label suggestions contribute to a more efficient classification process.

The median time metric was selected for comparison against our target KPI due to the presence of

outliers in the collected classification times.

Accuracy Summary

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 144 of 165

Across both evaluation rounds, the RISE classification tools provided automatic suggestions with the

following accuracy:

• Functionality Area (UC10.FR_A1): Issue type classification averaged around 75% accuracy

• Impact (UC10.FR_A2): Logistic regression and LLM-based evaluations showed 62%–73%

accuracy.

• Severity (UC10.FR_A3): The models achieved 65%–67% accuracy

KPI Conclusion

The evaluation outcomes reveal a dual narrative. On one hand, the reduction in classification time,

evidenced by the median log time improvements, indicates that the automated label suggestions are

beneficial in streamlining the manual process. On the other hand, in-depth analysis has uncovered

important insights into Vaadin’s classification practices:

• Vaadin was provided with an automated similarity analysis results and identified 40 cases

where similar issues were classified differently. Manual analysis concluded that these

variations were largely due to missing context or varying human interpretations.

• A reevaluation of a subset (~105 issues) by a different group of experts resulted in a 7.6%

discrepancy in labels, where experts were uncertain about assigning labels, underscoring the

inherent challenges and subjective nuances in classification.

These findings indicate that, while automation effectively reduces manual effort, further refinement of

the expert review process is needed to achieve the KPI target of a 70% reduction in manual

classification time. Adjusting the training dataset will be a time-intensive process and should be

managed outside of the project's current scope.

Detangle by Cape of Good Code

Using DETANGLE on the Vaadin Flow codebase yielded several key findings regarding technical debt,

architecture quality, and code maintainability. The tool computed metrics such as System Effort,

Maintenance Effort, and Primary Effort (see Figure 92) to capture and categorize the nature of code

changes. Specifically, DETANGLE’s analyses highlighted:

• Nature and Timeline of Code Changes

DETANGLE successfully differentiated between feature-driven, bug-fixing, and technical-

improvement (refactoring) changes. By visualizing these categories and their corresponding

timelines, the tool provided clarity on when and where development effort was concentrated.

• Hotspot Identification

Two critical “frontend” folders: flow-server/src/main/java/com/vaadin/flow/server/frontend

and its corresponding test folder, exhibited high coupling and significant effort spent on both

new features and bug fixes (see Figure 93). These folders together represent nearly 10% of

the total codebase and show a notable overlap of maintenance and feature effort, indicating

tightly coupled modules that can lead to unintended side effects.

• Architecture Extensibility and Maintainability

Metrics such as Primary Debt Index (PDI), Defect Density, and Defect Impact revealed that

the identified hotspot folders have reduced architectural extensibility. They also experience

recurring defect patterns, suggesting that new features implemented within these folders risk

introducing further bugs and rework.

• Refactoring Recommendations

By drilling down to the file level, DETANGLE provided insights for splitting large files,

reorganizing code sections, and reducing inter-file dependencies. This granular view enabled

focused discussions on how best to lower technical debt in the identified hotspots.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 145 of 165

Figure 92: Detangle metrics

Figure 93: Technical Debt Hotspots

Conclusion

In conclusion, the DETANGLE tool has successfully met the established UC10_FR_C1. It has

provided valuable insights into potential areas for refactoring, thereby making a significant contribution

to the overarching goal of Vaadin’s user story. The tool’s ability to identify hotspots and suggest

improvements is commendable and aligns well with the objectives of enhancing code quality and

design efficiency.

Code Similarity Investigator by TWT

Below are the consolidated findings for the CSI, derived from both automated analysis scores and

detailed manual review of representative code pair comparisons provided by Vaadin. In this

evaluation, similarity levels were categorized into four classes: None, Low, Medium, and High, and a

numerical mapping was applied (None = 1, Low = 2, Medium = 3, High = 4) to quantify the difference

between CSI’s automated assessments and expert manual evaluations.

1. Overall Accuracy and Matching

a. High Alignment with Manual Review: In most cases, the automated similarity scores

closely matched expert assessments. Code pairs with nearly identical or near‐identical

logic (e.g., ViewAccessChecker vs. NavigationAccessControl

getAccessDeniedException) were consistently classified as High by both CSI and

manual review.

b. Moderate Cases: Several code pairs, such as BuildFrontendMojo vs.

VaadinBuildFrontendTask, were categorized as Medium by CSI. Despite differences

in context, naming, or underlying build systems (Maven vs. Gradle), expert analysis

confirmed the core similarity in functionality.

2. Discrepancies

a. Naming and Context Variation: A few code pairs (e.g., BuildFrontendMojo vs.

BuildDevBundleMojo) were flagged with discrepancies because CSI detected

structural parallels but did not fully capture contextual nuances or divergent project

goals.

b. Unavailable or Non-Comparable Methods: In certain instances (e.g.,

ListDataProvider.fetch vs. CustomInMemoryDataProvider.fetch), no direct mapping

could be established due to missing or dispersed method definitions across files.

Quantitative Evaluation Extract

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 146 of 165

A detailed quantitative assessment of the 29 code pair comparisons yielded the following results

based on the numerical mapping:

• Exact Match (Difference of 0): 18 out of 29 cases (62%)

• Close Agreement (Difference of 1): 9 out of 29 cases (31%)

• Significant Disagreement (Difference of 2): 2 out of 29 cases (7%)

• Completely Off (Difference of 3): 0 out of 29 cases (0%)

Overall, 93% of the evaluated cases exhibited either exact matches or close agreement between CSI’s

automated assessments and expert manual evaluations.

Fulfilment of KPI UC10.FR_B1

CSI successfully identified and listed code segments with similar functionality, thereby meeting the KPI

requirement. Although some discrepancies arose due to contextual or naming variations, the tool’s

performance in matching expert assessments underscores its effectiveness in supporting code reuse

and refactoring efforts.

Fulfilment of KPI UC10.FR_C2

To assess automatic suggestions for design and code reuse, CSI was validated using the same set of

code pairs from the manual similarity analysis:

• Reuse Suggestions: The tool provided suggestions that aligned with manual findings in all

tested cases. In several instances, CSI recommended additional classes that were not initially

part of the manual comparison but were later confirmed to be relevant after expert review.

• Performance Considerations: In most evaluation scenarios, the tool’s analysis took over one

hour, indicating potential performance bottlenecks for larger codebases or more complex

queries.

Despite these performance challenges, CSI meets the KPI requirement for automatic design and code

reuse suggestions. By providing relevant suggestions, the tool fulfills the core objective of

UC10.FR_C2, demonstrating its potential to streamline design and code reuse in the development

process.

Conclusion

The evaluation confirms that the Code Similarity Investigator aligns closely with expert evaluations,

with 93% of cases showing exact or near-exact matches for similarity analysis. This strong alignment

validates CSI’s capability to reliably detect and suggest reusable code segments (KPI UC10.FR_B1).

Additionally, its automated recommendations (KPI UC10.FR_C2) have proven useful, despite

occasional performance constraints. Overall, CSI emerges as a promising solution for automating

code similarity analysis and reuse suggestions in complex software systems.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 147 of 165

CBTS Plugin (Change-Based Test Selection Tool) by Fraunhofer FOKUS

Qualitative Observations

During the evaluation, the CBTS Plugin was tested on Vaadin Flow modules with code modifications.

The following observations emerged from developer feedback:

• Parser Configuration: An upgrade to a newer JavaParser library (3.26.3) and explicit

configuration for Java 17 features were necessary to avoid parse errors in newer Flow

components.

• Fallback for Default Packages: Tests without explicit package declarations caused

exceptions, indicating a need for more robust handling.

• Test Selection Accuracy: The plugin reliably identified tests associated with significant

modifications, such as changes in class inheritance, interface declarations, import statements,

and dependency configurations. However, it did not suggest tests for subtle changes within

existing methods, which are the most frequent modifications in daily development.

• Developer Integration: Developers acknowledged potential time savings from the automated

listing of relevant tests. Nonetheless, as a TRL: 4 prototype, the tool’s maturity limits its

readiness for full integration into live pipelines.

Quantitative Observations

Evaluations across several Vaadin modules introduced a spectrum of modifications. Significant

modifications, such as import statement changes or POM adjustments were effectively processed by

the tool. In contrast, minimal modifications within existing methods (for example, minor bug fixes) were

not captured by the tool, despite their frequency in day-to-day code maintenance.

Table 21: Evaluation of CBTS with Respect Test Components

Further evaluation of the CBTS Plugin yielded the following performance metrics for the Vaadin Flow

Framework (which comprises 18 core modules, 34 test modules, a suite of over 6680 tests with a total

execution time of approximately 1.5 hours):

• Regression Test Selection Time: Approximately 30.23 seconds.

• Number of Selected Regression Tests:

o pwa-disabled-offline: 3 out of 35 tests selected (~92% reduction)

o Flow-polymer2lit: 23 out of 75 tests selected (~70% reduction)

o Flowmisc: 10 out of 152 tests selected (~94% reduction)

o Flow-dev: 27 out of 265 tests selected (~90% reduction)

• Reduction in Execution Time:

o pwa-disabled-offline: ~95% reduction

o Flow-polymer2lit: ~80% reduction

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 148 of 165

o Flowmisc: ~94% reduction

o Flow-dev: ~96% reduction

• Findings

o None of the selected regression tests found a side-effect-caused defect.

o The entire test suite detected only a few side-effect-caused defects; most defects

found by the entire regression test suite were caused by direct changes applied to the

code, not because of side-effects

Defect Detection Capability

While the tool meets the KPI for “Automatic selection of existing tests based on feature description

and/or code changes” in cases of significant modifications, its overall defect detection capability is

limited. Specifically, although tests for major changes (e.g., altered imports, dependency changes) are

reliably suggested, the tool fails to capture tests relevant to minimal changes within existing methods.

This limitation, affecting the majority of daily updates, results in an overall achieved defect detection

capability of approximately 70% relative to the target value.

Conclusion

The final evaluation indicates that the CBTS Plugin demonstrates acceptable performance for

identifying tests related to significant code modifications. However, its maturity currently limits

comprehensive coverage, especially regarding the subtle changes within existing methods that

dominate daily work. Despite these limitations, the tool provides valuable insights for regression test

selection when run locally with appropriate configurations.

Dragonfly and Modernization Toolkit Analyzer (MTK Analyzer)

Below are the evaluation results obtained from analyzing three different service customer projects for

migration from Vaadin 8 to the latest Vaadin versions. The statistics focus on method and constructor

references, highlighting coverage rates (i.e., the proportion of references for which an automatic

transformation rule was successfully applied).

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 149 of 165

Figure 94: MiniFinder report of project evaluation 2023-09-23

1. Project Evaluated on 2023-09-23

• Scope: 466 Java files, 5,336 Vaadin 8 references identified

• Method Invocations: 3,536 references; 68% coverage

• Constructor Invocations: 296 references; 80% coverage

• Key Challenge: Missing rules for MenuItem methods

• Observation: Overall solid coverage, with specific improvement areas around unhandled

MenuItem transformations

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 150 of 165

Figure 95: MiniFinder report of project evaluation 2023-10-05

2. Project Evaluated on 2023-10-05

• Scope: 203 Java files, 22,793 Vaadin 8 references identified

• Method Invocations: 13,330 references; 83% coverage

• Constructor Invocations: 3,165 references; 77% coverage

• Notable Strength: High coverage (94%) for Grid class references

• Observation: Marked improvement over the previous project. Lower-coverage classes

indicated remaining rules to be refined.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 151 of 165

Figure 96: MiniFinder report of project evaluation 2023-10-26

3. Project Evaluated on 2023-10-26

• Scope: 40,366 Java files, 20,636 Vaadin 8 references identified

• Method Invocations: 10,489 references; 64% coverage

• Constructor Invocations: 1,514 references; 88% coverage

• Key Challenge: High complexity of Vaadin API usage in certain classes

• Observation: While constructor references maintained strong coverage, the diversity of

method usage affected the overall method-invocation coverage.

Conclusion

Across all three projects, the tools demonstrated a strong ability to suggest and apply API

replacements in alignment with the UC10.FR_B2 requirement of providing automated API

recommendations based on code analysis. Constructor invocations were generally transformed with

high coverage, reflecting robust rules for new-instance migrations. Method-invocation coverage varied

according to project complexity but remained sufficiently high to significantly reduce manual migration

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 152 of 165

efforts. Overall, these results confirm that the tools effectively fulfil the KPI of suggesting API

replacements and substantially support automated modernization from Vaadin 7 or 8 to the current

architecture.

Internal Vaadin Performance Monitoring Solutions (Flow Fast Reload and Grid Performance

Boost)

The internal Vaadin performance monitoring solutions for Flow Fast Reload and Grid Performance

Boost have successfully transitioned from fragmented, unstructured log data to fully analyzable and

visualized data (see Figure 29 and Figure 30). Below is a summary of how the solutions meet the

stated KPIs and key findings from the monitoring setup:

1. UC10.FR_D1: Extract from CI logs the following data: test failures trends, performance trends.

a. Before: Logs were captured but lacked a coherent format for systematic analysis.

b. After: Performance metrics (e.g., refresh times, Grid rendering speeds) are now

automatically collected in a consistent structure, enabling direct comparisons and

trend analysis. Build information and test results are centrally stored and easily

accessible via TeamCity dashboards.

2. UC10.FR_D2: Analyze and list correlations between code changes and test

failures/performance drops.

a. Before: There was no straightforward way to link performance variations to specific

code commits or changes.

b. After: Each TeamCity build run captures commit history alongside performance

measurements. Users can quickly identify when and how a specific build correlates

with performance improvements or regressions. The “Changes” tab in TeamCity

provides an at-a-glance view of which revisions were included in each build, helping

pinpoint relevant code modifications.

3. UC10.FR_D3: Visualize performance trends over time.

a. Before: No consolidated or automated method existed to visualize performance

trends.

b. After: TeamCity graphs and dashboards display real-time data on test pass/fail rates

and performance deltas relative to a baseline. These visualizations allow developers

and stakeholders to quickly assess whether performance is improving, stable, or

regressing.

c. The system also reports on specific performance indicators, such as Grid rendering

times or Flow reload times, providing actionable insights into potential bottlenecks.

4. Key Observations and Outcomes

a. Quantifiable Comparisons: The build pipelines now measure performance against a

known baseline, enabling clear identification of improvements or degradations.

b. Trend Monitoring: Performance data can be tracked build-to-build, illustrating how

incremental code changes affect system responsiveness.

c. Actionable Insights: The automated measurements reduce guesswork in debugging

and help maintain stable performance in Flow and Grid components, especially for

applications handling large datasets.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 153 of 165

Figure 97: Grid's performance on recent platform version relative to the baseline version

Figure 98: Vaadin 24.7 application reload times

Overall, these enhancements fulfil the KPIs by providing structured, correlated, and visualized

performance data. The monitoring solutions allow Vaadin teams to proactively detect, analyse, and

address potential regressions, ensuring both Flow and the Grid component remain performant and

reliable.

a. Recommendation for industry adoption

The evaluation demonstrates that the SmartDelta Methodology, which integrates both partner

solutions and Vaadin’s internally developed tools, provides significant benefits for managing complex,

business-critical software systems. Mature solutions such as Detangle and Modernization Tools offer

substantial improvements by automating key processes such as code analysis, legacy refactoring and

API migration. These tools have already proven to reduce manual effort and enhance quality

assurance while enabling a seamless migration from legacy frameworks.

However, some limitations remain. The CBTS Plugin, while valuable for major code changes, is less

effective in identifying the more subtle modifications that occur in routine development. Additionally,

although the classification tools have provided useful insights into workflow practices and reduced the

time required for manual processes, their effectiveness depends on an organization’s ability to

implement strong manual classification practices, which in turn produces a robust training set for these

tools.

Overall, for industries facing complex software challenges, adopting this comprehensive methodology

and toolset offers a clear path to improved productivity, quality, and scalability.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 154 of 165

15. Use-Case 11 from Arcelik

a. Use-Case Description

Arçelik, a global household appliances manufacturer with extensive operations across 57 countries

with 55,000 employees, has adopted the SmartDelta methodology to address inconsistencies in

software quality and the maturity of Software Development Life Cycle (SDLC) processes. The initiative

aims to enhance traceability, standardize processes, and generate actionable insights by monitoring

key metrics such as the ratio of pull requests linked to bugs or user stories, and SonarQube issues

linked to pull requests. Significant progress has been made in improving traceability and

understanding the impact of code quality issues (Stories A and C), while challenges remain in root

cause analysis (Story B), which are being addressed with the support of Large Language Models

(LLMs). Through collaboration with user case partners and leveraging automated tools, Arçelik strives

to reduce manual effort in report generation and achieve meaningful improvements in SDLC quality

metrics, ultimately reflecting positive changes in software quality.

b. Link to SmartDelta Methodology

The tools and dashboards in this project aim to streamline the measurement and visualization of metrics across

various development and validation processes. Different tools focus on distinct aspects, such as assessing tool

performance, tracking application changes over time, and integrating data for meaningful insights.

A key component, the Metric Dashboard, consolidates data from multiple sources and provides an intuitive

interface using the Qlik Dashboard tool. Team members can log in to explore detailed metrics, visualized as

trendlines with dynamic color indicators that reflect performance trends. Future iterations will incorporate

combined metrics for deeper analysis and more actionable feedback.

Additionally, individual tools serve specialized functions:

• ReLink helps match code changes to work items, enhancing traceability.

• PieR leverages AI for issue classification and analysis.

• Other tools focus on various aspects such as automated compliance checks, software evolution

tracking, and impact analysis, ensuring a comprehensive and adaptable suite.

This ecosystem of tools enables better decision-making, more efficient workflows, and a data-driven approach

to software quality and evolution.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 155 of 165

Figure 99: Arcelik and the SmartDelta Methology

c. Tools description

Table 21: Tools for Arcelik’s Use-Case

Tool/Application

Purpose

ReLink

Matches Work Items with Code

Changes using Machine Learning

methods.

Jazure Transfers Work Items from Jira to the Azure DevOps environment.

Policy for Matching Work Items with
Code Changes

Ensures developers match code changes to corresponding Work Items in
Azure DevOps.

PieR Uses generative AI to classify issues and gain insights about code
changes.

Detangle Offers software analytics through a dashboard developed by Cape of Good
Code.

Metric Dashboard

Pulls data from multiple sources,

visualizes trends, and provides

updates on application metrics.

Smellyzer Analyzes and determines the process quality of code changes.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 156 of 165

d. Visualization

Metric Dashboard

The Metrics Dashboard is designed using the Goal-Question-Metric (GQM) methodology to help our

organization continuously improve software quality and operational efficiency. Each metric is aligned

with a key question that maps to an overarching goal, ensuring that we track meaningful insights. By

addressing process inefficiencies, we enhance product quality metrics such as code maintainability,

security, and performance. Screenshots provided illustrate how the dashboard visualizes crucial

indicators like code smells, vulnerabilities, technical debt, and test coverage, offering actionable

insights for developers. Additionally, process-oriented metrics, such as incident resolution times and

deployment frequency, help streamline workflows and optimize resource allocation. By leveraging

automated analysis tools like SonarQube and Jira integrations, our dashboard facilitates data-driven

decision-making, ultimately driving higher software quality, reduced risk, and improved developer

productivity.

Figure 100: Metric Dashboard: The issues linked with the related pull requests

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 157 of 165

Figure 101: Metric vaad: Dora Metrics

Figure 102: Metric Dashboard: Process Metrics

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 158 of 165

Figure 103: Metric Dashboard: Product Metrics

Visualisation requirements

Visualization requirements were defined based on metric definitions. For most metrics, we used an X-

Y axis format, with the Y-axis representing the time delta and the X-axis representing the metric's unit

of measurement, as displayed on the dashboard. This setup allowed us to visualize the delta as a

trendline and observe how it evolved over time. To illustrate the linkage between PRs and Work Items,

we utilized built-in pie charts and tables in Qlik. For summarizing the overall health of quality, radar

charts and tables proved to be effective. For another application, we leveraged built-in JavaScript

libraries to interpret and visualize the data.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 159 of 165

e. Evaluation Setup

Figure 104: High Level Data Flow

The listed solutions in work packages operate on on-premises servers. Data is fetched from

various sources, as illustrated in the figure 104 above. The data processing is visualized in three

stages: Pre-Processing, Processing, and Post-Processing.

Pre-Processing: This stage involves not only fetching data from APIs but also making modifications

during the development process. The following steps are implemented:

• Repository policies were introduced.

• Work items from Jira were synchronized with Azure using the Jazure Application.

• ReLink was used to fix previously missing links between Pull Requests and Jira work items.

• PieR was utilized to classify, and tag Pull Requests.

Processing: At this stage, data is imported into the Data Warehouse. The Smelyzer and Metric

Dashboard’s background job analyse and calculate defined metrics. Additionally, The Metric

Dashboard integrates with other APIs to connect with LLMs, identifying root causes, generating

actionable insights, and normalizing the data.

Post-Processing: At this stage, data is prepared for visualization. Some metrics are aggregated to

enhance the overall view, and this is achieved using QLIK.

As a result, SDLC members can utilize the Metric Dashboard to gain a unified view of the

metrics. It provides actionable insights, delta reports, sprint newsletters, work item analysis,

and metrics displayed as deltas.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 160 of 165

f. Evaluation results

Table 22: KPIs Overview

Requirement KPI Definition KPI Base Values

KPI

Target

Values

KPI achieved

Value

UC11.FR1

Ratio of pull requests linked with

associated bugs/user stories

0.4 0.9

 0.84 for past

work PRs / 1

for current and

future pull

requests

UC11.FR4

Ratio of SonarQube code issues

linked with related pull requests
0% 90% 100%

UC11.FR5

Ratio of bugs categorized

accurately
0% 0,75 0,75

UC11.FR6

UC11.FR7

UC11.FR8

UC11.FR9

Effort reduction for creating a

report with valuable insights into

sw quality metrics

0% <1 1

The implemented tools have delivered measurable impacts across various areas. The Software

Metrics Dashboard analyzed over 100,000 data points from 10 projects and 72 repositories, offering

detailed insights into software performance. PieR facilitated root cause analysis by tagging and

analyzing 2,129 pull requests, enhancing process optimization with an average top-3 accuracy of

96.4%. Smellyzer detected over 5,000 process issues, providing actionable data for continuous

improvement. Relink linked 84% of prior work items and pull requests using machine learning,

significantly reducing manual workload. Finally, Jazure synchronized 13,737 Jira work items with

Azure DevOps pull requests, improving cross-platform tracking and collaboration.

Jazure

Work item - Pull Request (PR) linkage has been established through ReLink for the T-1 moment of the

software development process. For both the T and T+1 moments, we are enforcing a branch policy that

mandates a work item's linkage for it to be merged into the master branch. This policy ensures that

merging to the master branch without a linked work item is not possible. As a result, we have achieved

a 100% success rate in creating relationships between work items and PRs.

PieR

The PieR tool supports us to achieve KPI UC11.FR5 (Ratio of bugs categorized accurately). We

analyzed over 15K pull requests, and in our labeled sample set, the model achieved a top-1 accuracy

of 63.6%, top-2 accuracy of 90.9%, and top-3 accuracy of 96.4%. Our target accuracy was 75%, which

we were able to achieve with top-2 and top-3 accuracies.

Smellyzer

The Smellyzer tool supports us to achieve KPI UC11.FR1 (Ratio of pull requests linked with

associated bugs/user stories). The Figures Smellyzer Figure 105 and 106 represent smell counts each

year for bug tracking smells and code review smells, respectively in Connecta. Please see below for

quantitative results:

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 161 of 165

Figure 105: Smellyzer Figure X

Figure106: Smellyzer Figure Y

Relink

The MRR for Connecta was found to be at a value of 0.84, which signifies that ReLink not only makes

accurate recommendations but also ranks them effectively, making it easier for practitioners to identify and

select relevant issues. Additionally, the top-1, top-3, and top-5 accuracy for Connecta reached 0.83, 0.85, and

0.86, demonstrating the system’s proficiency in accurately associating PRs with the top-5 recommended issue.

g. Recommendation for industry adoption

The SmartDelta methodology has significantly improved software development by enhancing

traceability, standardizing processes, and delivering actionable insights. Tools like ReLink and

Jazure have strengthened PR-to-work item linkage, while dashboards provide clear visualizations

for trend monitoring. AI-powered tools, such as PieR and Smellyzer, automate issue classification

and quality assessment, reducing manual effort and driving efficiency.

However, challenges like root cause analysis and scaling the methodology to diverse environments

remain. Future improvements should focus on refining analytical capabilities, enhancing tool

integration, and adapting SmartDelta for evolving SDLC practices. With these advancements,

SmartDelta can further solidify its role as a transformative methodology in the industry.

16. Industrial Use-Cases and Project KPIs results

10 Project KPIs are evaluated through the present evaluation. Based on the requirement

evaluation for each use-case, we define the project KPI achievement.

Table 23: Evaluated project KPIs

KPI Number KPI Description Initial & expected target values

KPI_1.1 Automated translation of

requirements into models.

Automated translation of 80% of

requirements into models. The

baseline includes no automated

translation mechanisms for

requirements.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 162 of 165

KPI_1.2 Automated reuse of system artifacts

based on quality trends.

50% reduction of mean time to

resolution compared with manual

reuse approach. The baseline time

needed for reuse analysis for

requirements is estimated by

partners to be between 200 to 300

hours per project. F1-measure of 0.7

in classifying the artifacts. F1 is a

measure of a test's accuracy in

statistical analysis of binary

classification.

KPI_1.3 Automated validation of delta

artifacts and quality

recommendations based on static

analysis, testing and bug fixing.

Decreasing by 50% the mean time to

detect anomalies and average time

to patch bugs or vulnerabilities, today

fixed in more than 245 days [11]. We

also aim to have 80% of

requirements to be tested

automatically as well as 80% of fault

coverage for test cases. We aim to

reduce flakiness levels by 2-5%. The

baseline for flakiness is reported to

represent between 2 to 10% of all

test cases between releases [12] and

reflects the current state of use case

considered.

KPI_1.4 Automated analysis and visualization

of system execution results.

We aim to identify 50% more test

scenarios or quality issues so that

they can be taken into account to

improve coverage measurements

using different views on the data,

such as visualizations per test case

and per code branch, as well as

statistics per release.

KPI_1.5 Integrated SmartDelta toolset with

the current continuous development

practices in industry for fast feedback

loops

Integration of 5 industrially-common

tool sets in order to introduce quality

protection (operations) and

optimization (development) tool

chains in SmartDelta.

KPI_1.6 Demonstrable implementations. Successful handling of several

industrial case studies with at least

100k lines of code for both software

and testware by SmartDelta

framework leading to demonstrable

implementations.

KPI_2.1 Maximizing SmartDelta Automation

and Adoption

50% reduction of mean time to

enable quality protection and

optimization means, compared with

the manual approach.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 163 of 165

KPI_2.2 Product Delivery Effort Reduction 20% reduction of development effort

(direct and indirect costs) in terms of

total hours for specification work and

testing in a period of one year

(repeated twice during the project)

with measurements performed per

subsystem compared to two other

closely-related variant projects. The

baseline measurements will be

performed during case study setup

using historical information, but initial

baseline information indicate a 1-3

year product delivery estimate.

KPI_2.3 Defect Prevention Reducing the introduction of system-

related defects by 20%. As a

baseline, around 50% of the total

number of defects are introduced at

requirement and design phases as

well as bad fixes during continuous

development before the

implementation of SmartDelta

solutions. This will be measured via

all defects closed over effort spent

during development and calculated

using the fixed defects for a 3 months

window/net development effort for a

3 month window (repeated twice

during the project). The metrics are

giving a high-level view about

average defect density which is

changing slowly and allows teams to

improve in the long term based on

long term trends.

KPI_2.4 Quality Improvement Quality Improvement in the range of

15-25%. We use the rate of build

success and change failure rate

(e.g., lead to service impairment,

require a hotfix, a rollback, a fix-

forward or a patch). The baseline

shows a change failure rate of 16-

45% [14] when the release frequency

is between once per month and once

e-very six months.

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 164 of 165

Figure 107: Project KPI achievements

2 KPIs have an achievement less than 90%:

KPI_1.4: 14 related requirements from 16 are met. The 2 partially satisfied requirements have

shown improvements by 30% and 25% which are below the expected 50%.

KPI_2.1: 26 related requirements from 32 are met for this KPI. The 6 partially satisfied

requirements have shown improvements between 30 and 40% which is below the expected 50%.

The final evaluation of the industrial use cases revealed that, in general, SmartDelta, its

methodologies, and the tools it has developed have accomplished the anticipated objectives.

However, the two KPIs with an achievement of less than 90% are noteworthy, as the decline in

performance was only found in two use cases.

17. Implications for Industry

The SmartDelta project, which focused on automated quality assurance and optimization in the context

of incremental industrial software development, has yielded promising results across a range of

industry use cases.

Eleven participating organizations provided feedback on the project's methodology and associated

tools, with a common theme being the significant improvement in efficiency and quality through

automation.

Several participants highlighted the benefits of enhanced traceability and standardized processes, with

tools such as ReLink and Jazure improving the connection between project requirements and work

items, while dashboards facilitated trend monitoring. AI-powered tools such as PieR and Smellyzer

automated issue classification and quality assessment, reducing manual effort.

One participant specifically noted the value of the SmartDelta Methodology in identifying relevant tools

and solutions throughout the development lifecycle. Another participant emphasized the

methodology's structured guidelines and its ability to suggest new approaches, particularly for

comparing large volumes of software artifacts. Several organizations reported success in automating

testing processes. The SONATA platform exhibited potential in automated test case identification and

code reuse; however, further development is necessary to enhance artifact indexing and natural

language processing accuracy. The TIGER+ tool demonstrated promise in accelerating testing

 D1.6 SmartDelta in Industrial Environments-Use Case Report

 © 2025 SmartDelta Consortium Page 165 of 165

activities by reducing the number of tests while maintaining a high fault detection rate; nevertheless, its

effectiveness is contingent on well-structured and traceable requirements.

In the domain of security, SmartDelta tools have been shown to enhance the capabilities of Security

Operations Centers (SOCs) by improving incident response times and optimizing resource

management. The machine learning (ML)-enhanced QRadar framework has been demonstrated to

enable automatic anomaly detection and offense prioritization, leading to faster and more accurate

threat detection. The AILA tool has been demonstrated to have the capacity to automatically assign

security labels to issues, thereby expediting expert assignment and improving software security and

quality. The integration of AISA and CSI with SmartDelta recommendations establishes a framework

for artifact reuse, code quality assessment, and error prevention.

In the banking sector, participants anticipate enhanced efficiency, performance, and quality of their

primary banking software through the facilitation of metric tracking, architectural quality analysis, and

technical debt calculation. However, challenges persist, including the management of voluminous

performance datasets and the assurance of IT security approval for shared data. Other use cases

have highlighted the potential for microservice analysis and monitoring, as well as the use of

dashboards for health monitoring and AI-driven predictions in charging systems.

While the project has shown substantial progress, challenges remain.

Several participants have mentioned the need for further development in areas like root cause

analysis, scaling the methodology to diverse environments, refining analytical capabilities, and

enhancing tool integration. One participant has emphasized the need for continuous improvement in

real-time threat intelligence processing. Another participant highlighted the importance of training

engineering teams on the effective use of the tools. Despite the aforementioned challenges, the overall

outlook is positive, with participants acknowledging the transformative potential of the SmartDelta

methodology and its associated tools in improving productivity, quality, and scalability in industrial

software development.

18. References

[1] SmartDelta Methodology Users and Developers Guidelines

https://itea4.org/project/workpackage/deliverable/document/download/433/SmartDelta%2

0D2.4%20-

%20SmartDelta%20Methodology%20Users%20and%20Developers%20Guidelines.pdf

[2] K. J. Kevin Feng (2024). Cocoa: Co-Planning and Co-Execution with AI Agents

preprint arXiv:2412.10999, 2024•arxiv.org

https://itea4.org/project/workpackage/deliverable/document/download/433/SmartDelta%20D2.4%20-%20SmartDelta%20Methodology%20Users%20and%20Developers%20Guidelines.pdf
https://itea4.org/project/workpackage/deliverable/document/download/433/SmartDelta%20D2.4%20-%20SmartDelta%20Methodology%20Users%20and%20Developers%20Guidelines.pdf
https://itea4.org/project/workpackage/deliverable/document/download/433/SmartDelta%20D2.4%20-%20SmartDelta%20Methodology%20Users%20and%20Developers%20Guidelines.pdf

	Executive Summary
	Document Glossary
	1. Introduction
	2. Evaluation Objectives
	a. SmartDelta Methodology
	b. Requirements, metrics and KPIs
	3. Use-Case 1 from Alstom
	a. Use-Case Description
	b. Link to SmartDelta Methodology
	c. Tools descriptions
	d. Visualization
	(i) Dashboard Solution

	e. Use-Case evaluation Setup
	f. Evaluation results
	C1.FR1: The KPI measures the reduction of the cost associated with the input requirements translation to architecture models and functional tests. We have measured 30% reduction of cost, which was mainly contributed by the functional tests generation ...
	UC1.FR2: The KPI measures the reduction of the cost associated with the verification of software package. We have achieved 28% reduction in cost thanks to TIGER+ tool. Similar to the UC1.FR1, the measurement is carried out by selecting a set of requir...
	UC1.FR3: The KPI measures the reduction of cost associated with identifying the similarities between two software packages mainly to identify the differences between two models. This delta identification is essential to enable the reuse of software wi...
	UC1.FR4: The KPI measures the reduction of cost associated with identifying the similarities between two requirements set. For measurement, we have selected a set of requirements which has been estimated by experience manager for identification of si...
	UC1.FR5: The KPI measures the reduction of cost associated with identification of compliance gaps in the software package mainly related to code review. For measurement, we have selected a sample of ten models (of diverse complexity) which are manuall...
	UC1.FR6: The KPI measures the scalability of the solution. We have measured that the DRACONIS tool can practically process and generate the code review results for 300+ models with a single input.
	UC1.FR7: The KPI measures the overall cost reduction in identifying the defects spanning across different phases of the software development. To measure this, we have considered the other KPIs which are addressing the reduction in three stages of the ...

	g. Recommendation for industry adoption
	4. Use-Case 2 from Akkodis
	a. Use-Case Description
	b. Link to SmartDelta Methodology
	c. Tools descriptions
	d. Visualization
	e. Evaluation setup
	f. Evaluation results
	g. Recommendation for industry adoption
	5. Use-Case 3 from eCAMION
	a. Use-Case Description
	b. Link to SmartDelta Methodology
	c. Tools descriptions
	d. Visualization
	e. Evaluation Setup
	f. Evaluation results
	g. Recommendation for industry adoption
	6. Use-Case 4 from NetRD
	a. Use-Case Description
	b. Link to SmartDelta Methodology
	c. Tools Descriptions
	d. Visualization
	e. Evaluation Setup
	f. Evaluation results and Recommendation for industry adoption
	7. Use-Case 5 from Kuveyt Türk
	a. Use-Case Description
	b. Link to SmartDelta Methodology
	c. Tool Description
	d. Visualization
	e. Evaluation Setup
	f. Evaluation results
	g. Recommendation for industry adoption
	8. Use-Case 6 from Software AG
	a. Use-Case Description
	b. Link to SmartDelta Methodology
	c. Tools descriptions
	d. Visualization
	e. Evaluation Setup
	f. Evaluation results
	g. Recommendation for industry adoption
	9. Use-Case 7 from c.c.com
	a. Use-Case Description
	b. Link to SmartDelta Methodology
	c. Tools descriptions
	1. SoHist
	2. Approaches for Runtime Monitoring Data for Anomaly Detection (e.g., Nagios, …)
	3. Rust CLI Tool (individual tool by c.c.com)

	d. Visualization
	e. Evaluation Setup
	f. Evaluation results
	g. Recommendation for industry adoption
	10. Use-Case 8 from Glasshouse
	a. Use-Case Description
	b. Link to SmartDelta Methodology
	c. Tools descriptions
	d. Visualization
	e. Evaluation setup
	f. Evaluation results
	g. Recommendation for industry adoption
	11. Use-Case 9 from Izertis
	a. Use-Case Description
	b. Link to SmartDelta Methodology
	c. Tools descriptions
	d. Visualization
	e. Evaluation Setup
	f. Evaluation results
	g. Recommendation for industry adoption
	12. Use-Case 10 from Vaadin
	a. Use-Case Description
	b. Link to SmartDelta Methodology
	c. Tools Descriptions
	d. Visualization
	13. Evaluation Setup
	14. Evaluation Results
	a. Recommendation for industry adoption
	15. Use-Case 11 from Arcelik
	a. Use-Case Description
	b. Link to SmartDelta Methodology
	c. Tools description
	d. Visualization
	Visualisation requirements

	e. Evaluation Setup
	f. Evaluation results
	g. Recommendation for industry adoption
	16. Industrial Use-Cases and Project KPIs results
	17. Implications for Industry
	18. References

