
 
 

 
 

Innovating Sales and Planning of Complex Industrial Products  

Exploiting Artificial Intelligence  

 
Deliverable 3.5 

Optimal Pricing Component 
 

 

 

 

Deliverable type: Software 

Deliverable reference number: ITEA 20054 | D3.5 

Related Work Package: WP 3 

Due date:  2024-09-30 

Actual submission date: 2025-01-15 

Responsible organisation: IFAK 

Editor: Mario Thron 

Dissemination level: Public 

Revision: Final | Version 1.0 

  

Abstract: 

This document describes the design, development, and 

deployment specifications for the Optimal Pricing 

Component. It summarizes methodologies from 

artificial neural networks, statistical forecasting, and 

fuzzy logic-based models derived from Task 3.5 to 

improve pricing strategies.  

Keywords: 
optimized pricing, artificial neural networks, statistics 

and forecasting, fuzzy logic 
 

  



 - 1 - 

 

Table_head TUD EM: Approval date (1 / 2) 

Approval at WP level OK OK 2025-12-12 

Veto Review by All 
Partners 

 2025-01-15 

 

 



 

  D3.5, VERSION 1.0, 2025-01-15 

 

 - I - 

Editor 

Mario Thron (IFAK) 

 

 

Contributors  

Mario Thron (IFAK) 

Thomas Marus (Demag) 

Christian Mai (Demag) 

Frank Werner (Software AG) 

Mahmoud Mohamed (Software AG) 

Ahmet Emin Ünal (Adesso) 

  



 

  D3.5, VERSION 1.0, 2025-01-15 

 

 - II - 

Executive Summary 

This report introduces a set of innovative technologies for pricing, including 3D Shape-based 
pricing strategies, AI-driven forecasting systems, and fuzzy logic-based pricing methods. These 
approaches enhance pricing strategies by reducing manual intervention and improving 
responsiveness. Here is a short summary of the results: 

• 3D Shape-based Pricing Strategies: Chapter 2 presents an innovative method using 
advanced machine learning models to process 3D data for cost estimation in 
industries like metal sheet stamping and mold-making. By integrating voxelization 
techniques and other geometric analyses, the approach predicts labour costs based 
on part geometry, material properties, and production conditions. This results in a 
significant reduction of mean absolute percentage error (MAPE) from traditional 
methods to around 10% using LightGBM and XGBoost models. The integration of 
these strategies not only enhances cost prediction accuracy but also accelerates the 
quotation process. 

• Pricing Strategies Based on Statistics and Forecasting: Chapter 3 introduces a novel 
AI-based system that automates master price list adjustments using statistical 
analysis and forecasting. The system integrates real-time data to generate accurate 
forecasts, enabling swift pricing adjustments based on dynamic market conditions. 
NeuralProphet outperforms traditional models in capturing complex patterns, 
particularly for aluminium prices. Real-time transparency fosters trust and customer 
satisfaction by providing clear rationales for pricing decisions. Data privacy is 
preserved using index prices, ensuring sensitive company information remains 
secure. 

• Fuzzy Logic-Based Pricing Strategies: Chapter 4 explores fuzzy logic-based pricing 
strategies at the Bill of Material (BOM) level. The Fuzzy Control Language Engine 
(FCLE), adhering to IEC 61131-7 standards, automates price adjustments based on 
factors like factory load, market demand, and production costs. The FCLE offers a 
comprehensive RESTful API for seamless integration into existing systems. Its 
modular design includes components such as engine.py, parser.py, service.py, and 
io_connectors.py. Dynamic adaptability through fuzzy logic rules reduces manual 
intervention by sales engineers, while Mamdani’s inference method is preferred for 
handling multiple output variables. 

Future efforts will focus on integrating external data acquisition capabilities and conducting 
extensive testing at demonstrator sites to refine the system's performance under real-world 
conditions. 
  



 

  D3.5, VERSION 1.0, 2025-01-15 

 

 - III - 

Table of Content 

1 Introduction ............................................................................................................... 1 

2 3D Shape-based Pricing Strategies .............................................................................. 2 

2.1 Motivation ............................................................................................................... 2 

2.2 Principles ................................................................................................................. 3 

2.3 Results ..................................................................................................................... 6 

3 Pricing Strategies based on Statistics and Forecasting ................................................. 9 

3.1 Motivation ............................................................................................................... 9 

3.2 Data Collection ........................................................................................................ 9 

3.2.1 Material price trends .......................................................................... 10 

3.2.2 Financial Price Trends ......................................................................... 10 

3.2.3 Energy data ......................................................................................... 11 

3.3 Data Processing ..................................................................................................... 12 

3.3.1 Healing Gaps in Data Series ................................................................ 12 

3.3.2 Correlation map .................................................................................. 13 

3.4 SHAP Model ........................................................................................................... 13 

3.5 Methodology Approach ........................................................................................ 15 

3.6 Results ................................................................................................................... 18 

3.6.1 Service Parameters ............................................................................. 18 

3.6.2 Service Examples ................................................................................ 19 

3.7 Outlook and Selected Approach............................................................................ 21 

4 Fuzzy Logic-based Pricing Strategies ..........................................................................23 

4.1 Motivation ............................................................................................................. 23 

4.2 Principles ............................................................................................................... 23 

4.3 Results ................................................................................................................... 26 

4.3.1 Introduction ........................................................................................ 26 

4.3.2 Quick Start .......................................................................................... 27 

4.3.3 Installation .......................................................................................... 28 

4.3.4 Configuration ...................................................................................... 28 

4.3.5 Usage .................................................................................................. 29 

4.3.6 API Documentation ............................................................................ 29 

4.3.7 Example API Calls ................................................................................ 29 

4.3.8 Testing ................................................................................................ 31 

5 Conclusion ................................................................................................................33 

6 Abbreviations............................................................................................................35 

7 References ................................................................................................................36 

  



 

  D3.5, VERSION 1.0, 2025-01-15 

 

 - IV - 

Figures 

Figure 1. Breakdown of the costs used for price calculation .......................................................  

Figure 2. (a) Point cloud sampling on the original part. (b) Generated voxelized part. ..............  

Figure 3. (a) Original part. (b) Mesh of the part. ..........................................................................  

Figure 4. Representation of the dataset structure. .....................................................................  

Figure 5. The flow diagram of the process. ..................................................................................  

Figure 6. Evaluation of the best model on the test set. ...............................................................  

Figure 7. Change of the ratio of samples correctly predicted within different KPI .....................  

Figure 8. The SHAPley summarization of the features. ...............................................................  

Figure 9: Input Sources and categories used for model building ............................................ 10 

Figure 10: Plot showing series of PPP,  inflation, short-term interest rate, long-term 
interest rate, and labour costs ........................................................................................ 11 

Figure 11: Plot showing the data sets of gas and crude-oil price ............................................ 12 

Figure 12: AI Model results that show the mismatch between the actual data (black 
dots), and the trained model (blue line). The light-blue area indicates the 
confidence interval. ........................................................................................................ 14 

Figure 13: SHAP plot of the major input vectors ..................................................................... 14 

Figure 14: Plots of the fitted NeuralProphet Model on aluminium ......................................... 15 

Figure 15: Plots of the fitted NeuralProphet Model on Medium Carbon ................................ 16 

Figure 16: Plots of the fitted NeuralProphet Model on Low carbon (ST37) ............................ 16 

Figure 17: Plots of the fitted NeuralProphet Model on Nodular Cast Iron .............................. 16 

Figure 18: Plots of the fitted NeuralProphet Model on Grey Cast Iron ................................... 17 

Figure 19: Plots of the fitted NeuralProphet Model on Non-alloy Cast Iron ........................... 17 

Figure 20: Components of the Fuzzy Logic System for Optimized Pricing ............................... 25 

 

 

 

 

Tables 

No table of figures entries found.



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 1 - 

1  Introduction 

The InnoSale research project aims to develop advanced pricing strategies by leveraging 
modern technologies such as statistical forecasting and fuzzy logic-based systems. This report 
presents key approaches developed during the project: a novel pricing approach based on 3D 
shapes of sheet metal plates, a novel AI-based system for dynamic pricing adjustments and a 
Fuzzy Control Language Engine (FCLE) designed for robust and flexible price management. 

In Section 2, we explore a revolutionary method for cost estimation using advanced machine 
learning models to process 3D data. This approach is particularly useful in industries like metal 
sheet stamping and mold-making, where accurate labour cost predictions are crucial. By 
integrating voxelization techniques and other geometric analyses, the system reduces mean 
absolute percentage error (MAPE) from traditional methods to around 10% using LightGBM 
and XGBoost models. The integration of these strategies not only enhances cost prediction 
accuracy but also accelerates the quotation process by reducing manual intervention and 
improving responsiveness. 

In Section 3, we introduce an innovative AI-driven system that automates master price list 
adjustments using statistical analysis and forecasting. By integrating real-time data from 
various sources, the system generates accurate forecasts to enable swift pricing adjustments 
based on dynamic market conditions. This approach not only enhances accuracy but also 
reduces the need for manual intervention by product managers. Additionally, it fosters trust 
and customer satisfaction through transparent and clear rationales for pricing decisions while 
preserving sensitive company information using index prices. 

Section 4 focuses on fuzzy logic-based pricing strategies at the Bill of Material (BOM) level. 
The FCLE, which adheres to IEC 61131-7 standards, automates price adjustments based on 
factors such as factory load, market demand, and production costs. With a comprehensive 
RESTful API for seamless integration into existing systems and a modular design, the FCLE 
reduces manual intervention by sales engineers and improves efficiency through dynamic 
adaptability using fuzzy logic rules. 

The report also indicates plans for future work, including integrating external data acquisition 
capabilities and conducting extensive testing at demonstrator sites to further refine system 
performance under real-world conditions. 

  



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 2 - 

2 3D Shape-based Pricing Strategies 

This chapter delves into an innovative approach for pricing strategies, driven by 3D shape-
based data analysis. Using advanced machine learning models tailored to process 3D data, this 
method is designed to predict manufacturing costs, primarily in industries where custom parts 
are produced, such as the metal sheet stamping and mold-making sectors. By leveraging 
voxelization and other 3D geometric techniques, companies can enhance their cost estimation 
processes, reducing uncertainties and enabling more accurate pricing. 

2.1 Motivation 

The growing complexity of custom part production, particularly in industries like metal sheet 
stamping, has necessitated a shift toward more advanced pricing strategies. Traditional 
pricing methods, which rely heavily on manual cost estimation and historical data, often 
struggle to keep up with the dynamic nature of short-run, customized production. This 
challenge is especially evident in sectors where factors such as material properties, part 
geometry, and the production operations are key determinants of the cost. 

For manufacturers like those in the metal sheet stamping industry, accurately predicting the 
cost of custom parts is essential not only for ensuring profitability but also for maintaining 
competitiveness in the market. Clients demand quick and accurate quotations, especially 
when custom configurations and intricate designs are involved. The variability in design, 
materials, and production processes in these industries makes traditional pricing models 
inefficient. This is where the integration of 3D shape data into pricing strategies becomes 
critical. 

For manufacturers, while accurately predicting the cost of custom parts, it is crucial to adhere 
to the customer contracts. These contracts often define fixed input (time independent) 
parameters, such as the number of operations, part geometry, material type (e.g., steel or 
alloys), and material thickness. Given that these factors remain constant over time, they 
provide a stable foundation for long-term production planning. However, material property 
considerations such as hardness, strength, lightness, and elongation—combined with 
fluctuating steel prices (as reflected in indices such as the Steel Price Index or the Ductile Iron 
Castings index)—introduce additional layers of complexity in cost estimation. As customer 
contracts fix these parameters over extended periods, manufacturers must ensure their 
pricing models can efficiently account for such fixed inputs.  

On the other hand, variable input parameters, such as labour costs, worker proficiency, 
investment in new technology, production capacity, and scrap factors, fluctuate more 
frequently and can significantly affect production costs. Labor-related variables, including 
hourly wages and worker proficiency, can greatly influence both operational efficiency and 
total production cost. Additionally, confidential factors like labour workload need to be 
carefully handled and integrated into the pricing strategy to ensure competitive and accurate 
cost predictions without compromising sensitive information.  

In such a context, the limitations of traditional cost estimation methods become increasingly 
apparent. Manual cost estimation, which depends on expert knowledge and historical data, 
often fails to provide the agility needed to adjust for the dynamic aspects of custom 
production. Moreover, the time-intensive nature of gathering and analysing data from various 

https://www.wsj.com/market-data/quotes/index/XX/STEEL/historical-prices
https://fred.stlouisfed.org/series/WPU10150413
https://fred.stlouisfed.org/series/WPU10150413


 D3.5, VERSION 1.0, 2025-01-15 

 

 - 3 - 

sources further slows down the quotation process, limiting a company’s ability to respond 
quickly to customer inquiries. As an example, analysing a 3D part and predicting the labour 
cost of a part quotation can take from 10 minutes to 30 minutes in average, which can 
accumulate into very large delays for large projects. 

By adopting a 3D shape-based pricing strategy, manufacturers can automate the cost 
estimation process, significantly improving efficiency and accuracy by reducing human error. 
Advanced machine learning models that process 3D data—integrated with material 
properties, incorporating fixed input parameters, and predicting the variable factors—offer a 
comprehensive solution. Such models can capture complex interdependencies between 
geometric features, material properties, and production conditions, enabling manufacturers 
to provide more accurate, and real-time dynamic pricing. This approach is particularly 
beneficial for addressing the challenges posed by varying product dimensions, complex 
geometries, and custom mold designs, which have a significant impact on both material and 
labour costs.  

Ultimately, this approach allows companies to ensure their pricing strategies remain 
competitive and transparent, even in the face of fluctuating labour costs, material prices, and 
operational efficiencies. For industries reliant on customer contracts with fixed parameters, 
this dynamic, data-driven method offers the flexibility needed to optimize both short-term 
production costs and long-term pricing models. 

2.2 Principles 

The primary goal of 3D shape-based pricing strategies is to integrate advanced machine 
learning algorithms with 3D shape recognition techniques to improve cost prediction 
accuracy. The main prediction focus was the labour costs, that makes up the largest part of 
the variable input parameters.  

Accurately predicting labour costs in custom manufacturing is heavily influenced by the 
complexity of the 3D part data, as each part's geometry, size, and design intricacies directly 

Customer Total 
Price Quotation

Sale Price

Basic Price

Profitability
Ratio

Cost-based
Price

Total Material 
Cost

Sub-industry
operations

Transportation

Material

Sheet Metal 
Material

Scraps
Coating
/Plating

Other
Materials

Production
Cost

Production
Line Cost

Energy
Cost

Die/Equipment
Amortization

Maintenance
Cost

Labour 
Cost

Packaging
Cost

Crating 
Cost

Transportation
Cost

Figure 1. Breakdown of the costs used for price calculation 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 4 - 

impact the required number of operations and worker proficiency needed to complete the 
task. Analysing the 3D part data enables manufacturers to estimate the specific time and 
effort required for each production step, considering factors like intricate contours, multiple 
surface finishes, or unique shapes that may demand specialized skills or extended labour 
hours. By integrating 3D data into labour cost prediction, companies can more precisely 
forecast workforce allocation, streamline scheduling, and optimize cost efficiency, resulting in 
more accurate and competitive pricing for custom parts. 

The methodology revolves around the following key principles: 

• Voxelization for 3D Feature Extraction: Voxelization is a core process where 3D 
models, such as those used in metal stamping or mold-making, are converted into 
structured grid data (voxels). These voxels represent the geometric features of the 
product, enabling the machine learning models to process complex shapes and predict 
related costs based on their structure. In our study, we sampled points tangent to the 
part surface to generate a point cloud, which then used to generate the voxelized part 
by quantization of the point locations to a configured resolution (Fig. 2). Voxelization 
of a 3D model allows for the effective application of convolutional neural networks 
(CNNs) and/or other image-based models, which can recognize intricate patterns in 3D 
shapes. For our case we used this voxelization approach to calculate the volume of the 
sheet metal part.  

We also used the mesh of the part to calculate the surface area and triangle count, 
which is indirectly correlated with the complexity of the part production. 

Figure 2. (a) Point cloud sampling on the original part. (b) Generated voxelized part. 

(a) (b) 

(a) (b) 

Figure 3. (a) Original part. (b) Mesh of the part. 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 5 - 

 

• Integration of Product and Process Data: The models are trained on a combination of 
3D shape features and other critical factors of parts such as material types (which 
affects tensile strength, sheet elongation, metal hardness), sheet specific information 
(such as sheet thickness and net dimensions), and part information (such as part 
contour size and surface area). Each part also includes information related to the 
sequential operations that needs to be applied to the metal sheet to produce the 
required part. The operation information such as press tonnage, mold information 
(such as dimensions, weight, and fill), operation directions and sub operations (such as 
blanking, shearing, bending, etc.) and the operation labour cost (work man-hour). This 
ensures that the machine learning models not only consider the geometric complexity 
of the product but also the production conditions. This integrated approach helps 
predict not just the material cost but also the man-hour cost required for each 
operation.  

• Predictive Modeling Using Gradient Boosting Algorithms: In this study, gradient 
boosting algorithms such as LightGBM and XGBoost are employed due to their strong 

Figure 5. The flow diagram of the process. 

a 

b 

PROG GAUGE WELD 

BLANK SHEAR BEND GAUGE 

Figure 4. Representation of the dataset structure. 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 6 - 

performance in handling tabular data and their ability to model complex non-linear 
relationships. These models are enhanced through the incorporation of domain-
specific knowledge—such as the sequence of operations in metal stamping—into the 
feature engineering process. 

• Synthetic Data Generation for Feature Enrichment: Given the relatively limited 
availability of real-world data in some manufacturing sectors, synthetic data 
generation is used to augment the dataset. By simulating variations in product 
dimensions, materials, and other key attributes, the model’s robustness is improved. 
This also helps in addressing the lack of sufficient data for certain edge cases. For this 
reason, we used SMOTE (Synthetic Minority Oversampling Technique) algorithm to 
generate new data points like the instances of the datasets, and then used Tomek Link 
algorithm to under sample and cleanup the overlapping instances.  

• Explainable AI with SHAP Analysis: To ensure transparency and trust in the 
predictions, SHapley Additive exPlanations (SHAP) are used to interpret the 
contribution of each feature to the final cost prediction. This enables the identification 
of the most influential factors, such as mold size, press tonnage, or specific geometric 
features, thus offering insights into why certain predictions are made. 

The integration of these principles into the pricing strategy allows manufacturers to achieve 
greater precision in their cost estimates, which is especially crucial in the competitive 
landscape of custom manufacturing. 

2.3 Results 

The implementation of 3D shape-based pricing strategies has yielded significant 
improvements in the accuracy of cost predictions across various case studies, particularly in 
the metal sheet stamping sector.  

 By integrating 3D shape data into the cost prediction models, manufacturers observed a 
reduction in mean absolute percentage error (MAPE) of 10% using the proposed LightGBM 
and XGBoost models. This value is within an acceptable range, as the predicted values using 
the traditional methods have similar confidence interval percentage. This improvement in 
accuracy is particularly evident in complex, custom part orders where traditional cost 
estimation methods often struggle. 

 

  

 

 

 

 

 

 

 

 

 

 

The automation of cost estimation through machine learning models significantly reduced the 
time required to generate quotations. On average the inference time of the model is less than 

Table 1. Comparison table of the cross validation results 

Models 

Results 

𝟓 × 𝟓 CV MAPE 𝟓 × 𝟓 CV MAE 

LightGBM* 10.89 71.49 

LightGBM 10.78 70.37 

XgBoost* 11.30 73.72 

XgBoost 11.23 72.25 

KNN Regressor 20.55 122.01 

MLP 16.61 105.25 

Linear Regression 26.35 136.99 

* indicates that the model is trained without the additional 3D data features for comparison. 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 7 - 

15 seconds. However the analysis of the 3D part can take some time if not already stored in 
the database, which makes the total average inference around 2 minutes ± 15 seconds with 
the analysis included. Considering the reported time from the manufacturer, this is a 
reduction of 90% in the time taken to respond to customer inquiries, which is crucial in 
industries where speed is a competitive advantage.  

The use of machine learning models allowed for scalability, as the models can easily be 
retrained with new data and adapted to different product categories. This flexibility is vital for 
manufacturers that handle a wide variety of custom orders, where each project may require 
different materials, processes, and operations. By providing more transparent pricing models 

Figure 6. Evaluation of the best model on the test set. 

Figure 7. Change of the ratio of samples correctly predicted within different KPI 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 8 - 

based on data-driven predictions, companies were able to offer clearer justifications for their 
pricing. This increased transparency has been shown to improve customer satisfaction and 
trust, as clients are given more detailed insights into the cost drivers of their custom products. 

SHAP analysis revealed that certain geometric features, such as mold volume and the 
presence of specific operations (e.g., progressive stamping), have a significant impact on cost 
predictions. This insight allowed manufacturers to focus on optimizing these key parameters, 
further reducing production costs. 

 

The service is deployed as an API into on-premises and tested, more technical detail regarding 
the documentation and API usage is reported under the 5.1.4 heading of the D3.7 document.  

The results demonstrate that 3D shape-based pricing strategies can significantly enhance cost 
prediction models, providing manufacturers with a competitive edge. The inclusion of 3D 
shape data not only improves accuracy but also offers greater flexibility and speed in the 
pricing process, making it an essential tool in the era of Industry 4.0.  

  

Figure 8. The SHAPley summarization of the features. 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 9 - 

3 Pricing Strategies based on Statistics and Forecasting 

3.1 Motivation 

This chapter addresses innovative pricing strategies using artificial intelligence based on 
statistical analysis and forecasting. In the current workflow for adjusting the master price list, 
the prices must be defined by the product managers based on the available material, 
production and engineering costs as well as the target margin. This process is extremely time 
intensive and inflexible because all the information needs to be found manually from different 
sources and then implement these adjustments into the master price list. Moreover, a short-
term anticipation of material cost development is difficult to achieve. Also, material cost 
forecast has less precision for long term forecast compared to short term forecast. This causes 
difficulties for defining the suitable adjustment rate. The AI-based approach pursues the 
automated adjustment of the master price list for the different product groups in light lifting 
equipment. Internal data and parameters for each material item are thoroughly analysed in 
advance and a forecast is created with the help of external data sources. Material 
consumption, production times, current and future purchase prices from suppliers, stock 
levels, production and engineering costs as well as logistical costs should be considered. Of 
particular interest is the cost development of certain volatile materials such as steel, copper 
and aluminium.  

Real-time access to price developments enables an automated process for generating 
proposals for price adjustments or material surcharges. This approach considers key factors 
within the material price list and creates the basis for optimal pricing. The efficiency of the 
entire process is increased as less manual work is required. The improved quality of the 
forecasts leads to higher price quality and therefore stable margins. 

The primary objective of developing AI based forecasting service was to develop accurate 
forecasting models that can reliably predict the future prices of materials we are concerned 
with in production, aiding in effective decision-making and resource allocation for the 
production process. Leveraging advanced analytical techniques and machine learning 
algorithms, we aimed to identify key trends, patterns, and correlations within the dataset to 
create robust predictive models, by considering various external economic factors such as 
material prices, interest rates, and inflation, the goal is to provide an insight of potential price 
movements in the future. 

 

3.2 Data Collection 

The data utilized in this report has been gathered from a combination of trustful sources, 
ensuring a comprehensive and reliable data set for our analysis. The next figure shows a 
preview of our data hierarchy.  



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 10 - 

 

Figure 9: Input Sources and categories used for model building 

 

3.2.1 Material price trends 

The material price trends are gathered from Federal Reserve Economic Data1. 

The product we are concerned with is essentially produced from these six main alloys: 

(High carbon - medium carbon - cast non-alloy and low alloy steels - grey cast iron – nodular 
cast iron - low carbon steel) 

 

Aluminium and copper are critical components in a wide range of products, so we made it a 
priority to include comprehensive data on both materials. To ensure accuracy and reliability, 
we sourced copper data (oberen Kupfer-DEL-Notiz) from Westmetall2 and aluminium data 
from IndexMundi 3. 

3.2.2 Financial Price Trends 

Financial assets and economic indicators such as the inflation rate, short-term and long-term 
interest rates, purchasing power parity (PPP), and labour costs play a crucial role in 
determining production costs. When the inflation rate rises, the general price level in an 
economy increases, leading to higher costs for raw materials, energy, and other inputs 
essential for production. This makes it more expensive for companies to produce goods and 
services. Interest rates, both short-term and long-term, also affect production costs. Higher 
interest rates increase the cost of borrowing for businesses, raising the expenses associated 
with financing operations, purchasing equipment, or investing in new projects. Conversely, 
lower interest rates can reduce these costs, making production more affordable. Purchasing 
power parity (PPP) impacts production costs by reflecting the relative value of currencies 
between countries. If a country's currency weakens, imported goods and services become 
more expensive, driving up the cost of inputs for production that rely on foreign resources. 

 
1 https://fred.stlouisfed.org/ 

2 https://www.westmetall.com/en/markdaten.php?action=averages&field=DEL_high 
3 https://www.indexmundi.com/commodities/?commodity=aluminum&months=180&currency=eur 

https://fred.stlouisfed.org/
https://www.westmetall.com/en/markdaten.php?action=averages&field=DEL_high
https://www.indexmundi.com/commodities/?commodity=aluminum&months=180&currency=eur


 D3.5, VERSION 1.0, 2025-01-15 

 

 - 11 - 

Labor costs are another significant factor. When wages and benefits rise, the cost of labour 
increases, directly raising the overall cost of production. Conversely, lower labour costs can 
reduce production expenses, although this can sometimes come at the expense of 
productivity or quality. 

Together, these financial factors create a complex environment that directly influences how 
much it costs to produce goods and services, affecting pricing, profitability, and 
competitiveness in the market. The financial historical we are interested in are more of big-
picture economic factors, so we chose those five economical historical data. 

 

 

Figure 10: Plot showing series of PPP,  inflation, short-term interest rate, long-term interest rate, and 
labour costs 

3.2.3 Energy data  

The production of crude metals and alloys is a highly energy-intensive process, relying heavily 
on large amounts of oil, coal, and natural gas. From the initial extraction of metal ores through 
mining to the complex processes of smelting and refining, every step requires significant 
energy input. Heavy machinery used in mining operations is typically powered by diesel, a 
byproduct of oil refining. Once the ore is extracted, it must be crushed, ground, and processed 
to extract the metal, all of which demand considerable amounts of energy. Smelting, where 
metal is extracted from its ore at high temperatures, is particularly reliant on coal, oil, and 
natural gas to generate the necessary heat. This reliance on fossil fuels not only drives up 
energy consumption but also has significant environmental impacts, contributing to carbon 
emissions and resource depletion.  

 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 12 - 

 

Figure 11: Plot showing the data sets of gas and crude-oil price 

The previous plot reveals that, despite differences in their absolute values, gas and crude oil 
prices exhibit similar patterns over time. This correlation suggests that when incorporating 
energy factors into the model, including just one of these variables is sufficient to capture the 
overall trend, as adding both would likely introduce redundancy without providing significant 
additional insight. 

3.3 Data Processing 

First for some data we only have yearly captured values we need to convert them to monthly 
values, so we have consistent data frequency across all data frames. Some data also needed 
to be transformed from string data type to float so we have consistent type. 

3.3.1 Healing Gaps in Data Series 

After investigating the material price trend across time as you can see in this plot: 

 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 13 - 

There were significant gaps in the data over certain periods, particularly for medium carbon, 
where the statistics were discontinued in 2018. To address this issue and maintain the 
integrity of our analysis, we chose to fill these gaps using linear interpolation. 

3.3.2 Correlation map 

A correlation matrix is a table that displays the correlation coefficients between different 
variables in a dataset. In the context of AI model training, this matrix is a valuable tool for 
understanding the relationships between features, or input variables, in your dataset. The 
correlation coefficient, often denoted by r, measures the strength and direction of the linear 
relationship between two variables. It ranges from -1 to 1, where r = 1 indicates a perfect 
positive correlation, meaning as one variable increases, the other also increases 
proportionally. Conversely, r = -1 indicates a perfect negative correlation, whereas one 
variable increases, the other decreases. A correlation of r = 0 suggests no linear relationship 
between the variables.  

Understanding these correlations helps in AI model training by identifying which features are 
strongly related and which might be redundant. Highly correlated features can sometimes 
lead to multicollinearity, which can negatively impact the model's performance by making it 
difficult to determine the individual effect of each feature. On the other hand, understanding 
low or negative correlations might highlight features that bring unique information to the 
model. Overall, the correlation matrix provides a foundational understanding of the data 
structure, guiding the selection and engineering of features to improve model accuracy and 
efficiency. 

 

3.4 SHAP Model 

As our initial approach to the price prediction task, we employed the Prophet model. While it 
performed well for most alloys' price histories, it struggled significantly with aluminium, 
delivering poor results.  

 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 14 - 

 

Figure 12: AI Model results that show the mismatch between the actual data (black dots), and the 
trained model (blue line). The light-blue area indicates the confidence interval. 

To gain a deeper understanding of the factors influencing the final predicted prices, we 
conducted a SHAP (SHapley Additive exPlanations) analysis, which allowed us to thoroughly 
investigate the contribution of each variable to the model's predictions. SHAP is a method 
used in data analytics and AI model training to explain the output of machine learning models 
by assessing the contribution of each feature to the predictions. Derived from Shapley values 
in game theory, SHAP provides a way to interpret complex models, such as ensemble methods 
or deep learning models, which are often considered "black boxes." By calculating SHAP 
values, we can determine how much each feature contributes to or detracts from the 
prediction for a specific data point. This interpretability is crucial for understanding model 
behaviour, identifying important features, and ensuring transparency, especially in 
applications where understanding the decision-making process is essential. SHAP values offer 
a consistent and unified approach to feature importance, making it easier to compare 
different models and explain their predictions to non-technical stakeholders. Overall, SHAP 
enhances trust in AI models by making their predictions more transparent and interpretable. 

 

 

Figure 13: SHAP plot of the major input vectors 

 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 15 - 

From this plot, we discovered that short-term interest rates have a significant impact on the 
final price predictions. However, despite adjusting based on this insight, the Prophet model 
continued to struggle with accurately capturing the aluminium price trend. This either 
suggests that there are additional complexities or factors specific to aluminium that the model 
was unable to account for effectively, or that the model simply cannot capture complex 
patterns. 

3.5 Methodology Approach 

NeuralProphet is an open-source forecasting tool that enhances time series predictions by 
integrating neural networks with Facebook's Prophet model. It is designed to handle complex 
patterns like seasonality, trends, and special events, offering flexibility and improved accuracy. 
NeuralProphet combines traditional statistical methods with neural network components, 
allowing for the modelling of non-linear relationships in data. It is robust against missing data, 
supports customizable trends and seasonality, and can incorporate auto-regressive terms to 
account for temporal dependencies. Scalable and Python-based, NeuralProphet is accessible 
for various real-world applications. 

We used NeuralProphet, an evolution of the Prophet algorithm created by Facebook, which is 
time series prediction algorithm, we opted for Neural prophet not the original Prophet model, 
as it showed significant gain in efficiency because it can capture more complex patterns than 
the vanilla prophet model. 

First, we trained separate NeuralProphet models for each variable we are interested in 
knowing its future value, as those aspects contribute to the final product price estimation. The 
variables are divided as follows, price trends of different material alloys: High carbon, medium 
carbon, low carbon (ST37), nodular cast iron, grey cast iron, non-alloy cast and aluminium. On 
top of those, we trained another Neural Prophet model to forecast labour cost. 

Here are the forecasted values for aluminium over the historical price trend. Notably, the 
Neural Prophet model demonstrates a significantly better performance compared to the 
original Prophet model when it comes to predicting aluminium prices. This improvement 
highlights the Neural Prophet model's enhanced ability to capture the nuances and 
complexities of aluminium price movements. 

 

 

Figure 14: Plots of the fitted NeuralProphet Model on aluminium 

 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 16 - 

 

Figure 15: Plots of the fitted NeuralProphet Model on Medium Carbon 

 

  

 

Figure 16: Plots of the fitted NeuralProphet Model on Low carbon (ST37) 

 

 

 

Figure 17: Plots of the fitted NeuralProphet Model on Nodular Cast Iron 

 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 17 - 

 

 

Figure 18: Plots of the fitted NeuralProphet Model on Grey Cast Iron 

 

 

 

Figure 19: Plots of the fitted NeuralProphet Model on Non-alloy Cast Iron 

 

 

We calculate the final product price based on the materials weights provided by the user to 
the query of the API server, but generally the final price is the accumulated multiplication of 
material weight with the predicted price for that year in addition to other contributing 
variables like labour cost. Generally, we could formulate it as follows: 

P = ∑ (material weight * forecasted price of material) + additional factors 

 

The previous equation defines a general way used to calculate prices. However, input prices 
used for the model training are based on index prices which allows model training while 
preserving company secrets such as supplier prices, market prices and alike. Using a history 
price trend to train the models on were referenced values (and not real priced values) 
preserves these company secrets as they are not leaving the company. However, the above 
formula may adjust for real-prices by giving the end-user the possibility to define a spot-price 
for each material and hereby adjusted the formula to account for the referenced price and 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 18 - 

convert them to real priced values by using the spot price of the material provided by the end 
user. This selected approach allows for a maximal degree of privacy as real costs are never 
stored and only calculated by the service on the fly using the provided service interface. 

 

We convert the referenced price based on the year of the spot price given by the user and 
that becomes the new reference year and rebasing the reference value to that specific year 
and converting the predicted referenced values. 

 

Adjusted predicted values = (projected values / spot year price) * spot price 

 

For every predicted value we get the relative percentage change to the spot year and then 
multiply it by the given spot price yielding the adjusted values. However, if no spot price 
provided of any material the user will get a response of predicted referenced values. But the 
service doesn’t allow the mix of spot priced with referenced values as accumulating them 
won’t produce a valid outcome. 

 

Then the predicted price formula becomes: 

P = ∑ (material weight * Adjusted predicted values) + additional factors 

 

3.6 Results 

The final service has been implemented as a REST service which offers the trained AI models 
to the InnoSale platform. A REST service is a web service that adheres to REST architecture 
principles, enabling communication between systems over HTTP. It is designed to be simple, 
stateless, and scalable, making it ideal for building APIs. REST services are structured around 
resources, which are entities or objects that can be accessed and manipulated via specific 
URLs. These services utilize standard HTTP methods to perform actions like retrieving, 
creating, updating, or deleting resources. Each client request is self-contained, providing all 
necessary information, which allows the service to be stateless and scalable. 

3.6.1 Service Parameters 

We implemented multiple functions that contributes to the overall functionality of the service 
that can be invoked by the end user. 

3.6.1.1 Status 

By invoking this function call: http://innosale.sagresearch.de:8012/status, you can easily 
check the status of the server. This call provides real-time information, indicating whether 
the server is currently running or out of service. 

3.6.1.2 Help 

When you call http://innosale.sagresearch.de:8012/help, the end user is provided with a 
detailed list of all the arguments that can be passed to the prediction function, along with 
concise explanations for each. Here’s what the function call returns: 
 

http://innosale.sagresearch.de:8012/status
http://innosale.sagresearch.de:8012/help


 D3.5, VERSION 1.0, 2025-01-15 

 

 - 19 - 

{"st37":"Weight of ST37 in KG","p_st37":"Spot price of 

ST37","p_high_carbon":"Spot price of High Carbon","alu":"Weight of Alu in 

KG","labour":"Labor hours","high_carbon":"Weight of High Carbon in 

KG","medium_carbon":"Weight of Medium Carbon in 

KG","p_medium_carbon":"Spot Price of Medium 

Carbon","p_nodular_cast_iron":"Spot Price of Nodular Cast 

Iron","nodular_cast_iron":"Weight of Nodular Cast Iron in 

KG","grey_cast_iron":"Weight of Grey Cast Iron in 

KG","p_grey_cast_iron":"Spot Price of Grey Cast 

Iron","nonalloy_cast":"Weight of Nonalloy Cast in 

KG","p_nonalloy_cast":"Spot Price of Nonalloy Cast","months":"Forecasting 

period in months (default is 24 months if argument not provided)"} 

 
This comprehensive return allows users to understand the parameters they can manipulate 
and how each one influences the prediction model. 

3.6.1.3  Calculate 

Calculate is the core functionality of the service. For example, when calling 
http://innosale.sagresearch.de:8012/calculate/?copper=15&alu=12, you can input material 
weights, such as copper and aluminium, into the query. The function then predicts and returns 
the accumulated price of the product over the next two years. This powerful tool allows users 
to forecast costs with precision based on the materials used. 

3.6.1.3.1 Spot price using user-specific costs 

The spot price is provided by using the spot-price flag, which is a floating-point number that 
precedes the alloy type. This may be the point where actual price- data is added to the request. 
Using this flag allows to accurately represent the current market price for a specific alloy. By 
prefixing the alloy with its corresponding spot-price value, the function ensures that the most 
up-to-date pricing is factored into the overall cost calculations. This parameter is essential for 
generating precise forecasts and making informed decisions based on real-time market data. 

http://innosale.sagresearch.de:8012/calculate/?st37=12&months=12&p_st37=20 

3.6.1.3.2 Graphical Representation of price 

All the above parameters can be used to plot figures and hence create a graphical 
representation of the price forecast. This is far easier to comprehend and improves readability 
of especially highly volatile prices. The graphical representation is obtained by using the “plot” 
command from the service. 

http://innosale.sagresearch.de:8012/plot/?st37=500 

3.6.2 Service Examples 

The service generates a final predicted accumulated price for a product based on the supplied 
weights and available spot prices of the base materials used in its manufacturing. If the user 
provides invalid input, the service identifies the specific parameter causing the issue and 
returns a corresponding error message. The output is returned in JSON format.  

The user provides the parameters needed to compute the final price, so for example given the 
weight of ST37 and want to predict for 12 months (1 year) starting from 2/2023, this could be 
changed after retraining the models depending on the date range of the training set. This is 
an example of a query that you could execute:   

http://innosale.sagresearch.de:8012/calculate/?st37=15&months=12  

http://innosale.sagresearch.de:8012/calculate/?copper=15&alu=12
http://innosale.sagresearch.de:8012/calculate/?st37=12&months=12&p_st37=20
http://innosale.sagresearch.de:8012/calculate/?st37=15&months=12


 D3.5, VERSION 1.0, 2025-01-15 

 

 - 20 - 

Then the API will return the calculated final (referenced) price predictions for 12 months: 
 

[ 

{"ds":"2023-02","total_product_value":2125.2080078125}, 

{"ds":"2023-03","total_product_value":2134.99658203125}, 

{"ds":"2023-04","total_product_value":2128.94873046875}, 

{"ds":"2023-05","total_product_value":2125.4296875}, 

{"ds":"2023-06","total_product_value":2133.68383789063}, 

{"ds":"2023-07","total_product_value":2132.35327148438}, 

{"ds":"2023-08","total_product_value":2134.72290039063}, 

{"ds":"2023-09","total_product_value":2133.21020507813}, 

{"ds":"2023-10","total_product_value":2129.39599609375}, 

{"ds":"2023-11","total_product_value":2131.46118164063}, 

{"ds":"2023-12","total_product_value":2114.35986328125}, 

{"ds":"2024-01","total_product_value":2123.82983398438} 

] 

 

Example for invalid query:  

http://innosale.sagresearch.de:8012/calculate/?st37=12&months=12&p_st37=20&high_c
arbon=13 

This previous example, the user provides a spot price for ST37 but only the weight for high 
carbon this won’t work, if the user provides one material’s spot price the user must provide 
spot price for all the other materials in the query. 

 

This is the server response to the previous query: 
{"detail":"Spot price for high_carbon is missing while other materials 

have spot prices."} 

 

Also, it is invalid to provide a spot price of a material without providing the material’s weight: 

http://innosale.sagresearch.de:8012/calculate/?st37=12&months=12&p_st37=20&p_high
_carbon=22 

 

Server’s response: 

{"detail":"Weight for high_carbon is missing while its spot price is 

provided."} 

 

Using the plot functionality, graphs that reflect the actual numbers can be sketched. 
Remember, that all from the afore mentioned parameters can be used for the plot command, 
in the same sense they are used for the calculate command. 

 

Using the following service call, the subsequent graphic is generated: 

http://innosale.sagresearch.de:8012/plot/?st37=500&copper=1&p_copper=1&labour=12 

 

http://innosale.sagresearch.de:8012/calculate/?st37=12&months=12&p_st37=20&high_carbon=13
http://innosale.sagresearch.de:8012/calculate/?st37=12&months=12&p_st37=20&high_carbon=13
http://innosale.sagresearch.de:8012/calculate/?st37=12&months=12&p_st37=20&p_high_carbon=22
http://innosale.sagresearch.de:8012/calculate/?st37=12&months=12&p_st37=20&p_high_carbon=22
http://innosale.sagresearch.de:8012/plot/?st37=500&copper=1&p_copper=1&labour=12


 D3.5, VERSION 1.0, 2025-01-15 

 

 - 21 - 

 

Figure 1: Service output when using st37=500, copper=1, p_copper=1 and labour=12 

 

3.7 Outlook and Selected Approach 

The implemented approach allowed us to provide a solution for the end-users without making 
explicit use of company-sensitive and privacy-related pricing information. Using index-prices 
we ensure data privacy, especially when dealing with sensitive company information like costs 
and pricing, and hereby circumvent the misuse and leakage of sensitive company information. 
Index prices represent general market trends rather than the specific financial data of any one 
company. When an AI model is trained using these index prices, it learns to understand broad 
market behaviour without ever being exposed to a particular company’s sensitive data. This 
means that when a company inputs its own cost data into the model to generate a pricing 
forecast, the model uses its knowledge of the overall market to make predictions. Importantly, 
the model does not directly handle or retain any of the company’s proprietary information, 
keeping that data secure. 
The model is only trained on general market data, not on any specific company’s costs or 
pricing strategies. This separation ensures that the model does not learn or store any details 
that could compromise a company’s privacy. When a company uses the model to forecast 
prices, it inputs its data, but this data is used only to generate the forecast and isn’t retained 
by the model afterward. This one-way application of data further protects sensitive 
information. Since the model is not built on any single company’s data, the risk of leaking or 
exposing sensitive information is minimized. Even if someone were to access the model, they 
would only see generalized market trends, not specific company data. This approach greatly 
reduces the risk of data breaches, as the most sensitive information remains private and 
secure. 
The model makes predictions in real-time based on the data a company provides. After the 
forecast is made, there is no lingering connection between the model and the company’s 
sensitive data, which further ensures privacy. Additionally, because the model relies on index 
prices, it can be shared and used by multiple companies without risking the exposure of any 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 22 - 

one company’s proprietary information. Each company can safely use the model to forecast 
prices, knowing that their data remains private and secure. 
  



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 23 - 

4 Fuzzy Logic-based Pricing Strategies 

4.1 Motivation 

The previous chapter has already explained the extent to which adjustments to master price 
lists can be proposed using AI-based mechanisms. This advanced approach enables dynamic 
pricing, which, however, has yet to be transferred to the bill of material (BOM) level. In this 
context, the application of fuzzy logic is considered a crucial approach to adapt the prices of 
the BOM to specific factors. These factors range from the capacity utilization of the production 
facility to customer loyalty. This research proposes to provide the sales engineer with a toolkit 
based on fuzzy logic to recommend the extent to which the price of the BOM can be adjusted 
on a percentage basis. 

Previous decisions regarding these adjustments were largely based on the individual 
experience of the sales engineer. However, this approach creates the possibility for sales 
engineers to define variables and rules that influence the final price depending on various 
factors. This innovative approach makes it possible to adapt discounts to customers according 
to the situation by enabling precise and dynamic control of pricing strategies. 

4.2 Principles 

We assume, that the price p of a product is to be calculated from the following formula: 

             p = f * ps + k 

with 

           p: final price, 

           ps: the standard price, defined once per year, 

           f: final price factor, 

           k: a price offset. 

The standard price is a given quantity and can be determined from the manufacturer's ERP 
system. However, the price factor and the price offset depend on a variety price influencing 
parameters: 

             f = f (f1, f2, …, fi) 

           k = k (f1, f2, …, fi) 

with 

           f1, f2, …, fi: price influencing parameters. 

In our case, the final price factor f and the price offset k are interpreted as a set of fuzzy logic 
rules, which is applied on the set of price influencing parameters. 

 

Example: 

Let’s assume we have a fuzzy logic rules base like the following: 

           IF factory_load(high) THEN final_price_factor(quite_high). 

           IF customer_buys(frequently) THEN final_price_factor(quite_low). 

Here, factory load and customer buys are price influencing parameters. We have to gather 
them from the IT systems of the manufacturer. Both rules have influence on the target 
variable final_price_factor. Therefore, the inference engine needs to be capable to handle 
conflicting formulas. It is likely, that factory_load and customer_buys but also the target 
variable final_price_factor have numeric value representations. The parameters need to be 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 24 - 

transformed into a representation, which is applicable for a fuzzy logic inference engine by 
fuzzification. Vice versa, the fuzzy logic representation of final_price_factor has to be 
converted back by de-fuzzification 

 

Short literature overview 

• [Bronstein, 2001]: is a pocketbook for engineers with a comprehensive chapter about 
fuzzy logic. In addition to a basic introduction to the conceptual world, two major types 
of fuzzy logic inference are described: method of Mamdani and the method of Sugeno. 

• [IEC 61131-7]: IEC 61131 is the standard of programming languages for industrial 
programmable logic controllers (PLCs). The standard describes all necessary elements 
of a fuzzy logic system like fuzzy term definitions, fuzzification and defuzzification 
algorithms. 

• [MathWorks FLT]: The Fuzzy Logic Toolbox is a commercial tool of the MathWorks 
corporation. The toolbox includes possibilities for modeling linguistic variables, 
membership functions, fuzzification and defuzzification algorithms. A graphical fuzzy 
logic designer is also available by MathWorks. This tool allows individuals to design, 
test, and tune a fuzzy inference system (FIS) for modelling complex system behaviour. 

Discussion and decisions 

A first decision concerns the type of inference method. According to [Bronstein, 2001] the 
method of Mamdani leads in the result via an independent linguistic variable to a 
numerical value. Sugeno's method leads directly to a numerical value via a function of all 
influencing input variables. Thus, Sugeno's method requires a deeper understanding of 
the mathematical relationships between input and output variables. Mamdani's method 
requires an additional inference step (defuzzification), but eliminates the need for 
mathematical analysis of input-output functions. According to a geeksforgeeks.org 
article4 , Sugeno inference can infer a single output variable from multiple input variables, 
while Mamdani's method can also infer multiple output variables. Since price is composed 
of factors (e.g., energy price or wage increases) and offsets (e.g., transportation costs), so 
multiple output variables are obviously needed, Mamdani's method is preferable. 

Both, the standard [IEC 61131-7] and the commercial solution [MathWorks FLT] provide 
broader functionality than used in the literature for pricing, which we found in our 
research. This makes it very flexible and candidate solutions for the pricing technologies 
to be used in InnoSale. However, the commercial solution is very expensive. The 
development of an open sourced fuzzy logic system with the functionality of e.g. [IEC 
61131-7] would be an easy to use contribution to the European research community. The 
[IEC 61131-7] supports inference according to the Mamdani approach and thus meets the 
previously discussed requirement. 

 

Figure 20 provides an overview about the Fuzzy Logic system for optimized pricing. 

 
4 https://www.geeksforgeeks.org/comparison-between-mamdani-and-sugeno-fuzzy-inference-system/ 

https://www.geeksforgeeks.org/comparison-between-mamdani-and-sugeno-fuzzy-inference-system/


 D3.5, VERSION 1.0, 2025-01-15 

 

 - 25 - 

 

Figure 20: Components of the Fuzzy Logic System for Optimized Pricing 

The system overview introduces following components: 

• Knowledge Acquisition Component: this is a user frontend for the expert, who knows 
and defines e.g. how much discount a customer will get according to the sales history 
and the predicted sales with a customer. 

o Linguistic variable editor: in an algebraic system, variables are defined e.g. as 
integer or floating point values. In a fuzzy logic system, variables are defined as 
sets of linguistic terms, which themselves are defined by membership 
functions. Thus, this editor is a user interface for defining those things. 

o Fuzzy rule editor: this sub-component enables input of IF-THEN rules, which 
refer to linguistic variables and their terms. 

• Rule Base: this component is an online store for definitions of linguistic variables and 
fuzzy logic rules. 

• Data Adapter: these are separate sub-components, which acquire data as common 
algebraic variable values. For example, they will provide the price of a material or the 
Big Mac Index (BMI) as floating point values or similar. 

• Working Memory: this component is a kind of temporal database, which contains all 
gathered data from the context of the price estimation. 

• User interface: this is a frontend for the user, who want to get the price estimation. 
We announced two sub-components here: 

o Factory Load Estimator: in an early evaluation phase of the InnoSale project, it 
was decided to not use exact factory loads based on ERP entries about sales 
processes. Instead the factory load should be estimated e.g. weekly. Since the 
input is a function over time, we need a small user interface for input of it – the 
Factory Load Estimator. 

o Optimized Price Query: this is the interface for the sales engineer who can 
query prices for a product with a given bill of material (BOM). 

 

Working Memory
- Facts

Rule Base
- Fuzzy Logic Rules

Knowledge Acquisition 
Component
- Linguistic Variable Editor
- Fuzzy Rule Editor

Data Adapter
- Big Mac index
- …
- Master Price List

Inference Engine
- Fuzzyfication
- Implication
- Aggregation
- Defuzzyfication

User Interface - Factory Load Estimator
- …

- Optimized Price Query



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 26 - 

4.3 Results 

4.3.1 Introduction 

A Fuzzy Control Language Engine (FCLE) has been developed, which is an innovative tool for 
Fuzzy Logic applications, primarily designed for dynamic pricing systems. Adhering to the IEC 
61131-7 standard, FCLE offers versatile use across various industries. It supports flexible rule 
management and seamless integration, enabling users to customize control strategies by 
easily modifying rule bases and input configurations. Beyond dynamic pricing, FCLE is suitable 
for diverse applications requiring fuzzy logic-based control algorithms. 

Here is a more detailed list of the features of the FCLE: 

• IEC 61131-7 Compliance: Is compatible to a subset of the IEC 61131-7 standard for 
Fuzzy Control Language, allowing for standardized evaluation of function blocks. 

• Comprehensive RESTful API: Offers a robust API for configuring rule bases, input 
values, and dynamically triggering the evaluation of fuzzy logic rules. 

• Easy Installation and Setup: Designed for straightforward installation with minimal 
configuration, enabling quick deployment. 

• Integration Ready: Seamlessly integrates with existing GUIs and external systems, 
suitable for a wide range of industrial applications beyond dynamic pricing. 

• Flexible Rule Base Management: Supports uploading, modifying, and retrieving rule 
bases in a standardized format, enhancing adaptability for various control strategies. 

• Dynamic Input Handling: Capable of processing and evaluating input values from 
multiple sources, ensuring robust and responsive control algorithms. 

An example Fuzzy Logic file, which is used in the test cases of the FCLE, looks like this: 

 
FUNCTION_BLOCK DynamicPricing 
 
    VAR_INPUT 
        factory_load: REAL;   // Represents the current load on the factory (0 to 100%) 
        market_demand: REAL;  // Represents the market demand level (0 to 100%) 
        production_cost: REAL; // Represents the cost of production (0 to 100%) 
    END_VAR 
 
    VAR_OUTPUT 
        pricing_factor: REAL; // The output factor used for dynamic pricing 
    END_VAR 
 
    FUZZIFY factory_load 
        TERM low := (0, 1) (30, 1) (60, 0); 
        TERM medium := (30, 0) (50, 1) (70, 0); 
        TERM high := (60, 0) (100, 1); 
    END_FUZZIFY 
 
    FUZZIFY market_demand 
        TERM low := (0, 1) (25, 1) (50, 0); 
        TERM medium := (25, 0) (50, 1) (75, 0); 
        TERM high := (50, 0) (100, 1); 
    END_FUZZIFY 
 
    FUZZIFY production_cost 
        TERM low := (0, 1) (20, 1) (40, 0); 
        TERM medium := (20, 0) (50, 1) (80, 0); 
        TERM high := (60, 0) (100, 1); 
    END_FUZZIFY 
 
    DEFUZZIFY pricing_factor 
        TERM low := 0; 
        TERM medium := 50; 
        TERM high := 100; 
        METHOD: CoGS; 
        DEFAULT := 0; 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 27 - 

    END_DEFUZZIFY 
 
    RULEBLOCK No1 
        AND: MIN; 
        ACCU: MAX; 
 
        RULE 1: IF factory_load IS high THEN pricing_factor IS high; 
        RULE 2: IF market_demand IS high THEN pricing_factor IS high; 
        RULE 3: IF production_cost IS high THEN pricing_factor IS high; 
        RULE 4: IF factory_load IS medium AND market_demand IS medium  
                THEN pricing_factor IS medium; 
        RULE 5: IF factory_load IS low AND market_demand IS low AND production_cost IS low  
                THEN pricing_factor IS low; 
        RULE 6: IF factory_load IS medium AND market_demand IS low 
                THEN pricing_factor IS medium; 
        RULE 7: IF production_cost IS medium THEN pricing_factor IS medium; 
 
    END_RULEBLOCK 
 
END_FUNCTION_BLOCK 

 

The FCLE is developed in Python and consists basically of 4 main modules: 

• engine.py: Serves as the core component of the FCLE by managing the definition and 
manipulation of fuzzy logic elements. It encapsulates the creation of input and output 
variables, handles the fuzzification and defuzzification processes, and orchestrates the 
evaluation of fuzzy rules through comprehensive classes such as InputVariable, 
OutputVariable, Rule, and FuzzyFunctionBlock. The Engine class integrates these 
elements to facilitate the overall fuzzy logic reasoning required for dynamic pricing and 
other control applications. 

• parser.py: Implements the parsing mechanism for Fuzzy Control Language (FCL) files 
adhering to the IEC61131-7 standard. Utilizing the Lark parsing library, it defines a 
specific grammar to accurately interpret FCL syntax and transform it into executable 
fuzzy function blocks. The FCLTransformer class systematically converts parsed FCL 
structures into the internal representations used by the engine, ensuring seamless 
integration of rule bases and variable configurations into the fuzzy logic framework. 

• service.py: Establishes a FastAPI-based service interface that exposes the functionality 
of the FCLE to external clients. It provides RESTful endpoints for evaluating fuzzy logic 
rules (/evaluate), managing rule bases (/set_rulebase and /get_rulebase), and 
configuring service settings (/set_service_conf and /get_service_conf). The module 
initializes the fuzzy logic engine, handles HTTP requests, processes input parameters, 
and returns structured responses, thereby enabling real-time interaction and 
integration with other systems or user interfaces. 

• io_connectors.py: Designed to facilitate the acquisition of missing variable values 
through API calls, this module is intended to enhance the engine's ability to 
dynamically retrieve necessary data inputs. Currently, this functionality remains 
unimplemented and is slated for development during complex testing phases at 
demonstrator sites. Once integrated, io_connectors.py will enable the FCLE to 
autonomously fetch and update variable values from external sources, thereby 
increasing its robustness and adaptability in diverse operational environments. 

4.3.2 Quick Start 

1. Clone the Repository 

Currently, the software is hosted at ifak. Thus proceed as follows: 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 28 - 

git clone https://code.ifak.eu/mth/innosale_fuzzylogic_engine.git 
cd innosale_fuzzylogic_engine 

 

2. Set Up the Environment 

Automated Installation 

For Linux-based systems (including WSL on Windows), run: 

bash ./bin/install.sh 

This script will: 

• Create a Python virtual environment. 

• Upgrade pip to the latest version. 

• Install the package in editable mode. 

• Install all required dependencies. 

Manual Installation 

If you encounter issues with the automated script, you can install manually: 

python -m venv --copies venv 
source venv/bin/activate 
python -m pip install --upgrade pip 
python -m pip install -e . 
pip install -r requirements.txt 

Note: The requirements.txt may not always contain the latest versions of dependencies. 

 

3. Run the Service 

Start the FastAPI server: 

fcle 

The service will be accessible at http://0.0.0.0:8000. You can interact with it via: 

• Web Browser: Navigate to http://localhost:8000/docs for interactive API 
documentation. 

• Command-Line Tools: Use tools like curl or httpie to make HTTP requests. 

• External Devices: Access via any device on the same network using the host’s IP 
address and port 8000. 

To stop the server, press Ctrl+C. 

4.3.3 Installation 

Ensure you have Python 3.10 or higher installed. The installation steps are covered in the Quick 
Start section above. 

4.3.4 Configuration 

Before running the service, ensure the data directory contains: 

• rulebase.fcl: The initial rule base file. 

• service_conf.yaml: Service configuration file. 

You can modify these files or use the API endpoints to update them dynamically. 

Note: Integration with Keycloak or other authentication mechanisms is not supported out of 
the box. Modifications to service.py are required for such features. 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 29 - 

4.3.5 Usage 

Once the service is running, you can interact with it using HTTP requests. The service provides 
endpoints to evaluate fuzzy logic rules, manage rule bases, and update service configurations. 

4.3.6 API Documentation 

Interactive API documentation is available at: 

• Swagger UI: http://localhost:8000/docs 

• Redoc: http://localhost:8000/redoc 

These interfaces provide detailed information about each endpoint, expected parameters, 
and response formats. The OpenAPI specification is also available at 
http://localhost:8000/redoc. 

4.3.7 Example API Calls 

Below are detailed examples of how to interact with the FCLE API using curl. Replace 
localhost with your server’s address if it’s running elsewhere. 

 

1. Evaluate Endpoint 

Endpoint: POST /evaluate 

Evaluates the fuzzy logic rules based on provided input values. 

Example Request: 

curl -X POST "http://localhost:8000/evaluate" \ 
     -H "Content-Type: application/json" \ 
     -d '{"input_values": {"factory_load": 75, "market_demand": 60, 
"production_cost": 50}}' 

Note: Make sure that those 3 input values are defined in the rulebase. If necessary parameters 
are missing, you will get an error. 

Headers: 

Content-Type: application/json 

Body: 

input_values: JSON object containing input variables. 

Example Response: 

{ 
  "status": "success", 
  "timestamp": "2024-09-02T12:34:56Z", 
  "request_id": "abcd1234", 
  "input_params": { 
    "factory_load": 75, 
    "market_demand": 60, 
    "production_cost": 50 
  }, 
  "output_values": { 
    "pricing_factor": 1.23 
  }, 
  "message": "Pricing factor successfully calculated." 
} 

Explanation: 

http://localhost:8000/docs
http://localhost:8000/redoc
http://localhost:8000/redoc


 D3.5, VERSION 1.0, 2025-01-15 

 

 - 30 - 

• Input Variables: 
o factory_load: Current load on the factory (0 to 100%, or more with extra 

shifts). 
o market_demand: Market demand level (0 to 100, 50 is normal demand). 
o production_cost: Cost of production (0 to 100, 50 is normal production cost). 

• Output Variables: 
o pricing_factor: Calculated pricing factor based on fuzzy logic rules. 

 

2. Set Rulebase Endpoint 

Endpoint: POST /set_rulebase 

Uploads a new rule base in FCL (Fuzzy Control Language) format. 

Example Request: 

curl -X POST "http://localhost:8000/set_rulebase" \ 
     -H "Content-Type: application/json" \ 
     -d '{"rulebase": "'$(base64 -w 0 path_to_your_rulebase.fcl)'"}' 

Headers: 

Content-Type: application/json 

Body: 

rulebase: Base64-encoded string of your rulebase.fcl file. 

Example Response: 

{ 
  "status": "success", 
  "timestamp": "2024-09-02T12:35:10Z", 
  "message": "Rule base successfully updated." 
} 

Explanation: 

This endpoint replaces the existing rule base with the provided one. 

Ensure your FCL file is correctly formatted and encoded. 

 

3. Get Rulebase Endpoint 

Endpoint: GET /get_rulebase 

Retrieves the current rule base in use. 

Example Request: 

curl -X GET "http://localhost:8000/get_rulebase" 

Example Response: 

{ 
  "status": "success", 
  "timestamp": "2024-09-02T12:35:30Z", 
  "rulebase": "<base64_encoded_rulebase>", 
  "message": "Rule base successfully retrieved." 
} 

Explanation: 

The rulebase field contains the Base64-encoded FCL content. 

Decode using: 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 31 - 

echo "<base64_encoded_rulebase>" | base64 -d > retrieved_rulebase.fcl 

 

4. Set Service Configuration Endpoint 

Endpoint: POST /set_service_conf 

Updates the service configuration. 

Example Request: 

curl -X POST "http://localhost:8000/set_service_conf" \ 
     -H "Content-Type: application/json" \ 
     -d '{"service_conf": "'$(base64 -w 0 
path_to_your_service_conf.yaml)'"}' 

Headers: 

Content-Type: application/json 

Body: 

service_conf: Base64-encoded string of your service_conf.yaml file. 

Example Response: 

{ 
  "status": "success", 
  "timestamp": "2024-09-02T12:35:50Z", 
  "message": "Service configuration successfully updated." 
} 

Explanation: 

• Updates the service configuration parameters. 

• Useful for changing server settings or variable endpoints. 

 

5. Get Service Configuration Endpoint 

Endpoint: GET /get_service_conf 

Retrieves the current service configuration. 

Example Request: 

curl -X GET "http://localhost:8000/get_service_conf" 

Example Response: 

{ 
  "status": "success", 
  "timestamp": "2024-09-02T12:36:10Z", 
  "service_conf": "<base64_encoded_service_conf>", 
  "message": "Service configuration successfully retrieved." 
} 

Explanation: 

The service_conf field contains the Base64-encoded YAML content. 

Decode using: 

echo "<base64_encoded_service_conf>" | base64 -d > 
retrieved_service_conf.yaml 

4.3.8 Testing 

To run the test suite: 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 32 - 

bash ./bin/test.sh 

Or manually: 

source venv/bin/activate 
python -m unittest discover test 

Note: You can also take the test cases as examples and for getting more insights on how to 
use the API. 

  



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 33 - 

5 Conclusion 

The research presented in section 2 of this report highlights the development of innovative 
3D Shape-based Pricing Strategies designed to enhance cost estimation accuracy in industries 
such as metal sheet stamping and mold-making. These strategies leverage advanced machine 
learning models and geometric analyses, resulting in significant improvements over traditional 
methods. 

Key achievements include: 

• Enhanced Cost Prediction Accuracy: By integrating voxelization techniques and other 
geometric analyses, the 3D shape-based approach reduces mean absolute percentage 
error (MAPE) from traditional methods to around 10% using LightGBM and XGBoost 
models. This improvement is particularly evident in complex custom part orders. 

• Reduced Quotation Time: The automation of cost estimation through machine 
learning models has significantly reduced the time required for generating quotations. 
This reduction in quotation time is crucial in industries where speed is a competitive 
advantage. 

• Transparency and Customer Satisfaction: By providing more transparent pricing 
models based on data-driven predictions, companies can offer clearer justifications for 
their pricing decisions. This increased transparency has been shown to improve 
customer satisfaction and trust. 

The research presented in section 3 of this report highlights the development of a novel AI-
based system for pricing strategies that leverages statistical analysis and forecasting to 
automate and optimize the adjustment of master price lists. The approach aims to mitigate 
the time-intensive, manual processes currently employed by product managers while 
enhancing accuracy and responsiveness to market conditions. 

Key achievements include: 

• Automated Forecasting: By integrating real-time data from various sources such as 
material prices, financial indicators, and energy costs, our system can generate 
accurate forecasts for material price trends. This automation allows for swift 
adjustments in pricing based on dynamic market conditions. 

• Enhanced Model Performance: The employment of NeuralProphet over the traditional 
Prophet model demonstrated significant improvements, particularly in capturing 
complex patterns like those seen in aluminium prices. NeuralProphet’s ability to 
integrate neural networks with statistical methods has proven effective in handling 
non-linear relationships and improving forecast accuracy. 

• Real-Time Pricing Transparency: The system provides real-time access to price 
developments, enabling customers to understand the rationale behind pricing 
decisions, thereby fostering trust and customer satisfaction. By offering clear 
arguments for any adjustments, the service promotes a more transparent and 
customer-centric approach. 

• Data Privacy Preservation: Utilizing index prices ensures that sensitive company 
information remains secure while still capturing general market trends essential for 
accurate forecasting. This method allows companies to benefit from AI-driven insights 
without risking data privacy or confidentiality. 

The research discussed in section 4 of this report demonstrates the potential of fuzzy logic-
based pricing strategies in enhancing dynamic pricing mechanisms, particularly at the Bill of 
Material (BOM) level. The development and implementation of a Fuzzy Control Language 



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 34 - 

Engine (FCLE), which aligns with IEC 61131-7 standards, offer a robust and flexible solution for 
automating price adjustments based on various influencing factors such as factory load, 
market demand, and production costs. 

The FCLE provides a comprehensive RESTful API that enables seamless integration into existing 
systems. Its modular design, encompassing the engine.py, parser.py, service.py, and 
io_connectors.py modules, facilitates ease of use and scalability. The system's capability to 
adapt pricing strategies dynamically through fuzzy logic rules reduces reliance on manual 
adjustments by sales engineers, thereby improving efficiency and consistency in pricing. 

The research confirms that Mamdani’s inference method is preferable for this application due 
to its ability to handle multiple output variables, which are necessary for calculating both the 
price factor and offset. 

Future work will focus on integrating external data acquisition capabilities through 
io_connectors.py, enhancing the FCLE’s adaptability in diverse operational environments. 
Additionally, extending testing phases at demonstrator sites is anticipated to further refine 
and validate the system's performance under real-world conditions. 

 

  



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 35 - 

6 Abbreviations  

Abbreviation Description 

ABAC Attribute-Based Access Control 

API Application Programming Interface 

CMMS Computerized Maintenance Management System 

CRM Customer Relationship Management 

CSV Comma-Separated Values 

DOM Document Object Model 

EDI Electronic Data Interchange 

ERP Enterprise Resource Planning 

ESB Enterprise Service Bus 

FCLE Fuzzy Control Language Engine 

GUI Graphical User Interface 

HTTPS Hypertext Transfer Protocol Secure 

HTTP Hypertext Transfer Protocol 

IEC International Electrotechnical Commission 

JSON JavaScript Object Notation 

JWT JSON Web Token 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MOM Message-Oriented Middleware 

RBAC Role-Based Access Control 

REST Representational State Transfer 

SAML Security Assertion Markup Language 

SMOTE Synthetic Minority Oversampling Technique 

SSO Single Sign-On 

SSL Secure Sockets Layer 

SOA Service-Oriented Architecture 

TLS Transport Layer Security 

XML eXtensible Markup Language 

YAML YAML Ain't Markup Language 

 

  



 D3.5, VERSION 1.0, 2025-01-15 

 

 - 36 - 

7 References 

[Bazaz2016] Tayibia Bazaz; Aqeel Khalique: A Review on Single Sign on Enabling 
Technologies and Protocols. International Journal of Computer 
Applications, vol. 151 – No. 11, October 2016. Retrieved 2023-04-13 from 
https://www.researchgate.net/publication/309225903_A_Review_on_Sin
gle_Sign_on_Enabling_Technologies_and_Protocols. 

[Erl2017] Erl, Thomas. Service-Oriented Architecture: Analysis and Design for 
Services and Microservices. Prentice Hall, 2017. 

[FastAPI] Tiangolo (Sebastián Ramírez): FastAPI. Retrieved 2023-02-14, from 
https://fastapi.tiangolo.com/lo/  

[Fielding2000] Fielding, R. T. (2000). Architectural Styles and the Design of Network-based 
Software Architectures (Doctoral dissertation). University of California, 
Irvine. Retrieved 2023-05-10 from 
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation
.pdf. 

[Hohpe2003] Gregor Hohpe and Bobby Woolf. "Enterprise Integration Patterns: 
Designing, Building, and Deploying Messaging Solutions". Addison-Wesley 
Professional, October 2003. 

[HTTP1.1] R. Fielding, Ed.: Hypertext Transfer Protocol (HTTP/1.1): Semantics and 
Content, RFC 7231. Internet Engineering Task Force (IETF), June 2014. 
Retrieved 2023-04-28 from https://datatracker.ietf.org/doc/html/rfc7231. 

[HTTPS] Rescorla, E.: . HTTP Over TLS, RFC 2818. Internet Engineering Task Force 
(IETF), May 2000. Retrieved 2023-01-11 from 
https://datatracker.ietf.org/doc/html/rfc2818  

[JWT] Jones, M., Bradley, J., & Sakimura, N.:. JSON Web Token (JWT), RFC 7519. 
Internet Engineering Task Force (IETF), May 2015. Retrieved 2022-12-12 
from https://datatracker.ietf.org/doc/html/rfc7519  

[Keycloak] Keycloak. Retrieved 2023-04-11 from https://www.keycloak.org/. 

[OpenAPI] OpenAPI Initiative. OpenAPI specification (version 3.1.0). February 2021. 
Retrieved 2023-04-28 from https://spec.openapis.org/oas/v3.1.0. 

[Python] Python Software Foundation: Python.org. Retrieved 2023-05-02, from 
https://www.python.org/  

[PyPi] Python-Community: PyPI - the Python Package Index. Retrieved 2023-03-
23, from https://pypi.org/  

[RBAC] Serban I. Gavrila: Formal Specification for Role Based Access Control 
User/Role and Role/Role Relationship Management. National Institute of 
Standards and Tech., 1998. Retrieved 2023-02-16 from  
https://dl.acm.org/doi/10.1145/286884.286902  

[Sandhu1996] R. Sandhu et al, Role-Based Access Control Models, IEEE Computer, 
29(2):38-47, Feb. 1996, Retrieved 2023-02-16 from  
https://profsandhu.com/journals/computer/i94rbac(org).pdf  

[Xin2012] Xin Jin, Ram Krishnan and Ravi Sandhu: A Unified Attribute-Based Access 
Control Model Covering DAC, MAC and RBAC. In Proceedings 26th Annual 
IFIP WG 11.3 Working Conference on Data and Applications Security and 
Privacy (DBSec 2012), Paris, France, July 11-13, 2012, pages 41-55. 

https://www.researchgate.net/publication/309225903_A_Review_on_Single_Sign_on_Enabling_Technologies_and_Protocols
https://www.researchgate.net/publication/309225903_A_Review_on_Single_Sign_on_Enabling_Technologies_and_Protocols
https://fastapi.tiangolo.com/lo/
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc7519
https://www.keycloak.org/
https://spec.openapis.org/oas/v3.1.0
https://www.python.org/
https://pypi.org/
https://dl.acm.org/doi/10.1145/286884.286902
https://profsandhu.com/journals/computer/i94rbac(org).pdf


 D3.5, VERSION 1.0, 2025-01-15 

 

 - 37 - 

[Hu2013] Vincent C. Hu et. al.: Guide to Attribute Based Access Control (ABAC) 
Definition and Considerations (Draft). National Institute of Standards and 
Technology, April 2013. 2023-02-16 from 
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cab6
98a5b0949aa7acd0858b55352c5df0a2c2fb  

[SMOTE] Chawla, Nitesh V., et al. "SMOTE: synthetic minority over-sampling 
technique." Journal of artificial intelligence research 16 (2002): 321-357. 

[Tomek] I. Tomek, “Two modifications of CNN,” In Systems, Man, and Cybernetics, 
IEEE Transactions on, vol. 6, pp 769-772, 1976. 

[XGBoost] Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting 
system." Proceedings of the 22nd acm sigkdd international conference on 
knowledge discovery and data mining. 2016. 

[LightGBM Ke, Guolin, et al. "Lightgbm: A highly efficient gradient boosting decision 
tree." Advances in neural information processing systems 30 (2017). 

[SHAP] Scott, M., and Lee Su-In. "A unified approach to interpreting model 
predictions." Advances in neural information processing systems 30 (2017): 
4765-4774. 

 

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cab698a5b0949aa7acd0858b55352c5df0a2c2fb
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cab698a5b0949aa7acd0858b55352c5df0a2c2fb

