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1. INTRODUCTION 

Welcome to the D5.3 State-of-the-Art Gap Analysis document of the SINTRA project, an ambitious 

initiative that aims to improve the resilience and protection of the critical infrastructures by 

developing an open data-streaming AI platform that enables interoperability, information 

sharing, and privacy protection. 

Within the scope of the SINTRA project, the focus is on solving safety and security problems 

innovatively and collaboratively for different critical infrastructures like airports, harbours, 

construction sites and railways.  
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2. STATE OF THE ART ANALYSIS 

The integration of multi-modal sensing technologies and AI-powered data analysis has 

revolutionized the field of infrastructure security and safety. By combining data from various 

sensor modalities and existing data sources, a comprehensive and nuanced understanding of 

security and safety situations can be achieved. This approach enhances the detection of 

anomalies, maps them to potential threats, and facilitates coordinated responses. This literature 

study explores state-of-the-art technologies and methodologies in this domain, focusing on the 

fusion of diverse sensor data and AI-based analysis techniques. The following subsections provide 

the state-of-the-art analysis of important topics such as human action recognition (HAR), emotion 

detection, object detection, speech detection, anomaly detection, localization analysis, human 

heat map, CCTV which are essential to the scope of the project and its key technological areas. 

 

2.1 State of the Art Technologies and Literature Studies   

2.1.1 Artificial Intelligence 

Artificial Intelligence (AI) has emerged as a powerful tool in the detection of hidden, complex, or 

context-dependent anomalies. By leveraging advanced machine learning algorithms and deep 

learning techniques, AI systems can identify patterns and irregularities that may not be apparent 

through traditional methods. These capabilities are crucial for mapping detected anomalies to 

potential threats and coordinating timely responses. This literature study explores the state-of-

the-art technologies and methodologies in AI-based anomaly detection and threat mapping. 

2.1.1.1 Edge Computing 

Cloud Computing is an emerging technology that allows machines/people to access data 

anywhere and everywhere. Edge Computing is a new paradigm that moves computing application 

and services from central units to logical endpoints or locations closest to the source and provides 

data processing power there1. 

Edge computing architecture is typically categorized into three components: the front-end, near-

end, and far-end. 

Front-end: End devices such as sensors and actuators are situated at the front-end of the edge 

computing framework. This environment enhances interaction and responsiveness for users. The 

computational power available from numerous nearby end devices enables edge computing to 

deliver real-time services for certain applications. However, the limited capabilities of these 

                                                     
1 Yu, W., Liang, F., He, X., Hatcher, W.G., Lu, C., Lin, J., Yang, X. A Survey on the Edge Computing for the Internet of 

Things, Department of Computer and Information Sciences, Towson University, MD, USA, School of Electronic and 
Information Engineering, Xi’an Jiaotong University, Shaanxi, P.R. China. 
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devices mean that not all demands can be met at the front-end. Consequently, these end devices 

often need to pass on their resource requirements to servers for further processing. 

Near-end: In a near-end environment, gateways will handle the majority of network traffic. Edge 

or cloudlet servers in this setting have extensive resource requirements, including real-time data 

processing, data caching, and computation offloading. In the context of edge computing, much of 

the data computation and storage tasks will be shifted to this near-end environment. This shift 

enables end users to experience significantly improved performance in data computing and 

storage, albeit with a minor increase in latency. 

Far-end: Cloud servers situated at a greater distance from end devices contribute to considerable 

transmission latency within the networks. Despite this, far-end cloud servers offer superior 

computing power and data storage capabilities. For instance, they can support massive parallel 

data processing, big data mining, big data management, and machine learning. The architecture 

of edge computing networks is illustrated in the figure below. 

 

Figure 1. Edge computing network architecture2 

Edge Computing integrates a wide array of technologies, bringing them together to create a 

cohesive system. Within this field, it leverages various technologies, such as wireless sensor 

networks (WSN), mobile data acquisition, mobile signature analysis, Fog/Grid Computing, 

                                                     
2 Yu, W., Liang, F., He, X., Hatcher, W.G., Lu, C., Lin, J., Yang, X. A Survey on the Edge Computing for the Internet of 

Things, Department of Computer and Information Sciences, Towson University, MD, USA, School of Electronic and 
Information Engineering, Xi’an Jiaotong University, Shaanxi, P.R. China. 
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distributed data operations, and remote Cloud services. Additionally, it incorporates the following 

protocols and terms3:  

● 5G communication: This is the fifth-generation wireless system designed to offer higher 

capacity, lower power consumption, and reduced latency compared to its predecessors. 

As the volume of data and the number of connected devices grow, 5G is expected to 

address traffic issues. 

● PLC protocols: Object Linking and Embedding for Process Control Unified Architecture 

(OPC-UA) is a protocol created for industrial automation. It is highly valued in industries 

such as oil and gas, pharmaceuticals, robotics, and manufacturing due to its openness and 

robustness. 

● Message queue broker: Protocols like MQTT and TCP/IP are popular among smart sensors 

and IoT devices. By supporting these message brokers, Edge Computing can connect more 

devices. To enhance MQTT security, AMQP is used for communication with Cloud 

Computing servers. 

● Event processor: When IoT messages reach the Edge server, the event processor analyses 

them and generates semantic events based on predefined rules. Examples of this enabler 

include EsperNet, Apache Spark, and Flink. 

● Virtualization: Cloud services are deployed as virtual machines on Cloud servers or 

clusters, allowing multiple operating system instances to run on the same server. 

● Hypervisor: In addition to virtual machines, performance evaluation and data handling are 

managed by the hypervisor, which controls virtual machines on the host computer.  

● OpenStack: Managing multiple resources can be challenging. OpenStack is a Cloud 

operating system that simplifies the management of computing and storage resources 

through a control panel and monitoring tools. 

● AI platform: Rule-based engines and machine learning platforms support local data 

analysis. As mentioned in Section IV, this is crucial for achieving one of the goals of Edge 

Computing: gathering, analysing, and initially filtering data. 

● Hyperledger: Blockchain technology is commonly used in highly sensitive areas, such as 

digital currencies like Bitcoin. It is also valuable for data protection in Cloud Computing, 

enabling secure data sharing with external parties and servers. 

● Docker: Unlike virtual machines that require installing operating systems, Docker is a 

Container as a Service (CaaS) that uses a single shared operating system to run software 

in an isolated environment. It only needs the software libraries, making it a lightweight 

system without concerns about the software's deployment location. 

                                                     
3 Gezer, V., Um, J., & Ruskowski, M. (2017). An extensible edge computing architecture: Definition, requirements 

and enablers. Proceedings of the UBICOMM. 
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2.1.1.2 Fog Computing 

The Internet of Things (IoT) encompasses on-device computing at the intermediate layer between 

edge devices and the cloud. Transferring data to the cloud in a Fog Computing setup involves 

multiple stages, addressing complexities and data transformations along the way. Fog computing 

is particularly suitable for critical applications such as data collection and pre-processing, 

condition monitoring, rule-based decision-making, and short-term data storage that require real-

time responsiveness and are time-sensitive. For instance, autonomous vehicles have a maximum 

latency tolerance of about 10 milliseconds, but this tolerance is even lower in scenarios where 

human safety is critical and the economic stakes are high. In high-frequency stock market trading, 

institutions have a latency tolerance of 0.25 seconds, whereas ensuring worker safety in a mine 

requires a latency tolerance of just 1 millisecond. Therefore, fog computing is essential in these 

critical situations to minimize the risk of communication failures, enhance real-time analysis and 

decision-making speed, and reduce the costs associated with transmitting, processing, and storing 

data in the cloud. In essence, fog computing aims to bring computational power closer to data 

sources to minimize response times without compromising throughput. In a fog computing 

model, computing tasks are distributed efficiently between the data source and the cloud. While 

fog computing is locally closer to devices compared to the cloud, it acts as an intermediary layer, 

forwarding information even when some decisions are made locally.4. Fog architecture is given in 

the figure below. 

 

Figure 2. Fog computing architecture5 

                                                     
4 Fog Computing: Current Research and Future Challenges, March 2018. Conference: 1. GI/ITG KuVS Fachgespräche 

Fog ComputingAt: Darmstadt, Germany. 
5 Fog Computing: Current Research and Future Challenges, March 2018. Conference: 1. GI/ITG KuVS Fachgespräche 

Fog ComputingAt: Darmstadt, Germany. 
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2.1.1.3 Human Action Recognition (HAR) 

Human Action Recognition (HAR) is a field within computer vision and artificial intelligence 

dedicated to identifying and categorising human actions from various observations. This 

technology analyses data captured from sources like videos, wearable sensors, or environmental 

sensors to recognize and predict human activities. HAR integrates aspects of computer vision, 

machine learning, and data analytics to understand human movements and behaviours, with 

applications spanning across human-computer interaction (HCI), surveillance, virtual reality (VR), 

and elder care. 

HAR systems gather data through cameras or sensors that capture human movements. The raw 

data is then processed to extract significant features that represent different human actions, such 

as identifying body postures, movements, or gestures. Machine learning algorithms use these 

extracted features to classify actions into categories like walking, running, or jumping6. Some HAR 

systems also consider the context, such as the environment or interaction with objects, to 

enhance accuracy. 

The technology of human action recognition7 employs data from specific algorithmic sensors to 

identify types of human actions. It has become crucial in various fields, including artificial 

intelligence, due to its technical applications and potential for development. HAR shows promise 

in safety state monitoring8, behaviour feature analysis, and network video image restoration. 

Through video surveillance, the technology of recognizing human motion can intelligently detect 

abnormal behaviours, such as fighting and illegal tracking. These behaviours may cause harm to 

personal safety, so monitoring can be used for timely detection and early warning. In the aspect 

of behaviour analysis, the most common technology to identify human movement9 is to compare 

the athlete’s movement with that of standard athletes and to improve the accuracy of movement. 

In behaviour analysis, HAR technology is used to compare an athlete’s movements with those of 

standard athletes to improve accuracy. Despite the high status of deep learning in HAR, ongoing 

research has revealed limitations in the accuracy and recognition rates of deep learning-based 

human action recognition. The attention mechanism aims to address these issues by allocating 

limited computing resources to high-priority information. With the abundance of raw 

information, computational difficulties can arise, leading to decreased accuracy. Researchers 

                                                     
6 Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun, Gang Wang, Jun Liu, Human Action 

Recognition from Various Data Modalities: A Review, Computer Vision and Pattern Recognition. 
7 Qiong H., Lei Q., Qingming H.. 2013.Overview of Human Action Recognition Based on Vision. Chinese Journal of 

Computers,12(12),2512-2524. 
8 Bin F., Xin F., Jianguo C.. 2021. A MEMS sensor-based human body gesture recognition method for the elderly-

aiding mechanism. Journal of Harbin University of Commerce (Natural Sciences Edition),37(05),590-594. 
9 Zhaole D., Kang W., Shenglong L.. 2021. Human action recognition based on deep learning. Command Informatipn 

System and Technology,12(04),70-74. 
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suggest using the attention mechanism to improve the accuracy and efficiency of human action 

recognition. 

2.1.1.3.1 HAR Current Technologies and Trends 

HAR has a wide range of applications, including in healthcare for patient monitoring, in security 

systems for surveillance, in sports for performance analysis, and in entertainment for interactive 

gaming10.  

● Daily activities, such as walking, running, jumping, sitting, standing, etc. 

● Sports activities, such as basketball, soccer, tennis, etc. 

● Exercise activities, such as weightlifting, yoga, aerobics, etc. 

● Medical activities, such as gait analysis for patients with mobility impairments. 

● Industrial activities, such as assembly line work, machine operation, etc. 

● Interpersonal activities, such as handshaking, hugging, pointing, etc. 

● Artistic activities, such as dancing, playing musical instruments, etc. 

● Household activities, such as cooking, cleaning, etc.  

● HAR can be used for patient monitoring, fall detection for the elderly, and assisting in 

physical therapy by analysing movements to ensure exercises are performed correctly. 

● Surveillance and Security: In security systems, HAR can detect unusual or suspicious 

activities, enhancing public safety and security monitoring. 

● By recognizing the actions of residents, HAR can automate home appliances and lighting, 

contributing to energy savings and personalized living experiences. 

● Coaches and athletes can use HAR to analyse movements for improving performance and 

technique in sports training. 

● HAR enables interactive gaming experiences where players’ physical actions are translated 

into game movements11. 

● In manufacturing, HAR can ensure safety by detecting improper actions that could lead to 

accidents, and it can also assist in automating repetitive tasks12. 

● Teachers can use HAR to analyse student engagement and participation during classes. 

● HAR can help in understanding customer behaviour and preferences, leading to improved 

customer service and targeted marketing13. 

                                                     
10 Md Golam Morshed,Tangina Sultana, Aftab Alam and Young-Koo Lee, Human Action Recognition: A Taxonomy-

Based Survey, Updates, and Opportunities. 
11 Shuchang Zhou, Computer Vision and Pattern Recognition, A Survey on Human Action Recognition. 
12 Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun, Gang Wang, Jun Liu, Human Action 

Recognition from Various Data Modalities: A Review, Computer Vision and Pattern Recognition. 
13 Md Golam Morshed,Tangina Sultana,Aftab Alam andYoung-Koo Lee, Human Action Recognition: A Taxonomy-

Based Survey, Updates, and Opportunities. 
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● In advanced driver-assistance systems (ADAS), HAR can monitor driver behaviour to detect 

signs of drowsiness or distraction14. 

2.1.1.3.2 HAR Implementation Challenges 

Despite having received great attention from various researchers from various groups of interests, 

the challenges in solving real-world HAR problems still remain. Some of these challenges are due 

to background clutter, changes in lighting and illumination, occlusions, be it self-occlusion or with 

other objects, camera view-dependent, frame resolution, differences in scale and appearance, as 

well as the nature of the action itself. Additionally, the inter- and intra-variations in human action 

add another dimension of complexity to the problem. The challenges listed highlight the need for 

continued research and development in the field of HAR to create more accurate, efficient and 

ethical recognition systems. The challenges in solving HAR problems still 

remain15,16,17,18,19,20,21,22,23,24. 

Challenge 1: Natural variability in human actions is one of the important factors affecting HAR 

processes. Human actions can vary greatly in speed, style, and execution, making it difficult for 

algorithms to recognize and classify them accurately.  

Challenge 2: Viewpoint and biometric variability are another challenge. Changes in camera, radar 

and sensor viewport, as well as different body shapes, sizes and appearances, can lead to 

significant differences, affecting the performance of recognition algorithms.  

                                                     
14 Gupta, N., Gupta, S.K., Pathak, R.K. et al. Human activity recognition in artificial intelligence framework: a 

narrative review. 
15 Shuchang Zhou, Computer Vision and Pattern Recognition, A Survey on Human Action Recognition. 
16 Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun, Gang Wang, Jun Liu, Human Action 

Recognition from Various Data Modalities: A Review, Computer Vision and Pattern Recognition. 
17 Md Golam Morshed,Tangina Sultana,Aftab Alam andYoung-Koo Lee, Human Action Recognition: A Taxonomy-

Based Survey, Updates, and Opportunities. 
18 Gupta, N., Gupta, S.K., Pathak, R.K. et al. Human activity recognition in artificial intelligence framework: a 

narrative review. 
19 Muhammad Haseeb Arshad,Muhammad Bilal andAbdullah Gani, Human Activity Recognition: Review, Taxonomy 

and Open Challenges. 
20 Pareek, P., Thakkar, A. A survey on video-based Human Action Recognition: recent updates, datasets, challenges, 

and applications. 
21 Othman, N.A., Aydin, I. (2021). Challenges and limitations in human action recognition on unmanned aerial 

vehicles: A comprehensive survey. 
22 Kumar, P., Chauhan, S. & Awasthi, L.K. Human Activity Recognition (HAR) Using Deep Learning: Review, 

Methodologies. 
23 Progress and Future Research Directions. Arch Computat Methods Eng. 
24 Singh, P.K., Kundu, S., Adhikary, T. et al. Progress of Human Action Recognition Research in the Last Ten Years: A 

Comprehensive Survey. Arch Computat Methods Eng 
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Challenge 3: In real-world scenarios, the presence of multiple people, obstacles, and dynamic 

backgrounds increases the complexity of accurately recognizing actions. Data obtained with 

cameras, radar and sensors may provide incorrect or incomplete information due to the 

complexity of the environment. High-quality, labelled datasets are crucial for training recognition 

systems, but they can be scarce or unstable, hindering the development of robust HAR models. 

People perform the same action in different ways. HAR systems must be resilient to changes in 

action execution due to factors such as clothing, lighting conditions, and occlusions.  

Challenge 4: Combining data from different sources, such as videos, sensors, and still images, can 

improve recognition accuracy but also increases the complexity of the system25. 

Challenge 5: The current approaches employ multiple branches, analysing different features to 

produce richer and more robust information. On the other hand, some methods employ 

backbone networks for the initial feature extraction (temporal or regional), dividing both the 

training and inference process into a two-stage process each. Despite its high effectiveness, the 

inference time is sacrificed. 

Challenge 6: The video annotation process becomes an extremely exhausting task concerning the 

unpredictable number of video hours needed to successfully train a model. Therefore, there is a 

need for semi-supervised and unsupervised learning algorithms to recognize human actions. The 

increasing number of action classes becomes even more challenging due to the higher 

overlapping between classes.  

Challenge 7: One of the challenges in HAR is the intra-class variation of an action. This is to say 

that the same action performed by the same person but viewed at different camera angles may 

result in different extracted features, resulting in dissimilar feature descriptors. In order to 

circumvent this problem, some researchers have resorted to multi-view, also known as cross-view 

approach. 

Challenge 8: An image-based recognition system’s primary challenge is lighting fluctuation, which 

has an impact on the quality of pictures and, thus, on the information that is processed. 

Challenge 9: While deep learning has significantly advanced HAR, there is still a need to develop 

models that can handle the vast amount of data and complex patterns associated with human 

actions26. 

                                                     
25 Pareek, P., Thakkar, A. A survey on video-based Human Action Recognition: recent updates, datasets, challenges, 

and applications. 
26 Othman, N.A., Aydin, I. (2021). Challenges and limitations in human action recognition on unmanned aerial 

vehicles: A comprehensive survey. 
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Challenge 10: As HAR systems often involve surveillance, there are ethical considerations and 

privacy concerns that need to be addressed, ensuring that such technologies are used 

responsibly27. 

 

2.1.1.4 Emotion Detection 

Emotion detection technologies have rapidly evolved, significantly impacting various sectors 

including transportation and customer service. The state-of-the-art review specifically explores 

recent advancements in AI-based emotion detection within airport settings, focusing on 

enhancing customer satisfaction and operational efficiency.  

Recent research demonstrates a shift towards integrating AI technologies to analyse facial 

expressions, speech patterns, and even contextual behaviours to gauge customer emotions in 

real-time. For instance, Gerard Deepak and A Santhanavijayan28 have developed a semantic AI 

model that incorporates the Normalized Pointwise Mutual Information (NPMI) measure for 

intelligent response generation in dynamic environments like airports, which could significantly 

enhance customer service interactions. Raj Deshmukh et al.29 employed temporal logic learning 

to monitor anomalies in terminal airspace operations, indirectly facilitating emotion detection by 

ensuring smoother operations and reducing passenger stress caused by delays or other 

irregularities. In an innovative approach, Asad Abbas and Stephan Chalup30 explored the affective 

analysis of visual scenes using face pareidolia (seeing faces in inanimate objects) and scene 

context, an approach that can be adapted to monitor passenger satisfaction in visually complex 

environments such as airports. 

The role of speech in emotion detection cannot be understated, as demonstrated by Md. Zia 

Uddin and Erik G Nilsson31, who applied neural structured learning to enhance emotion 

recognition from passenger speech. This technology could be pivotal in customer service desks 

and announcements in airports, providing real-time emotional feedback to service providers.  

                                                     
27 Kumar, P., Chauhan, S. & Awasthi, L.K. Human Activity Recognition (HAR) Using Deep Learning: Review, 

Methodologies. 
28 Deepak, G., & Santhanavijayan, A. (2020). A Novel Semantic Approach for Intelligent Response Generation using 

Emotion Detection Incorporating NPMI Measure. Procedia Computer Science, 168, 126-133 
29 Deshmukh, R., Sun, D., Kim, K., & Hwang, I. (2021). Temporal logic learning-based anomaly detection in 

metroplex terminal airspace operations. Transportation Research Part C: Emerging Technologies, 124, 102955. 
30 Abbas, A., & Chalup, S. (2021). Affective analysis of visual scenes using face pareidolia and scene-context. 

Neurocomputing, 423, 634-645. 
31 Uddin, M. Z., & Nilsson, E. G. (2020). Emotion recognition using speech and neural structured learning to 

facilitate edge intelligence. Engineering Applications of Artificial Intelligence, 94, 103789. 
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Lastly, understanding passenger hesitancy and decision-making is crucial for improving airport 

services, a challenge tackled by Jing Lu et al.32 through machine learning models. These models 

predict passenger choices based on emotional and rational factors, providing insights into 

enhancing overall passenger. These studies collectively indicate a growing trend of employing 

advanced AI techniques to not only detect but also respond to emotional cues in a high-stake 

environment like airports, ultimately aiming to boost passenger satisfaction and streamline 

airport operations. 

 

2.1.1.5 Object Detection 

Object detection focuses on identifying specific instances of objects within real-world data, 

presenting a significant challenge in computer vision. This process involves two primary 

components: object localization and classification, which together facilitate the extraction of 

objects from images. Essentially, computer vision accomplishes this by distinguishing specific 

objects from the background, determining their respective classes, and outlining the proposed 

object boundaries. 

Object detection builds upon object classification, which solely aims to recognize objects within 

an image. The objective of object detection is to identify all instances of predefined classes and 

provide a rough localization in the image using axis-aligned bounding boxes. The detection system 

should be capable of recognizing all instances of the object classes and drawing a bounding box 

around each. This task is typically approached as a supervised learning problem. Contemporary 

object detection models are trained using large sets of labelled images and are assessed on 

various standard benchmarks. 

Early object detection models were built as an ensemble of hand-crafted feature extractors such 

as Viola-Jones detector33, Histogram of Oriented Gradients (HOG)34 etc. These models were slow, 

inaccurate and performed poorly on unfamiliar datasets. The usage of the convolutional neural 

network (CNNs) and deep learning for image classification changed the landscape of visual 

perception. Its use in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 

                                                     
32 Lu, J., Meng, Y., Timmermans, H., & Zhang, A. (2021). Modeling hesitancy in airport choice: A comparison of 

discrete choice and machine learning methods. Transportation Research Part A: Policy and Practice, 146, 102-117. 
33 P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: Proceedings of the 2001 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, IEEE Comput. 
Soc., 2001, pp. I-511–I-518. 
34 N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: 2005 IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, ISSN1063-6919, 2005-06, pp.886–893. 
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challenge by AlexNet35 inspired further research on its application in computer vision. Today, 

object detection finds applications from self-driving cars and identity detection to security and 

medical uses. In recent years, it has seen exponential growth with the rapid development of new 

tools and techniques. 

The development of object detection algorithms can be divided into two stages: traditional object 

detection algorithms and deep-learning-based object detection algorithms. Deep-learning-based 

object detection algorithms are further divided into two main technical routes: one-stage and 

two-stage algorithms36. Figure 2 shows the development of object detection from 2001 to 202337. 

 

Figure 3. The development of object detection from 2001 to 2023. 

Traditional object detection algorithms primarily rely on sliding window techniques and manual 

feature extraction methods, typically involving three steps: region proposal, feature extraction, 

and classification regression. The region proposal step identifies regions of interest where objects 

are likely located. During the feature extraction phase, manual methods are used to convert 

images in candidate regions into feature vectors. Finally, a classifier categorizes objects based on 

the extracted features. However, these algorithms are often hampered by high computational 

complexity, limited feature representation capability, and optimization challenges. 

Object detection offers extensive real-world applications. It involves localizing and classifying 

objects within images or videos, driving research into several key areas: 

                                                     
35 A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: F. 

Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger (Eds.), Advances in Neural Information Processing Systems, Cur-
ran Associates, Inc., 2012, p.9. 
36 Xu, X.; Dong, S.; Xu, T.; Ding, L.; Wang, J.; Jiang, P.; Song, L.; Li, J. FusionRCNN: LiDAR-Camera Fusion for Two-

Stage 3D Object Detection. Remote Sens. 2023, 15, 1839. 
37 Guangyi T., Jianjun N., Yonghao Z., Yang G., Weidong C., A Survey of Object Detection for UAVs Based on Deep 

Learning, Remote Sensing, 2024, 16, 149. 
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● Object Localization38: Crucial for precise object positioning, enabling applications like 

autonomous driving and pedestrian detection. 

● Object Classification39: Essential for recognizing object types, aiding tasks such as 

automatic product tagging in e-commerce applications. 

● Counting of Objects: Extending detection to quantify instances within images or videos, 

valuable for crowd management and inventory tracking. 

● Object Tracking and Monitoring40: Tracking objects across frames in videos, vital for 

surveillance and movement analysis. 

● Improving Accuracy and Efficiency41: Ongoing efforts enhance detection algorithms' 

precision and speed through novel architectures and optimization techniques. 

● Adapting to Challenging Conditions: Algorithms are being fortified to perform well under 

adverse conditions like varying lighting and occlusions, critical for applications in 

unpredictable environments like robotics42. 

● Deployment in Edge Devices: Focus on deploying efficient models on resource-constrained 

devices, requiring advancements in compression and quantization techniques43. 

● Domain Adaptation and Transfer Learning44: Techniques explore adapting models to new 

domains with limited data, leveraging pre-trained models to improve performance. 

2.1.1.5.1 Object Detection Challenges and Considerations 

Object detection typically addresses two fundamental questions: "What is the object?" and 

"Where is the object?" Initially, object classification and localization posed significant challenges, 

but advancements in computer vision have enabled digital devices to identify image contents. 

However, despite notable progress, object detection encounters persistent hurdles, including 

dual priorities, limited data, class imbalances, variations in size, speed constraints, environmental 

factors, and handling multiple scales.  

                                                     
38 BRESSON, Guillaume, et al. Simultaneous localization and mapping: A survey of current trends in autonomous 

driving. IEEE Transactions on Intelligent Vehicles, 2017, 2.3: 194-220. 
39 KEJRIWAL, Mayank, et al. An evaluation and annotation methodology for product category matching in e-

commerce. Computers in Industry, 2021, 131: 103497. 
40 ELHARROUSS, Omar; ALMAADEED, Noor; AL-MAADEED, Somaya. A review of video surveillance systems. Journal 

of Visual Communication and Image Representation, 2021, 77: 103116. 
41 ZHAO, Zhong-Qiu, et al. Object detection with deep learning: A review. IEEE transactions on neural networks and 

learning systems, 2019, 30.11: 3212-3232. 
42 MARTINEZ-MARTIN, Ester; DEL POBIL, Angel P. Object detection and recognition for assistive robots: 

Experimentation and implementation. IEEE Robotics & Automation Magazine, 2017, 24.3: 123-138. 
43 SHUVO, Md Maruf Hossain, et al. Efficient acceleration of deep learning inference on resource-constrained edge 

devices: A review. Proceedings of the IEEE, 2022, 111.1: 42-91. 
44 KAMATH, Uday, et al. Transfer learning: Domain adaptation. Deep learning for NLP and speech recognition, 2019, 

495-535. 
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Numerous researchers have dedicated efforts to overcoming these obstacles, yielding notable 

results, yet challenges persist.  

Challenge 1: Real-world images present diverse variations such as lighting conditions, occlusions, 

noise, camera distortions, and background clutter, making the detection of small objects against 

complex backgrounds particularly demanding.  

Challenge 2: Techniques employing image pyramids45 facilitate the effective detection of objects 

of varying sizes. Despite recent strides, accurately detecting small objects remains a challenge in 

object detection.  

Challenge 3: Other factors impacting detection quality include training strategies, backbone 

model selection, improving loss functions, and addressing imbalances between positive and 

negative samples. While numerous architectures have been proposed to tackle these challenges, 

achieving real-time performance comparable to human capability remains elusive. Extensive 

research efforts46,47,48,49 have been directed toward mitigating these challenges across various 

application domains in object detection. 

Challenge 4: Intra-class variation between the instances of the same object is relatively common 

in nature. This variation could be due to numerous reasons like occlusion, illumination, pose, 

viewpoint, etc. These unconstrained external factors can have a dramatic effect on the object's 

appearance50. It is expected that the objects could have non-rigid deformation or be rotated, 

scaled, or blurry. Some objects could have inconspicuous surroundings, making the extraction 

difficult. 

Challenge 5: The sheer number of object classes available to classify makes it a challenging 

problem to solve. It also requires more high-quality annotated data, which is hard to come by. 

Using fewer examples to train a detector is an open research question. 

                                                     
45 MEER, Peter. Stochastic image pyramids. Computer Vision, Graphics, and Image Processing, 1989, 45.3: 269-294. 
46 Tamilselvi M, Karthikeyan S (2022, Elsevier) An ingenious face recognition system based on HRPSM_CNN under 

unrestrained environmental condition. Alexandria Eng J 61(6):4307–4321. 
47 Naiemi F, Ghods V, Khalesi H (2021, Elsevier Ltd) A novel pipeline framework for multi oriented scene text image 

detection and recognition. Expert Syst Appl 170(2020):114549. 
48 Ma C, Sun L, Zhong Z, Huo Q (2021) ReLaText: exploiting visual relationships for arbitrary-shaped scene text 

detection with graph convolutional networks. Pattern Recogn 111:107684. 
49 Lu X, Ji J, Xing Z, Miao Q (2021) Attention and feature fusion SSD for remote sensing object detection. IEEE Trans 

Instrum Meas 70 
50 L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, M. Pietikäinen, Deep learning for generic object detection: 

a survey, Version: 1, arXiv:1809 .02165, 2018. 
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Challenge 6: Present-day models need high computation resources to generate accurate 

detection results. With mobile and edge devices becoming commonplace, efficient object 

detectors are crucial for further development in the field of computer vision. 

 

2.1.1.6 Speech Recognition 

The integration of advanced speech recognition technologies in airport security frameworks has 

significantly enhanced the efficiency and effectiveness of threat detection and access control 

systems. This detailed review presents a comprehensive analysis of the current technical and 

technological state of speech recognition applications within airport security, supported by recent 

scholarly contributions. 

Speech recognition technologies are employed in critical airport operations, including biometric 

voice authentication for access controls and real-time monitoring of communications in air traffic 

control. Cornacchia et al.51 explored the application of voice biometrics in secure area access 

management, highlighting the technical process where voice samples are analysed using spectral 

feature extraction techniques to match live or recorded utterances against a database of known 

voice prints, thus securing access to sensitive areas. Addressing vulnerabilities within automatic 

speech recognition (ASR) systems is crucial due to the sensitive nature of their application. Chen 

et al.52 delved into the modular security measures necessary to fortify ASR systems against 

adversarial attacks, including the use of noise-injection and signal distortion techniques that 

enhance system robustness by reducing the efficacy of mimicry and spoofing attacks. Abdullah et 

al.53 further analysed the attack vectors specific to ASR systems, discussing the deployment of 

cryptographic voice encapsulation to safeguard data transmission between users and security 

systems. 

Technological advancements focus on enhancing the security layers within voice-driven systems. 

Zhang et al.54 introduced a method for embedding cryptographic hashes in transient speech 

tokens, which prevents the unauthorized reuse of captured speech, ensuring that voice 

commands cannot be replayed to gain illicit access. Continuous voice authentication systems, as 

                                                     
51 Cornacchia, M., Papa, F., & Sapio, B. (2020). User acceptance of voice biometrics in managing the physical access 
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Overview of Attacks against Automatic Speech Recognition and Speaker Identification Systems. arXiv preprint 
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driven Services. arXiv preprint arXiv:2101.04773v1. 



23 

 

 

 

explored by Zhang and Yang55, implement real-time voice pattern analysis using dynamic time 

warping and machine learning algorithms to detect anomalies in speech that may indicate a 

security breach. Looking forward, the enhancement of speech recognition accuracy in noisy 

environments remains a critical research area. Fan et al.56 investigated the application of 

convolutional neural networks (CNNs) for real-time language identification, which adapts speech 

recognition algorithms based on the detected language to improve accuracy in the linguistically 

diverse environment of international airports. Additionally, ongoing research by Li et al.57 into 

securing voice assistant applications emphasizes the development of decentralized ASR systems 

that utilize blockchain technology to ensure data integrity and prevent unauthorized access. 

 

2.1.1.7 Anomaly Detection 

AI techniques, such as machine learning and deep learning, are employed to detect anomalies in 

the fused data. These methods can identify hidden, complex, or context-dependent patterns 

indicative of potential threats58,59. Once anomalies are detected, they are mapped to specific 

threats using AI models. The system can then coordinate timely responses, including alerts, 

lockdowns, and dispatching emergency services60,61. Machine learning (ML) techniques are widely 

used for anomaly detection due to their ability to learn from data and improve over time. 

Common ML methods include clustering, classification, and regression62,63. 

● Clustering: Techniques like k-means and density-based spatial clustering of applications 

with noise (DBSCAN) are used to identify outliers in data by grouping similar data points 

and detecting those that do not fit into any cluster. 
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● Classification: Supervised learning algorithms such as support vector machines (SVM) and 

random forests classify data points into normal and anomalous categories. 

● Regression: Algorithms like linear regression and decision trees predict values and detect 

deviations from expected patterns. 

Deep learning, a subset of machine learning, involves neural networks with multiple layers that 

can model complex data patterns. Techniques such as autoencoders, convolutional neural 

networks (CNNs), and recurrent neural networks (RNNs) are particularly effective in anomaly 

detection64,65. 

● Autoencoders: Used for unsupervised anomaly detection by learning a compressed 

representation of normal data and identifying anomalies based on reconstruction errors. 

● CNNs: Effective in detecting spatial anomalies, particularly in image and video data. 

● RNNs: Suitable for detecting temporal anomalies in time-series data due to their ability to 

capture sequential dependencies. 

 

2.1.2 Multi-Modal Sensing Technologies 

2.1.2.1 Acoustic Sensors 

Acoustic sensors detect sound waves and are used in various security applications, including 

gunshot detection, intrusion detection, and environmental monitoring. Advanced signal 

processing algorithms analyse acoustic data to identify specific sounds and their sources66,67. 

2.1.2.1.1 Acoustic Data Analysis  

Acoustic data analysis involves extracting meaningful information from sound waves, which can 

be crucial in various fields such as product design, environmental monitoring, and speech 

recognition.  

Sound level: Sound level, often measured in decibels (dB), quantifies the intensity or loudness of 

a sound. It provides insight into how much energy a sound wave carries. The A-weighted decibel 
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scale (dBA) is commonly used to account for human perception of sound. It emphasizes 

frequencies relevant to human hearing. 

Spectrum: The frequency spectrum represents the distribution of energy across different 

frequencies in a sound signal. Fast Fourier Transform (FFT) is a common technique used to convert 

a time-domain signal into its frequency-domain representation. The resulting spectrum shows the 

contribution of each frequency component. 

 

Figure 4. Comparison of the spectra between a background noise measurement (in red) and a coffee machine in operation (in 
yellow). The coffee machine emits sharp tones below 800 Hz (as seen from the sharp peaksm, e.g. at 100 Hz). From 800 Hz onwards, 
the coffee machine also exhibits broadband noise that is consistently approximately 20dB higher level than background noise. 
Analysis made using the Sorama Portal. 

Spectrogram: A spectrogram is a visual representation of how the frequency content of a signal 

changes over time. It displays the spectrum of short segments of a signal (usually overlapping) as 

a function of time. In a spectrogram, time is on the horizontal axis, frequency on the vertical axis, 

and colour intensity represents the energy at each frequency. 
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Figure 5. Example of a spectrogram demonstrating a steady tone at 10 kHz (indicated by the horizontal line at 10 kHz) that persists 
throughout the 3 seconds, and also five impulses (indicated by the vertical features that begins from 1 second). The colorbar at the 
bottom displays the sound level strength. Notably, the energy of the impulse decays slower in the low frequencies as it stays red 
for longer compared to the higher frequencies’ components. Analysis made using the Sorama Portal. 

Far Field Beamforming: Beamforming is a technique used to enhance the directivity of 

microphones or loudspeakers. In the far field, where the distance from the sound source is 

significant compared to the wavelength, beamforming aims to focus on a specific direction. 

Algorithms like Delay-and-Sum Beamforming adjust the phase and amplitude of microphone 

signals to create a “beam” pointing toward the desired source. 

 

Figure 6. A beamformed acoustic power map overlaid on top of a visual camera demonstrates that there is a sound coming from 
the corner of the room. This shows that the sound isolation is poor in the corner, causing sound of adjacent room to leak through 
that spot. Analysis made using the Sorama Portal with recording made by  the Sorama CAM iV64 acoustic camera. 
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Near field holography reconstructs the sound field close to a source (near field) using 

measurements taken on a surface (such as a microphone array). It’s particularly useful for 

analysing sound radiation from complex structures (e.g., car engines, musical instruments). By 

solving the inverse problem, near field holography provides insights into the spatial distribution 

of sound sources. 

 

Figure 7. Holography image which reveals the sound field caused by pressure fluctuation at the blade-pass frequency of the table 
fan. Analysis made using the Sorama Portal. 

2.1.2.1.2 Acoustic Surveillance  

Acoustic surveillance involves the use of auditory sensory information to monitor and detect 

specific events or activities. By analysing sound waves captured through acoustic sensors, this 

technology plays a crucial role in various domains, including environmental noise monitoring and 

public safety. 

2.1.2.1.2.1 Detecting Noise Disturbances 

Numerous products, from cars to industrial machinery, must comply with specific noise level 

standards. Traditional decibel meters can measure overall noise levels but fail to pinpoint the 

exact cause of noise disturbances. Current state of the art relies on the use of acoustic cameras, 

such as those from Sorama. They combine microphone arrays with intelligent software, including 

Artificial Intelligence (AI) algorithms, to localize and identify sound sources, providing insights to 

law enforcement authorities and relevant agencies for further actions. For instance, in a lively 

nightlife area like Stratumseind in Eindhoven, Sorama’s acoustic cameras could visualize noise 

levels in each pub, helping authorities manage potential conflicts68. 
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2.1.2.1.2.2 Aggression Detection 

Imagine a bustling city street or a crowded bar. Acoustic cameras, such as the Sorama L642, can 

distinguish between various sounds, including quiet conversations and arguments. When an 

argument occurs, the camera links the aggressive sound to specific coordinates. Law enforcement 

can then respond promptly without recording the actual sound, ensuring privacy69. 

 

2.1.2.2 Visual Sensors 

Visual sensors, such as CCTV cameras, provide critical visual data for surveillance. Recent 

advancements include high-resolution imaging, night vision, and thermal imaging, enhancing the 

capability to monitor and analyse activities in various lighting conditions70,71. 

2.1.2.2.1 CCTV Systems 

Smartening old CCTV systems involves integrating advanced technologies into existing security 

frameworks to enhance their capabilities, efficiency, and usability. This process often includes 

upgrading hardware components, incorporating AI and machine learning algorithms, and 

improving connectivity features to enable real-time monitoring, analysis, and data management.  

The current state of the art in enhancing traditional CCTV systems from a hardware perspective 

involves various advancements. Researchers have proposed modifications to deep learning 

architectures like YOLO to process multiple input sources simultaneously, significantly increasing 

efficiency and practical frame rates72. Additionally, there is a shift towards smart cameras that 

can process information locally, reducing the reliance on cloud infrastructure for real-time threat 

detection73. Smart surveillance systems now incorporate features like background image 

extraction, object image analysis, and region of interest extraction to enhance monitoring 

capabilities74. Furthermore, the integration of smart devices with CCTV systems enables wireless 

communication for video transmission and remote management, improving overall system 
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functionality and maintenance75. These advancements collectively aim to improve the 

performance, efficiency, and intelligence of traditional CCTV systems through innovative 

hardware enhancements. 

Traditional CCTV systems primarily offer real-time video surveillance and recorded footage for 

later review. However, these systems often lack the ability to analyse video content in real time, 

respond to dynamic situations, or integrate seamlessly with other security technologies. 

Smartening these systems involves integrating advanced hardware and software that introduce 

intelligence and connectivity into the mix. 

The key components of smartening old CCTV systems encompass a series of strategic upgrades 

aimed at enhancing the functionality and efficiency of existing surveillance infrastructure. The 

process begins with hardware upgrades, which involve not just the addition of higher-resolution 

cameras for improved image quality but also the integration of sensors capable of motion 

detection. Moreover, these upgrades include implementing network capabilities that enable 

remote access and control, a crucial feature for modern surveillance needs. Some hardware 

enhancements may extend to installing edge computing devices at the camera site, which allows 

for local data processing and reduces the dependency on central servers, thereby minimizing 

latency and bandwidth usage. 

Software enhancements form another critical pillar in the smartening process. The deployment 

of new software capabilities, such as AI algorithms for facial recognition, object detection, and 

behaviour analysis, significantly boosts the surveillance system's ability to identify and respond to 

security incidents intelligently. Furthermore, these software upgrades often include advanced 

data encryption methods, ensuring the secure transmission and storage of surveillance footage, 

addressing potential cybersecurity vulnerabilities. 

Connectivity and integration represent the third cornerstone of upgrading old CCTV systems. By 

interfacing with modern technologies like the Internet of Things (IoT) devices, cloud computing 

platforms, and mobile applications, old CCTV systems are transformed into sophisticated, 

integrated security networks. This level of integration not only enables smarter alert systems and 

remote monitoring capabilities but also enhances the ability to perform comprehensive data 

analysis, leveraging the full potential of the collected surveillance data. 

The objectives behind these upgrades are clear and multifaceted. The primary goal is to shift from 

passive surveillance setups to proactive security solutions that can accurately identify and alert 

on security breaches, unusual behaviours, and specific individuals of interest without the need 

for constant human oversight. This shift promises not only enhanced surveillance accuracy but 

also significant improvements in operational efficiency by automating surveillance processes, 
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thereby reducing the workload on security personnel and minimising the risk of human error. 

Furthermore, the adoption of advanced data analytics and cloud storage solutions facilitates more 

effective data management, allowing for the efficient handling and analysis of the vast amounts 

of data generated by these systems. Finally, modernising old CCTV systems with scalable 

technologies paves the way for future expansions and ensures adaptability to evolving security 

challenges, offering a path towards sustainable and flexible security infrastructure. 

However, the journey towards smarter CCTV systems is not without its challenges. The cost of 

upgrading existing systems can be prohibitive, especially for large installations or those requiring 

extensive hardware modifications. Compatibility issues may arise, demanding technical expertise 

to ensure that new components integrate seamlessly with the old system without compromising 

its functionality. Moreover, as surveillance capabilities expand, especially with the integration of 

features like facial recognition and behaviour tracking, privacy concerns and ethical 

considerations come to the forefront, necessitating a careful and thoughtful approach to 

implementation. 

In conclusion, the initiative to smarten old CCTV systems is more than a mere upgrade; it 

represents a comprehensive effort to leverage cutting-edge technology to create more intelligent, 

responsive, and integrated surveillance solutions. Achieving this requires a balanced approach 

that not only focuses on technical upgrades but also considers important considerations such as 

privacy, cost, and scalability. As technology continues to advance, staying informed and adaptable 

will be crucial for maximising the benefits of these smarter CCTV systems, ensuring they can meet 

the evolving demands of security and surveillance in the modern world. 

2.1.2.2.2 New Technologies to be Adapted to CCTV Systems  

2.1.2.2.2.1 Artificial Intelligence (AI) and Machine Learning (ML) 

Artificial Intelligence (AI) and Machine Learning (ML) are revolutionising the way CCTV systems 

operate, turning traditional surveillance into intelligent monitoring solutions. These technologies 

enable systems to learn from the data they collect, making them smarter over time. 

Applications: 

● Facial Recognition: AI algorithms can identify and verify individuals in real-time, enhancing 

security measures and enabling personalised services.  

● Anomaly Detection: ML models are trained to recognize normal behaviour patterns and 

alert operators to anomalies or suspicious activities, significantly reducing false positives. 

● Behaviour Analysis: Analysing crowd dynamics, traffic flows, and individual behaviours to 

improve public safety, retail experiences, and workplace security. 
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Challenges: Implementing AI and ML requires significant processing power and data, raising 

concerns about privacy and data protection. Ensuring the accuracy and fairness of these systems, 

particularly in facial recognition, is also a major focus. 

2.1.2.2.2.2 Edge Computing 

Edge computing involves processing data near the source of data generation (i.e., the CCTV 

cameras themselves) rather than relying on a central data centre. This approach reduces latency 

and bandwidth requirements, enabling faster decision-making and action. 

Applications: 

● Real-Time Monitoring: Immediate processing on the edge allows for real-time security 

monitoring and quick response to incidents without the delay of sending data to a remote 

server. 

● Data Optimization: By analysing and filtering data locally, only relevant information is sent 

to the cloud or central servers, optimizing storage and bandwidth usage. 

Challenges: Edge computing demands more sophisticated hardware and software at the camera 

level, potentially increasing the cost and complexity of CCTV systems. 

2.1.2.2.2.3 Cloud Storage and Computing 

Cloud technologies provide scalable storage solutions and powerful computing capabilities for 

advanced analytics, remote access, and data sharing. 

Applications: 

● Scalable Storage: Cloud platforms offer flexible storage options, accommodating the vast 

amounts of data generated by high-definition and 24/7 surveillance cameras. 

● Advanced Analytics: Leveraging cloud computing for advanced analytics allows for 

sophisticated data analysis, such as trend analysis and predictive modelling, to improve 

security and operational efficiency. 

● Remote Access and Control: Cloud-enabled CCTV systems can be accessed and managed 

remotely, providing flexibility and ease of use for operators and security personnel. 

Challenges: Cloud solutions depend on reliable internet connectivity and raise concerns about 

data security and privacy. The ongoing costs of cloud services also need to be considered. 

2.1.2.2.2.4 4k and Higher Resolution Cameras 

The adoption of 4K and higher resolution cameras significantly improves image quality, which is 

critical for identification purposes and detailed analysis. 

Applications: 
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● Enhanced Clarity: Higher resolution cameras capture more detail, making it easier to 

identify individuals, read license plates, and observe suspicious activities. 

● Digital Zoom: Improved resolution allows for better quality when zooming in on recorded 

footage, maintaining clarity where lower-resolution cameras would blur. 

Challenges: High-resolution video generates large amounts of data, requiring more storage 

capacity and bandwidth. This can also increase the strain on processing hardware for analytics. 

2.1.2.2.2.5 IoT Connectivity 

The Internet of Things (IoT) connectivity enables CCTV systems to integrate and communicate 

with other devices and systems, creating a more interconnected and intelligent security 

ecosystem. 

Applications: 

● System Integration: CCTV systems can be integrated with alarm systems, access controls, 

and other security measures for comprehensive security management. 

● Smart Alerts: IoT connectivity allows for smart alerts and actions, such as automatically 

locking doors or turning on lights in response to detected movements or identified threats. 

Challenges: IoT connectivity introduces complexity in system integration and management. 

Security vulnerabilities in interconnected devices can also pose new risks. 

2.1.2.2.3 CCTV Systems Challenges and Considerations 

The process of upgrading old CCTV systems to incorporate modern, smart technologies comes 

with a set of challenges and considerations that can significantly impact the feasibility, 

implementation, and effectiveness of such initiatives. Understanding these hurdles is crucial for 

any organisation looking to enhance its surveillance capabilities. 

Challenge 1: Cost 

The financial aspect of upgrading CCTV systems is one of the most significant barriers. High-

resolution cameras, advanced processing units for edge computing, and sophisticated software 

for data analysis and artificial intelligence (AI) functionalities can entail considerable expenses. 

This is particularly true for large installations or systems that require extensive modifications to 

accommodate new hardware and software. Organisations must carefully assess the cost versus 
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benefit of such upgrades, considering not only the initial outlay but also the ongoing operational 

costs, such as cloud storage fees and maintenance expenses76,77,78. 

Challenge 2: Compatibility 

Integrating new technologies with existing CCTV infrastructure poses technical challenges, 

especially when the old systems were not designed with future upgrades in mind. Ensuring 

compatibility between various components—such as cameras, storage solutions, and analytics 

software—requires a thorough technical evaluation and possibly the development of custom 

solutions. This can involve significant time and expertise to manage successfully. The risk is that 

incompatibilities can lead to system malfunctions, data losses, or security vulnerabilities, 

undermining the effectiveness of the surveillance system79,80. 

Challenge 3: Privacy and Ethics 

As CCTV systems become smarter, incorporating capabilities like facial recognition and 

behavioural analysis, they raise significant privacy and ethical concerns. The ability of these 

systems to identify individuals and track their movements can be perceived as invasive, leading 

to public backlash and legal challenges. Organizations must navigate a complex landscape of 

regulations and ethical considerations, ensuring that their use of advanced surveillance 

technologies respects individual privacy rights and complies with data protection laws. This 

involves implementing strict data management policies, securing informed consent when 

necessary, and maintaining transparency about how surveillance data is collected, used, and 

stored81,82. 

Challenge 4: Cybersecurity 

The increased connectivity and complexity of smart CCTV systems also make them more 

vulnerable to cyberattacks. As these systems often handle sensitive data and are integral to 
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security operations, breaches can have serious consequences. Protecting against such threats 

requires robust cybersecurity measures, including secure data encryption, regular software 

updates, and vigilant monitoring for potential vulnerabilities. Organizations must be proactive in 

their cybersecurity efforts, recognizing that the smartening of CCTV systems introduces new 

attack vectors that must be defended against83,84. 

Challenge 5: Technical Expertise 

Successfully upgrading and managing smart CCTV systems demand a higher level of technical 

expertise than traditional surveillance setups. From the initial installation and integration of new 

technologies to the ongoing management and troubleshooting of advanced analytical software, 

organizations need access to skilled professionals. This may necessitate training existing staff, 

hiring new experts, or contracting with specialized service providers, adding to the overall cost 

and complexity of the project85,86,87,88. 

Challenge 6: Scalability and Future-Proofing 

Finally, ensuring that upgraded CCTV systems are scalable and adaptable to future technological 

advancements is crucial. Surveillance needs and technologies evolve rapidly, and systems that are 

not designed with flexibility in mind can quickly become obsolete. This requires careful planning 

and the selection of modular, upgradable components that can accommodate new features and 

capabilities as they become available89,90,91. 
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Figure 8. Hardware architectures of smart CCTV systems 

 

2.1.2.2.4 Visual-Thermal Imaging 

A visible image sensor captures incident light in the visible spectrum (wavelength between 380nm 

and 700nm) and converts it into electrical signals which in turn can be used to create images and 

videos. In good lighting conditions, the signal to noise ratio (SNR) of the signals generated by the 

sensor are high, leading to high quality images. However, the SNR drops significantly with 

decreasing light intensity, which ultimately leads to poor quality images. This problem becomes 

particularly prominent in real world surveillance scenarios, where monitoring becomes 

challenging in dark areas due to the loss of relevant information in the images or videos (see the 

following figure-left). This is undesirable, especially in high security premises. To address this 

problem, different methods have been proposed such as filtering with morphological operators, 

histogram-based equalization or altering brightness and contrast levels92. These methods are 

mostly focused on removal of noise and adjusting the dynamic range of the images. These 

methods can be effective up to a certain limit, beyond which the traditional image processing 

methods become ineffective and unreliable. This is where far infrared (FIR) sensors come into 

play.  

Thermal cameras capture the energy in the FIR spectrum (wavelength between 15µm and 1mm) 

and converts it into a visible light display. Its behaviour is based on the fact that all objects above 

absolute zero emit thermal infrared energy due to the temperature and the emissivity of the 

object, and due to radiation, that is reflected on the object. Although thermal camera images can 

see all objects regardless of the ambient light, their image has different properties than what we 
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are used to in the visible spectrum with RGB images, in the sense that they lack information about 

texture and colour (see the following figure-centre). 

The use of FIR or thermal cameras is a common practice for surveillance in locations that require 

high security. RGB-thermal imaging fusion aims at combining the available colour and texture 

information from the visible spectrum, and the relevant information from the thermal spectrum, 

to create a more complete scene (see the following figure-right). 

 

Figure 9. An example of visual and thermal imaging fusion in low light conditions, with (left) visual input, (centre) thermal input 
and (right) a resulting fused visual-thermal image 

Multi-modal image fusion includes, but is not limited to, medical scans (i.e. MRI, CT or PET), near 

infrared (NIR) and visible, and FIR/thermal and visible image fusion. To solve the problem of fusing 

images from the visible and thermal domain, different methods have been proposed. These 

methods are considered SOTA on a plethora of applications. However, the performance of these 

methods is limited for surveillance, as they are not optimized for this specific application. The 

resulting images of these methods contain artefacts, are noisy, low in contrast and lack sharpness 

and textures, which are critical features in low-light surveillance applications.  

The existing multi-modal image fusion methods are built on a variety of neural network 

architecture principles. The networks consist of convolutional neural networks (CNN), 

autoencoders, generative adversarial networks (GAN), and vision transformers, or an ensemble 

of these methods. 

● CNN-based methods 

As the name suggests, CNN-based fusion methods utilize CNN, where the input consists of a 

concatenated array of multiple images. CNN performs a pixel-level fusion between the two input 

images93. There are a multitude of methods performing CNN based image fusion from which we 

will mention those that have better performance. The fusionDN method94 uses a linear DenseNet, 

                                                     
93 S. Kalamkar et al. Multimodal image fusion: A systematic review. Decision Analytics Journal, p. 100327, 2023. 
94 H. Xu, J. Ma, Z. Le, J. Jiang, and X. Guo. Fusiondn: A unified densely connected network for image fusion. 

Proceedings of the AAAI Conference on Artificial Intelligence, 34(07):12484–12491, Apr. 2020. doi: 
10.1609/aaai.v34i07.6936 



37 

 

 

 

which is a CNN with skip-connections. The same authors proposed a continuation of this method 

called U2Fusion95. The architecture is largely the same with some minor improvements. The first 

improvement is a changed loss function to induce similar lighting intensity compared to the input 

image. The second change includes training the model for inference on medical data. The core of 

the FusionDN and U2Fusion network is the use of a pretrained VGG-16 network to calculate 

information-based weights in training for use in a weighted loss function. The MetaFusion 

method96 focuses on a combined fusion and detection network. Through meta-feature 

embedding, this model produces a fusion output with detection masks. This research is of interest 

when involving downstream tasks such as object detection. 

● GAN-based methods 

GAN-based methods consist of a generator to create a fused output and one or more 

discriminators. These discriminators learn the differences between the input thermal and the 

fused output, or the visible input image and the fused output of the generator, to create a 

feedback loop which trains the generator. This method has the drawback of focusing its 

discriminators on comparing the output back to the inputs, which are not ideal representations 

for this work. An example of a model employing the GAN-based fusion strategy is the work done 

by Ma et al.97. 

● Autocenter based methods 

Autoencoder based models include an encoder and decoder part of the network where the 

encoder learns the feature embedding of the different input modalities and the decoder 

translates the fused features to a fused output. The LadleNet method98 uses a cascaded U-net 

structure where the first U-net, “the handle”, transfers thermal images into visible images 

(through style-transferring). The U-net being an autoencoder with bridged connections between 

the encoder and decoder99. This “handle” style-transferred output can then be used to map the 
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transferred thermal images to the visible images for alignment, or for fusion itself. CDDFuse100 is 

one of the SOTA autoencoder methods. It concerns an attention-based model with promising 

quantitative and qualitative results. DIVFusion101 is an autoencoder-based method similar to 

CDDFuse. From the interpretation of the quantitative results on the DIVFusion model, it appears 

to perform as one of the SOTA methods. In the qualitative assessment, the SOTA performance is 

challenged, with the DIVFusion method boosting the luminance, inducing an unrealistic bright 

output image where contrast is sacrificed. The DATFuse model102 employs a dual attention 

transformer to focus on thermal and visible image fusion in multiple heavy weather conditions. 

The work of Tang et al. claims real-time inference performance running on a NVIDIA GeForce RTX 

3090 GPU. However, the paper does not include performance regarding low-light scenes and, 

thus, a further inquiry on its performance on this category of data needs to be performed. 

Swinfusion103 operates using the principles of SwinIR104 transformer blocks. The SwinIR feature 

extraction method has good performance according to the work of Li et al.105. In the fusion 

method proposed by Ma et al.106, the architecture of its attention block is unchanged from the 

original work by Vaswani et al.107. The novelty is in the application of cutting up the input image 

into 6 windows and shifting these windows in between attention blocks. This alteration forces the 

model to learn attention relations within the image, from multiple perspectives. The downside of 

this method is the computational disadvantage in SwinIR and therefore SwinFusion. Additionally, 

the need for fixed square patches in inference is deemed inefficient. ReCoNet’s model108 is 
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optimized for speed rather than performance. A point of interest in this method is its use of the 

parallax problem109 of multi-modal cameras for depth estimation. 

2.1.2.2.4.1 Feature extraction via vision transformers 

The feature extraction is an intricate part of the autoencoder based fusion models. Due to their 

method of fusing features rather than pixels. Inspired from the denoising challenge of NTIRE 

2023110, several leading methodologies have been proposed, using vision transformers to extract 

features while simultaneously learning to suppress unwanted patterns such as noise or artifacts. 

The results of showcase the power of novel transformers architectured like SwinIR, NAFNet, and 

Restormer as the SOTA. Each of these methods employs an improved performance alternative to 

the traditional transformer block architecture111, which becomes computationally expensive with 

increased image resolution. The SwinIR112, NAFNet113, and Restormer114 blocks exhibit improved 

image-removal capability while suppressing noise and artifacts. The Restormer method is used in 

fusion models such as CDDFuse. More recently, the new SOTA of the work by Gao et al.115 has 

been published, which combines the functionalities of the previous SOTA.  

Further exploration of the literature on these SOTA transformer methods uncovers some 

additional advancements showing incremental improvements. The first improvement relates to 

patch size during training. Attention based models trained on patches optimize the fusion to the 

patch dimension. During inference time, the full image that is put through the model is often 

much larger than the patch dimensions. This difference in training and inference creates a drop-

in performance. To improve on this, there are multiple possible solutions. Training a model on 

patches of images requires less computational power, making it more efficient and advantageous. 
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One workaround used by many models in the NTIRE 2023 challenge116, involves the use of 

incrementally increasing patch sizes during their training, starting at a size of 128x128 and moving 

up to 512x512. A second method proposed in117 as Test-time Local Converter (TLC), brings the 

size of the training and inference data closer together. This method proposes cutting up 

inference-time images to the same size as the training patch size to extract the performance in 

the model. It should be considered that, it is more effective when training with a patch size of 

256X256 or higher. 

2.1.2.2.4.2 Challenges of visual and thermal imaging 

There are several challenges in the fusion of visual and thermal imaging for low-light surveillance 

applications. 

Challenge 1: 

Spatial and temporal alignment between visual and thermal sensors represent a challenge in low-

light conditions, where the lack of details in the visual images makes it difficult to find matching 

features in the two modalities. For the temporal alignment, the difficulty also lies in the different 

frame rate of the two sensors together with the possibility of frame drops in either sensor. There 

is lack of work in the literature related to self- or semi-supervised thermal and visible image 

alignment methods, so existing methods rely on finding matching features in the two modalities 

or using bounding box coordinates, which have been previously annotated by another method. 

In either way, some manual annotation is needed to, for example, dispose of misaligned pairs or 

delete duplicate bounding boxes in one of the modalities. 

Challenge 2: 

The fused image with existing methods still presents artefacts, noise, lack of contrast, sharpness 

and textures/details. Additionally, fusion methods need to learn to not introduce unneeded 

information from one of the modalities that would hamper the information you get from the 

other modality. 

Challenge 3: 

Deployment of the models for edge fusion. Current methods are based on large scale models that 

contains millions of parameters and are not optimized to be used at the edge. 
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2.1.2.2.5 Video-Based Anomaly Detection 

In the domain of video surveillance, anomaly detection has been subject to a progressive 

evolution. Initially, attempts have been made to devise expert systems characterized by complex 

sets of rules, aiming at emulating the intricacies of behavioural dynamics. However, the 

implementation and scalability of such systems are impeded by the inherent complexity and 

variability of people behaviour, often necessitating a disproportional number of exceptions to 

accommodate diverse scenarios. Recent advancements in computer vision are bolstered by the 

proliferation of sensor data from surveillance monitoring infrastructure, which allow for a 

paradigm shift in anomaly detection methodologies. These modern approaches leverage the 

computational capabilities of neural networks to analyse data streams obtained from surveillance 

cameras. While exhibiting promising performance on standardized benchmarks, these 

methodologies have concurrently shown critical aspects such as privacy preservation, algorithmic 

biases, and false-positive mitigation. In recent years, the approaches proposed to the task of 

anomaly detection in traffic can be split in three main groups: unsupervised, weakly-supervised 

and fully-supervised. 

2.1.2.2.5.1 Video Feature Extraction 

The first step to many video understanding tasks, such as action recognition and anomaly 

detection, is extracting features from given videos. Over the past two decades, convolutional 

neural network (CNN) based architectures (such as 2D-CNN methods118,119,120, C3D121, I3D122, 

SlowFast123, VGG124, ResNet125, and DenseNet126) have been extensively studied to understand 

spatio-temporal representation. In recent years, Vision Transformer (ViT) and its variants, 
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including TimeSformer127, ViViT128, MViT129, MViTv2130, and Video Swin Transformer131 have 

achieved outstanding performance in video action recognition. Moreover, large language model-

based solutions like InternVideo2132 are gaining importance due to high potential. 

2.1.2.2.5.2 Supervised Anomaly Detection 

The methods belonging to the supervised paradigm are trained with frame-level annotated 

videos. Classical works in this field involved algorithms, such as Support Vector Machine 

(SVM)133,134, that focus on distinguishing anomalous trajectories from normal ones in n-

dimensional spaces. In later works, neural networks trained with direct supervision135,136 proved 

capable of handling a more diverse set of anomalous actions. Semi-supervised and self-supervised 

methods have shown some promise as well137,138,139. However, these methods have two main 

drawbacks: they require large amounts of annotated data to obtain efficient models, and the fact 

that they are constrained by the classes of anomalies on which they are trained, preventing them 
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from generalizing to unseen anomalies. The latter is a crucial point: anomalous actions are 

unpredictable, meaning that any dataset collected will not contain all the anomalies that can 

happen in real-world scenarios. Furthermore, neural networks are inherently not explainable 109, 

110, 111, 140, which heavily hinders the real-world applications in which they can be safely deployed. 

2.1.2.2.5.3 Weakly-Supervised Anomaly 

One of the most popular approaches to anomaly detection problems is weakly-supervised 

anomaly detection. In this approach, train-set annotations only include a class label. In contrast, 

test-set annotations contain a video class label, the number of frames, and the starting and ending 

frame positions of an abnormal event in a video. Recently, a lot of studies such as141,142 are 

conducted on weakly-supervised approach by employing the multi-instance learning (MIL). 

Recent works have shown that the transformer architecture generally outperforms previous 

designs in this context, likely due to their temporal and spatial inductive biases143,144. A weakly 

supervised solution brings a major advantage over fully supervised anomaly detection methods 

due to faster annotation than labelling in each frame. A disadvantage of weakly-supervised 

anomaly detection is that it only learns to recognize anomalies that occurred in the training set. 

Also, background pixels could influence the final prediction in unexpected ways, even if the 

anomalous action is contained in the training dataset but in a different scenario. 

2.1.2.2.5.4 Unsupervised Anomaly Detection  

The main idea behind unsupervised methods is to model the distribution of regular data and solve 
the anomaly detection task by detecting data points that fall outside the learned model. In the 
context of anomaly detection in traffic, unsupervised methods model how different types of 
agents normally behave in a given context, such as vehicles or pedestrians in an intersection, and 
detect an agent deviating from this model as anomalous. Often, these methods rely on a 
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clustering algorithm in high-dimensional spaces145,146,147. Deep learning-based approaches were 
developed to leverage the capabilities of neural networks, with encouraging results on a large set 
of publicly available datasets148,149. More recently, Variational AutoEncoders (VAEs)150,151 proved 
to be effective in anomaly detection tasks152,153,154, leveraging the capabilities of such models to 
learn latent representations of normal distributions even in complex contexts such as traffic 
analysis155,156,157. A similar line of research focuses on frame reconstruction within videos, where 
anomalies are detected based on discrepancies between generated and original frames158,159,160. 
In general, unsupervised methods are useful when the exact nature of the anomalies is unknown 
or uncertain. However, these methods may fail when considering subtle differences that result in 
a low image reconstruction error. In fact, an action can often be detected as anomalous only when 
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considering the context in which it is happening, making the anomaly detection task more 
difficult. 

 

2.1.2.3 Radar Sensors 

Radar sensors are utilized for their ability to detect objects and measure their speed, distance, 

and direction. They are effective in various environmental conditions and are often used in 

perimeter security and traffic monitoring161,162. 

2.1.2.3.1 MmWave Radar Technology 

Microwave (mmWave) radar sensors163 developed by Texas Instruments are powerful detection 

devices commonly used for detecting and tracking objects at long distances. Microwave radar 

sensors utilize high-frequency radio waves to detect objects in the surroundings using 

electromagnetic waves. These sensors typically operate in the frequency range of 57 GHz to 81 

GHz and have a wide range of applications. MmWave radar sensors are used in various fields such 

as autonomous vehicles, industrial automation, security systems, and medical imaging, providing 

high-resolution and accurate detection. 

MmWave radar sensors have various technical specifications including operating frequency, 

antenna structure, output power, detection range, resolution, and data processing capabilities. 

These features determine the sensor's performance and application areas. 

The IWR series is one of the leading models of mmWave radar sensors. Sensors in this series are 

available in different frequency ranges and technical specifications (maximum detection range, 

resolution, power consumption, etc.). In the literature, models and variants such as IWR1443, 

IWR1843, IWR1642, IWR6432, and IWR6843 can be found. Additionally, these sensors can be 

available in board form such as IWR1443BOOST, IWR1843BOOST, IWR6843ISK, and IWR6843ISK-

ODS, in addition to being sold as chips in the market164. Each model has different application areas 

and performance characteristics. 

MmWave radar sensor can provide 5D (x, y, z, velocity, intensity) point cloud data and 3D (range, 

doppler velocity and intensity) range-doppler data. The figures for two different types of data are 

provided in the following. 
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Figure 10. Point cloud data which can be detected from mmWave radar sensors and an example of usage of them with AI165 

 

Figure 11. Range-Doppler data in an article166 
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There are many ML and DL studies where mmWave radar sensors are used. 

● MARS: mmWave-based Assistive Rehabilitation System for Smart Healthcare (*2021) 

In this study, a new approach is developed to enable patients with motor impairments to perform 

prescribed exercises at home and alleviate their transportation needs, expert shortages, and 

healthcare costs. A mmWave radar sensor was preferred based on criteria such as high cost, 

serious privacy concerns, and lighting for the detection of patients' 3D joint points. The aim is to 

obtain valuable visualization and feedback based on body movements by detecting human joint 

points. Therefore, a millimetre-wave (mmWave) based supportive rehabilitation system (MARS) 

is proposed for pose detection to identify motor impairments in patients. 

Ten typical exercise movements were performed against a mmWave radar sensor (IWR1443) and 

a Kinect-v2 sensor labelling radar data, and a dataset was created. Point cloud data containing 

features for each point (x, y, z, velocity, intensity) from the mmWave radar sensor were obtained, 

while point cloud data representing 19 basic joint points on the human body were obtained from 

the Kinect-v2 sensor, which labels the point cloud data using its built-in camera. A CNN-based 

deep learning approach was used to detect joint points in the human body. 

 

Figure 12. 3D and 2D Visualization of radar point cloud data which is used in this paper. (a), (b), (c), and (d) shows the 3D view, 
front view, side view and top view respectively.167 
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Figure 13. Data pre-processing and CNN stages of this paper168 

 

Figure 14. Respectively, radar point cloud data derived from mmWave radar sensor, predictions of the MARS model, label data 
derived from Kinect sensor169 
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● Improving Human Activity Recognition for Sparse Radar Point Clouds: A Graph Neural 

Network Model with Pre-Trained 3D Human-Joint Coordinates 

Similar to the study mentioned above, in this study170, the mmWave radar sensor (IWR1443) and 

the Kinect-v2 sensor were used to label radar point cloud data. Unlike this study, Doppler velocity 

and intensity features were not used in the radar point cloud data, only (x, y, z) features were 

used in the training process. Additionally, 25 human joint points were detected from the Kinect-

v2 sensor, and thus the dataset was created. 

 

Figure 15. Radar point cloud data as input and output of joint points from pre-trained CNN model171 
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This study involves a two-stage training process. In the first stage, a CNN model was trained with 

radar and Kinect data for the purpose of pose detection task. This model was used to detect 25 

human joint points from radar point cloud data. In the second stage, the obtained 25 joint points 

were classified based on the type of movement using a Graph Neural Network-based model. 

 

Figure 16. CNN and GNN architecture used in this paper172 

● Indoor Detection and Tracking of People Using mmWave Sensor 

This article173 proposes a new indoor human detection and tracking system using a millimetre-

wave (mmWave) radar sensor. Static Clutter Removal is performed on radar point cloud data 

obtained from the mmWave radar sensor (IWR1642) to remove stationary points. The remaining 

point cloud data is clustered using DBmeans or DBmedoids algorithms, and the locations of 

humans inside the indoor space are determined.   

                                                     
172 Lee, G.; Kim, J. Improving Human Activity Recognition for Sparse Radar Point Clouds: A Graph Neural Network 
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Figure 17. Workflow and Framework of the data process of this paper174 

● Activity Recognition Based on Millimetre-Wave Radar by Fusing Point Cloud and Range–

Doppler Information 

This paper175 proposes a multi-model deep learning approach that combines the features of 

both point cloud and Range-Doppler to classify six activities (boxing, jumping, squatting, 

walking, circling, and high-knee lifting) based on millimetre-wave radar. A CNN-LSTM model 

is used to extract time-series features from the point cloud, and a CNN model is utilized to 

obtain features from Range-Doppler. Then, they merge the two features and input the fused 

feature into the fully connected layer for classification. A dataset consisting of 17 volunteers 

is created. This study, which uses both point cloud and Range-Doppler data, also 

demonstrates higher accuracy compared to using each type of information separately. 
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Figure 18. Deep learning architecture which used in this article176 

 

2.1.2.4 Multispectral and LiDAR Sensors 

Multispectral sensors capture data across multiple wavelengths, enabling the analysis of material 

properties and conditions. LiDAR sensors provide high-resolution 3D mapping, crucial for terrain 

analysis and object detection177,178. 

2.1.2.5 Time-of-Flight (ToF) Sensors 

ToF sensors measure the time it takes for a light pulse to travel to an object and back, enabling 

accurate distance measurement and 3D imaging. They are widely used in robotics, gesture 

recognition, and industrial automation179,180. 
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2.1.2.6 Environmental Sensors 

Environmental sensors monitor parameters such as temperature, humidity, air quality, and 

radiation levels. They are essential for assessing environmental conditions and detecting 

hazardous substances181,182. 

 

2.1.2.7 Internet of Things (IoT) 

IoT can be considered as a paradigm where most physical devices such as smartphones, vehicles, 

sensors, actuators, and all other embedded devices connect, stay in communication and exchange 

information with data centres183. Typically, there exist three types of components in an IoT 

network: sensors/devices, IoT gateways/local network, and backhaul network/cloud.  

Sensors / Devices: The basis of IoT, sensors are structures that allow measuring various types of 

data in the network. For end users, devices serve as human-computer interfaces to generate 

users' requirements and communicate them to the IoT. All these sensors and end devices are 

interconnected so that they can exchange data with each other and provide additional services.  

IoT Gateways: IoT gateways collect measurement data from sensors/devices and transmit it to 

cloud servers. Although sensors/devices can set up a network to transmit the data they produce, 

data pre-processing is required before being transmitted to cloud servers. Generally speaking, IoT 

gateways often perform data pre-processing to reduce redundancy and unnecessary overhead. 

Also, IoT gateways will transmit the results of data processing back to end users from cloud 

servers.  

Cloud/Core Network: Through backhaul networks, cloud servers will receive data and 

requirements from end users. To support IoT applications, cloud servers have significant capacity 

for computing and storage. Thus, cloud servers can meet the resource requirements of different 

applications. When the data processing is complete, the cloud servers send the results back to 

the end users.   

Overall, IoT can benefit from both edge and cloud computing due to the characteristics of the two 

structures (i.e. high computing capacity and large storage). However, despite having more limited 

computing capacity and storage, edge computing has more advantages for IoT over cloud 

computing. In particular, IoT requires fast response rather than high computational capacity and 
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large storage. Edge computing offers acceptable computing capacity, sufficient storage and fast 

response time to meet IoT application requirements184. On the other hand, edge computing can 

also take advantage of IoT by extending the edge computing structure to deal with edge 

computing nodes that are distributed and dynamic. IoT devices or devices with residual 

computational power can be used as end nodes to provide services. Importantly, several research 

efforts have tried to leverage cloud computing to aid the IoT, but in many cases, edge computing 

can provide much more competitive performance. Due to the increasing number of IoT devices, 

IoT and edge computing are likely to become inseparable. Characteristic of the IoT, edge and 

cloud computing are given in the following table. 

Table 1. Comparison between characteristic of IoT, edge and cloud computing185 

Characteristic  IoT  Edge  Cloud  

Deployment  Distributed  Distributed  Centralized  

Components  Physical devices  Edge nodes  Virtual resources  

Computational  Limited  Limited  Unlimited  

Storage  Small  Limited  Unlimited  

Response Time  NA  Fast  Slow  

Big data  Source  Process  Process  

 

Layer architecture of the edge computing-based IoT is given in the figure below. 

 

Figure 19. Layer architecture of edge computing based IoT186 
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2.1.2.7.1 Communication Protocols 

The integration of software and hardware components from different brands and manufacturers 

can be very challenging and can cause problems when different brands of hardware have different 

communication protocols between the devices. To solve this problem multiple connection drivers 

can be implemented where devices can be connected, and we can use several communication 

protocols such as: HTTP, MQTT, Modbus/RTU, Modbus/TCP, OPC/UA, BACnet, TCP, UDP, and 

DALI187.  

Hypertext Transfer Protocol (HTTP), is a protocol that allows obtaining resources, is the basis of 

any data exchange on the Web, and a client-server protocol, which means that requests are 

initiated by the recipient, usually made through a web browser. Unlike a data stream, the client 

and server communicate through individual message exchanges. It is not the ideal protocol for 

IoT device integration because of its cost, huge power consumption, and weight issues, but it is 

still used because of the large amounts of data it can publish.  

Message Queuing Telemetry Transport (MQTT) is a lightweight IoT data protocol. It features a 

publisher-subscriber messaging model and allows simple data flow between different devices. 

The main advantage of MQTT is its architecture, its composition is basic and lightweight and can 

provide low power consumption for devices. It works on top of a TCP/IP protocol. IoT data 

protocols are designed to connect with unreliable communication networks. This has become a 

necessity in the IoT world due to the increasing number of objects appearing on the network in 

recent years. Despite the wide adaptation of MQTT, it does not support a defined data 

representation and device management framework mode.  

Modbus/RTU defines a way of interpreting data that is sent and received by a device, so it is a 

communication protocol. The communication model is of the master-slave type. Thus, a slave 

should not initiate any type of communication in the physical environment until it has been 

requested by the master. This communication allows the connection of several devices at the 

same time, one of which is the master, which coordinates the communication, and the rest are 

the slaves. It is very common when communicating with a PLC to use Modbus/RTU.  

Modbus/TCP is a simple and easy to implement protocol, it ends up being applied in most 

industrial equipment that uses some networked technology, it is an open protocol so it can be 

implemented freely in any equipment. To apply this protocol in architecture in the physical 

environment, Modbus has a TCP communication protocol, one of the main advantages of this 

communication is the ease of implementation of infrastructure, through switches or industrial 

hubs, communication can reach very high speeds. The protocol can integrate devices installed in 
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the field and allows the exchange of information between them without restrictions, that is, each 

user can connect directly to the servers.  

Open Platform Communications Unified Architecture (OPC/UA) is a protocol for industrial 

automation, it enables information and data exchange on devices inside machines, between 

machines, and from machines to systems. OPC/UA circumvents the division between information 

technology and operational technology. In other words, we will not be able to have the benefits 

of the Internet of Things and Industry 4.0 without OPC/UA. It is designed to allow manufacturers 

to leverage all modern technology to help create a smart factory, being able to make use of mobile 

devices, big data, machine learning, artificial intelligence, and predictive maintenance. OPC/UA is 

the means to connect machines and devices.  

Building Automation and Control networks (BACnet) is a network protocol for centralized 

technical management. It makes it possible to establish seamless communication between field 

devices and control technology with a standard that is free to use. The strengths are worldwide 

standardization as an open and vendor-neutral protocol. This protocol uses an object-oriented 

approach to standardize the representation of processes and data within a device, provides 

standard services to access the data within a device, and provides more than a physical interface 

to accommodate small, medium, and large systems.  

Transmission Control Protocol (TCP) is the most common communication protocol used on the 

internet, responsible for dividing the message into datagrams, reassembling them, and 

retransmitting lost datagrams. It is connection-oriented, which means data can be sent 

bidirectionally once a connection is established. It includes an automatic error-checking system 

to ensure that each packet is delivered as requested. The Internet Protocol (IP) is responsible for 

routing datagrams which is no easy task on the internet as the connection may want the datagram 

to traverse several networks until it reaches its destination.  

User Datagram Protocol (UDP) is a communication protocol that has as an essential characteristic, 

unreliability. This means that, by using this protocol, it is possible to send datagrams from one 

machine to another, but with no guarantee that the data sent will arrive intact and in the correct 

order, unlike TCP. UDP is a protocol that does not follow a connection, this means that it is not 

necessary to establish communication, this way with UDP it is possible to send, through the same 

output, data to several different machines without any problem. UDP becomes an advantageous 

protocol when you want to deal with services where speed is something fundamental and the 

minimal loss of data is not very disadvantageous.  

Digital Addressable Lighting Interface (DALI) is a communication protocol for building lighting 

applications and is used for communication between lighting control devices, such as light sensors 

or motion detectors. This protocol maximizes flexibility by simply adjusting the light control to 

new conditions. It is a protocol that has many advantages, such as being an open protocol, any 
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user can use it, interoperability between manufacturers is guaranteed by mandatory certification 

procedures. The installation is simple, the communication is digital, not analogical, so the same 

darkening values can be received by multiple devices, resulting in a more stable and accurate 

darkening performance and all devices have their unique address in the system, opening many 

possibilities for flexible control.  

With the use of all these protocols, it is possible to guarantee the interoperability of the system.  

2.1.2.7.2 MQTT 

MQTT is a publish-subscribe-based messaging protocol used in the internet of Things. It works on 

top of the TCP/IP is designed for connections with remote locations where a "small code 

footprint" is required or the network bandwidth is limited. The goal is to provide a protocol, which 

is bandwidth-efficient and uses little battery power188.  

HTTP can serve as a transport mechanism between devices and the IoT Agent, utilizing a 

request/response model where each device connects directly to the IoT Agent. In contrast, MQTT 

operates on a publish-subscribe model, which is event-driven and pushes messages to clients. 

MQTT requires a central communication point, known as the MQTT broker, responsible for 

dispatching messages between senders and receivers. When a client publishes a message to the 

broker, it includes a topic in the message, which serves as routing information for the broker. 

Clients wishing to receive messages subscribe to a specific topic, and the broker delivers all 

messages with the matching topic to those clients. This architecture allows for highly scalable 

solutions without dependencies between data producers and data consumers, as clients 

communicate solely through the topic. 

                                                     
188 Vermesan, O., & Friess, P. (Eds.). (2014). Internet of Things: From Research and Innovation to Market 

Deployment. 
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Figure 20. Sample Sensor Measurement and pass to the IoT Agent 
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2.1.2.7.3 Fireware 

FIWARE189 is a platform aims to manage context data in a generalized set of standards with the 

use of its APIs to implement in smart solutions. Context data are the virtual representations of 

the real-world objects, people, and relationships between them. FIWARE components are open-

source, and the middleware for the platform is the Orion Context Broker. Orion Context Broker 

provides an API for managing context data that is called NGSIv2 API. 

 

 

Figure 21. Context Data Flow (FIWARE, 2020) 

FIWAREs other components support the context broker in terms of:  

● supplying context data from various sources (IoT, social networks, robots),   

● managing context data,  

● processing, analysing and visualization of context data,   

● accomplishing complex event processes,   

● authorization, access control and monetization.   

Following services can be used for receiving-sending data, recording, visualizing and analysing 

data. Additional services may be added later. The services and operating systems mentioned 

below are all open-source and community driven which requires no purchase.   

● Orion Context Broker (FIWARE), middleware for holding the latest state of the virtual 

entities and sending updates to other services, databases with subscriptions.  

● MongoDB, no-sql database that will be used by Orion and Draco. Orion will store virtual 

entities and subscriptions. Draco will store past data of these virtual entities.  

● Draco, an alternative data persistence mechanism for managing the history of virtual 

entities.  

                                                     
189  https://www.fiware.org/.  
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● Mosquitto, message broker that will implement the MQTT protocol for the electrical 

motor.  

● ROS, robotics middleware that will be used in robot.  

● FIROS, tool for translating ROS messages into NGSI to publish them in Orion.   

● IoT-Agent-Ultralight, an IoT Agent that will translate MQTT messages into NGSI to publish 

them in Orion.  

● User Interface: Interface for making http requests on Orion Context Broker 

 

 

Figure 22. General data flow Fiware infrastructure. 

 

2.1.2.7.4 Arrowhead 

Arrowhead190 is a framework consisting of local clouds, devices, systems, and services. Its primary 

objective is to ensure interoperability among heterogeneous systems by utilizing existing 

protocols to manage legacy systems. Arrowhead has been implemented in various IoT automation 

scenarios, including the efficient deployment of numerous IoT sensors, monitoring of 

programmable logic controller (PLC) devices, replacement of devices, energy optimization, and 

maintenance. 

                                                     
190 https://www.arrowhead.eu/. 
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Figure 23. Example of arrowhead structure. 

 

2.1.2.7.5 Communication Models 

Three different communication models are used in IoT191.  

Machine to Machine Communication: In this communication model, machines are directly 

connected to each other without the aid of any intermediary hardware. This model makes sense 

for systems that communicate with each other by sending small data packets and have relatively 

low data rate requirements.  

Machine to Cloud Communication: This communication model relies on requesting services from 

a cloud application service provider or keeping data in cloud storage due to the limitations of the 

computing capability of the devices. Although this model solves the problems of the M2M model, 

traditional networking and bandwidth and network resources limit the performance of this 

communication model.  

Machine to Gateway Communication: In this communication model, the device-to-application 

layer gateway model is considered a proxy or middleware box. At the application layer, some 

software-based security control schemes, or other functions, such as data or protocol translation 

                                                     
191 A. Botta, W. D. Donato, V. Persico and A. Pescapé, "Integration of cloud computing and Internet of Things: A 

survey," Future Gener. Comput. Syst., vol. vol. 56, p. pp. 684–700, 2016. 
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algorithms, operate on a gateway or other network device that acts as an intermediate bridge 

between IoT devices and cloud application services.  

Examples of the above communications methods are given in figure below. 

 

Figure 24. Examples of different communication models (a) M2M, (b) M2C, (c) M2G 

 

2.1.3 Data 

2.1.3.1 Localization  

Combining pixel location with real-world location information is a common task in computer 

vision and robotics, and enhancing this process with deep learning techniques can provide more 

accurate and robust results. Before mapping pixel locations to real-world coordinates, it's 

essential to calibrate the camera. Camera calibration involves estimating intrinsic parameters 

(such as focal length, principal point, and distortion coefficients) and extrinsic parameters 

(position and orientation) of the camera relative to the scene. Techniques like Zhang's method or 

Tsai's192 method are commonly used for camera calibration. 

Deep learning models, particularly convolutional neural networks (CNNs), are adept at extracting 

features from images. Techniques like transfer learning, where pre-trained CNN models (e.g., 

                                                     
192 LI, Wei, et al. A practical comparison between Zhang's and Tsai's calibration approaches. In: Proceedings of the 

29th International Conference on Image and Vision Computing New Zealand. 2014. p. 166-171. 
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VGG, ResNet, etc.) are fine-tuned on specific tasks, can be employed to extract features193 

relevant to the mapping between pixel locations and real-world coordinates. 

Semantic segmentation194 is the task of classifying each pixel in an image into a specific category. 

By segmenting objects in the image, it becomes easier to associate pixel locations with real-world 

objects or regions. Deep learning models like Fully Convolutional Networks195 (FCNs) or U-Net are 

commonly used for semantic segmentation tasks. 

Object detection is another technique that can be employed to detect and locate objects of 

interest in an image. Models like Faster R-CNN, YOLO196 (You Only Look Once), or SSD197 (Single 

Shot Multi Box Detector) can detect objects and provide bounding boxes, which can then be used 

to estimate their real-world positions. 

Once pixel locations are associated with real-world coordinates, geometric transformations such 

as perspective transformation198 or homography199 can be used to map between the two spaces 

accurately. Deep learning models can be used to learn these transformations directly from the 

data. 

Data augmentation200 techniques such as rotation, scaling, translation, and flipping can be applied 

to both pixel locations and real-world coordinates to augment the training data and improve the 

robustness of the model. 

Instead of separating the tasks of feature extraction, object detection, and geometric 

transformation, end-to-end learning approaches can be employed where a single deep learning 

model is trained to directly map pixel locations to real-world coordinates201. This approach can 

                                                     
193 NAMATĒVS, Ivars. Deep convolutional neural networks: Structure, feature extraction and training. Information 

Technology and Management Science, 2017, 20.1: 40-47. 
194 HAO, Shijie; ZHOU, Yuan; GUO, Yanrong. A brief survey on semantic segmentation with deep learning. 

Neurocomputing, 2020, 406: 302-321. 
195 OZTURK, Ozan; SARITÜRK, Batuhan; SEKER, Dursun Zafer. Comparison of fully convolutional networks (FCN) and 

U-Net for road segmentation from high resolution imageries. International journal of environment and 
geoinformatics, 2020, 7.3: 272-279. 
196 FAN, Jiayi, et al. Improvement of object detection based on faster R-CNN and YOLO. In: 2021 36th International 

Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). IEEE, 2021. p. 1-4. 
197 NING, Chengcheng, et al. Inception single shot multibox detector for object detection. In: 2017 IEEE 

International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 2017. p. 549-554. 
198 DUBROFSKY, Elan. Homography estimation. Diplomová práce. Vancouver: Univerzita Britské Kolumbie, 2009, 5. 
199 DUBROFSKY, Elan. Homography estimation. Diplomová práce. Vancouver: Univerzita Britské Kolumbie, 2009, 5. 
200 MUMUNI, Alhassan; MUMUNI, Fuseini. Data augmentation: A comprehensive survey of modern approaches. 

Array, 2022, 16: 100258. 
201 CHEN, Changhao, et al. A survey on deep learning for localization and mapping: Towards the age of spatial 

machine intelligence. arXiv preprint arXiv:2006.12567, 2020. 
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potentially capture complex relationships between the input image and the real-world 

environment more effectively. 

Designing appropriate loss functions is crucial for training deep learning models to perform pixel-

to-real-world mapping tasks202. Loss functions such as mean squared error (MSE), smooth L1 loss, 

or custom loss functions tailored to the specific requirements of the task can be used to train the 

model effectively203. 

Challenge 1: A key challenge in camera-based localization is eliminating interference caused by 

background. Some powerful techniques from the computer vision domain have opened up the 

potential of obtaining occupancy information from CCTV videos204. Some early efforts applied 

pattern recognition technologies (e.g., filtering algorithms, classification, and clustering methods) 

to subtract background information from videos, but these background subtraction-based 

approaches can fail if occupants remain static for extended periods. 

Challenge 2: A challenge emerged as the extracted feature points were prone to change due to 

factors such as variations in illumination from day to night or weather or seasonal changes. To 

address this issue, recent efforts have focused on data-driven approaches using deep learning for 

feature-point extraction205,206. 

                                                     
202 KAKANI, Vijay, et al. Feasible self-calibration of larger field-of-view (FOV) camera sensors for the advanced 

driver-assistance system (ADAS). Sensors, 2019, 19.15: 3369. 
203 EBERT-UPHOFF, Imme, et al. CIRA Guide to Custom Loss Functions for Neural Networks in Environmental 

Sciences--Version 1. arXiv preprint arXiv:2106.09757, 2021. 
204 C. Feng, A. Mehmani, and J. Zhang, “Deep learning-based real-time building occupancy detection using AMI 

data,” IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 4490–4501, Sep. 2020. 
205 Dusmanu, M.; Rocco, I.; Pajdla, T.; Pollefeys, M.; Sivic, J.; Torii, A.; Sattler, T. D2-net: A trainable cnn for joint 

description and detection of local features. In Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 8092–8101. 
206 DeTone, D.; Malisiewicz, T.; Rabinovich, A. Superpoint: Self-supervised interest point detection and description. 

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, 
USA, 18–22 June 2018; pp. 224–236. 
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The positioning of cameras and radar plays a crucial role in Human Action Recognition (HAR) 

analysis. Positioning is of great importance in order to obtain accurate data and to minimize the 

negative effects of environmental factors on the system207,208,209,210,211,212,213,214,215. 

Proper camera placement ensures a wide and unobstructed field of view, capturing the necessary 

details for action recognition. The camera angle and height can affect the visibility of actions and 

the ability to distinguish between different types of movements. Cameras need to be positioned 

to minimize glare and shadows that could obscure or distort the actions being recorded. Using 

multiple cameras at different angles can help overcome occlusions and provide a more 

comprehensive view of the actions. 

Unlike cameras, radar systems can recognize actions without capturing visual images, thus 

preserving individuals’ privacy. 

Radar devices have fewer installation requirements compared to cameras, offering more 

flexibility in positioning. Radars can detect and recognize actions even without a direct line of 

sight, making them useful in various environments. Radar systems are less affected by lighting 

conditions and can operate in complete darkness or through smoke and fog. 

In HAR analysis, the synergy between camera and radar positioning can significantly enhance the 

system’s ability to accurately recognize and analyse human actions, especially in complex and 

dynamic environments. This is essential for applications ranging from surveillance and security to 

healthcare and human-computer interaction. 

The challenges of camera and radar positioning in Human Action Recognition (HAR) projects are 

multifaceted and can significantly impact the effectiveness of the system. The challenges listed 

                                                     
207 Pareek, P., Thakkar, A. A survey on video-based Human Action Recognition: recent updates, datasets, 

challenges, and applications. 
208 Othman, N.A., Aydin, I. (2021). Challenges and limitations in human action recognition on unmanned aerial 

vehicles: A comprehensive survey. 
209 Kumar, P., Chauhan, S. & Awasthi, L.K. Human Activity Recognition (HAR) Using Deep Learning: Review, 

Methodologies. 
210 Progress and Future Research Directions. Arch Computat Methods Eng. 
211 Singh, P.K., Kundu, S., Adhikary, T. et al. Progress of Human Action Recognition Research in the Last Ten Years: A 

Comprehensive Survey. Arch Computat Methods Eng. 
212 Hieu H. Pham, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio A. Velastin, Computer Vision and Pattern 

Recognition Video-based Human Action Recognition using Deep Learning: A Review 
213 Beddiar, D.R., Nini, B., Sabokrou, M. et al. Vision-based human activity recognition: a survey. 
214 Kong, Y., Fu, Y. Human Action Recognition and Prediction: A Survey. Int J Comput Vis 
215 Saleem, G., Bajwa, U.I. & Raza, R.H. Toward human activity recognition: a survey. Neural Comput & Applic 
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below require careful planning, and ongoing evaluation to ensure HAR systems are effective and 

reliable216,217,218,219,220,221,222,223,224. 

Challenge 1: Finding the optimal location for cameras and radars to ensure comprehensive 

coverage and minimize blind spots is challenging, especially in complex environments. Cameras 

and radars must be positioned to cope with environmental factors such as lighting, weather 

conditions, and physical obstructions that can affect data quality. 

Challenge 2: Especially for cameras, positioning must be considered carefully to respect privacy 

while still capturing necessary data for action recognition.  

Challenge 3: The cost of equipment and the need for supporting infrastructure can limit the 

number of devices installed, affecting the system’s overall performance. Regular calibration and 

maintenance are required to keep the system accurate, which can be logistically challenging and 

costly.  

Challenge 4: The angle and elevation of cameras and radars can affect the detection range and 

the ability to distinguish between different actions or individuals. For real-time action recognition, 

the positioning must facilitate quick data transmission and processing without delays.  

 

2.1.3.2 Human Heat-Map 

The integration of human heat-map technology into security systems at airports has seen 

significant advancements in recent years, propelled by increasing demands for enhanced 

surveillance and threat detection capabilities. This state-of-the-art analysis reviews the latest 
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developments in the field, emphasizing novel methodologies and their implications for airport 

security. 

Recent studies have focused on utilizing advanced imaging and machine learning techniques to 

improve the detection and analysis of human activities within airport environments. For example, 

extended motion diffusion-based methods have been developed for more effective surveillance, 

especially in detecting subtle movements or behaviours indicative of potential threats225. The 

fusion of data from multiple sources, such as thermal imaging and standard CCTV footage, 

enhances the detection capabilities. A notable advancement in this area includes the use of 

multimodal semantic segmentation to delineate airport runways, which, while not directly related 

to threat detection, demonstrates the potential for multi-source integration in enhancing overall 

airport security operations226. 

The application of machine learning algorithms, particularly convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs), has been pivotal in interpreting the data obtained 

from heat-maps. These algorithms facilitate the recognition of patterns and anomalies in human 

behaviour that may indicate security threats227. Another critical application of human heat-maps 

in airports is thermal passenger screening, which has been widely adopted as a measure to 

prevent the spread of infectious diseases. The effectiveness of this technique, however, has been 

varied, with studies suggesting improvements are needed to catch a higher percentage of infected 

travellers228. Innovative researches have also been directed toward using heat-map data for 

behavioural analysis. The ability to detect unusual or erratic human behaviour through changes 

in heat signatures provides a non-invasive way to enhance monitoring and ensure passenger 

safety229. 
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2.1.4 Chemical Analysis of Suspected Materials 

Chemical material analysis is essential in various fields, including security, law enforcement, 

environmental monitoring, and pharmaceuticals. Accurate identification of suspected materials, 

such as explosives and illegal drugs, ensures safety, regulatory compliance, and public health. 

Among the numerous analytical techniques available, spectroscopy methods, especially Near 

Infrared Spectroscopy (NIRS), have gained significant attention due to their potential for rapid, 

non-destructive, and on-site analysis. This document delves into the state of the art in chemical 

material analysis, focusing on drugs and explosive substances, the potential of spectroscopic 

methods, and the potential of NIRS in miniaturization and field applications. 

2.1.4.1 Suspected Drug and Explosives Identification 

Fast and accurate on-scene identification of suspected materials, particularly drugs and 

explosives, is crucial for safety and efficient resource use. Underestimating the threat can lead to 

severe injuries or proliferation of drug abuse, whereas overestimating the threat can enable 

criminal exploitation of hoax materials and lead to a general waste of resources. The ability to 

identify the suspected material directly at the scene-of-crime can steer the investigation process 

and provide important information for decisions such as search warrants, arrests, and requests 

for laboratory analysis230. Additionally, early information on substance identity increases the 

safety of investigators. On-site analysis without sending samples to a lab is ideal, requiring reliable 

techniques that provide admissible evidence. The diverse chemical nature of drugs and explosives 

complicates visual identification, necessitating portable technology capable of precise 

identification. 

Traditionally, investigation officers use chemical spot tests for presumptive drug or explosive 

testing. In these so-called colorimetric tests, a colour can be observed after reaction with a 

specific substance, such as a blue colour for the cobalt(II)thiocyanate complex with cocaine in the 

Scott test. Unfortunately, colorimetric tests are only available for a small range of drugs, are prone 

to false positive reactions, require manual handling of the suspect material, destruction of the 

evidence and require single-use consumables and chemicals231. Moreover, the interpretation of 

the colour formation is somewhat subjective. For on scene detection of explosives, these tests 

detect classes of compounds and can indicate the possible presence of an explosive, but lack 

selectivity and are typically unable to identify an explosive within a class232. In the case of potential 

explosives, manual sampling also introduces significant risks to the officer. In any case, a single 

                                                     
230 Kranenburg, R. F., Ramaker, H. J., & van Asten, A. C. (2022). Portable near infrared spectroscopy for the isomeric 

differentiation of new psychoactive substances. Forensic Science International, 341, 111467. 
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232 Almog, J.; Zitrin, S. Colorimetric Detection of Explosives. In Aspects of Explosives Detection, 1st ed.; Marshall, 
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colorimetric test covers only a sub-range of drugs or explosives, and it may not be possible to 

perform a series of multiple tests given limited evidence samples. 

Gas chromatography – mass spectrometry (GC-MS) is currently the default technique for 

unambiguously identifying common drugs of abuse in forensic samples233. However, this reliable 

technique is expensive, requires experienced operators, is not portable due to the requirement 

of delicate stable vacuum systems and is thus intended for use only in dedicated laboratory 

facilities rather than on-site testing. A widely used method for rapid explosives detection is ion 

mobility spectrometry (IMS)234. Given its high sensitivity, it is used primarily by aviation security 

to detect trace amounts on luggage. IMS is less favourable for identifying bulk amounts due to 

the potential overloading of the instrument, which can lead to false-positive results in subsequent 

analyses235. 

2.1.4.2 Spectroscopic Methods 

Spectroscopic techniques are well-suited for on-site evaluation of suspected samples due to their 

ability to deliver highly-specific chemical information with minimal or no need for sample 

preparation. These methods allow for rapid and accurate analysis, making them invaluable in 

scenarios where timely decisions are critical. Furthermore, the non-destructive nature of many 

spectroscopic techniques preserves the integrity of the sample for potential further testing or 

evidence collection. This combination of detailed chemical insights, efficiency, and preservation 

makes spectroscopy an essential tool for field-based investigations and real-time assessments. 

Raman spectroscopy is non-invasive but can be affected by fluorescence, and Raman laser sources 

have sufficient power to potentially burn samples and pose ignition risks236. On the other hand, 

Fourier-transform infrared spectroscopy (FT-IR) is safer but requires sampling and more extensive 

sample preparation237. 

In contrast, near-infrared (NIR) spectroscopy is non-invasive, not influenced by fluorescence, and 

poses minimal ignition risks. Additionally, NIR analysers are relatively inexpensive and can be 
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miniaturized, making them suitable for routine field use. It measures the absorption of near-

infrared light by molecular overtones and combinations of vibrational modes, primarily involving 

C-H, N-H, and O-H bonds. However, NIR spectra alone are often insufficient for structural 

elucidation because the bands in the NIR region (780–2500 nm) are weak and result from complex 

combined vibrations and overtone absorptions238,239. Nonetheless, this lack of signal 

interpretability can be overcome by pre-processing the raw data and applying chemometric 

methods (multivariate data analysis) to extract informative features from the NIR spectral 

measurements240. 

2.1.4.3 Near Infrared Spectral Sensing 

For decades, near-infrared spectroscopy (NIRS) has played an important role in countless 

applications, ranging from monitoring industrial processes to assessing the chemical composition 

and quality of organic-based materials. However, traditionally, spectrometers are large, 

expensive, complex and include moving parts, making them sensitive to vibrations and shocks. 

The challenge today lies in reducing the size and cost of these spectroscopic devices while 

maintaining their robustness and sensitivity. This is essential to expand their application beyond 

dedicated stations in industrial settings and analytical labs, into the hands of non-specialists 

working on-site and in the field. 

The design of current portable NIR sensor systems is mainly focused on the miniaturization of 

conventional spectrometers using gratings or interferometers. While they represent valid options 

for portable NIR spectroscopy, the size and cost of most commercially available systems are still 

relatively large. The level of miniaturization, cost and production scalability required for consumer 

applications can only be reached with wafer-scale integration – analogous to how complementary 

metal-oxide-semiconductor (CMOS) cameras came to pervade industrial and consumer 

applications. There has been substantial progress in this direction for the visible spectral region 

(c. 400-700 nm) and up to 1100 nm, utilizing mature silicon technologies241. However, progress in 

the integration of NIR spectral sensors has been relatively slow. 

Recently, a novel approach to NIR spectral sensing was proposed, using a miniaturized fully-

integrated multipixel array of resonant-cavity-enhanced (RCE) InGaAs photodetectors [13]. Their 

mm-scale footprint and wafer-scale fabrication make them appealing for portable and embedded 
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NIR sensing. The approach utilized by this multipixel sensor is different from conventional 

spectrometry, as the sensor does not endeavour to measure the full spectrum, but rather a 

limited number of spectral regions with limited resolution (~50 nm). The target biochemical 

information is directly extracted from the power reflected/transmitted by the sample in these 

regions without any intermediate step for full spectral reconstruction. The multipixel sensor had 

a footprint of 1.8-2.2 mm2 and consists of an array of 16 pixels with tailored spectral responses in 

the 850-1700 nm wavelength range. Each pixel is fabricated within a single monolithic element, 

having a thin absorbing layer and a tuning layer inside an optical cavity. In this approach, the 

detector and filter elements are directly co-integrated at the wafer-level, providing a robust 

system which can be fabricated at high volumes using standard semiconductor processing 

methods242. 

 

2.1.5 Sensitive Data Privacy 

Based on the project requirements and identified use cases, sensitive data privacy preserving 

topics related to SINTRA are “Distributed privacy preservation” and “Video-based privacy 

protection”. 

2.1.5.1 Distributed Privacy Preservation 

The authors in [1] provide a systematic review of sensitive data privacy-preserving methods in the 

context of cloud computing. Most of the solutions that have been reviewed involve masking 

sensitive data so that only protected values are stored in the cloud, and only the data owner can 

unmask it. However, manipulation of masked data is challenging because the masking method 

should be made compatible with computations needed for exploration. From a technical point of 

view, there are three types of data protection techniques with respect to privacy, i.e., i) data 

splitting, ii) data anonymization, and iii) cryptographic.  

Data splitting is based on fragmenting sensitive data [2]. In this technique, a clear form of each 

fragment is stored in a separate location based on standard mechanisms like RAID, and 

computations are outsourced on split data. Although storing data fragments in clear form makes 

it possible to support exploration seamlessly, there exist two main challenging conditions for this 

technique that must be considered. First, each fragment should neither provide re-identification 

of the specific individuals nor disclose confidential information. Second, storage locations must 

be independent and unlinked to prevent collusion attacks.  

Data anonymization masks data in a privacy-preserving way. This masking method must be 

irreversible so that protected data stay analytically useful for exploration but do not disclose 

                                                     
242 K.D. Hakkel, M. Petruzzella, F. Ou, A. van Klinken, F. Pagliano, T. Liu, R.P.J. van Veldhoven and A. Fiore, Nat. 

Commun. 13(1), 1–8 (2022), DOI: 10.1038/s41467-021-27662-1. 
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information that can be linked to a subject. Generally, a downside of the data anonymization 

method is that the result of computations on masked data is approximate rather than exact. 

Masking methods used for data anonymization are classified as non-perturbative and perturbative 

[1]. Perturbative masking, based on the "original values plus some noise" approach, may preserve 

the statistical properties of the original data better than non-perturbative masking, which reduces 

the data accuracy. K-anonymity is one of the data anonymization models proposed in [3] that is 

robust against identity disclosure; however, attribute disclosure can happen since it cannot 

prevent attacks that combine multiple records in the anonymized data set. A prevalent privacy 

model in recent years is the Differential Privacy model [4], which provides strong privacy 

guarantees. This method is based on adding a special type of noise to the attribute values so that 

the presence or absence of any subject in a data set does not significantly influence the 

exploration results.  

Cryptographic techniques towards privacy-preserving solutions proposed in the state of the art 

provide searching on encrypted data and computing on outsourced data. Searching on encrypted 

data is possible by employing Searchable Encryption (SE) schemes [5]. SE encrypts the data before 

outsourcing to allow secure search over the outsourced data. However, SE does not support 

computation on encrypted data, and having SE with strong security is inefficient. Among 

cryptographic techniques, homomorphic encryption (HE) and secure multi-party computation 

(MPC) are well-known approaches for distributed domains that can provide secure computation 

on outsourced data. A fully homomorphic encryption (FHE) scheme is a category of HE that allows 

the computation of any Boolean circuit on the encrypted inputs [6], [7], [8], [9]. As a result, FHE 

is able to be employed for AI algorithms [10]. Another cryptographic technique is secure MPC, in 

which parties jointly compute a function over their private inputs without disclosing their inputs. 

Compared to the HE and FHE approach, MPC requires several rounds of communication between 

all parties to compute the final result. As mentioned, non-cryptographic solutions are more 

efficient than cryptographic solutions, but they do not offer the same level of formal security. 

 

2.1.5.2 Progress beyond the-State-of-the-Art  

To summarize, the main shortcomings of the state-of-the-art are: 

1. There is a trade-off between security and efficiency when proposing a privacy-preserving 
solution for specific use cases taking into account the available computational resources. 
Mobile sensors, drones typically, have limited computational power. On the other hand, 
many UAV applications, such as surveillance or emergency response require real-time 
decision-making based on the collected data. Sensors on the other side are very battery 
dependent.  

2. The diversity of the data (because of the heterogenous multi-stakeholder environment) in 
all SINTRA use cases makes the design challenging. 
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SINTRA will innovate and improve the current state-of-the-art in the following directions: 

1. Investigate on possibilities for utilizing both non-cryptographic and cryptographic schemes 
to propose distributed privacy preservation solutions that are efficient enough to apply to 
edge computing applications, particularly in resource-constrained devices and 
environments, including power consumption, low-latency, and high-throughput. 

2. Investigate robust anonymization techniques, privacy-enhancing technologies, secure 
data sharing protocols, and contextual data handling methods to tackle privacy-preserving 
challenges of SINTRA that has multi-modal data (e.g., static cameras, live video from 
drones, body cams, mobile asset tracking). 

 

2.1.5.3 Visual-based Privacy Protection 

Visual-based privacy protection either protects the full video area or specific region-of-interest 

(RoI). In addition, privacy protection could be against a computer vision (CV) adversary, a human 

vision (HV) adversary, or both. Besides the type of adversaries, there are three types of privacy 

sensitive data that need to be protected: biometric identity (e.g., face identity), attributes (e.g., 

age, expression, race, and gender), and physiological signals of the person (e.g., heart rate, 

respiratory rate). From an adversary perspective, a face will provide a person's identity 

information; attributes will provide a way to spy on the person more accurately; and finally 

physiological signals will provide a way of gaining advantages in negotiation and analysing the 

health status of the person. Despite the importance of visual privacy in several domains, such as 

camera surveillance videos, there is a trade-off between data privacy and usability due to the 

complexity and diversity of the video content.  There are two types of entities (machines/humans 

with and without consent) that wish to access personal privacy data. The entities without the 

necessary consent, CV or HV adversaries, should not have access to any privacy sensitive 

information. On the other hand, entities with consent can access all or part of privacy-sensitive 

data (e.g., biometric identity, attributes, or physiological signals) depending on their security level 

in the system. However, the aggregation of accessed information may inadvertently expose 

sensitive data beyond the intended scope. This risk persists even with the introduction of new 

data streams in the future. 

There are several state-of-the-art approaches proposing visual privacy [11], [12], [13], [14], [15], 

[16], which are based on three main approaches: (i) synthesis (i.e., replacing privacy-sensitive 

content), (ii) filtering (e.g., blurring and pixelation), and (iii) encryption. In [11], a deep forgery 

technique based on Generative Adversarial Networks (GAN) is proposed which is lightweight and 

robust to different facial expressions. In [12], the authors used masking filters for surveillance 

videos captured by UAVs to protect privacy regions. The authors of [13] proposed a solution for 

the human face area that relies on encryption, which allows surveillance of a general nature while 

improving privacy issues, and full access only with the use of a decryption key, maintained by a 
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court or other third party in the event of an accident. In [14], the authors proposed a solution to 

protect RoI through video encryption where protection depends on an encryption key. The 

process proposed in [14] is fully reversible for authorized entities. A new security scheme, 

Securecam, has been proposed by the authors in [15] for the protection of privacy in video 

surveillance systems in which the sensitive content (i.e., ROI) is encrypted using the lightweight 

Chacha 20 cipher. In [16], the authors developed a privacy-preserving approach that encrypts 

both sensitive and non-sensitive parts of the video. In this solution, the authors pursue the 

approach of compressive sensing (CS)-encryption to accomplish both compression and 

cryptographic security on the whole data, and data hiding technology. However, when handling 

large datasets, the secret matrix of a CS-based cryptosystem may cause substantial data storage 

and involve high computational complexity. 

 

2.1.5.4 Progress beyond the-State-of-the-Art 

To summarize, the main shortcomings of the state-of-the-art are: 

1. Lack of an efficient solution to encrypt and hide sensitive data in the video especially in 
the case of drone cameras with limited battery life streaming live images to a backend. In 
message hiding techniques proposed for images or videos, such as steganography, a high 
PSNR (Peak Signal-to-Noise Ratio) value is desirable, indicating good quality in the 
reconstructed image/video. The quality of the image/video is closely related to the hiding 
capacity of the steganography algorithm, which is calculated using the Bits Per Pixel (BPP). 
BPP represents the number of bits that are hidden in every pixel of the image to produce 
the stego image. There exists a trade-off between PSNR and BPP, as increasing BPP for a 
higher hiding capacity can potentially reduce PSNR, affecting the visual quality of the stego 
image/video [17]. For instance, the method proposed in [18] can achieve stego-image 
quality exceeding 42 dB with a payload of 3 BPP, however, when the BPP is increased to 4 
in this method, the PSNR decreases to 36, illustrating the impact of higher hiding capacity 
on the visual quality. 

2. Need for both authenticity and encryption of the data. 
3. Lack of long-term track, trace and audit of accessed data and insights as aggregation of 

new data streams can still expose sensitive information that was not expected.  

SINTRA will innovate and improve the current state-of-the-art in the following directions: 

1. Investigate lightweight data hiding techniques to embed and protected encrypted 
sensitive data within visual context using efficient synthesis or filtering techniques (visual 
privacy protection). The scheme can simultaneously protect the video against CV and HV, 
allowing entities with different levels of security to access privacy-sensitive data (multi-
level privacy protection scheme).  
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2. Investigate multi-level security and lightweight encryption, as well as access control 
solutions to design an efficient and secure multi-level privacy protection scheme. Since 
the integrity and authenticity of the data is vitally important in the SINTRA use cases, the 
encryption algorithm should provide data authenticity as well as confidentiality. Thus, we 
will also investigate the use of lightweight authenticated encryption (AE) algorithms such 
as ASCON [19] that can provide both authenticity and confidentiality. ASCON-128a is an 
excellent choice for SINTRA, especially for resource-constrained devices that require 
lightweight yet secure cryptographic algorithms. What sets ASCON-128a apart is its 
consistent use of 128-bit security across key, nonce, tag, and data block parameters. This 
adherence to 128-bit security aligns with the BSI - Technical Guideline243, which stipulates 
that cryptographic applications should utilize block ciphers with a block size of at least 128 
bits. This guideline emphasizes the importance of maintaining a uniform security level of 
≥ 128 bits for all system components, even exceeding the minimum requirements. For 
SINTRA's specific needs, ASCON-128a's combination of lightweight design, 128-bit security 
across all parameters, and alignment with established security standards makes it an ideal 
choice to ensure both the safety and efficiency of resource-constrained devices in SINTRA. 

 

2.1.6 Secure and Trusted Data Transmission & Exchange 

Based on the SINTRA requirements and use cases, secure and trusted data exchange aspects focus 

on “Zero Trust data exchange and data governance”, “BLE secure data transmission” and “UAV 

secure data transmission and logging system”. 

2.1.6.1 Zero Trust Data Exchange and Data Governance 

Traditional data exchange models between multiple stakeholders are based on perimeter-based 

security models where external access requests are protected with a firewall, an intrusion 

prevention system (IPS), etc. In these models, data consumers located on external networks must 

be authenticated and authorized before being trusted. However, data consumers located in the 

internal network are considered trusted by default and can access internal enterprise resources. 

As a result, an adversary can access resources without any restrictions just by compromising an 

internal consumer. Additionally, once external data consumers are authenticated, they are 

trusted for a long time and can access internal enterprise resources if authorized. Furthermore, 

an adversary who has gained access to the internal network is able to move laterally throughout 

the network and compromise other critical hosts, and servers, and gain data (VMware Report 

2022: Lateral movement was seen in 25% of all attacks244). 

                                                     
243 https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-

02102-1.pdf?__blob=publicationFile 
244 https://news.vmware.com/releases/vmware-report-warns-of-deepfake-attacks-and-cyber-extortion 

https://news.vmware.com/releases/vmware-report-warns-of-deepfake-attacks-and-cyber-extortion
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Conversely, Zero Trust (ZT) is a significant shift in modern cybersecurity based on the concept of 

“never trusting and always verifying”. In this way, ZT is a data-centric approach that secures 

stakeholders’ data by removing implicit trust in perimeter-based tools and applying the same 

security checking and access control to internal and external users. ZT also limits internal lateral 

movement by controlling the data bridge and validating every access per session. 

In contrast, stakeholders will not be able to adequately prioritize the controls needed to protect 

critical assets if they do not have a good understanding of data and potential threats. Thus, data 

discovery, governance, and classification as well as risk assessment of data assets are critical in 

such a data-centric trust approach. In [20], the authors introduced the existing Zero Trust 

architecture (ZTA) and stated that the important challenge in proposing ZTA for a system is how 

to apply it to the real enterprise network environment. Moreover, they stated that to design a 

ZTA, identity authentication, access control, and trust evaluation algorithms should be well 

thought of. As a result, the access control model used in ZT should employ not only static policies 

but also dynamic policies considering users, accessed resources and environmental attributes 

such as the location where the access request originated. Additionally, it is essential to match the 

risk with the level of trust assigned to a particular consumer that wants to access specific 

resources. Thus, the design of the access control model for data consumers that is appropriate 

for ZTA is required in SINTRA. More precisely, the SINTRA ZTA needs to monitor different 

consumers trying to access the data assets and ensures that each consumer is authorized. The 

ZTA proposed by NIST in 2020 [21] has been primarily applied to enterprise systems (most 

commercial offerings). However, ZT's deployment in SINTRA domains, such as construction sites, 

is not addressed or is still at an early stage with many challenges regarding its principles, 

architecture, and implementation remaining. A case in point is [3], where the authors mentioned 

that ZT is more than just a security product that can be placed in the infrastructure and confirmed 

to be secure. Rather, it is more of a concept that covers all aspects of security and trustworthy 

solutions with a variety of security products that are employed in accordance with the system 

environment that is in use. In [22], the authors fully explored the Zero Trust model for the Smart 

Manufacturing Industry and explained its principles, architecture, and implementation 

procedure. 

Specifically, in SINTRA using either local servers or cloud systems to store information, data 

consumers can access this data with some static and dynamic access control rules and perform 

specific actions. A well-known access control model widely used recently is Attribute-Based Access 

Control (ABAC) which is an excellent alternative solution to Role-Based Access Control (RBAC). 

With ABAC, access is granted to a consumer if and only if it meets the model's attributes. There 

are several efforts to employ ABAC in ZTA [23]. However, the major problem with employing ABAC 

is that all elements need to be described in the form of attributes [24]. In addition to what is 

mentioned above, the access control model used for ZT must consider the consumer's or 

network's recent history into account during access requests evaluation. Given the fact that the 
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ZT system requires real-time decision-making capabilities, a risk-aware access control model can 

be used to solve grant access problems based on action risk levels [25]. Many factors can be 

considered in calculating risk. These include contextual and environmental factors as well as the 

trustworthiness of a consumer who requests the data. Generally, the risk access control model 

consists of “risk factors”, “risk estimation”, and “access control module” elements [26].  

In addition, when designing ZTA, it is crucial to ensure that it is easily maintainable and scalable, 

with adaptable building components (e.g., adaptable access control mechanism). These should 

take into account the unique requirements and specificities of each company's platform, as they 

may vary across different application domains and services beyond the scope of the SINTRA 

objectives.  

 

2.1.6.2 Data Spaces 

Data Spaces can be described as an emerging decentralized network, wherein multiple connected 

data sources collectively provide a wide range of valuable services and resources over a network 

infrastructure. It can create the conditions for a competitive marketplace among participants or 

a collaborative environment among diverse, interconnected participants who are dependent on 

each other for their mutual benefit for as long as they are interconnected. However, it is necessary 

to conduct a substantial amount of research and design before integrating multiple data sources 

together. Data Spaces mainly should provide:  

● Data Interoperability where all participants can effectively exchange data. 
● Sovereignty and Trust in which parties accessing data can be verified and access control 

policies enforced.  
● Governance that adopts agreements for business, operational, and organizational 

aspects. 
The envisioned approach in SINTRA can support the trusted and secure sharing and trading of 

commercial data assets.  

Industrial Data Spaces such as various ongoing initiatives are exploring information sharing 

solutions, including GAIA-X [27], IDS [28] [29], MyData [30], and iSHARE [31], to address 

challenges in this domain. GAIA-X tackles the problem through decentralized identifiers and data 

services, empowering companies to control data storage, processing, and access based on the 

concept of self-sovereign identity (SSI) [32]. MyData also utilizes SSI with operator support, 

separating authorization from data flows. The adoption of SSI promotes user control, facilitates 

compliance with GDPR regulations, and enables selective data disclosure. The International Data 

Spaces Association (DSA) reference architecture involves IDS connectors to integrate diverse 

partner data sources.  iSHARE acts as a trust framework for cross-sector data spaces, collaborating 
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with GAIA-X, and IDSA. The envisioned approach in SINTRA can support the trusted and secure 

sharing and trading of commercial data assets.  

 

2.1.6.3 Progress beyond the-State-of-the-Art 

To summarize, the main shortcomings of the state-of-the-art are: 

1. Evaluation of access requests based on the recent history of data consumers and past 
activities and events that have occurred within the network in ZT deployment has always 
been challenging. This requires the utilization of techniques like risk-aware access control 
to dynamically assess trustworthiness and risk levels based on factors such as user activity, 
device, behaviour, network traffic, and security events.  

2. Developing a secure and trustworthy data exchange mechanism is a complex process that 
faces many technical, organizational, legal, and commercial challenges. Key considerations 
include identifying best practices for creating privacy-aware solutions for sharing sensitive 
personal and industrial data, enabling enterprises to access shared data and supporting 
technologies, managing the trade-off between privacy and data analysis, and addressing 
standardization challenges for data sharing, including interoperability. 

SINTRA will innovate and improve the current state-of-the-art in the following directions: 

1. By integrating a risk-aware access control model with an ABAC model where the risk factor 
is treated as an attribute, it is possible to propose a ZTA that can be used as a practical 
trust model for SINTRA. 

2. The proposed ZTA not only addresses the challenges of developing a secure and 
trustworthy data exchange mechanism but also offers a comprehensive solution to 
support trust in data sharing. By implementing granular and dynamic access control 
scheme (e.g., ABAC), robust authentication and encryption techniques, and privacy-aware 
practices, organizations can establish trust between data providers and recipients while 
maintaining privacy and compliance, thereby fostering confidence in data sharing 
initiatives.  

 

2.1.6.4 BLE Secure Data Transmission 

The study conducted in [33] examines the security and privacy properties of different Bluetooth 

Low Energy (BLE) versions. Upon investigation of BLE versions 5.0, 5.1, and 5.2, it is evident that 

they remain vulnerable to pairing method confusion, passkey reuse, and BlueMirror attacks. 

Furthermore, devices already paired using these BLE versions (i.e., 5.0, 5.1, and 5.2) are also 

susceptible to BLURtooth CTKD key overwrite, BLESA spoofing, and SCO mode downgrade attacks. 

Numerous open-source projects are actively monitoring BLE connections, including the Ubertooth 
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project, which initially served as a Bluetooth classic test tool245. In [34], the author expanded upon 

the Ubertooth project to create a BLE sniffer capable of monitoring both existing and upcoming 

BLE connections. Another open-source project named BtleJack was introduced in [35], offering 

the capability to sniff ongoing connections. While sniffing entails eavesdropping packets, a Man-

in-The-Middle (MITM) attack involves an attacker intercepting, manipulating, or dropping the 

connection. In this scenario, all messages pass through malicious devices, which then relay the 

data to legitimate recipients. Two open-source tools capable of implementing MITM attacks on 

BLE are GATTacker [36] and BTLEjuice [37]. GATTacker was presented at Black Hat USA246, while 

BTLEjuice was published by the authors at the DefCon 24 conference247.  

Designing a secure BLE device or analyzing its security is a complex task due to the extensive range 

of possible configurations. The BLE specification consistently introduces new features and subtle 

changes related to privacy and security, further complicating this task. In [38], the authors 

propose and implement a lightweight digital certificate-based authentication mechanism for BLE 

devices that utilizes the Just Works model. The proposed model can be easily integrated into the 

existing BLE stack as an extension to the pairing mechanism. To mitigate the risks associated with 

MITM attacks and device spoofing in the Just Works pairing scenario, their model leverages the 

Public Key Infrastructure (PKI). This enables the establishment of peer entity authentication and 

ensures a secure cryptographic tunnel for communication purposes. 

 

2.1.6.5 Progress beyond the-State-of-the-Art 

To summarize, the main shortcomings of the state-of-the-art are: 

1. BLE devices often have limited computational power, memory, and energy resources. This 
makes it challenging to implement strong security mechanisms without compromising 
device performance or battery life. 

2. Although, I/O capabilities mechanisms are a solution for pairing, BLE devices without 
keyboard or display mechanism used in SINTRA (and hence using the Just Works pairing) 
are still vulnerable. 

SINTRA will innovate and improve the current state-of-the-art in the following directions: 

1. Investigate secure mutual authentication and key agreement schemes to design an 
authentication mechanism for BLE devices. The proposed model is an add-on to the 
already existing pairing mechanism and therefore can be easily incorporated in the 
existing BLE stack. To counter the existing Man-in-The-Middle attack scenario in Just 

                                                     
245 https://ubertooth.sourceforge.net 
246 https://infocondb.org/con/black-hat/black-hat-usa-2016/ 
247 https://defcon.org/html/defcon-24/dc-24-venue.html 
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Works pairing (device spoofing), the proposed model allows the scanner and tag to 
establish peer entity authentication and a secure cryptographic tunnel for communication.  

2. Furthermore, investigation into how we can adopt energy-efficient cryptographic 
algorithms and protocols with the proposed solution can reduce the computational 
overhead and energy consumption associated with encryption and decryption operations. 
A lightweight mutual authentication and key agreement protocol should be explored, 
aiming to provide data integrity and confidentiality with a minimum 128-bit security. The 
solution should be meticulously designed, ensuring cryptographic algorithms, keys, and 
encryption methods meet or exceed the minimum recommended bit length requirements 
to guarantee end-to-end security on every communication link. 

 

2.1.6.6 UAV Secure Data Transmission and Logging System 

Various advancements are aimed at addressing the unique challenges associated with ensuring 

the security and integrity of data transmission and logging in the UAV ecosystem. In [39] survey, 

the authors present a systematic division of privacy and security issues by categorizing them into 

software, hardware, and communication classes. Secure communication protocols and robust 

encryption techniques have been the focus of most of the research. Encryption algorithms, such 

as Advanced Encryption Standard (AES), are widely adopted to protect data confidentiality during 

transmission and storage [40], [41]. Additionally, secure communication protocols, including 

Transport Layer Security (TLS), have been implemented to establish secure connections between 

UAVs and ground control systems, mitigating the risk of unauthorized access or data interception 

[42]. While AES and TLS are widely used for encryption and secure communication protocols, they 

introduce latency issues that can be problematic in the UAV ecosystem.  

Authentication and secure onboarding of drones are critical challenges that must be addressed 

effectively in the UAV ecosystem, particularly for 5G flying drones, which require seamless re-

authentication and secure communication protocols during dynamic flight scenarios and 

handovers (transferring the connection and communication from one base station to another as 

the drone moves within the coverage area). These challenges encompass various aspects, 

including mitigating potential vulnerabilities in authentication mechanisms to prevent 

unauthorized access and tampering, ensuring the secure storage and transmission of sensitive 

data during the onboarding process, and establishing standardized practices for secure 

authentication and onboarding across different drone platforms.  

Moreover, tamper-resistant data logging mechanisms, such as cryptographic digital signatures 

and blockchain-based approaches, are being explored to ensure the integrity and immutability of 

logged data [43], [44]. Employing a blockchain that relies on a distributed consensus mechanism 

also may introduce a latency issue in the UAV ecosystem. In [45] the authors proposed a solution 

(called DASLog) to overcome the latency issue of the UAV logging system. The solution is based 
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on generating verifiable proofs for the log records based on efficient Merkle tree and hash chains. 

However, this solution also relies on blockchain. 

 

2.1.6.7 Progress beyond the-State-of-the-Art 

To summarize, the main shortcomings of the state-of-the-art are: 

1. Existing solutions for UAV secure communications often struggle with the trade-off 
between security and efficiency, as implementing strong encryption and authentication 
mechanisms can introduce significant overhead and latency, impacting real-time 
communication requirements for UAVs.  

2. In scenarios with many UAVs operating at the same time, scalability remains a challenge. 
Quite often, the overhead of secure channels and managing cryptographic keys can 
become burdensome.  

3. The dynamic nature of UAV networks such as 5G, with UAVs entering and leaving the 
network frequently, poses challenges for maintaining secure communication sessions and 
ensuring continuous authentication (i.e., re-authentication).  

4. The process of securely onboarding UAVs into the network, including authentication, and 
establishing trusted connections, poses challenges in terms of mitigating potential 
vulnerabilities and ensuring secure integration.  

5. Ensuring non-repudiation using an efficient and secure logging system, which prevents 
UAVs, operators, or users from denying their actions, is a challenge in UAV communication 
systems. This requires robust mechanisms to provide evidence of communication and 
transaction integrity. 

SINTRA will innovate and improve the current state-of-the-art in the following directions: 

1. Investigating lightweight cryptographic algorithms specifically designed for resource-
constrained UAVs can help strike a better balance between security and efficiency. These 
algorithms should also provide both integrity (including message authenticity) and 
confidentiality since the transferred messages are the combination of command-and-
control data and sensitive environmental information. 

2. Investigating how to design scalable key management mechanisms that can handle a large 
number of UAVs while minimizing the overhead of key establishment and distribution is 
essential for secure and efficient communication. 

3. Investigating how to develop dynamic authentication and access control mechanisms that 
adapt to the dynamic nature of UAV networks such as 5G. This will allow UAVs to join and 
leave the network (needs re-authentication) seamlessly while maintaining secure 
communication sessions. 

4. Investigating how to establish robust secure onboarding procedures that ensure UAV 
integrity and authenticity during the onboarding process. This includes secure device 
registration, identity verification, and trusted connection establishment. 
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5. Investigation of non-repudiation mechanisms, such as digital signatures or trusted and 
secure logging systems, to provide evidence of communication and transaction integrity, 
preventing UAVs or users from denying their actions. The solution will be based on 
efficient proof generation based on efficient algorithms such as Merkle tree and hash 
chains. 

 

2.1.7 Multimodal Data Integration 

Multi-modal data integration is the process of combining data from disparate sources, possibly 

consisting of different types and with different volumes with the goal of providing users with a 

single, unified view. It is pivotal to improve the performance and robustness of predictive and 

analysis models. Information fusion from different sources is also quite crucial for understanding 

the current context and further historical and future evolution analysis. Both classical and recent 

deep learning-based techniques were used in the past extensively to tackle various challenges 

[46]. However mere data type heterogeneity (e.g., images, text, audio) itself makes the feature 

extraction, fusion and analysis challenging. In addition, state-of-the-art research also finds it 

difficult to tackle the following challenges. 

● Spatial and temporal alignment: Accurately aligning data from different sensors, both in 
space and time, is crucial for effective fusion. This often involves correcting for sensor 
calibration errors, synchronizing timestamps, and handling different sensor sampling 
rates. 

● Occlusions and missing data: Sensors may have different fields of view and certain objects 
may be occluded in one sensor but visible in another. Handling occlusions and missing data 
during fusion is a complex problem to solve. 

● Scalability: Scalability is a significant challenge in multi-data fusion models because as the 
number of data sources and the volume of data increase, the complexity of the fusion 
process exponentially increases, demanding highly efficient algorithms and computational 
resources. Traditional data fusion models may suffer from computational inefficiency due 
to the requirement for pairwise comparisons between data items, which often leads to a 
quadratic increase in computational complexity as data size grows. The situation is also 
similar with state-of-the-art deep learning models. For instance, fully connected deep 
neural networks such as Deep Belief Networks (DBNs) and Stacked Auto-Encoders (SAEs) 
involve a great number of connections between neurons that require extensive training 
objects, making it computationally intensive. These networks often struggle with high-
dimensional data, particularly large image, and audio data, affecting their scalability. 

● Computational complexity: From a computational complexity perspective, dealing with 
the uncertainty in the fusion of cross-modal observations presents another challenge in 
multi-data fusion models. Traditional robust particle filtering (RPF) methods focus on 
managing uncertainties in the state-transition function or modelling the observation 
noise, but the introduction of cross-modal data adds another layer of complexity. This 
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complexity arises from the need to find an "ideal way" to fuse cross-modal observations 
that aligns with the true data generating mechanism and leads to the most accurate state 
estimations. This requires new methodologies that can handle cross-modal data fusion in 
nonlinear non-Gaussian dynamic systems, as existing trust models often focus on co-
modal data or fusion of information from multiple sources in a static setting [47]. 

Based on the stage of data fusion, multimodal data fusion techniques can be mainly categorised 

into [48]: 

1. Early/data level fusion combines raw data from multiple modalities at an early stage, 
leveraging inherent correlations to generate a comprehensive feature representation. This 
approach enables models to exploit rich intermodal relationships and potentially uncover 
latent patterns but may suffer from increased computational complexity and challenges 
in handling heterogeneous data types.  

2. Late/decision level fusion, on the other hand, focuses on aggregating predictions from 
separate models trained on individual modalities, effectively leveraging the strengths of 
each modality while mitigating risks of information loss or distortion from early fusion. 
However, it may overlook important intermodal relationships that could have been 
captured through joint processing.  

3. Intermediate fusion methods strike a balance between these two extremes by merging 
information at a higher abstraction level, such as fusing feature representations or 
combining model predictions with context-aware weighting. This enables intermediate 
fusion methods to harness the benefits of both early and late fusion while mitigating their 
respective drawbacks, providing a versatile framework for multi-modal data fusion in 
various machine learning applications [49]. 

Data fusion at all the stages will be explored based on the use case requirements and amount of 

reasoning and explainability required for the use cases.  Further, the listed shortcomings will be 

addressed as a part of SINTRA keeping the security and privacy aspects of data as a priority. 

 

2.1.7.1 Progress beyond the-State-of-the-Art 

To summarize, the main shortcomings of the state-of-the-art are:  

1. Algorithmic inefficiency in identifying and incorporating multi-modal contextual data 
sources in a scalable manner. 

2. Shortage of effective heterogeneous data integration methods with data generalization 
across different locations with minimal additional data requirements. 

3. Context extrapolation and prediction based on incomplete and partially available data. 
4. Lack of interpretable and explainable models for data aggregation and context-

generation: State-of-the-art solutions make use of black box deep learning models with 
low interpretability. 

SINTRA will innovate and improve the current state-of-the-art in the following directions. 
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1. Research possibilities to incorporate multi-modal contextual data sources with different 
level of (temporal and spatial) granularities and inaccuracies.  
Goal: enable multi-source data integration, aggregation and inference at the edge 

addressing scalability challenges. 

2. Innovate on long and short-term multi-modal prediction models for rare but possibly re-
occurring events to inform within specified time windows with given accuracies.  
Goal: Ensure pre-defined accuracy levels for context evolution predictions at different 

time scales by considering contextual historic as well as real-time data. 

3. Explore data extrapolation approaches based on (partially missing) multi-source data 
streams.  
Goal: generate realistic monitoring site evolution statistics which can improve the 

resource planning and result in better safety measures. 

4. Investigate approaches for improving interpretability of model context analysis and 
recommendations.  
Goal: develop robust indicators such as alarm root cause (categorical variable), predicted 

resource requirements (continuous variable) that provide insights to context and 

requirement analysis, applied to site monitoring use cases. 

 

2.1.8 Multi-View Clustering for Context Analysis 

Once proper data integration techniques are in place, the next step is to extract context from 

these multiple sources. Multi-view clustering is an essential tool to address the increasing 

complexity of data collected from various sources and perspectives. It leverages the 

complementary and supplementary information inherent in these diverse views to yield more 

accurate and robust cluster results than traditional single-view methods. By harnessing the power 

of multiple perspectives, multi-view clustering unveils the multi-faceted nature of complex data, 

allowing for a richer understanding of underlying patterns and structures.  

Multi-view analysis is hot research problem and recently a few papers have addressed some of 

the main challenges faced in analysing multiple views. For example, in [50] the authors propose a 

joint contrastive triple-learning framework that seeks to improve multi-view representation for 

deep clustering. This innovative approach is tripartite, involving feature-level alignment-oriented 

and commonality-oriented contrastive learning (CL), and cluster-level consistency-oriented CL. 

The authors introduce a deep learning-based framework designed to mitigate performance 

degradation caused by view increase in multi-view clustering in [51]. The model is trained to 

concurrently extract complementary information and disregard meaningless noise through 

automatic feature selection. There are other papers in literature which makes use of advanced 

deep learning based autoencoders. For instance, in [52] the authors present a deep multi-view 
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clustering algorithm known as MVC-MAE, which is based on multiple auto-encoders. It combines 

representation learning and clustering into a unified framework, enabling these two tasks to be 

jointly optimized. 

 

2.1.8.1 Progress beyond the-State-of-the-Art 

To summarize, the main shortcomings of the state-of-the-art are:  

1. Incorporating prior information: Utilizing prior information such as pairwise constraints 
that describe the relationship between data instances can be beneficial for multi-view 
clustering. None of the existing methods fully leverage prior information for error-robust 
multi-view clustering in a joint manner.  

2. Dealing with incomplete views: Data instances within views may be missing due to the 
nature of the monitored data or data collection costs. There is a need for a comprehensive 
clustering algorithm for multiple views where views may be both incomplete and 
erroneous. Existing solutions for partial multi-view clustering often neglect possible errors 
in views, and there is a need for better methods that jointly handle view completion and 
clustering. 

3. User-relevant context generation: Extracting user-relevant context from these multiple 
views is quite challenging mainly due to the variations in user preferences. The state-of-
the-art papers do not address the user-centric nature of multi-view analysis which is 
important in SINTRA use cases because of the context importance requirements from 
different partners. 

SINTRA will innovate and improve the current state-of-the-art in the following directions. 

1. Research possibilities to incorporate prior information available from the monitoring sites 
to improve clustering and context generation. 
Goal: enable privacy-aware static prior information integration to the context generation 

models to improve the relevance of context extraction. 

2. Explore and innovate in developing techniques for dealing with missing views by 
incorporating information from other available sources (both historical and real-time) 
Goal: Get a complete working picture of the monitored site even with interruptions in 

views over time and space. 

3. Incorporate user preferences into the current context generation algorithms without 
affecting the performance of the models. 
Goal: Extract user-relevant contexts based on the query inputs as different stakeholders 

are looking into different contexts based on their area of interest. 
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2.1.9 Multi-Sensor Anomaly Detection and Proactive Resource Planning 

Timely detection of system failures, security breaches, and performance issues of activities 

concerning site management is inevitable to make automated site monitoring a reality. Multi-

sensor powered anomaly detection harnesses the power of multiple sensors to monitor a system 

or environment, collecting diverse data types to detect unusual events or changes to enable this. 

Concurrently, in resource planning, multi-sensor data is invaluable in predicting resource demand 

and optimizing allocation. It allows for proactive management, facilitating the prediction of future 

needs based on past and real-time data, and tailoring resource distribution to match the 

forecasted requirements. In essence, multi-sensor-powered anomaly detection and resource 

planning combine to provide a robust, responsive system that can identify potential issues before 

they escalate and dynamically manage resources for optimum efficiency and productivity. 

Various state-of-the-art papers have investigated multi-sensor anomaly detection, mainly due to 

the increase in monitoring sensor deployments in different domains [53] [54] [55]. In [56] The 

authors fused multi-sensor signals to provide robust anomaly detection in the presence of sensor 

occlusion. Further, they developed a proactive anomaly detection network (PAAD) for enabling 

planned robot navigation in uncertain environments. In [57], the authors proposed a novel Deep 

Convolutional Autoencoding Memory network (CAE-M) to characterize spatial dependence of 

multi-sensor data. A deep convolutional autoencoder is used to capture spatial correlations and 

a bi-directional LSTM is used to model temporal dependencies. A semi-supervised anomaly 

detection module for wireless spectrum sensors was developed in [58] where the authors 

included techniques to incorporate user preferences into the entire anomaly detection process. 

In [59] a coupled attention-based neural network framework (CAN) for anomaly detection is 

proposed for multivariate time series data. The framework addresses the challenges of 

dependencies among sensors and variables that often change over time by generating a global-

local graph that represents both global correlations and dynamic local correlations among 

sensors.  

Video-based monitoring and anomaly detection solutions, while increasingly effective, face 

numerous challenges. For instance, these solutions often struggle in poor or varying lighting 

conditions. Algorithms can misinterpret shadows or reflections as anomalies or fail to detect 

anomalies in low light. In addition, image-based monitoring raises significant privacy concerns 

[60], particularly in public or semi-public spaces which makes the algorithms complex and real-

time processing difficult [61]. Further, these algorithms fail to accurately monitor and detect 

anomalies in busy or complex environments, such as crowded public spaces due to the high level 

of detail and fast-changing conditions. These complex scenarios also make it difficult to have a 

deeper semantic understanding of the scene. In addition, as these systems become more 

common, they could also become targets for adversarial attacks, where the system is deliberately 

manipulated or fooled [62]. All these challenges mainly point to the use of a multi-sensor solution 

for enabling a robust context aware anomaly detection. 
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2.1.9.1 Progress beyond the-State-of-the-Art 

To summarize, the main shortcomings of the state-of-the-art are: 

1. Lack of robust context awareness anomaly detection techniques with multiple views: 
Existing solutions often struggle to extract context from situations with multiple 
operational views. Anomaly in one context might not be anomalous in another. Lack of 
deep scene semantic understanding in complex scenarios:  Current state-of-the-art 
solutions typically use pre-defined rules or patterns for anomaly detection, which can fail 
in complex or dynamic situations where context and understanding of the scene are 
critical. This is especially true in situations involving crowded public spaces, dense traffic, 
or various weather conditions, where the semantics of the scene dramatically affect what 
is considered "normal" or "anomalous". 

2. Interoperability issues: Currently, there are challenges in integrating and making sense of 
data from different types of sensors. Each sensor type may have its own data format, 
resolution, and accuracy, making seamless integration difficult. 

3. Robustness to sensor failures: Present solutions often do not account for potential sensor 
failures or inaccuracies. Building robustness to sensor noise, malfunctions, and failures 
should be an integral part of future multi-sensor anomaly detection systems. 

4. Inadequate privacy protection: With the increasing use of multi-sensor networks, 
particularly cameras, the issue of privacy becomes more critical. The state-of-the-art often 
lacks effective mechanisms to protect individuals' privacy while conducting anomaly 
detection while fusing multimodal sensor information. 

SINTRA will innovate and improve the current state-of-the-art in the following directions. 

1. Enhanced contextual understanding: SINTRA will aim to improve deep scene semantic 
understanding in complex scenarios, enabling accurate anomaly detection regardless of 
the situation's context. This will involve developing advanced machine learning models 
that can learn and adapt over time, adjusting to new normal patterns as the scene evolves. 
Goal: enable generalizable and easily deployable context understanding for evolving site 

monitoring use cases in SINTRA. 

2. Robustness to sensor failures: We will work on developing models that are resilient to 
sensor noise, malfunctions, and failures. Strategies such as redundancy, self-diagnosis, 
and error correction will be explored to ensure consistent performance even in the event 
of individual sensor failures. 
Goal: Sensor failure is realistic in the monitoring site use cases mentioned in SINTRA. The 

goal is to improve the consistency of context understanding even with failing sensors. 

3. Robustness against adversarial attacks: Recognizing the growing threat of adversarial 
attacks, the project will aim to develop defenses against these types of attacks. Research 
will be conducted on the detection and mitigation of adversarial inputs, ensuring that the 
system remains reliable and trustworthy even in the face of targeted attacks. 



88 

 

 

 

Goal: The algorithms in the use cases will be prone to adversarial attacks by the mere 

nature of the parties involved. The goal is to alert the stakeholders on time if the models 

are facing sensor data manipulation and other adversarial inputs. 

 

2.2 State-of-the-Art of Business Operations 

2.2.1 AI Market 

2.2.1.1 Market and Business Implications of HAR Systems 

The future of object detection coupled with Human Action Recognition (HAR) is a rapidly 

advancing field of research that promises to bring significant improvements to a variety of 

applications. The combination of object detection and HAR will enable us to create more 

intelligent and responsive systems that can better interpret and interact with the world around 

us.  

It is possible that the integration of deep learning techniques with HAR will continue, resulting in 

more complex models that can perform complex object detection tasks with higher accuracy. 

The multimodal approach, which is open to development, will provide a more comprehensive 

understanding of the scene and the actions taking place. Developing real-time processing 

capabilities for both object detection and HAR is of great importance for applications such as 

surveillance and interactive systems. The use of 3D sensors to support 2D images is one of the 

important aspects open to research. This includes improving depth estimation and temporal 

sequence analysis for a better understanding of the real world. This is an important area for 

development as future HAR systems will need to be resilient to environmental changes, including 

changing lighting conditions, weather and occlusions, to maintain high accuracy in object 

detection. 

The ability to detect unusual or abnormal actions and objects will be an important aspect of future 

HAR systems, especially for security and safety applications. 

Object detection within HAR will play a role in improving human-robot collaboration, allowing 

robots to better understand and respond to human actions and the surrounding environment. 

 

2.2.1.2 Market and Business Implications of Object Detection 

2.2.1.2.1 Application Areas 

Combining pixel location with real-world location facilitates a wide range of applications spanning 

from entertainment and gaming to critical fields such as healthcare, transportation, and 

environmental monitoring. 
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AR applications overlay virtual objects onto the real world seen through a device's camera. 

Combining pixel locations with real-world coordinates enables accurate placement of virtual 

objects within the camera view, creating immersive AR experiences. 

In robotics, mapping pixel locations to real-world coordinates is essential for tasks such as robot 

localization, object detection and manipulation, path planning, and navigation. Robots can use 

this information to perceive and interact with their environment effectively. 

Autonomous vehicles rely on sensors, including cameras, to perceive their surroundings. By 

mapping pixel locations from camera images to real-world coordinates, autonomous vehicles can 

identify objects, lanes, traffic signs, and other important features on the road for safe navigation. 

Geographic Information Systems (GIS): GIS applications use pixel locations from satellite or aerial 

imagery to map features such as land use, vegetation cover, urban development, and more onto 

real-world coordinates. This helps urban planners, environmental scientists, and government 

agencies in decision-making processes. 

Medical Imaging: In medical imaging, combining pixel locations with real-world coordinates 

assists in tasks like image registration (aligning images from different modalities or time points), 

tumour localization, and surgical navigation, leading to more accurate diagnoses and treatments. 

Photogrammetry: Photogrammetry techniques use pixel locations from overlapping images to 

reconstruct 3D models of objects or terrain in the real world. Accurate mapping between pixel 

locations and real-world coordinates is crucial for generating precise 3D reconstructions. 

Surveillance and Security: Surveillance systems utilize pixel locations to track objects or individuals 

in real time. By associating pixel locations with real-world coordinates, security personnel can 

monitor and respond to events effectively. 

Archaeology and Cultural Heritage: Archaeologists and cultural heritage specialists use pixel-to-

real-world mapping to analyse and document artifacts, monuments, and archaeological sites 

captured in images. This aids in preservation efforts and historical research. 

2.2.1.2.2 Future Potential of Object Detection 

Object detection techniques can be explored more deeply based on application areas and 

resource requirements. Besides many advancements, still, object detection has future directions. 

Detecting objects in videos presents greater challenges compared to still images due to the 

diverse appearance variations in video frames, including defocus, motion blur, truncation, 

occlusion, and fast motion. While extensive research has been conducted using video data, 

further enhancements are required in detection capabilities. Despite efforts to enhance accuracy, 

there remains a need for more effective and efficient feature extraction techniques and motion 
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estimation networks248. Researchers worldwide should focus on addressing more dynamic targets 

and handling more complex data for future advancements in object detection within video 

streams. 

3D sensors provide supplementary depth information to enhance the utilization of 2D images, 

bridging the gap between digital imagery and real-world understanding. Despite the rapid 

advancements in object detection, there are areas that warrant further analysis and exploration. 

Depth estimation, temporal sequence analysis, and generalization are among the pertinent 

domains in 3D object detection249, serving as key directions for future research endeavours in this 

field. 

Small object detection has been a challenge in a large or real-time environment. Some of the 

applications of OD, such as small vehicles from real-time CCTV cameras, detecting some important 

targets state of the military, ship detects from remote sensing images etc., are the research 

direction. Some of the other research directions may include the design of lightweight networks 

and visual attention mechanisms. 

 

2.2.1.3 Advantages and Disadvantages of Edge Computing Based on IoT 

There are several advantages about the edge computing based IoT that are listed below250,251:  

● Efficiency: an edge device takes full advantage of the available resources by allocating 

storage, computing, and control functions to available resources in any place between the 

end-user and cloud.  

● Cognition: an edge device is conscious of customer requirements.   

● Agility: it is quicker and inexpensive to experiment with edge devices and clients because 

data processing and storage are done close to the end user.  

● Latency: edge computing supports time-critical applications by enabling data analysis and 

data processing near the end-user, which grants IoT applications the ability to make 

decisions faster and better.  

There are several disadvantages about the edge computing based IoT that are listed below:  

                                                     
248 Liu D, Cui Y, Chen Y, Zhang J, Fan B (2020, Elsevier B.V.) Video object detection for autonomous driving: motion-

aid feature calibration. Neurocomputing 409:1–11. 
249 Qian R, Lai X, Li X (2021) 3D object detection for autonomous driving: A Survey 14(8), 1–24, [Online]. 
250 Gezer, V., Um, J., & Ruskowski, M. (2017). An extensible edge computing architecture: Definition, requirements 

and enablers. Proceedings of the UBICOMM. 
251 T. Lin, B. Park, H. Bannazadeh, and A. Leon-Garcia, ‘‘Demo abstract: End-to-end orchestration across SDI smart 

edges,’’ in Proc. IEEE/ACM Symp. Edge Comput. (SEC), Oct. 2016, pp. 127–128. 
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● Heterogeneity: Heterogeneity in the IoT-based edge computing environment exists in 

computing and communication technologies. Computing platforms can have different 

operating systems and hardware architectures, whereas communication technologies can 

be heterogeneous regarding the data rate, transmission range, and bandwidth. One of the 

challenges in edge computing is to develop a solution in software space that is portable 

across different environments. This challenge is crucial because various applications are 

deployed in edge devices.   

● Standard Protocols and Interfaces: Edge computing is an emerging technology in the IoT 

field. In this heterogeneous environment, different devices and sensors connect and 

communicate with one another and with the edge server via communication protocols. 

These devices have their own interfaces and thus demand specific communication 

protocols. Considering that different vendors manufacture different devices in the IoT 

environment, standard protocols and interfaces should be developed to enable 

communication among these heterogeneous devices. The development of standard 

protocols and interfaces in the IoT environment is challenging because of the rapid 

development of new devices.   

● Availability: Availability in the IoT-based edge computing environment includes hardware-

level and software-level provision of resources and services anywhere and anytime for 

subscribed IoT devices. Usually, availability comprises three factors, namely, mean time 

between failure, failure probability, and mean time to recovery. Ensuring the availability 

of resources and services for the growing number of IoT devices is a challenging research 

perspective. However, availability can be optimized by maximizing the mean time 

between failures and minimizing the failure probability and mean time to recovery.  

● Data Abstraction: With IoT, several data-generating devices are connected in the network, 

and all of these data generators report tremendously large raw data to the edge device. 

For the edge device, analysing such big data is computationally difficult. Security risks are 

also involved. Therefore, the data should be pre-processed at the gateway level, such as 

noise/ low-quality removal, event detection, and privacy protection. The processed data 

will be sent to the upper layer for future service provision. However, many challenges may 

occur in this process. For privacy and security purposes, applications running on edge 

devices should be blind to these raw data. Therefore, the details of the data should be 

removed during data pre-processing. However, the usability of the data can be affected 

by hiding the details of sensed data. Defining the extent to which the raw data should be 

filtered out is also a challenge because several applications cannot obtain accurate results 

from such data.   

● Security and Privacy: Edge computing acts as a boon to cybersecurity because data do not 

travel over a network. However, a highly dynamic environment at the edge of a network 

makes the network unprotected. Given that different devices are connected in IoT, a large 

array of potential security threats can be generated. Many applications are running at the 
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network edge, so the data provided to these applications should be in a hidden form. 

Otherwise, any intruder can use the open data for illegal purposes. For example, if a home 

is connected to IoT, then private data, such as individual health data, can be stolen. In this 

case, how to support the service without harming privacy is a challenge. Applications 

running on edge devices should be blind to the raw data. Personal data can be removed 

before reaching the edge device.   

 

2.2.2 CCTV Market 

2.2.2.1 Market Perspective and Implications 

The market for advanced airport CCTV analytics has grown significantly due to increasing 

demands for enhanced security and operational efficiency at airports worldwide. This growth is 

driven by the rising number of air passengers, heightened security threats, and the need for 

airports to optimize operations such as passenger flow and baggage handling. 

The current state of market analysis regarding Advanced Airport CCTV Analytics indicates a shift 

towards utilizing video surveillance beyond security purposes252,253 . This evolution involves 

integrating real-time data from ground radars with IP cameras to enhance aircraft management 

on airport aprons254. Innovative systems like ASEV are being developed to automatically assess 

airport surveillance situations, improving operator performance through real-time event 

assessment and privacy protection255. Airports are seen as ideal environments for developing 

digital marketplaces that offer context-aware services, such as personalized marketing campaigns 

and streamlined airport processes, leveraging CCTV analytics256. The focus is on combining 

security and operational needs, utilizing existing camera networks for both security and efficiency 

monitoring in critical infrastructure like airports. 

The demand for advanced CCTV analytics in airports is driven by the critical need for enhanced 

security protocols, operational efficiencies, and improved passenger experiences. The aviation 

industry's pivot towards Total Airport Management underlines the necessity for integrated, 

intelligent systems capable of not only surveillance but also providing actionable insights across 

                                                     
252 Arppitha, Krishna., Neha, Pendkar., Shruti, Kasar., Umesh, Mahind., Shridhar, Desai. (2021). Advanced Video 

Surveillance System.   doi: 10.1109/ICSPC51351.2021.9451694 
253 Ezequiel, Roberto, Zorzal., Ariel, Fernandes., Bruno, Castro. (2017). Using Augmented Reality to overlapping 

information in live airport cameras.   doi: 10.1109/SVR.2017.53 
254 Simon, Denman., Tristan, Kleinschmidt., David, Ryan., Paul, Barnes., Sridha, Sridharan., Clinton, Fookes. (2015). 

Automatic surveillance in transportation hubs. Expert Systems with Applications. doi: 10.1016/J.ESWA.2015.08.001 
255 Simon, Denman., Tristan, Kleinschmidt., David, Ryan., Paul, Barnes., Sridha, Sridharan., Clinton, Fookes. (2015). 

Automatic surveillance in transportation hubs. Expert Systems with Applications.  doi: 10.1016/J.ESWA.2015.08.001 
256 Eli, Katsiri., George, Papastefanatos., Manolis, Terrovitis., Timos, Sellis. (2014). Airport Context Analytics.   doi: 

10.1007/978-3-319-11113-1_13 
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various operational facets. The global uptick in air travel, alongside heightened security concerns, 

underscores the urgency for such advanced analytics solutions. 

Companies like Hikvision, Dahua, Axis Communications, and Bosch Security Systems are at the 

forefront of integrating smart technologies into CCTV systems. Innovations include AI-powered 

cameras, thermal imaging for health and safety applications, and integrated analytics platforms. 

2.2.2.2 Regulations 

The adoption and implementation of advanced CCTV analytics in airports are heavily influenced 

by regulatory standards and privacy laws, which vary significantly across regions. Key regulatory 

considerations include: 

● Data Protection and Privacy Laws: In jurisdictions such as the European Union, stringent 

data protection laws (e.g., GDPR) impose strict guidelines on the collection, processing, 

and storage of personal data. These regulations mandate clear consent mechanisms, data 

minimization, and the implementation of substantial security measures to protect 

personal data. 

● Aviation Security Regulations: International and national aviation authorities (e.g., ICAO, 

SHGM, EASA) set comprehensive security standards that include the use of surveillance 

technologies. Compliance with these standards is mandatory for airports and can drive the 

adoption of advanced CCTV analytics solutions. 

● Emerging Technologies Regulation: As technologies like 3D sensing and computer vision 

evolve, regulatory bodies are increasingly focusing on setting guidelines that ensure their 

responsible and ethical use, especially concerning biometric data and surveillance. 

2.2.2.3 Competition & Growth Opportunities 

The market is populated with a mix of established technology vendors such as SITA, Amadeus, 

and Thales, and emerging companies focused on computer vision and 3D sensing technologies. 

While traditional vendors have a stronghold in airport operations technologies, the influx of 

companies specializing in advanced analytics and 3D sensing solutions introduces a new 

dimension to the competition, fostering innovation and potentially reshaping market dynamics. 

● Beyond Security: Increased security threats in both public and private sectors drive the 

demand for smarter surveillance systems. Extending the application of CCTV analytics 

from security to operational efficiency and passenger experience is crucial. 

● Technological Advancements: Innovations in AI, machine learning, and IoT (Internet of 

Things) are key enablers for upgrading old CCTV systems. Leveraging ongoing 

developments in 3D imaging and computer vision to offer more sophisticated, accurate 

analytics are considered. 
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● Metaverse Applications: Exploring the use of 3D sensing and CCTV analytics in creating 

virtualized environments and experiences, catering to the burgeoning interest in the 

metaverse is a point of view. 

● Regulatory Compliance: Governments and regulatory bodies are mandating more 

stringent security measures, pushing for the adoption of advanced surveillance 

technologies. 

● Computer Vision and 3D Sensing 

Computer vision technologies are at the heart of advanced CCTV analytics, enabling sophisticated 

surveillance capabilities that include facial recognition, behaviour analysis, and anomaly 

detection. The advent of 3D sensing technology aims to mimic the human visual system, offering 

depth perception and enhancing the accuracy of analytics. These technologies find applications 

beyond security, aiding in crowd management, and facilitating immersive customer experiences. 

● Integration with Other Systems 

The vision for Total Airport Management emphasizes the integration of advanced CCTV analytics 

with other operational systems within airports. This integration promises a synergistic approach 

to airport management, where insights derived from CCTV analytics can inform decisions across 

logistics, retail, and customer service operations. 

2.2.2.4 Market and Business Implications 

The regulatory environment has profound implications for the market and businesses operating 

within it: 

● Compliance Costs: Compliance with diverse and evolving regulatory standards can 

significantly increase operational costs for companies. This includes investments in 

technology that ensures data protection, privacy compliance, and security standards. 

● Innovation vs. Regulation Balance: Businesses must navigate the fine line between 

innovation and compliance, ensuring that new solutions adhere to regulatory 

requirements while pushing the boundaries of what's technologically possible. 

● Market Entry Barriers: Stringent regulations can act as barriers to entry for new players, 

particularly small and medium-sized enterprises (SMEs) that may lack the resources to 

meet compliance demands. This can affect the competitive landscape, potentially limiting 

the diversity of solutions available in the market. 

● Global Market Dynamics: The regulatory landscape influences the global dynamics of the 

market. Companies may find it easier to deploy solutions in regions with less stringent 

regulations, leading to uneven market development and adoption rates worldwide. 

● Trust and Adoption: Compliance with regulations, especially those related to privacy and 

data protection, can enhance trust among users and regulatory bodies, facilitating the 

adoption of advanced CCTV analytics in sensitive environments like airports. 
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● Collaboration Opportunities: The complexity of the regulatory environment may 

encourage collaborations between technology providers, regulatory consultants, and legal 

experts to develop solutions that not only push technological boundaries but also adhere 

to the highest standards of privacy and data protection. 

 

2.2.3 Sensor Market 

2.2.3.1 Applications of mmWave Radars and Machine Learning Techniques  

MmWave radars are used in a variety of applications include automotive applications, industrial 

applications, military applications, medical applications, robotics and automation applications, 

civilian applications, and security and surveillance applications257. 

                                                     
257 https://www.mdpi.com/1424-8220/23/21/8901 
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Figure 25. MmWave radar sensor applications cited in this article 

 

● Automotive Applications 

In automotive applications, there are numerous studies utilizing mmWave radar sensors to 

accurately determine the radial distance, velocity, and Angle of Arrival (AoA) of moving objects. 

These applications include adaptive cruise control, autonomous emergency braking, blind spot 

detection, lane change assistance, front and rear cross-traffic alert, automated parking, and in-

cabin detection applications (such as gesture recognition and passenger location detection). 
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Table 2. Automotive applications table on this article 

 

● Industrial Applications 

Among the industrial applications utilizing mmWave radar sensors are level sensing of fluids, 

volume identification of solids, infrastructure systems, surface quality assessment in production 

industries, and vibration monitoring. 

Table 3. Industrial applications table on this article 

 

● Medical Applications 

Table 4. Medical applications table on this article 
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● Robotics and Automation Applications 

Table 5. Robotics and automation applications table on this article 

 

● Security and Surveillance Applications 

Table 6. Security and Surveillance applications table on this article 
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● Other Applications 

Table 7. Other applications table on this article 

 

 

2.2.3.2 Advantages and Disadvantages of mmWave Sensors Compared to Other Sensors 

MmWave radar sensors have advantages and disadvantages compared to other detection sensors 

(such as cameras, LiDAR, ultrasonic sensors, etc.). 

Advantages: 
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Performance in Adverse Weather Conditions: mmWave radar sensors can effectively operate 

even in adverse weather conditions such as rain, fog, snow, or dust that do not affect visibility. 

This is particularly important for autonomous vehicles and security systems. 

Compact Design: With internally integrated patch antennas on the board, mmWave radar sensors 

take up very little space. 

3D Detection: Radar sensors typically have the capability of 3D object and point velocity detection, 

allowing for more accurate determination of object position and movement. It also provides 

Range-Doppler data which includes both range and velocity information about objects around the 

sensor in 2D form. 

Operation in Low-Light Conditions: Compared to optical sensors like camera systems, mmWave 

radar sensors can perform better in low-light conditions or darkness. 

Privacy: In comparison to camera-based systems, radar sensors provide privacy as they do not 

require the collection of personal images or details. 

Disadvantages: 

Less Precise Positioning and Less Detailed Object Recognition: mmWave radar sensors do not 

have as detailed object recognition capabilities as sensors such as cameras or LIDAR. Especially 

distinguishing and identifying small objects may be difficult. Radio waves emitted by radar have 

low accuracy and produce very sparse data. In addition to wavelength issues, inherent noise is 

also a cause of sparsity in radar data. Therefore, many studies have investigated effectively 

combining radar with camera sensors to achieve more accurate detection and object 

identification that are not possible with radar alone258. 

Low Resolution: Compared to optical sensors, radar sensors generally have lower resolution, 

which can result in less detailed shape and structure information. 

High Cost: In some cases, radar sensors can be more expensive compared to other detection 

sensors. 

Type of Obstacle Detection: In some cases, radar sensors may be less effective in determining the 

types of obstacles (such as trees, signs, etc.) compared to sensors like LIDAR. 

Poor Detection for Some Materials and Small Objects: There are some objects that it is not good 

at detecting by mmWave radar sensors. Also, some objects are difficult to detect. These are 

                                                     
258 https://www.mdpi.com/2076-3417/12/4/2168 
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relatively small objects and objects with low reflectivity to radio waves, such as cardboard 

boxes259. 

 

2.2.3.3 Business and Marketing View 

In crowded environments, security measures are becoming increasingly important, which in turn 

increases the demand for mmWave radar sensors. Particularly in places like airports, shopping 

malls, and other crowded areas, early detection and prevention of potential threats are of great 

importance. In such environments, features such as high sensitivity, fast response capabilities, 

and resistance to variable environmental conditions like weather and light may be necessary. 

mmWave radar sensors can meet these demands with their wide coverage and rapid detection 

capabilities. 

Moreover, the privacy of customers or users is important to them. mmWave radar sensors can be 

developed in response to potential future concerns regarding data security and privacy. However, 

detecting small objects and objects with low reflection characteristics can be a significant 

challenge in such environments, so these factors should be considered in the selection and 

placement of sensors. 

Many companies in the industry, especially in the security sector, have been able to respond to 

problems using mmWave radar sensors. For example, the company NANORADAR260 in China has 

developed a solution called Radar Video Surveillance System by combining mmWave radar 

sensors and HD PTZ cameras. This system is equipped with radars that actively detect targets. The 

radar sensors used trigger PTZ cameras for automatic tracking. By employing video analysis 

technology and artificial intelligence algorithms for dual identity verification, the system sends 

alarms to the security monitoring center. This system can adapt to all kinds of adverse weather 

conditions such as rain, snow, fog, dust, and smoke, while providing 3D protection to lock targets 

in real time and providing access to the control center by recording alarm videos. 

                                                     
259 https://us.metoree.com/categories/2759/ 
260 http://en.nanoradar.cn/Article/detail/id/289.html 



102 

 

 

 

 

Figure 26. Ground Surveillance Security System of NanoRadar Comp261 

MINEW company262, which operates with mmWave radar sensors, provides businesses with 

unique advantages by preferring mmWave radar sensors. With products containing mmWave 

radar sensors like MSR01, they offer services to meet the security and operational efficiency 

needs of businesses by providing solutions to problems such as Presence Detection, People Flow 

Management, Redefining Safety with Advanced Sensing, and Children/Adults/Pets 

Differentiation. Additionally, they provide significant advantages for businesses such as the ability 

to provide fast and accurate information, the ability to operate independently of lighting 

conditions, and protection of personal privacy. 

 

Figure 27.  One of use cases of MSR01 product 

                                                     
261 http://en.nanoradar.cn/Article/detail/id/369.html 
262 https://www.minew.com/product/msr01-millimeter-wave-radar-sensor 
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In addition, NoraSens company263 has utilized mmWave radar sensors in applications such as 360° 

Short-Range Perception (ASPER), Automotive In-Cabin Monitoring (ACAM), Human Presence 

Detection (RIOT100), and Industrial Zone Monitoring (ZORM). These, along with many other 

companies, have employed mmWave radar sensors successfully for various purposes. 

 

2.2.4 Market State of the Art in Construction Site Safety 

According to a report from Mordor Intelligence, the artificial intelligence market in construction 

was valued at USD 2.74 billion in the previous year, and it is expected to reach USD 9.53 billion by 

the next five years, registering a CAGR of 24.30% during the forecast period.264 

This growth would be mainly driven by AI’s ability to transform and optimise laborious, repetitive, 

and common tasks across construction projects. 

Construction sites are notorious for frequent workplace-related fatalities due to their dangerous 

and risk prone environment. Sadly, in the construction sector, as well as transportation and 

logistics, workers are five times more likely to die on the job when compared with workers in 

other sectors.265 Tracking the real-time interactions of workers, machinery, and objects on site to 

signal any potential safety issues would be an important step in ensuring safety at each stage of 

the construction project. By monitoring the day-to-day site activity, managers and other 

stakeholders can assess safety compliance, as well as address potential safety risks that stem from 

transiting workers, equipment, and materials. There is also the tracking of onsite presence and 

entry into restricted access zones. 

Many companies in the field of construction site safety are investing significantly in extracting 

analytical data from images and sensors. However, there is currently a gap in the market for a 

comprehensive, multi-modal platform that integrates IoT sensors, tags, live video feeds from 

drones and robots, and images from static cameras. The development of such a platform would 

represent a significant leap forward, providing a substantial competitive advantage over existing 

solutions. 

Direct Competitors in Belgium: 

- Buildevolution266: time-lapse solutions for marketing, management, & follow-up of 

construction projects. 

                                                     
263 https://www.novelic.com/norasens-radar-sensor-technology 
264 https://www.mordorintelligence.com/industry-reports/artificial-intelligence-in-construction-market 
265 https://www.equipmentworld.com/business/article/15304920/construction-worker-death-rate-declines-22 
266 https://www.buildevolution.be/ 
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- TowerEye267: security cameras, lighting, and alarm system all in a single solution. 

- Time-Lapse Factory268: time lapse movies of complex projects within the construction and film 

industries that use specially designed and built time-lapse camera systems. 

- Visuatech269: distributor of innovative camera solutions. 

- VNI (View and Integrate)270: transforming camera images into reliable management 

information. 

- Elapse271: time-lapse video retraces the entire construction or demolition project to keep a 

visual and aesthetic trace through a promotional film. 

- AICON272: Data Analytics on construction sites. (AI and ML) 

Direct competitors globally: 

- Oxblue US273: OxBlue’s construction cameras and technology bring together all aspects of a 

project via image monitoring, time-lapse video, and an intuitive interface accessible from any 

location. They work with AI that can estimate activities on the construction site such as 

weather downtime, security, activity, and construction equipment tracking. 

- Earthcam US274: live-streaming video of jobsite activity with high quality images used for 

documentation and marketing. AI alerts (recognizing objects and activity on construction 

sites). 

- Sensera Systems US275: real-time site intelligence solution using integrated compact 

solar/wireless cameras, sensors, and software in a single platform. The information is stored 

in Sensera SiteCloud which offers a range of features for viewing the archived camera images 

and video. 

- Evercam IRL276: advanced camera software that enables clients to concentrate on better 

management and speedy completion. 

                                                     
267 https://towereye.be/en 
268 http://www.timelapses.be/ 
269 https://www.visuatech.be/ 
270 https://www.viewandintegrate.be/ 
271 http://www.elapse.be/ 
272 https://www.aicon.construction/ 
273 https://www.oxblue.com/ 
274 https://www.earthcam.com/ 
275 https://www.senserasystems.com/ 
276 https://evercam.io/ 
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- Devisubox FR277: time-lapse cameras that capture HD images of the construction site, which 

are transmitted to a cloud platform and accessible in real time. AI Features: AI (face blurring, 

helmet detection, people counting, attractive images) 3D integration with ioT trigger (motion 

detection) 

- Baucamera GER278: suppliers of rental cameras for construction supervision and 

documentation. 

- Enlaps FR279: time-lapse video used for sharing construction project monitoring on social 

media or broadcast during a grand opening. AI Features: activity monitoring, object detection 

and 3D visualisation.  

- Others: PhotoSentinel280 |  US, Camdo281 | US, Spot-r282 | US, Bouwcam283 | NL, Boxcam284 | 

FR. 

Competitors’ use cases: 

- Smartvid.io285, US (Now, Newmetrix) : Smartvid.io uses a user-friendly AI platform called 

Vinnie (Very Intelligent Neural Network for Insight and Evaluation) to mainly detect project 

risk and improve worker safety. 

- Indus.ai286, US: Uses a combination of AI, computer vision, and machine learning to analyze 

project progress, monitor all site activity and scan for safety concerns. Instead of a human eye 

monitoring everything, Indus.ai sends alerts. [recently taken over by Procore] 

                                                     
277 https://www.devisubox.com/ 
278 https://bau.camera/ 
279 https://enlaps.io/fr/ 
280 https://photosentinel.com/ 
281 https://cam-do.com/ 
282 https://www.spotr.ai/ 
283 https://bouwcam.live/ 
284 https://boxcam.fr/ 
285 https://www.newmetrix.com/ 
286 https://www.procore.com/en-gb 

https://photosentinel.com/
https://cam-do.com/
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- Others: Doxel.ai287 | US, Cad42288 | FR, Airsquire.ai289 | NL, Pixelvision290 | B,  Firmus | ISR, 

Avvir291 | US, OpenSpace292 | US , Pillar Technologies293 | US, Pix4D294 | CH. 

 

2.2.5 Market State of the Art on the Use of Drones in the Construction Industry 

Drones in the construction industry already add a lot of value today.  They are used to speed up 

surveys and to measure the progress on construction sites.  The use of drones is common at many 

large construction companies where they are operated by certified drone pilots. Drones that are 

used often for this purpose are DJI Phantom 4 RTK295 or the DJI Mavic 3296 Enterprise with RTK 

module297.  These drones weigh respectively 1,4kg and 915g so they must be operated in category 

A2.  This means that they are legally not allowed to fly over people who are not involved in the 

operation, and they have to keep a 5m horizontal distance from them.  To be involved in the 

operation, a person needs to know what the drone is used for and what its flight plan is, what the 

safety instructions are.  Additionally, involved persons need to always know where the drone is 

and be ready to act in case of an unexpected problem with the drone. On a construction site with 

workers from many contractors and subcontractors moving around, it is difficult to inform 

everyone at the right moment.   

A second limitation construction companies face is that they have a limited number of drone 

pilots who often also have other responsibilities (e.g., surveyors). This means that it's difficult to 

‘quickly do a scan’ to e.g., measure progress of a certain part of the site. For example, if the drone 

pilot is working on a site near Antwerp, it is impractical to quickly drive to a second site near 

Kortrijk to quickly measure the volume of a pile of sand that needs to be transported the next 

day. 

Automated drones are the solution to provide regular updates without having to send a certified 

drone pilot on site.  Additionally, they can be used for security purposes. There are several 

                                                     
287 https://doxel.ai/ 
288 https://cad42.com/ 
289 https://www.airsquire.ai/ 
290 https://www.pixelvision.ai/ 
291 https://www.avvir.io/ 
292 https://www.openspace.ai/ 
293 https://pillar.tech/ 
294 https://www.pix4d.com/ 
295 https://enterprise.dji.com/phantom-4-rtk 
296 https://enterprise.dji.com/mavic-3-enterprise 
297 https://www.easa.europa.eu/en/domains/civil-drones/drones-regulatory-framework-background/open-

category-civil-drones 
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companies working on a ‘drone-in-a-box’ solution.  Examples are the DJI Dock298 with a DJI 

Matrice 30 drone (3,95kg)299, the Percepto dock with drone (8,5kg)300 or the Dronematrix Yacob 

(±6kg)301. All drones currently being developed are relatively heavy and the price of a system 

ranges from 30-50kEuro.  This means that the ground risk and dealing with uninvolved people will 

be difficult to handle.  Additionally, the price tag is a limitation for many smaller companies to 

adopt the technology. 

The innovation Airobot wants to pursue is to use low-cost and lightweight drones for the same 

purpose - combined with smart cloud software to control them remotely. If successful, this will 

offer 2 large benefits to potential users. Firstly, they’ll be able to more easily use the situation in 

areas with uninvolved people (cities…). Secondly, the purchase price of these drones is much 

lower (< 1.000 Euro), which makes them accessible to many more companies. However, 

compared to the larger platforms, these drones have more limited resources (camera quality, 

anti-collision technology, GPS accuracy…) which makes it more difficult to automate them. 

Optimized flight planning and threat detection algorithms, that can efficiently work at the edge, 

should be developed by combining information from multiple sensors to overcome the challenges 

posed by resource limitation. Moreover, exploring lightweight cryptographic algorithms and non-

repudiation mechanisms, such as secure logging systems, will enhance both security and 

operational efficiency in the context of automated drones, while also providing valuable evidence 

in the event of accidents or system issues. 

 

2.2.6 Market State of the Art of IIoT for Asset Monitoring 

The Industrial Internet-of-Things (IIoT) market is a steadily growing market302. The creation of a 

digital twin of each object in the supply chain creates value for different stakeholders. This 

datafication of the supply chain has been going on for some years but is still not finalized. One of 

the main reasons for this is that the Return-on-Investment calculation only fitted for high value 

assets in the beginning and is now slowly adopting for more and more assets. In addition, the 

available technology was still expensive and did come with a high operational cost due to the 

need for replacement of the batteries.  

The “asset pyramid”, Figure 5, shows the evolution of which assets were datafied first (the top in 

grey) and the evolution towards the current situation (the bottom in green). Initially only high-

                                                     
298 https://enterprise.dji.com/dock 
299 https://enterprise.dji.com/matrice-30 
300 https://percepto.co/drone-in-a-box/percepto-base/ 
301 https://www.dronematrix.eu/product 
302 https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/iot-value-set-to-accelerate-through-

2030-where-and-how-to-capture-it 
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value assets with a battery could be datafied. With the evolution of technology and the lower TCO 

cost, it is becoming possible to also connect low-value assets without battery to the Internet. The 

figure reflects well the general market trend, namely going to lower value assets, but higher 

volumes.  

 

Figure 28. Asset pyramid303 

The growth of the business of Sensolus will depend on if we can answer to this trend. Connecting 

more assets, in higher volumes, at lower connection costs per asset is key to further dataficate 

more asset flows and thus further optimize the supply chain processes.   

The most important competition of the BLE tag-based solution Sensolus presented in SINTRA are 

the players in the RFID market. (Asset infinity, Zebra solutions, ...). Today, some of the existing 

RFID players are moving up in the chain, and some international innovators extend their portfolio 

with BLE tags also lowering the cost/asset, all with the focus on close-loop supply chain. 

 

2.2.7 Market State of the Art of Logistic Hubs and Harbours Safety/Security  

Video analytics is one of the important components of logistics hub safety and security solutions. 

The global market for video analytics is estimated to be 7.1 billion USD in 2022 and is prognosed 

to grow into 20.3 billion USD by 2027304. Asia Pacific is expected to record the highest growth over 

this period. One of the biggest drivers behind this is thought to be the increased focus by 

governments to improve public safety and reduce crime rates. The competence of analytics to 

incorporate way more relations into the analyses as a human and the exclusion of human error 

and fatigue are main drivers for a technology solution. Limitations in labour cost as well as 

shortage at the labour market increase this focus. Generating predictive information using video 

                                                     
303 https://www.grandviewresearch.com/industry-analysis/industrial-internet-of-things-iiot-market 
304

 https://www.marketsandmarkets.com/Market-Reports/intelligent-video-analytics-market-778.html 

https://www.marketsandmarkets.com/Market-Reports/intelligent-video-analytics-market-778.html
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analytics is thought to be an important opportunity within video analytics, using statistics, 

modelling, and data mining, using ML and AI techniques. Important constraint for this technology 

to develop is the compliance to GDPR.  This brings limitations to the use of analytics identifying 

individuals which limits the possibility to individualise patterns of behaviour and distinguish these 

patterns from anomalies. Also, GDPR requires an organisation to have valid reasons to install 

video surveillance.  This tends to lead to a situation where video surveillance is only present in 

the area of immediate risk. The absence of cameras (and other data sources) for a wider area 

limits the possibilities to find patterns that lead to an infringement. 

According to AllTheResearch, the global AI for surveillance and security market will see substantial 

growth by USD 4.46 billion in 2023. This market is expanding at a faster rate to a wider range of 

countries. At least 43% of 176 countries are actively using AI for surveillance and security. This 

includes smart city/safe city platforms, facial recognition systems, and smart policing. Software 

companies like Avigilon Control Center (ACC), Avigilon Access Control Manager (ACM), Hitachi 

Video Management Platform (VMP), Dell Technologies IoT Solution for Surveillance, Eagle Eye 

Cloud VMS, and DMI EndZone are providing various AI for surveillance and security solutions and 

platforms for different camera manufactures like Manufacturers Axis, Milestone, Vivotek, QNAP, 

Optica, Mobotix, ACTi, Arecont Vision, Avigilon, Bosch, Canon, Cisco, and Extreme CCTV. 

The second component used in logistics hub security solutions is drug detection. For years, 

investigation officers use chemical spot tests for presumptive drug testing. However, such tests 

are only available for a small range of drugs, are prone to false positive reactions, require manual 

handling of, and reaction with, the suspect material, and require single-use consumables and 

chemicals thus impacting the environment. As a more advanced solution, NIR (near-infrared) 

sensors are very promising for fast and reliable on-scene drug detection. Currently, NIRS is widely 

used in many industries including pharmaceuticals, petrochemical, agri-food, and recycling. While 

this method has existed for decades, the cost and complexity of existing spectrometer analysers 

hinder the full adoption of these systems and limit the number of measuring nodes, locations, 

and use cases. The large dimensions of spectrometer systems make their suitability for in-field 

use scenarios prohibitive. Furthermore, the high barrier to adoption makes them beyond reach 

for small and medium sized enterprise users, who are forced to send samples to external 

analytical labs. Relying on external laboratories for chemical analysis is expensive, time-

consuming and may cause disruptions to critical processes.  

The third major technology focus of logistics hub security is on drones. Mobile robots are already 

being used with some frequency. This usually concerns relatively simple drones with simple 

cameras. Until now, drone inspection almost always took place with a pilot on site and within the 

visible range. Autonomous flying and certainly flying beyond visual line of sight (BVLOS) is rare 

(strict legislation also plays a role in this). Reliance on a pilot severely limits the scalability of UAV 

based solutions and services. The bulk of the drone applications for inspection concerns 
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applications that are aimed at collecting regular camera images (RGB image). More fundamental 

innovation steps are expected in the coming years in the field of increasing the autonomy of 

drones, self-coordination, and interaction with the physical world. The final publication of the 

new ISO approved drone standards is expected to have a massive impact on the future growth of 

the global drone industry. Several recent reports have attempted to forecast the economic impact 

of air drones globally. For instance, in its report Drones Reporting for Work, Goldman Sachs has 

estimated that the size of the global drone industry will reach $100 billion by 2020305. Most 

recently, analysts at Barclays estimate that the global commercial drone market will grow tenfold 

from $4bn in 2018 to $40bn in five years306. Differing estimations these may be, but it seems all 

are predicting rapid growth in the sector. 

 

2.2.8 Market State of the Art in the Drone Sector 

Currently, drone inspections of industrial sites predominantly rely on Visual Line-of-Sight (VLOS) 

flights. However, this approach is marred by inefficiencies, primarily due to the reliance on 

subcontracted pilots who are typically only engaged for planned inspections. These planned 

inspections are geared toward expected events e.g, inspection of leaking pipes. Nevertheless, for 

robust security monitoring of vital infrastructure such as ports, there is an imperative need for an 

integrated aerial and ground surveillance system like drones and robot dogs, capable of 

instantaneous deployment at any given moment. 

Effective security monitoring of critical infrastructure necessitates the combination of diverse 

data sources, including conventional Internet of Things (IoT) sensors, such as localization sensors, 

fixed cameras, and a high-performance wireless network. Currently most of these data sources 

work in parallel of each other, they all have their own data platform, data resolution and formats. 

This data needs to be combined with multimodal data integration algorithms, without which we 

believe it is not possible to ensure comprehensive security and surveillance of big critical 

infrastructure. 

 

2.2.9 Market State of the Art in the Security Sector 

Today, security primarily consists of one sensor - one alarm - one alarm response, lacking an 

integrated approach to full multi-sensor security. We are going to explore how we can evolve 

towards integrated security handling. This would lead us to a proactive approach with a reactive 

response. 

                                                     
305 https://dronedj.com/2019/01/28/drones-reporting-for-work-goldman-sachs/ 
306 Patrick McGee, “How the commercial drone market became big business,” The Financial Times Limited 2020, 

https://www.ft.com/content/cbd0d81a-0d40-11ea-bb52-34c8d9dc6d84 
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 This reactive response would visualize the entire on-site situation comprehensively and allow us 

to holistically evaluate it in the SOC (Security Operations Centre) through a digital twin. This, in 

turn, would elevate the awareness, thinking, and operational patterns of our operators to a higher 

level. 

 Through Integration of data platforms and systems, organizations can become more accurate at 

identifying and remediating risks, responding to incidents quickly, reporting on trends, and 

reducing costs 

This investment is not exclusively focused on the need to identify cost-reduction strategies but 

rather to improve risk posture and to address corporate responsibility to promote a culture of 

security awareness and protection of people and assets. This wil also enlarge the ability to protect 

organizations from operations risks that may disrupt the business and overall revenue creation 

Securitas invests in a continuous transformation journey towards technology-based solutions. 

Our strategy adds resilience and creates a significant platform for innovation, as we have the 

ambition to drive and redefine the future of the security industry. This project is completely in 

line with our strategy and will enable us to differentiate in the Belgian security market and 

maintain a competitive edge against other security companies. 

 

2.2.10 Market State of the Art on Visual Inspection 

Currently, depending on the type of visual inspection, they are carried out manually by operators, 

professional climbers and certified inspectors. The challenge that these inspectors face in the 

current market state of the art is that a manual inspection is inefficient and requires extra tools 

(e.g. scaffolding, aerial platforms, or even diving equipment). Visual inspections in the industry 

are costly as they take a long time due to the high costs of the inspectors, equipment and 

operational losses linked to the downtime of the assets. The inspectors are struggling with a lot 

of administrative work (very often on paper) to create the inspection reports. These inspections 

are also not without danger. Some areas which need to be inspected on an industrial yard or 

infrastructure are hard to reach (e.g.: heights, confined spaces, underwater inspections). 

Additionally, in the scenario of an incident, the inspector is required on site for the visual 

inspection and risks being injured when the incident unexpectedly escalates. Due to these 

constraints which are linked to the market state of the art on visual inspections, industrial 

companies and inspection service providers are looking for new technologies like robotic 

inspections to improve the inspection efficiency and overall costs. By doing so the plan is to 

improve the overall inspection safety by reducing the exposure of the inspector to external risks. 

They are also looking towards the use of Artificial intelligence for support during the inspection 

itself and the creation of the inspection reports. 
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