

SmartDelta

Automated Quality Assurance and Optimization in Incremental

Industrial Software Systems Development

D2.4 – SmartDelta Methodology: Users and Developers
Guidelines

Submission date of deliverable: Dec 31, 2024

Edited by: Benedikt Dornauer (University of Innsbruck, Austria), Andrea Pabón-Guerrero (Universidad
Carlos III de Madrid, Spain), Mehrdad Saadatmand (RISE, Sweden), Hakan Kilinc (NetRD, Turkey),
Nicolas Bonnotte (Akkodis, Germany), Andreas Dreschinski (Akkodis, Germany), Martin Heß
(Software AG, Germany), Robin Gröpler (ifak, Germany), Muhammad Abbas (RISE, Sweden), Raluca
Marinescu (Alstom, Sweden), Zulqarnain Haider (Alstom, Sweden), Akramul Azim (Ontario Tech
University, Canada), Eduard Paul Enoiu (Mälardalen University, Sweden), and WP2 partners

Project start date

Project duration

Project coordinator

Project number & call

Project website

Contributing partners

Dec 1, 2021

36 months

Dr. Mehrdad Saadatmand, RISE Research Institutes of Sweden

20023 - ITEA 3 Call 7

https://itea4.org/project/smartdelta.html & https://smartdelta.org/

SmartDelta partners

Version number

1.0

Work package

Work package leader

Dissemination level

WP2

Juan Miguel Gomez Berbis (UC3M)

Public

Description

D2.4 describes the SmartDelta Methodology, addressing key aspects of
delta management, providing solutions for different stages of the software
engineering process. Its goal is to guide companies in managing software
deltas, enabling tailored incremental development aligned with their
strategic objectives.

https://itea4.org/project/smartdelta.html
https://smartdelta.org/

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 2 of 34

Executive Summary

The SmartDelta consortium engages in collaborative research with a diverse range of industrial

partners, including those in the railway, e-mobility, telecommunications, finance and banking,

enterprise software, logistics, personal mobility, and cybersecurity sectors. Work Package 2 (WP2)

offers a methodology for internal and external stakeholders, providing essential guidance for

interacting with SmartDelta's solutions and workflow. One of the key objectives of these materials

is to empower SmartDelta stakeholders to easily implement specified and developed procedures

and solutions and understand features and capabilities of offered functions and tools and adopt

them in their own contexts.

The SmartDelta Methodology offers a systematic guideline for managing software quality in

incremental software development contexts, helping to adapt seamlessly to evolving requirements.

By addressing key challenges in delta management, it delivers tailored solutions aligned with the

various phases of the software engineering lifecycle. With a focus on empowering companies to

efficiently handle software deltas, the SmartDelta Methodology facilitates the iterative development

of systems while aligning with specific business goals and strategies.

Building upon industrial evaluations and incorporating valuable lessons learned, this document

presents the final version of the SmartDelta Methodology developed by the project consortium. It

reflects the thoughtful evolution of our approach.

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 3 of 34

Table of Contents

Executive Summary .. 2

1. Introduction of SmartDelta Methodology .. 4

2. SmartDelta Methodology Stages .. 5

3. SmartDelta Stages and Technical Areas: Inputs, Outputs, Deltas, and Their
Interrelationships ... 8

3.1. Preconditions Consideration .. 8
3.2. Requirements Engineering (RE) ... 9
3.3. Incremental Development .. 10
3.4. Quality Assurance.. 12
3.5. Recommend and Predict .. 13
3.6. Monitoring and Visualizing ... 14

4. Mapping of the SmartDelta Tools to the Methodology ... 16

5. Industrial Application Examples ... 21
5.1. Enterprise Software – Software AG .. 21
5.2. Railway Domain - Alstom ... 24
5.3. Smart Industry - Akkodis .. 29

6. Evolution of the SmartDelta Methodology ... 33

References .. 34

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 4 of 34

1. Introduction of SmartDelta Methodology

SmartDelta builds automated solutions for quality assessment of product deltas in a continuous

engineering environment. It provides intelligent analytics from development artifacts (e.g., source

code, log files, requirement specifications, etc.) and system execution, offering insights into quality

improvements or degradation of different product versions and providing recommendations for the

next build. To understand the relationships between individual processes and solutions, we created

a software delta management concept labeled as the SmartDelta Methodology.

The SmartDelta Methodology provides a structured approach for managing software quality in

incremental software development that emphasizes adaptability to change. It enables companies to

address essential aspects of delta management within the software engineering process, offering

targeted solutions for various stages. In this project,

A delta is any change in a software product that results in a new product instance

with different functionality and/or quality properties.

Examples of such changes might involve adding or removing features and components, applying

necessary fixes and updates, reconfiguring the product for deployment in a different environment,

or customizing it to satisfy the requirements of a new customer. This definition of Delta discussed

here is often linked to the temporal aspects of product evolution and is commonly referred to as

Version Delta. A version represents a specific release of a software product, typically including

updates, that have bug fixes, enhancements, or new features, all of which can be viewed as forms

of deltas. A Variant Delta refers to distinct instances of software that have been modified or

customized for specific purposes or applications. These variants may differ in functionality, features,

or configurations while maintaining a common core or foundation derived from the original software.

They may arise from multiple version updates.

It is observed that software quality can change or even decline over time with each version or

variant, and maintaining quality with existing processes and methods demands a considerable

investment of resources. These updates may enhance certain quality aspects, while some other

aspects can deteriorate. The main objective of the SmartDelta Methodology is to provide a

comprehensive guideline to support companies in managing quality across software deltas,

enabling incremental development of their software systems according to their unique requirements

and strategic objectives. To achieve this, the SmartDelta Methodology enables improvements

across several dimensions by targeting and meeting the following objectives:

Table 1: Goals of the SmartDelta Methodology

Objectives Description

Improve version

management

The SmartDelta Methodology allows for an examination of the product's evolution
over time, elucidating the way its constituent components have changed and the
probable evolution of these components in the future.

Improve variant

management

The objective is to facilitate the management and differentiation of multiple variants
of a product, with a particular emphasis on understanding and reusing software
components that share similarities across variants.

Improve

Resources
The solutions provided by SmartDelta result in a reduction of resource consumption
through the automation of processes, the reuse of artifacts, and the application of
artificial intelligence, while simultaneously enhancing the overall quality of the
software. Here, "resources" encompass time savings, reduced computational power

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 5 of 34

Objectives Description

requirements, minimized human effort, and enhanced scalability, among other
factors.

Improve overall

quality

The SmartDelta Methodology is designed to facilitate quality improvement in CI/CD
practices through the provision of comprehensive monitoring and visualization
capabilities.

2. SmartDelta Methodology Stages

Figure 1: Methodology Stages Overview

By focusing on both Version Deltas (incremental updates within a product's lifecycle) and Variant

Delta (customizations for specific applications), the SmartDelta Methodology is designed to address

the evolving needs of complex software systems. It guides the development lifecycle through six

key stages. Each stage incorporates delta-aware practices, ensuring that every modification meets

the product's quality expectations. The SmartDelta Methodology contains several process stages

that are part of a software development lifecycle:

Table 2: Methodology Stages Description Overview

Stage Description

Preconditions

(Architecture, Code, Design

and other Artifacts)

Influence factors from stakeholders, entities, and other external

sources (including architecture, management processes, code

artifacts, and design principles) shape the product's direction,

ensuring alignment with both external and internal requirements.

Each new delta introduced at this “influential” stage brings

adjustments that can significantly impact the development process.

Requirements Engineering In this stage, requirements engineering is a delta-focused,

iterative process that emphasizes capturing and managing

changes in needs and specifications over time. Requirements are

continuously identified and adapted from diverse sources, with a

strong focus on tracking and analyzing each delta (i.e., any

modification or adjustment needed to meet evolving goals). Quality

standards are ensured through delta-aware quality analysis,

where existing requirements are analyzed for reuse, adapting them

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 6 of 34

Stage Description

efficiently to new contexts and minimizing redundant efforts. Model

extraction plays a crucial role in visualizing requirements and their

deltas to understand the impact of each change on the system as a

whole. Verification and validation processes confirm that these

evolving requirements align with stakeholder needs and adhere to

system constraints. By using delta-aware strategies, this stage

ensures that functional and non-functional requirements across IT

architecture, UX, and UI layers remain responsive and adaptable,

adjusting changes throughout the product's lifecycle. [1].

Incremental Development The incremental development process is focusing on managing

and leveraging deltas. In the incremental development stage,

SmartDelta enables analysis and management of each incremental

update, providing a view of how different software versions and

variants branch over time. This differentiation supports code reuse

and enables the application of delta-aware tools, such as

automated model generation, for quality analysis across the

product line.

Deltas can be assessed for potential reuse, enabling integration into

newer versions or variants. Nevertheless, incremental updates often

carry quality degradation. For example, adding new features to a

software application can lead to increased cyclomatic complexity

metrics, which measure the number of linearly independent paths

through a program's source code. As more features are added, the

control flow becomes more intricate, making the code harder to

understand, maintain, and test, ultimately impacting the overall

quality of the software. Thus, quality checks can be used to ensure

software aligns with quality standards. Logs and issues from

previous versions are resources for understanding potential risks in

incremental development, allowing for preemptive adjustments.

With some deltas representing a change in functionality or quality,

automated model generation can provide an approach to evaluate

the impact of these changes on the overall system. Through

incremental development, SmartDelta is focusing on the reuse

potential inherent in each delta, whether an enhancement, fix, or

customization, aligns with the quality goals. Furthermore, by

employing analyses across areas such as code reuse, quality, logs,

and automated model generation, this phase can show feedback on

frequent updates for continuous improvement [2].

Quality Assurance This stage emphasizes delta-focused quality assurance, where each

change or delta, whether a minor code adjustment or a major feature

update, is tested and validated. Delta-aware test generation is a

major technical area, explicitly targeting components and code

changes to ensure that all modifications meet requirements and quality

criteria. Test amplification further improves this process by expanding

test cases to cover cases introduced by deltas. Continuous

monitoring and anomaly detection provide real-time feedback into

quality degradation, identifying any issues caused by new deltas.

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 7 of 34

Stage Description

Static analysis of deltas is also performed to assess changes against

predefined static quality measures. By integrating these delta-aware

techniques, this stage is used to find defects [3].

Recommend and Predict This stage uses delta-aware analysis to provide predictive

recommendations for the software’s evolution. Using data from the

quality assurance stage, it performs quality analysis prediction to

predict the potential impact of new deltas on system quality,

identifying areas that may require adjustments. This stage identifies

recurring patterns or components that can be reused through

similarity analysis and reuse recommendation, improving

efficiency and consistency across the system. Change impact

analysis assesses how each delta affects interconnected

components, providing an understanding of potential effects. Based

on these analyses, actionable recommendations are made to

address challenges or improvements. This delta-focused approach

ensures that each prediction and recommendation is backed by

data-driven insights, allowing the system to adapt as it evolves.

[5].

Monitoring and Visualizing This delta-aware stage of monitoring and visualization provides

a comprehensive view of metrics, states, dependencies, and

interactions across all system components. At the product line

level, monitoring and visualization track, log, and analyze

resources, capturing states, events, and metrics. This level

observes individual metrics and focuses on variant delta

interactions, which are how changes or updates affect

dependencies and relationships between system components. This

overview allows teams to understand the broader impact of each

delta across interconnected systems, providing insight into the

evolving state of the entire infrastructure. At the version delta level,

monitoring focuses on tracking different metrics throughout the

product life cycle. Visualization tools can alert teams when values

exceed acceptable ranges, enabling a detailed view of each delta's

impact on specific components. This in-depth analysis helps detect

issues and provides insights into how localized deltas may influence

overall quality stability [4].

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 8 of 34

3. SmartDelta Stages and Technical Areas: Inputs, Outputs,

Deltas, and Their Interrelationships

After introducing the stages, we aim to provide a detailed view of each stage. The following

subsections introduce the relevant technical areas, illustrate the correlations between the stages,

and define the inputs (i.e., what is required at each stage, e.g., documents) and the outputs (i.e.,

what is generated through the process, e.g., quality report) .

Figure 2: Overview of stages and their technical areas.

3.1. Preconditions Consideration

Business requirements define the scope of the solution and the company's objectives, whereas

functional requirements address how the company will achieve its desired outcome. Furthermore,

the characteristics of the solution, such as its architecture and languages, are considered, as these

factors will influence the development of variants and versions. In the following discussion, we will

focus on business requirements, as they play a key role in shaping and formulating software

requirements.

An understanding of the functional requirements (FRs) is beneficial in determining the rationale

behind the existence of the application in question. In other words, what is the fundamental business

problem that the application is designed to address? It is also important to consider the original

purpose for which the application was designed and the context in which it was created, including

the technology stack, architecture, and security requirements. A focus on the way an application

addresses its business problem will inevitably lead to an analysis of its functional requirements. A

functional requirement represents the action an application must perform.

Non-functional requirements (NFRs), on the other hand, are not related to a specific function or

behavior for the application to function. Still, they do define system attributes such as security,

reliability, performance, maintainability, scalability, and usability. NFRs serve as constraints or

restrictions on the system's design across different backlogs.

This precondition defines the baseline value (as-is situation) and the requirements to achieve the

business objective in each environment.

Outputs

• Business Requirements, baseline values

• Limitations for the other stages

• Corpus of existing artifacts

Relationships • Link business objectives to software requirements

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 9 of 34

Stakeholders and Roles

• Project Managers.

• Product Owners.

• Quality Assurance Engineers.

3.2. Requirements Engineering (RE)

The Requirements Engineering stage, from the

perspective of the SmartDelta project, involves the

iterative process of defining, documenting, and

managing both functional and non-functional

requirements. This stage captures the evolving needs

of stakeholders across product iterations, ensuring

that the system under Development aligns with goals,

regulatory requirements, and user expectations.

[Requirements elicitation and extraction] To

achieve this, the Requirements Engineering phase of

the methodology focuses first on extracting and

eliciting customer requirements from customer wishes

(often tender documents and change requests, with

tools such as ReqI), [Requirements Quality

Analysis] which are then statically analyzed for

potential quality issues and ambiguities (with tools like

NALABS and RADICLE). [Requirements Reuse Analysis and Allocation] The requirements are

improved, and the improved new requirements are then searched across the variants and versions

of the existing projects and products to identify potential reuse opportunities (with tools like issue

similarity and VARA+) for existing artifacts associated with the existing requirements. The aim is to

reduce development and analysis waste by reusing verified and validated artifacts to realize the

new requirements. During this process of reuse analysis, the identified potential artifacts for reuse

may require additional modifications to be usable for the new requirements. Also, many of the

requirements may necessitate the additional development of new artifacts. Therefore, the step also

allows for the intelligent allocation of the new requirements as work items to various teams for

implementation (with tools like REQA). [Requirements Model Extraction] To enable seamless

incremental implementation of the final requirements, the methodology provides ways to extract

behavioral models from the changing requirements continuously (with tools like REFORM). The

extraction of the model from requirements allows users of the methodology to formalize the new

requirements in standard formal languages such as UML state machines. For example, the Reform

Tool from IFAK, applied in the Akkodis use case, facilitates this process. [Requirements

Verification and Validation] Finally, the extracted models and the refined requirements are then

used to verify and validate incremental development artifacts against the requirements (with tools

like TIGER+, REFORM, and PyLC).

Note that all the sub-phases within requirements engineering can be instantiated independently.

This stage feeds directly into incremental development and quality assurance efforts, with close

feedback loops between requirements, development, and testing.

Inputs

• Development artefacts from other variants and versions
o Architecture, code, design, requirements, issues etc.

• Stakeholder needs, expectations and wishes
o Change requests, tender documents, proposals, and issues etc.

Figure 3: Technical Areas Requirements Engineering

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 10 of 34

Outputs
• Requirements documentation (quality checked)

• Specifications for incremental development

Relationships
• Requirements Engineering leads to Incremental Development.

• It adjusts based on feedback from Quality Assurance and
Recommend and Predict stages.

Stakeholders and
Roles

• Requirement Engineers, Development Team, Quality Assurance
Engineers, Project Managers, Stakeholders

3.3. Incremental Development

In the Incremental Development stage, software

systems are built using reusable and modular

components. This approach allows the development

team to integrate existing components. Components are

iteratively developed, incorporating feedback from

previous delta analysis and quality assurance efforts.

Their modularity enables them to be adapted to

functional and non-functional requirements. In this

regard, the Incremental Development stage of the

SmartDelta Methodology addresses activities that result

in the creation of a new product instance and

emergence of new product deltas.

Technical Areas and Focused Techniques. To enable incremental development, SmartDelta has

provided innovations focusing on the following technical areas:

• Code reuse: Approaches for identifying reusable code and to avoid redundant

development. This can be done based on the requirements analysis results, identifying

similar requirements and software artifacts (e.g., components and test cases), and provision

of reuse commendations.

• Code Quality Improvement: Improving the quality of the code for a new product instance

to achieve certain characteristics such as reducing complexity, improving maintainability,

optimizing the code, and enhancing performance of the product. To achieve this, the results

of quality assurance techniques, and in particular SmartDelta solutions for delta-aware static

analysis and testing, can be used iteratively and in a feedback loop to achieve quality

improvements in the code.

• Issue Triage and Resolution: Using insights from customer reports and issue analysis

results to patch and resolve the issues in the product or to update it with new features and

functionality (e.g., based on customer requests and reports).

• Automated Model Generation and Extraction: Facilitating rapid prototyping and

validation of product instances.

Overall, these techniques enable a data-driven approach, enhancing productivity and ensuring higher-

quality outcomes in incremental development of industrial software systems.

Inputs
• Requirements from Requirements Engineering

• Existing components for integration

Figure 4: Technical Areas Incremental

Development

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 11 of 34

Outputs
• Developed or integrated components

• Metadata for Quality Assurance Assessment

Relationships

• Leads to Quality Assurance.

• Receives feedback to adjust components from Quality Assurance

and Recommend and Predict stages.

Stakeholders and

Roles

Software Developers, System Architects, Project Managers, Product

Owner, Product Line Manager

From a product line management perspective, the story of an Increment can be as follows. The first

goal in product development is the Minimally Viable Product (MVP) level. The Increment does not

have to be an MVP, but it should be usable, interactable with stakeholders, and improvable with

feedback from the people who use it. After one Increment, MVP can also be achieved, or multiple

Increments may be required. The Increment lives in a non-production environment until it reaches

MVP. Once it reaches MVP, the Increment is distributed to production for actual use. Here, the MVP

is just a milestone. It would be possible to model not only a minimal product but also the time and

effort required for a build-measure-learn feedback loop. This cycle is iteratively repeated and

improved until it incrementally reaches the desired point. Undesirable deviations and deltas are

eliminated through learning and self-correction. In product line development, this process also

proceeds in time and space, i.e., in the relationship between version and variant. The increment

must be usable and auditable in any case. The given flow in the SmartDelta Methodology meets the

Increment, and its reusability in developing new variants is valuable to consider in the build -

measure-learn cycle.

Figure 5: General Incremental Software Development Approach

The diagram illustrates a systematic approach to incremental software development, highlighting

the general steps from retrieving relevant artifacts to implementing and inspecting changes. This

approach ensures a streamlined and efficient development process, leveraging automation and

analytics to optimize decision-making and implementation.

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 12 of 34

3.4. Quality Assurance
The Quality Assurance stage uses inputs, including

artifacts from incremental development cycles and data

specific to incremental development, to shape a delta-

oriented quality assurance process. These artifacts

inform the delta-aware testing methodology by

highlighting which code and test code areas are

affected, enabling Quality Assurance Engineers and

Test Engineers to focus their efforts on specific deltas.

Inputs and Processes. Incremental development input

is used to tailor delta-aware testing to address specific

new functionalities or adjustments. Delta-aware test

generation and static analysis, such as that performed

by SEAFOX, use this information to generate, select,

and amplify test cases that thoroughly assess functional and extra-functional requirements specific

to the evolved components. Additionally, static analysis performed by DRACONIS evaluates each

delta against established quality criteria, allowing different stakeholders to detect potential issues

early and provide actionable feedback for iterative adjustments.

Outputs and Relationships. The primary outputs of this stage include Quality Assurance Reports

and Feedback directly applicable to ongoing incremental development. This feedback loop is

important, as it allows Software Developers to address quality concerns early, thus minimizing th e

impact of defects on subsequent stages. Moreover, data generated during quality assurance

activities is directed to visualization systems, supporting continuous monitoring and anomaly

detection. This connection ensures that any quality degradation or unexpected behavior introduced

by recent changes is addressed and visible through visualization tools.

Technical Areas and Focused Techniques. To ensure comprehensive quality control, the Quality

Assurance stage employs various technical approaches:

• Delta-Aware Test Generation: This approach generates tests specific to deltas, ensuring that

changes are considered when regenerating test cases.

• Test Amplification: Builds upon initial test cases by expanding them to cover additional scenarios

and potential issues introduced by each delta.

• Monitoring and Anomaly Detection: Integrates feedback mechanisms that detect and alert QA

teams to any anomalies resulting from incremental changes.

• Static Analysis of Deltas: Evaluates code changes against established quality criteria, identifying

risks in functional and non-functional properties before full deployment.

Stakeholders and Roles. The Quality Assurance stage involves Quality Assurance Engineers and

Test Engineers who directly manage and execute the delta-aware quality assurance process.

Software developers are closely involved in implementing feedback for continuous improvement,

while project managers oversee the alignment of quality goals with project timelines and quality

standards.

Inputs
• Developed Artifacts from Incremental Development

• Data from Incremental Development

Outputs

• Quality Assurance Reports

• Feedback for Incremental Development Adjustments

• Data for Monitoring and Visualising

Relationships
• Provides feedback to Incremental Development for Adjustments.

• Sends data to Monitoring and Visualising.

Figure 6: Technical Areas Quality Assurance

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 13 of 34

Stakeholders and
Roles

• Quality Assurance Engineers

• Test Engineers

• Software Developers

• Project Managers

3.5. Recommend and Predict

The Recommend and Predict stage focuses on

applying machine learning (ML) techniques to

enhance system predictability, anomaly detection,

Offense (threat) prioritization, and code analysis. This

phase integrates advanced algorithms for proactive

error localization and anomaly detection, ensuring the

system's efficient maintenance. [Machine Learning -

based Anomaly and Threat Prediction] Our

approach includes predictive models for locating

anomalies and errors specifically within microservice

architectures (NetRD), emphasizing ML-driven

anomaly detection and prioritization for cybersecurity

offenses (Ontario Tech, Glasshouse Systems).

Additionally, telemetric data analysis helps identify

patterns of potential anomalies, aiding rapid detection

and response (Hoxhunt). [Automatic Code Analysis and Change Impact Analysis] This phase

focuses on enhancing code quality and impact analysis through automation. It includes tools for

sharing development insights by automatically gathering metrics from version control systems

(ERSTE, DAKIK, Kuveyt Turk), predicting software faults within cloud-based architectures (Ontario

Tech, Team Eagle), and simplifying software maintenance with automatic code analysis (University

of Innsbruck, cc.com). Furthermore, tools for analyzing technical debt (Cape of Good Code, Vaadin)

and assessing software quality trends assist in balancing quality improvement with feature

development (FOKUS). [Similarity Analysis Approaches and Recommendations] By leveraging

similarity analysis, this component utilizes graph-based techniques to offer recommendations (TWT,

Software AG, Vaadin, Izertis, UC3M) and applies hierarchical modularization to check for model

consistency (TWT, Akkodis). Additionally, ML-based approaches extract requirements from

extensive data repositories and generate actionable recommendations (RISE, Alstom). Continuous

ML-based learning further enhances software issue detection, promoting proactive system health

(IFAK, Software AG).

Inputs

• Log source data

• Code analysis data from version control

• Architecture, code, and issue documentation

• Software quality and technical debt metrics

Outputs

• ML-based predictions

• ML-based recommendations

• Automatic change impact and similarity analysis

Relationships

Utilizes data, visualization, and correlations from Quality Assurance and
Requirements Engineering to adjust predictions and recommendations
based on system feedback. This collaborative approach ensures
insights that directly support Incremental Development, facilitating
informed decision-making and continuous system improvement.

Stakeholders and Roles
Data Scientists, Quality Assurance Engineers, Development Team,
Project Managers, Stakeholders

Figure 7: Technical Areas Recommend and Predict

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 14 of 34

3.6. Monitoring and Visualizing

The Monitoring and Visualization stage utilizes inputs

from quality assurance reports, static or dynamic

analysis data, performance data, and component-level

monitoring data. These pieces of data provide critical

information that assists in crafting a visualization to

effectively represent the system's health.

Inputs and Processes: Incoming data from Quality

Assurance reports, static/dynamic analysis, performance

metrics, and component monitoring get translated into an

easily digestible visual format. These visual formats

often come in the form of graphs, charts or interactive

dashboards that make understanding and identifying

patterns, trends, and anomalies more straightforward.

Outputs and Relationships: The primary outputs from this stage include delta analysis which highlights

all changes made, Quality and performance trends that illustrate the system's behavior over time,

correlation depiction between different metrics, and mapped dependencies and relationships between

various components. This data visualization greatly contributes to the Recommendation and Prediction

processes by providing clear, comprehensible and concise data correlations and patterns.

Techniques and Methods: The Monitoring and Visualization stage uses tools such as anomaly

detection to highlight outliers or anomalies in the received data. By utilizing visualization tools or graphs,

one can identify and highlight outliers or anomalies within a dataset. These significant points, which

diverge from the established pattern, might indicate critical information or errors.

Graphs are used for Predictive Analysis to identify future trends or outcomes. Visualization allows us

to project historical data into the future. It's a graphical representation to predict future trends or

outcomes, making it easier to understand the prediction.

The use of data visualization can aid in understanding complex datasets. Data Exploration visualizes

the complex data sets' hidden patterns, relationships, and insights that would be difficult to grasp in raw,

unprocessed data.

Impact Analysis illustrates the effect or influence of a particular variable or action on different

parameters. Displaying data visually can aid in understanding the impact or influence that a specific

variable or action has on other factors. By manipulating these variables in a visualization, we can

observe potential outcomes and trends.

Stakeholders and Roles: Quality Assurance Engineers, System Architects, Investors, Software

Developers, and Project Managers all use the visualized data to make informed decisions and

predict trends. These stakeholders can comprehend the application's state through the visualization

and immediately identify problem areas that need their attention.

With visualization tools in place, all critical aspects of the data are highlighted and easily accessible to

the relevant teams, promoting a more effective and efficient decision-making process.

Inputs

• Quality assurance reports

• Static or dynamic analysis data

• Performance data

• Component-level monitoring data

Figure 8: Technical Areas Monitoring and

Visualizing

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 15 of 34

Outputs

• Delta analysis

• Quality and performance trends

• Correlation of metrics

• Dependencies and relationships of components to each other

Relationships
• Provides data, visualization and correlations to Recommend and

Predict processes

Stakeholders and
Roles

Quality Assurance Engineers, System Architects, Investors, Software
Developers, and Project Managers

4. Mapping of the SmartDelta Tools to the Methodology

In the following table, we provide an overview of how the SmartDelta solutions are mapped to different stages of the methodology. These solutions can thus be used to

implement and instantiate the methodology in different contexts and applications.

Tool Name Owner (first
position) and

Partners
(followed)

More
information
can be found

in

Requirements Engineering Incremental
Development

Quality Assurance Recommend and Predict Monitoring and
Visualizing

W
P

3

W
P

4

W
P

5

R
e

q
u

ir
e

m
e

n
ts

 E
lic

it
at

io
n

an
d

 E
xt

ra
ct

io
n

R
e

q
u

ir
e

m
e

n
ts

 Q
u

al
it

y

A
n

al
ys

is

R
e

q
u

ir
e

m
e

n
ts

 R
eu

se

A
n

al
ys

is
 a

n
d

 A
llo

ca
ti

o
n

R
e

q
u

ir
e

m
e

n
ts

 M
o

d
e

l

Ex
tr

ac
ti

o
n

R
e

q
u

ir
e

m
e

n
ts

 V
e

ri
fi

ca
ti

o
n

C
o

d
e

 R
e

u
se

C
o

d
e

 Q
u

al
it

y
Im

p
ro

ve
m

e
n

t

Is
su

e
 T

ri
ag

e
 a

n
d

 R
e

so
lu

ti
o

n

 A
u

to
m

at
e

d
 M

o
d

e
l

G
e

n
e

ra
ti

o
n

 a
n

d
 E

xt
ra

ct
io

n

D
e

lt
a

-A
w

ar
e

 T
e

st

G
e

n
e

ra
ti

o
n

Te
st

 A
m

p
lif

ic
at

io
n

M
o

n
it

o
ri

n
g

an
d

 A
n

o
m

al
y

D
e

te
ct

io
n

St
at

ic
 A

n
al

ys
is

 o
f

D
e

lt
as

M
ac

h
in

e
 L

e
ar

n
in

g
-b

as
e

d

A
n

o
m

al
y

an
d

 T
h

re
at

P
re

d
ic

ti
o

n

A
u

to
m

at
ic

 C
o

d
e

 A
n

al
ys

is

an
d

 C
h

an
ge

 Im
p

ac
t

A
n

al
ys

is

Si
m

ila
ri

ty
 A

n
al

ys
is

A
p

p
ro

ac
h

e
s

an
d

R
e

co
m

m
e

n
d

at
io

n
s

A
n

o
m

al
y

V
is

u
al

iz
at

io
n

P
re

d
ic

ti
ve

 A
n

al
ys

is

D
at

a
Ex

p
lo

ra
ti

o
n

Im
p

ac
t

A
n

al
ys

is

SoHist v2 UIBK, c.c.com X X X

X

X

X

Intelligent Issue
Management
Support Tool
(INIMASU)

FOKUS

X X

X

X

X

X X

X X X

Call Graph Delta
Analyzer

Özyeğin
University
(Subcontracted
by Erste)

X X X

X

X

X X

X X X

X

Mut4SLX UAntwerpen X

X X X

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 17 of 34

Tool Name Owner (first
position) and

Partners
(followed)

More
information
can be found

in

Requirements Engineering Incremental
Development

Quality Assurance Recommend and Predict Monitoring and
Visualizing

W
P

3

W
P

4

W
P

5

R
e

q
u

ir
e

m
e

n
ts

 E
lic

it
at

io
n

an
d

 E
xt

ra
ct

io
n

R
e

q
u

ir
e

m
e

n
ts

 Q
u

al
it

y

A
n

al
ys

is

R
e

q
u

ir
e

m
e

n
ts

 R
eu

se

A
n

al
ys

is
 a

n
d

 A
llo

ca
ti

o
n

R
e

q
u

ir
e

m
e

n
ts

 M
o

d
e

l

Ex
tr

ac
ti

o
n

R
e

q
u

ir
e

m
e

n
ts

 V
e

ri
fi

ca
ti

o
n

C
o

d
e

 R
e

u
se

C
o

d
e

 Q
u

al
it

y
Im

p
ro

ve
m

e
n

t

Is
su

e
 T

ri
ag

e
 a

n
d

 R
e

so
lu

ti
o

n

 A
u

to
m

at
e

d
 M

o
d

e
l

G
e

n
e

ra
ti

o
n

 a
n

d
 E

xt
ra

ct
io

n

D
e

lt
a

-A
w

ar
e

 T
e

st

G
e

n
e

ra
ti

o
n

Te
st

 A
m

p
lif

ic
at

io
n

M
o

n
it

o
ri

n
g

an
d

 A
n

o
m

al
y

D
e

te
ct

io
n

St
at

ic
 A

n
al

ys
is

 o
f

D
e

lt
as

M
ac

h
in

e
 L

e
ar

n
in

g
-b

as
e

d

A
n

o
m

al
y

an
d

 T
h

re
at

P
re

d
ic

ti
o

n

A
u

to
m

at
ic

 C
o

d
e

 A
n

al
ys

is

an
d

 C
h

an
ge

 Im
p

ac
t

A
n

al
ys

is

Si
m

ila
ri

ty
 A

n
al

ys
is

A
p

p
ro

ac
h

e
s

an
d

R
e

co
m

m
e

n
d

at
io

n
s

A
n

o
m

al
y

V
is

u
al

iz
at

io
n

P
re

d
ic

ti
ve

 A
n

al
ys

is

D
at

a
Ex

p
lo

ra
ti

o
n

Im
p

ac
t

A
n

al
ys

is

Code Similarity
Investigator

TWT

X

X

X

Graph Similarity
Recommender

TWT

X

X

SmartMetrics Akkodis

X

X

SmartTrace Akkodis

X

X

PyLC MDU X

X X

DRACONIS MDU, ALSTOM X

X

X X X

X

SEAFOX MDU X

X

X

X X

Architecture
Analysis and
Visualization Tool

FOKUS

X

X

X

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 18 of 34

Tool Name Owner (first
position) and

Partners
(followed)

More
information
can be found

in

Requirements Engineering Incremental
Development

Quality Assurance Recommend and Predict Monitoring and
Visualizing

W
P

3

W
P

4

W
P

5

R
e

q
u

ir
e

m
e

n
ts

 E
lic

it
at

io
n

an
d

 E
xt

ra
ct

io
n

R
e

q
u

ir
e

m
e

n
ts

 Q
u

al
it

y

A
n

al
ys

is

R
e

q
u

ir
e

m
e

n
ts

 R
eu

se

A
n

al
ys

is
 a

n
d

 A
llo

ca
ti

o
n

R
e

q
u

ir
e

m
e

n
ts

 M
o

d
e

l

Ex
tr

ac
ti

o
n

R
e

q
u

ir
e

m
e

n
ts

 V
e

ri
fi

ca
ti

o
n

C
o

d
e

 R
e

u
se

C
o

d
e

 Q
u

al
it

y
Im

p
ro

ve
m

e
n

t

Is
su

e
 T

ri
ag

e
 a

n
d

 R
e

so
lu

ti
o

n

 A
u

to
m

at
e

d
 M

o
d

e
l

G
e

n
e

ra
ti

o
n

 a
n

d
 E

xt
ra

ct
io

n

D
e

lt
a

-A
w

ar
e

 T
e

st

G
e

n
e

ra
ti

o
n

Te
st

 A
m

p
lif

ic
at

io
n

M
o

n
it

o
ri

n
g

an
d

 A
n

o
m

al
y

D
e

te
ct

io
n

St
at

ic
 A

n
al

ys
is

 o
f

D
e

lt
as

M
ac

h
in

e
 L

e
ar

n
in

g
-b

as
e

d

A
n

o
m

al
y

an
d

 T
h

re
at

P
re

d
ic

ti
o

n

A
u

to
m

at
ic

 C
o

d
e

 A
n

al
ys

is

an
d

 C
h

an
ge

 Im
p

ac
t

A
n

al
ys

is

Si
m

ila
ri

ty
 A

n
al

ys
is

A
p

p
ro

ac
h

e
s

an
d

R
e

co
m

m
e

n
d

at
io

n
s

A
n

o
m

al
y

V
is

u
al

iz
at

io
n

P
re

d
ic

ti
ve

 A
n

al
ys

is

D
at

a
Ex

p
lo

ra
ti

o
n

Im
p

ac
t

A
n

al
ys

is

Smellyzer ARCELIK, Bilkent X

X

X

X

Relink ARCELIK, Bilkent X

X

X

X

PieR ARCELIK, Bilkent

X

X

X

K2 FOKUS X

X X X

CBTS FOKUS X

X

X

Jazure ARCELIK, Bilkent X

X

X

Metric Dashboard ARCELIK, Bilkent

X

X

X X

DIA4M ORION/NETRD X X X

X

X

X

X

X

DETANGLE Cape of Good
Code, Dakik,
TURK BANK

X X X

X X

X X

X

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 19 of 34

Tool Name Owner (first
position) and

Partners
(followed)

More
information
can be found

in

Requirements Engineering Incremental
Development

Quality Assurance Recommend and Predict Monitoring and
Visualizing

W
P

3

W
P

4

W
P

5

R
e

q
u

ir
e

m
e

n
ts

 E
lic

it
at

io
n

an
d

 E
xt

ra
ct

io
n

R
e

q
u

ir
e

m
e

n
ts

 Q
u

al
it

y

A
n

al
ys

is

R
e

q
u

ir
e

m
e

n
ts

 R
eu

se

A
n

al
ys

is
 a

n
d

 A
llo

ca
ti

o
n

R
e

q
u

ir
e

m
e

n
ts

 M
o

d
e

l

Ex
tr

ac
ti

o
n

R
e

q
u

ir
e

m
e

n
ts

 V
e

ri
fi

ca
ti

o
n

C
o

d
e

 R
e

u
se

C
o

d
e

 Q
u

al
it

y
Im

p
ro

ve
m

e
n

t

Is
su

e
 T

ri
ag

e
 a

n
d

 R
e

so
lu

ti
o

n

 A
u

to
m

at
e

d
 M

o
d

e
l

G
e

n
e

ra
ti

o
n

 a
n

d
 E

xt
ra

ct
io

n

D
e

lt
a

-A
w

ar
e

 T
e

st

G
e

n
e

ra
ti

o
n

Te
st

 A
m

p
lif

ic
at

io
n

M
o

n
it

o
ri

n
g

an
d

 A
n

o
m

al
y

D
e

te
ct

io
n

St
at

ic
 A

n
al

ys
is

 o
f

D
e

lt
as

M
ac

h
in

e
 L

e
ar

n
in

g
-b

as
e

d

A
n

o
m

al
y

an
d

 T
h

re
at

P
re

d
ic

ti
o

n

A
u

to
m

at
ic

 C
o

d
e

 A
n

al
ys

is

an
d

 C
h

an
ge

 Im
p

ac
t

A
n

al
ys

is

Si
m

ila
ri

ty
 A

n
al

ys
is

A
p

p
ro

ac
h

e
s

an
d

R
e

co
m

m
e

n
d

at
io

n
s

A
n

o
m

al
y

V
is

u
al

iz
at

io
n

P
re

d
ic

ti
ve

 A
n

al
ys

is

D
at

a
Ex

p
lo

ra
ti

o
n

Im
p

ac
t

A
n

al
ys

is

GHS anomaly
detection and
Offense
Prioritization tools

Glasshouse
Systems and
Ontario Tech
University)

X

X

X

X X

X

SONATA Izertis, UC3M X

X

X

X X

X

X

YATAP A Tool for
Change Impact
Analysis

Erste

X X

X X

X

X

X X

Modernization
Toolkit

Vaadin

X X

X

X

X X

X

AirOPs Ontario Tech
University, Team
Eagle

X

X X

X

X

NALABS MDU, ALSTOM,
ADDIVA

X

X

X

X

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 20 of 34

Tool Name Owner (first
position) and

Partners
(followed)

More
information
can be found

in

Requirements Engineering Incremental
Development

Quality Assurance Recommend and Predict Monitoring and
Visualizing

W
P

3

W
P

4

W
P

5

R
e

q
u

ir
e

m
e

n
ts

 E
lic

it
at

io
n

an
d

 E
xt

ra
ct

io
n

R
e

q
u

ir
e

m
e

n
ts

 Q
u

al
it

y

A
n

al
ys

is

R
e

q
u

ir
e

m
e

n
ts

 R
eu

se

A
n

al
ys

is
 a

n
d

 A
llo

ca
ti

o
n

R
e

q
u

ir
e

m
e

n
ts

 M
o

d
e

l

Ex
tr

ac
ti

o
n

R
e

q
u

ir
e

m
e

n
ts

 V
e

ri
fi

ca
ti

o
n

C
o

d
e

 R
e

u
se

C
o

d
e

 Q
u

al
it

y
Im

p
ro

ve
m

e
n

t

Is
su

e
 T

ri
ag

e
 a

n
d

 R
e

so
lu

ti
o

n

 A
u

to
m

at
e

d
 M

o
d

e
l

G
e

n
e

ra
ti

o
n

 a
n

d
 E

xt
ra

ct
io

n

D
e

lt
a

-A
w

ar
e

 T
e

st

G
e

n
e

ra
ti

o
n

Te
st

 A
m

p
lif

ic
at

io
n

M
o

n
it

o
ri

n
g

an
d

 A
n

o
m

al
y

D
e

te
ct

io
n

St
at

ic
 A

n
al

ys
is

 o
f

D
e

lt
as

M
ac

h
in

e
 L

e
ar

n
in

g
-b

as
e

d

A
n

o
m

al
y

an
d

 T
h

re
at

P
re

d
ic

ti
o

n

A
u

to
m

at
ic

 C
o

d
e

 A
n

al
ys

is

an
d

 C
h

an
ge

 Im
p

ac
t

A
n

al
ys

is

Si
m

ila
ri

ty
 A

n
al

ys
is

A
p

p
ro

ac
h

e
s

an
d

R
e

co
m

m
e

n
d

at
io

n
s

A
n

o
m

al
y

V
is

u
al

iz
at

io
n

P
re

d
ic

ti
ve

 A
n

al
ys

is

D
at

a
Ex

p
lo

ra
ti

o
n

Im
p

ac
t

A
n

al
ys

is

GW2UPPAAL MDU X

X

X

TIGER + MDU X

X

X X

ReForm IFAK, Akkodis

X

X

X

AISA IFAK, Software
AG

X

X

X

X

AILA IFAK, Software
AG

X

X

X

X

TCG IFAK

X

X

Telemetry
Anomaly Analyzer

Hoxhunt

X X

X

X

X X

Additional details on these tools can be found in Deliverable ‘D2.5 - SmartDelta Methodology Implementation Toolset ’

(https://itea4.org/project/workpackage/deliverable/document/download/432/SmartDelta%20D2.5%20-%20SmartDelta%20Methodology%20Implementation%20Toolset.pdf)

https://itea4.org/project/workpackage/deliverable/document/download/432/SmartDelta%20D2.5%20-%20SmartDelta%20Methodology%20Implementation%20Toolset.pdf

5. Industrial Application Examples

In the following subsections, we provide examples of how the SmartDelta Methodology have been

applied and implemented in different industrial use cases and to solve their challenges.

5.1. Enterprise Software – Software AG

In the following sections, we describe Software AG's use case and its application of the SmartDelta

Methodology to address key challenges in Software AG's development process for Enterprise

Software.

5.1.1. Introduction and Background
Enterprises are highly dependent on the availability and reliability of their software in today’s world.

Many functions become impossible or severely slow down when the software cannot be used or

trusted. Software AG recognizes its important place in the industry as a supplier of world-class

enterprise software and strives to provide its customers with high levels of security, reliability, and

quality in the software it provides.

This led to the development of specific policies, controls, and procedures within the company that

rely on design, development, and testing artifacts to ensure given characteristics of the products.

This decade-long focus of the company naturally resulted in high quality, reliable and secure

software for enterprises. However, the artifacts and accompanying controls are often static and may

not well support the intent of the company to provide continuous improvement.

Software AG delivers a multitude of products both for on-premises and cloud use. These products

are delivered by thousands of people, producing millions of artifacts. Every event in the lifecycle of

a product is recorded and can be referenced. This daily increasing information could be used to

automatically deliver important insights into the current trends in software quality and security

supporting Software AG’s intention to continuously improve the quality of the software and set the

best possible quality and security standards for the industry.

5.1.2. Challenges
Software AG faces several challenges in the production of enterprise software, especially related

to the massive amount of code and other artifacts accumulated over time. We expect these

challenges are universal for any company that develops a non-trivial amount of software.

1. Repetition of design and code: There is a large amount of possible reuse of code

fragments and components that is not possible to tackle in a manual way due to the sheer

size of the source base. For instance, there can be issues similar to something already

being developed and developers could save the effort if they would be aware of this.

2. Issue classification: Security-related issues (feature requests, bug reports, etc.) are of

utmost importance and must be prioritized as they have a major impact on the quality and

reliability of the software. However, determining whether an issue is security-relevant or not

is quite difficult and usually requires manual assessment by an expert which takes time. An

automated approach for assigning security labels to issues could reduce the number of

incorrect assignments and speed up the processing of issues.

3. Code quality: Maintaining high code quality is a key aspect for delivering secure, reliable

and performant software. A common problem in this context is that the code produced could

be sub-optimal and there could be "a better way" but the developers are not aware of th is.

One potential way to solve this problem is through training but an automatic system pointing

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 22 of 34

out changes leading to sub-optimal performance, e.g., based on "Lessons Learnt", could

potentially improve the code even further.

5.1.3. Implementing the SmartDelta Methodology for enabling reuse and quality
improvements

The SmartDelta Methodology provides guidance for tackling these challenges in a structured way.

Software AG’s use case makes use of the stages Requirements Engineering (RE) (Section 3.2) and

Incremental Development (Section 3.3) to enable reuse of existing software artifacts and automatic

classification of issues, while stage Quality Assurance (Section 3.4) allows to utilize existing fixes

to avoid repetition of errors. The corresponding SmartDelta tools enabling these features through

artefact similarity analysis and machine learning are covered in step Recommend and Predict

(Section 3.5). In addition, we use stage Monitoring and Visualizing (Section 3.6) to visualize

information for the management that is related to the previous stages and steps.

Requirements Engineering - Requirements Reuse Analysis and Allocation

In this stage, we process new incoming issues such as new feature requests and bug reports to

classify them for faster treatment by corresponding experts and to identify similar existing issues

that may lead to potentially reusable software artefacts:

1. Issue Classification: Security-related issues are of utmost importance and must be

prioritized as they have a major impact on the quality and reliability of the software.

However, determining whether an issue is security-relevant or not is quite difficult and

usually requires manual assessment by an expert which takes time. We address this

problem by automatically assigning security labels using the Automatic Issue Labeling Tool

(AILA) developed by IFAK. If the tool marks an issue as security-related, it will automatically

be prioritized for faster processing by the corresponding experts. Still, all remaining

incoming issues will continue to be analyzed by a security expert to ensure that no security -

related issues are missed. Thanks to AILA's high detection rate, however, the processing

of security-related issues can be significantly accelerated.

2. Issue Similarity Analysis: The new incoming issues are compared with the existing issues

stored in our issue database to find similarities that could indicate potentially reusable

artifacts. The similarity analysis is done by the Automatic Issue Similarity Analysis Tool

(AILA) developed by IFAK. For each new issue, we select the 10 most similar issues

reported by AILA for further processing. These results are subsequently visualized in a web

application for further decision making. It shows the currently investigated new issue next

to a similar issue reported by AILA selected by the user. Similar text elements can optionally

be highlighted. If the user decides that the reported similarity is correct, this pair of new and

existing issues is marked for reuse and will be processed further in the Incremental

Development stage

Quality Assurance

As described above, another challenge in our use case is to use existing fixes and corresponding

code changes to avoid repeating similar errors. For example, a newly implemented code in product

A could be affected by the same problem that was observed and fixed in product B.

We tackle this challenge by combining the steps Static Analysis of Deltas and Similarity Analysis

Approaches and Recommendations of the Quality Assurance and Recommend and Predict stages,

respectively. For instance, we employ the SmartDelta tool Code Similarity Investigator developed

by TWT to compare new code with code that has been fixed in the past. If the tool reports a high

similarity, the new code could be affected by a problem similar to the one already fixed. This helps

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 23 of 34

to avoid similar errors across different products, projects, and development teams. In addition, the

identified fixes can provide hints for the implementation of better code.

Incremental Development

In this stage, we make use of the results obtained in the Requirement Engineering and Quality

Assurance stages for enabling code reuse and to improve code quality.

1. Code Reuse: For each pair of new and similar existing issues identified in the Requirement

Engineering stage, it is now determined whether the existing code and tests associated with

the existing issue can be reused to implement or solve the new issue. This step is carried

out manually by an expert, ideally by the developers who implemented the code and tests

to be reused. They decide whether to use the existing artefacts as-is, modify them, or

discard them in favor of a new implementation.

2. Code Quality Improvement: The identified code fragments similar to code that already

have been fixed are used to provide developers with a starting point for improving the quality

of their code based on existing knowledge and fixes. The developers can compare their

code with the found similar code fragments to determine whether they should revise their

code and if so, they can use the corresponding fixes as implementation basis.

Monitoring and Visualizing

In this last stage, we use a dashboard along with standard visualizations to provide information and

insights about the previous stages and related KPIs to the management. This includes, e.g., a line

chart visualizing the quality trend of selected products over time or a bar chart illustrating the number

of already used and potentially reusable software artefacts.

5.1.4. Key Tools and Their Roles

• AILA – Automatic Issue Labeling Tool:

AILA developed by IFAK automates issue labelling using fine-tuned BERT models. It

classifies requirements or issues based on descriptions written in natural language, aiding

in prioritization and team assignments. In Software AG’s use case, it is used to

automatically identify security-related issues for faster treatment.

• AISA - Automatic Issue Similarity Analysis Tool:

AISA developed by IFAK automates issue similarity analysis using language models such

as Sentence-BERT. This tool provides similar requirements or issues based on

descriptions written in natural language, aiding in code and test reuse recommendations.

In this use case, AISA is used to find existing issues that are similar to new issues that

might point to potentially reusable design artifacts, code and tests.

• CSI - Code Similarity Investigator:

The CSI tool developed by TWT allows to measure the similarity of two code sections

(classes, methods). This is done by transforming code into Code Property Graphs (CPGs)

and performing graph algorithms to calculate similarity scores. Here, the tool is used to

compare new code with existing code that is known to be affected by some kind of

problem, such as a bug or security vulnerability.

5.1.5. Benefits of the SmartDelta Methodology

Applying the SmartDelta methodology and the associated SmartDelta tools to our development

process yield the following benefits:

• Reusability: Structured guidelines along with tools automatically detecting similar issues

(feature requests, bug reports, etc.) enable reuse of existing artefacts such as design, code

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 24 of 34

and tests. This would not be possible if done manually, considering an already extensive

and still growing issue database. This allows us to reduce the amount of repetition of design

and code, effectively saving time and costs.

• Quality Improvements: The guidelines provided by the SmartDelta Methodology in

combination with associated automated tools help to identify error-prone code, e.g., through

comparison with code that has been fixed in the past. This reduces the risk of repeating the

same errors, which ultimately improves the overall quality of the software. Moreover, the

automatic detection of security-related issues helps to speed up the treatment of critical

issues.

5.1.6. Conclusion
Identifying and using reusable software artifacts to reduce repetition and leveraging existing fixes

for future error prevention is still a challenge in modern software development, especially when

working with massive amounts of software artifacts created for numerous projects and products by

different development teams. Software AG’s use case illustrates the practical application of the

SmartDelta Methodology to tackle these challenges. By following the structured guidelines provided

by the SmartDelta Methodology and using the associated SmartDelta tooling, it is possible to

overcome these challenges in an automated way, resulting in a significant reduction in manual

effort, costs, time-to-market and improved code quality.

5.2. Railway Domain - Alstom

5.2.1. Introduction and Background

Within the SmartDelta project, Alstom is a use-case provider and supports the evaluation of the

proposed SmartDelta tools and processes to determine the performance of the individual solutions

(i.e., as they were intended to be used) and performance on the overall software development

process.

Three main challenges have been identified by Alstom to be tackled in SmartDelta and they are

described in the next section as User Stories A, B, and C. In this section, we present how these

User Stories are mapped on the overall SmartDelta methodology.

Figure 9: Mapping of the SmartDelta Methodology on the Alstom use-case.

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 25 of 34

5.2.2. Challenges (before SmartDelta)
In this section, we describe the 3 User Stories included in Alstom use-case.

User Story A: Delta between product line features and customer needs.

In the railway industry, most projects often start with a customer publishing a call for tender. Due to

the competitive nature of the industry, a quick response to the call with an overview of a technical

solution is often a prerequisite to acquiring projects. Therefore, identifying technical specifications

in the large tender documents enables a quick response to the call for tender. In addition, it also

enables the feasibility analysis of the project as the novelty of the extracted technical specification

could be computed by comparing it with existing projects.

Alstom meets new customer requirements through modifying previous project solutions or modifying

standardized “product” hardware and software solutions known. Customer requirements are

analyzed by advanced engineers for correlation and differences with our standard product and past

projects, sometimes within a very short timeframe due to bid submission and development

deadlines. During this process, the requirements manager has to manually annotate the technical

specifications in the large tender documents. In addition, if the project is acquired successfully, the

technical specifications also have to be allocated to various sub-system teams for implementation

and testing. Finally, since the company develops similar products, a reuse analysis must also be

conducted to identify reuse opportunities for existing software that could realize the allocated

requirements. However, this process for requirements engineering is time-consuming, prone to

human error, and is dependent on the experience of a few key engineers. Tools addressing this

particular user story are needed to aid the bidding and implementation phases.

User Story B: Functional requirements quality and verifiability.

To ensure the customer requirements are verified, every customer requirement is broken down and

linked to the relevant new and existing features. The features relevant to software control are broken

down and linked to control requirements. All software requirements are linked to the relevant

software implementation within the control software. To ensure the implemented software satisfies

each requirement, at least one test is performed on the software, known as a functional test. The

functional tests enable the verifier to demonstrate the software behaves as specified in the

requirements. Testers must review the requirements and create relevant test cases which will

sufficiently test the control software. Tools that automatically generate test cases from requirements

and execute these tests to verify both the requirements and the technical artifacts (i.e., software)

contribute significantly to the quality and validation of functional requirements.

User Story C: Code quality and Delta between manual and automatic test review, design

review and code review

When designing software control solution with a block diagram approach, the designs should be

developed according to a specific set of rules and standards to ensure a higher reliability of the

code generated and readability of the design as well as adhering to the requirements from the

railway standards such as EN50128 and EN50657 for compliance. These detailed quality -rules,

such as maintaining cohesive naming conventions or following established coding guidelines are

checked manually once the implementation of software is completed. Tools that automatically

performing some design and code reviews performed manually today could improve the quality

verification of visual block-based programming languages,

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 26 of 34

5.2.3. Implementing the SmartDelta Methodology
To address the existing tool limitations described in the Use Stories, the following solutions were

proposed during the SmartDelta project. A description of each tool is included in the next section.

Figure 10: The SmartDelta Methodology for the Alstom use-case mapped to the V model

5.2.4. Key Tools and Their Roles

REQ-I – a tool for customer needs identification for tender documents

ReqIdentifier (REQ-I) formulate the requirement identification problem as a binary text classification

problem. It uses various state-of-the-art classifiers based on traditional machine learning, deep

learning, and few-shot learning for requirements identification from large tender documents. , the

tool can process a text entry or a PDF document to extract text from it using Optical Character

Recognition (OCR). Once the all the textual entries of the tender documents are available, a BERT

language model-based classification pipeline is fine-tuned on the input text. In query mode, text or

a PDF file can be given as input to the tool, and it outputs a PDF file with highlighted requirements .

REQA – a tool for allocation of requirements to teams for implementation

Once requirements are identified, they need to be allocated to various development and testing

teams for implementation. The REQA tool combines traditional AI with deep learning to allocate

requirements and generate supplementary information to support engineers in well -informed

allocation. The REQA tool has two modules named Assigner and Augmenter:

- The Assigner module uses large language models with statistical classification to recommend

the allocation of the requirements to various teams that are likely to accept the allocation ,

- The Augmenter module uses lexical similarity-based clustering to generate cased based

explanations to support the recommendations of Assigner and in turn, a well -informed

allocation.

VARA+ – a tool for reuse identification

VARA is variability-aware requirements reuse analysis method which aims to automate product's

assets reuse analysis and thus helps teams achieve quick and quality delivery of software systems.

The tool uses state-of-the-art natural language processing and machine learning algorithms to

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 27 of 34

predict existing product's assets that can be reused to realize the new customer requirements. In

addition, VARA also compute various metrics (readability index, complexity and subjectivity etc.) on

the quality of requirements that help in writing better requirements.

VARA takes all existing requirements and their links to software components implementing them,

as input to fit/train a content-based recommender--- driven by clustering. In query mode (steps can

be followed with blue arrows), unseen customer requirements are used as input to recommend

reuse based on similarity with neighboring existing requirements.

TIGER+ – a tool for test case generation and execution

TIGER uses the model-based testing concept to perform the concretization of abstract test cases

and the generation of test scripts. It consists of three parts:

- Abstract Test Case Generator: GW (Graph Walker) takes as an input the model file in

JSON/GraphML format and generates the abstract test cases by traversing through the model

elements (i.e. states and transitions) based on a generator algorithm (such as random,

quick_random, Astar, etc.) and a stopping condition (such as edge_coverage,

vertex_coverage, etc.).

- Abstract Test Case Generator: The test case concretizer converts abstract test cases into

concrete by mapping the logical signal names with their technical counterparts and

corresponding values. Testers and developers use these logical names as initial names of the

signals in the early phases of development. Later in the development, technical signal names

became available that represent the actual signal names used by the SUT for its normal

operations. Hence, the test case concretizer extracts the test data i.e. (variable names and

their respective values) from the generated abstract test cases (available in a JSON file),

extracts the required information about technical signal names from an XML file, and maps the

logical signal names with technical signal names and their corresponding values based on

defined mapping rules.

- Test Script Generator: Once the abstract test cases are converted into concrete test cases,

the test script generator generates the test script in C# language using the implementation

details of the SUT (i.e. script format, libraries, and methods to be executed on the target te st

execution platform, SIL & HIL). The generated test script contains two types of steps for each

test case, forcing the input signals and verifying the expected output signals, to validate the

expected behavior of the SUT.

DRACONIS – a framework for static analysis

DRACONIS is a static analysis framework. It is separated into three steps: Intermediate

representation generation, analysis and reporting.

- The intermediate representation is generated either directly through model transformations

from the source models, or by converting the models to JSON, which is then parsed by the

framework .

- The analysis core supports analyses based on metrics or dataflow information. The tool

supports design requirement checking by instantiating requirements as analysis rules

(commonly called “checkers”) as a named combination of queries. Checkers are defined in

configuration files. This allows multiple user configurations to be used, supporting for instance

low cost checks that may be run on every change to more extensive configurations which are

part of the final validation work. After the analysis is performed, the tool stores the model

instance and the analysis report in a database. In cases where the model is then changed, a

delta analysis is performed to recommend what analyses will need to be re-run.

- The tool can produce reports in multiple variants. This covers everything from a purely tekst

based report that may be shown to the user to a structured report with a rendered image of the

model. The usage of DRACONIS allows the automated generation of reports based on existing

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 28 of 34

design rules, which in turn will allow manual validation effort to focus on cases where a human

is most needed.

5.2.5. Benefits of the SmartDelta Methodology
Each tool included in the Alstom use-case has been evaluated in SmartDelta. In this section, we

provide a short overview of this evaluation.

REQ-I. Results from the evaluation on the Alstom use-case show that the tool could identify
requirements in large documents with an average F1 score of 0.82%. Our results also confirm that
few-shot classifiers can achieve comparable results with an average F1 score of 0.76 on
significantly lower samples, i.e., only 20% of the data.

REQA. Results from the evaluation show that REQA can allocate the requirements to different

teams with a 76% F1 score when considering requirements allocation to the most frequent teams.

Information augmentation provides potentially useful indications in 76% of the cases.

VARA. Evaluation of VARA+ shows that the tool can recommend reuse with an average accuracy

of around 82% and can reduce the lead time of the propulsion software system. In addition, the

qualitative evaluation also shows that the recommendations produced by the tool are valuable and

insightful.

TIGER. The evaluation within the SmartDelta methodology focused on optimizing model-based test

suites using machine learning for delta-focused testing. In one study, TIGER+ was employed to

reduce test suite sizes by over 80% while maintaining a high fault detection rate (87%-100%). This

approach improved testing efficiency and maintained fault coverage comparable to manually

created suites. Another study validated TIGER, showing its capability to generate fully executable

test scripts with 100% requirements coverage and fault detection effectiveness through a software-

in-the-loop platform. Both studies significantly improved industrial testing efficiency and fault

detection for iterative updates within Alstom.

DRACONIS. DRACONIS supports configurable checks of different design rules, including naming

conventions, metrics and dataflow analysis. Results are visualised in a textual form, with an optional

rendering of the model for stand-alone report generation. The tool supports “edit-time” checking,

allowing for rapid feedback and early discovery of potential issues during development. The primary

use case is to alleviate the review process of systems in safety-aware contexts.

5.2.6. Conclusion
The SmartDelta methodology has shown results in addressing challenges faced by Alstom in

requirements engineering, test case generation, and code quality assurance. Tools like REQ-I and

REQA have been used to identify and allocate requirements, achieve good accuracy (F1 scores of

0.82 and 0.76, respectively), and improve efficiency in handling large tender documents and team

assignments. VARA+ has improved reuse analysis, with an 82% accuracy in recommending

reusable components, reducing lead times and improving delivery quality. TIGER has optimized

test case generation, reducing test suite sizes by over 80% while maintaining fault detection rates

of 87% to 100%, significantly improving testing efficiency for iterative updates. DRACONIS has

introduced automated and configurable static code analysis, showing early error detection and

helping the manual review burden in safety-critical contexts. Together, these tools and processes

illustrate how SmartDelta's methodology integration into Alstom's workflow improves overall

software development efficiency, quality assurance, and compliance with industry standards.

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 29 of 34

5.3. Smart Industry - Akkodis

Below, we present a summarized overview of the use case and its application of the SmartDelta

Methodology to address key challenges faced by modern software development teams. A

comprehensive description of the Akkodis use case is available in the public deliverable D1.6.

5.3.1. Background and General Assumptions
Today’s software development landscape is increasingly characterized by:

Rising Complexity: Software systems are becoming more intricate, incorporating numerous

components, dependencies, and technologies.

• Tight Time and Budget Constraints: Projects often operate under pressure to deliver

quickly, without compromising on cost.

• Flexibility Requirements: Development teams need to rapidly adapt to changing

requirements, market conditions, or stakeholder expectations.

• Need for Efficiency and Quality: Achieving high-quality software within limited resources

demands smarter processes and tools.

One promising avenue for meeting these challenges is the reuse of existing software components—

whether at the project, functional, artefact, or library level. Reuse can drive both efficiency and

quality by leveraging proven, tested solutions rather than reinventing the wheel for every new

requirement.

5.3.2. Challenges in Software Reuse
However, while reuse offers significant benefits, it also introduces its own challenges:

• Identification of Reusable Assets: Development teams need effective methods to locate

relevant components, which may be buried within large, scattered repositories or legacy

systems.

• Integration of Reuse into Daily Workflows: A structured methodology is necessary to

ensure that reuse becomes an integral part of the development lifecycle, rather than an ad-

hoc effort.

• Maintaining Quality During Reuse: Reusing artefacts requires careful evaluation to

ensure they meet current quality standards and are compatible with the new context.

5.3.3. Implementing SmartDelta for Incremental Development
The Akkodis use case tackles these challenges by implementing the SmartDelta Methodology within

its development process. This methodology, as detailed in Section 3.3 on Incremental Development,

introduces a structured, iterative approach that integrates reuse at multiple stages of the

development lifecycle. Below is a brief outline of how Akkodis applies these principles:

1. Retrieving and Filtering Software Artefacts

The first step in the process is to identify and retrieve relevant software artefacts from

various sources such as code repositories, documentation, and issue trackers. Akkodis has

developed two specialized tools to support this phase:

• SmartMetrics: This tool scans and indexes Git repositories, storing all relevant artefact

data in a structured database. This indexed data is later used for semantic search and

to build a Retrieval-Augmented Generation (RAG) pipeline. SmartMetrics also

calculates basic software quality metrics, such as code complexity and maintainability,

to provide insights during the reuse decision-making process.

• SmartTrace: Operating on the SmartMetrics database, SmartTrace functions as a

retriever. It efficiently finds and ranks software artefacts relevant to a given query,

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 30 of 34

helping developers quickly access the components most applicable to their current

tasks.

These tools streamline the artefact retrieval process, ensuring that the development

team has access to high-quality, relevant components. Detailed evaluations and

limitations of these tools are discussed in deliverable D1.6.

2. Analysing Impact and Quality

Once artefacts are retrieved, the next step involves analyzing their impact and quality.

Akkodis uses this phase to assess:

• Impact on Existing Systems: Understanding how new requirements or changes will

affect current software components and system behavior.

• Software Quality Metrics: Incorporating metrics like code complexity, test coverage,

and maintainability into the analysis to ensure long-term software health.

Akkodis has extended this analysis to operate on a model level:

• Automatic Model Generation: New requirements are translated into new or modified

models (e.g., UML state machines) using ReForm, a tool developed by IFAK. This allows

developers to explore the impact of changes on a high level without delving into

implementation details prematurely.

• Delta Analysis and Similarity Scoring: The GSR tool by TWT compares newly

generated models with existing ones, highlighting differences (deltas) and providing

similarity scores for models and their branches. This analysis helps developers assess

the scope and nature of changes.

• Visualization of Models and Deltas: Visual tools (e.g., provided by Fraunhofer

FOKUS) present these changes clearly, enabling better understanding and

communication of their impact.

This step helps teams balance implementation effort and quality, supporting decisions that

optimize for long-term maintainability and minimize technical debt.

3. Deciding on Reuse Options

With a clear understanding of the impact and quality of potential changes, developers and

architects can now decide how to proceed. This decision-making process involves

evaluating various reuse and implementation options under constraints such as:

• Budget and Timeline: Ensuring that the chosen path aligns with project constraints.

• Strategic Considerations: Balancing immediate needs with long-term goals, such as

maintaining architectural integrity or minimizing future maintenance costs.

The methodology provides structured support for these discussions by grounding decisions

in data from the analysis phase.

4. Implementing Changes

Once decisions are made, the planned changes can be implemented. The SmartDelta

Methodology is flexible and supports various workflows, depending on the process and

toolchain used:

• Automatic Code Generation: Some changes can be generated automatically based

on models.

• Manual Implementation: In cases where automated tools are insufficient, developers

can implement changes manually.

• Hybrid Approach: Combining automation and manual work, allowing teams to optimize

effort depending on the context.

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 31 of 34

This phase ensures that reused components are integrated seamlessly into the new system,

whether changes are applied at the model level or directly in the codebase.

5. Inspecting and Validating Changes

The final phase focuses on validating the implemented changes and their impact:

• Visual Dashboards and Reports: Tools provide visual insights into changes, showing

deltas between new and existing models or code, as well as their influence on quality

metrics.

• Quality Assurance: This step takes a broader view, validating multiple changes against

the original requirements. It also evaluates the evolution of software quality metrics over

time, ensuring that the system maintains its intended performance and reliability.

The ability to continuously monitor and validate software quality metrics ensures alignment

with project goals and supports continuous improvement. This feedback loop prepares the

system for the next iteration, maintaining a balance between innovation and stability.

Figure 10: Akkodis use case tools in SmartDelta Methodology

The diagram above illustrates the tools utilized in the Akkodis use case and their interconnections

within the SmartDelta Methodology. This setup provides significant flexibility, allowing tools to be

configured and applied in different sequences depending on the specific needs of the development

task.

5.3.4. Key Tools and Their Roles
• Semantic Artefact Search (Tool C):

This tool initiates the process by performing a semantic search across repositories to

retrieve relevant software artefacts. It lays the groundwork for subsequent analysis by

filtering potential candidates based on relevance.

• Model Generation (Tool E):

Based on new requirements, this tool generates updated or entirely new models, such as

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 32 of 34

UML state machines, that reflect the intended system behavior. These models serve as a

baseline for comparison and impact analysis.

• Model Comparison (Tool A):

Primarily used to analyze differences (deltas) between the base models and newly

generated models, this tool helps developers identify key changes. Importantly, it offers

additional functionality and can be repurposed for other steps, such as re-ranking artefacts

retrieved in the first phase.

• Model Visualization (Tool D):

This tool enables stakeholders to visualize models and delta information. It highlights

connections and touchpoints with existing models, providing clear insights through a

graphical interface. This is crucial for understanding system-wide impacts and making

informed decisions.

Flexibility and Workflow Variations

The methodology allows tools to be utilized in various combinations:

• Standard Workflow: Following the sequence of retrieving artefacts, generating models, and

then comparing and visualizing them.

• Alternative Workflow: The model comparison tool can be integrated earlier in the process,

enhancing artefact filtering by re-ranking results based on similarity to existing models.

By offering such adaptability, this approach ensures that development teams can tailor the process

to optimize efficiency, maintain quality, and meet project-specific constraints.

Benefits of the SmartDelta Approach in Akkodis

By integrating SmartDelta into its workflow, Akkodis aims to achieve several key benefits:

• Enhanced Efficiency: Automated tools and structured processes reduce the time spent on

locating, analyzing, and integrating reusable components.

• Improved Quality: Reusing proven components helps maintain high standards of software

quality while reducing the risk of introducing defects.

• Greater Flexibility: The incremental development approach supports adaptability, allowing

teams to respond quickly to changing requirements.

• Scalable Methodology: The SmartDelta Methodology is designed to scale across projects

of varying complexity, ensuring consistent results in diverse development environments.

5.3.5. Conclusion

The Akkodis use case highlights the practical application of the SmartDelta Methodology in

addressing the challenges of modern software development, such as rising complexity, constrained

resources, and the need for flexibility. By embedding reuse and quality management into every

phase of the development lifecycle, Akkodis ensures a sustainable model for delivering high-quality

software efficiently. The combination of advanced tools like SmartMetrics, SmartTrace, and

specialized modeling solutions demonstrates how automation and data-driven decision-making can

optimize incremental development processes.

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 33 of 34

6. Evolution of the SmartDelta Methodology

The following figure illustrates how the SmartDelta Methodology has evolved over the period of the

project to reach its final version as described in this deliverable.

Figure 11: Evolution of SmartDelta Methodology

 D2.4 SmartDelta Methodology: Users and Developers Guidelines

 © 2024 SmartDelta Consortium Page 34 of 34

References

[1] D. Pandey, U. Suman, and A. K. Ramani, ‘An Effective Requirement Engineering Process Model
for Software Development and Requirements Management’, in 2010 International Conference on
Advances in Recent Technologies in Communication and Computing, Kottayam, India: IEEE, Oct.
2010, pp. 287–291. doi: 10.1109/ARTCom.2010.24.

[2] M. Mohammad and V. Alagar, ‘A component‐based development process for trustworthy
systems’, J. Softw. Evol. Process, vol. 24, no. 7, pp. 815–835, Nov. 2012, doi: 10.1002/smr.472.

[3] J. Tian, Software quality engineering: testing, quality assurance, and quantifiable improvement.
Hoboken, NJ: Wiley-Interscience, 2005.

[4] L. Bogaards, ‘The Different Levels of Monitoring: A Monitoring Maturity Model’, dzone.com.
Accessed: May 01, 2024. [Online]. Available: https://dzone.com/articles/the-different-levels-of-
monitoring

[5] M. Gasparic and A. Janes, ‘What recommendation systems for software engineering recommend:
A systematic literature review’, J. Syst. Softw., vol. 113, pp. 101–113, Mar. 2016, doi:
10.1016/j.jss.2015.11.036.

	Executive Summary
	1. Introduction of SmartDelta Methodology
	2. SmartDelta Methodology Stages
	3. SmartDelta Stages and Technical Areas: Inputs, Outputs, Deltas, and Their Interrelationships
	3.1. Preconditions Consideration
	3.2. Requirements Engineering (RE)
	3.3. Incremental Development
	3.4. Quality Assurance
	3.5. Recommend and Predict
	3.6. Monitoring and Visualizing

	4. Mapping of the SmartDelta Tools to the Methodology
	5. Industrial Application Examples
	5.1. Enterprise Software – Software AG
	5.1.1. Introduction and Background
	5.1.2. Challenges
	5.1.3. Implementing the SmartDelta Methodology for enabling reuse and quality improvements
	5.1.4. Key Tools and Their Roles
	5.1.5. Benefits of the SmartDelta Methodology
	5.1.6. Conclusion

	5.2. Railway Domain - Alstom
	5.2.1. Introduction and Background
	5.2.2. Challenges (before SmartDelta)
	5.2.3. Implementing the SmartDelta Methodology
	5.2.4. Key Tools and Their Roles
	5.2.5. Benefits of the SmartDelta Methodology
	5.2.6. Conclusion

	5.3. Smart Industry - Akkodis
	5.3.1. Background and General Assumptions
	5.3.2. Challenges in Software Reuse
	5.3.3. Implementing SmartDelta for Incremental Development
	5.3.4. Key Tools and Their Roles
	5.3.5. Conclusion

	6. Evolution of the SmartDelta Methodology
	References

