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Executive Summary 

This deliverable D 3.7 is the resulting documentation of D3.1, D3.2, D3.3, D3.4, D3.5 and D3.6.  
It aims to describe the developed knowledge management components regarding their 
general use case, the interfaces with data input and output and available functions as well as 
their basic inner working. 
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1 Introduction 

In WP 3 “Algorithm Design and Implementation” the majority of AI algorithms for the Innosale 
project get developed, defined in WP1 “Use cases of future sales processes and detailed 
requirements analysis”. D.3.7 contains a deliverable of a collection of all results of T3.1, T3.2, 
T3.3, T3.4, T3.5 and T3.6.  

The goal is to combine the collected knowledge of all parts within one document. This includes 
all 18 use cases with a short use case description, the data input, that may be required and 
data output. Furthermore, it includes the available functions, API calls and user interfaces.  

It also describes the inner working of the programs created within this work package.  

The use cases are grouped by the following topics: 
- Semantic Search 
- Knowledge Base 
- Customer Segmentation 
- Optimal pricing 
- Inference Engine 
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2 D3.2 Semantic Search (NATIF) 

2.1 Semantic Inquiry Understanding Using Named Entity Recognition (NATIF) 

For Semantic Inquiry Understanding using Named Entity Recognition (NER), we first present 
the addressed use case, then the technical specifications (Inputs / Outputs, Business Logic, 
API). 

2.1.1 Use case  

Customers usually get in contact with the Use Case Partner DEMAG via email / a contact form. 
In their inquiry, they describe the product specifications. Here, customer expertise differs 
drastically.  Some customers know exactly what they need to specify and which words to use, 
as they have bought complex products from DEMAG in the past. Others only roughly describe 
their needs in the language used within their company, sometimes forgetting to specify some 
relevant information. A sales engineer is therefore needed to understand the customer’s 
intentions and map them to a concrete product configuration. In that process, missing 
information must be identified, and either must be deducible from other given information or 
requested from the customer. Once the product configuration is complete, historical projects 
with similar parameters need to be found, as they can guide the sales engineer in engineering 
the product and finding a suitable price. Here, a Named Entity Recognition (NER) approach is 
proposed to automate the inquiry understanding, by extracting relevant knowledge 
(independent of customer expertise) and transforming it into a structured format, with which 
historical projects can be searched. 

2.1.2 Inputs / Outputs 

Input is an inquiry as .eml file (Email format), .txt files (e.g., coming from contact forms), or 
.pdf files (e.g., printed emails). 

The output is a structured JSON, providing the values of the configured crane in overall 33 
fields (e.g. the load capacity or power frequency). For each value, a link to the text where this 
information was extracted from, is provided, so that the sales engineer can easily validate the 
results in a human-in-the-loop fashion.  

2.1.3 Business logic 

An in-depth description of the inner workings of the tool can be found in D3.2. Overall, 
different methods were explored, ranging from (1) directly training a text-based NER, to (2) 
further pre-training a LLM on domain-specific text and fine-tuning it for the NER task, to (3) 
exploring a layout-based NER approach that considers the structure of text (bullet points etc.) 
more closely.  

Furthermore, the approach is combined with the inference engine from T3.4, which can 
deduce information not explicitly stated in the inquiry, as shown in the following Figure 1: 

 
Figure 1: Semantic Inquiry Understanding via NER 
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2.1.4 Available Functions, APIs, User Interactions 

For the integration, an API was developed, that takes an inquiry as input, and outputs the 
extracted entities, as shown in Figure 2. 

 

Figure 2: API to transform unstructured inquiries into a structured format 

The file simply needs to be POSTed to /processing/crane_extraction. The API can be used 
synchronously, where the request stays open until the result is ready, or asynchronously, 
where the request is directly answered with an ID, that can be used to poll the information 
later on.  

In both cases, a structured JSON is returned, containing the entity names as keys, and the 
extracted values as values.  

For authentication, API keys or bearer tokens can be used. Furthermore, the API sticks to the 
openAPI standard, facilitating the integration into the overall InnoSale solution. 
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2.2 Semantic Search Within Automatically Transcribed Meeting Notes (DAKIK)  

2.2.1 Use case  

In the Sheet Metal (SM) use case, employees conduct meetings to discuss customer offers or 
internal tasks, often in an online setting. These meetings can be recorded, and rather than 
manually listening to entire recordings, employees can search through automatically 
transcribed meeting notes. Semantic search, rather than keyword-based search, is used to 
find relevant discussions, even when the exact words are not remembered, improving 
efficiency. 

2.2.2 Inputs / Outputs 

Inputs: Audio files of recorded meetings are uploaded via a user interface, with the option to 
select the Whisper model for transcription (e.g., large-v2 model fine-tuned for Turkish). Once 
processed, the meeting transcription is stored in MongoDB.   

Outputs: The results of semantic searches are provided in JSON format, showing the most 
relevant text segments from the transcription, ranked based on similarity to the user's query. 

2.2.3 Business logic 

The system first transcribes the uploaded audio files using the Whisper model, storing the 
results in MongoDB. The transcriptions are then segmented and embedded into a vector space 
using the Universal Sentence Encoder with LangChain. These embeddings are indexed in 
(Facebook AI Similarity Search) FAISS for fast, similarity-based searches. When a search query 
is submitted, it is also embedded, and FAISS retrieves the top-matching segments based on 
cosine similarity, returning them to the user in real-time. 

2.2.4 Available Functions, APIs, User Interactions 

User Interaction: 

Users interact via a web interface where they can upload audio files for transcription and 
perform semantic searches. Search results are presented on the same interface, with options 
to view the specific meeting segment or the entire transcription. The interface offers the 
flexibility to choose different Whisper models based on accuracy and processing time. 

APIs:  

- Transcription API (`/transcription/upload`): Allows users to upload audio files for 
transcription. (Figure 3) 

- Semantic Search API (`/search/query`): Takes a user query, searches the FAISS vector index, 
and returns the most relevant meeting segments. (Figure 4) 
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Figure 3: API endpoints for Whisper Service 

 

Figure 4: API Endpoints for Semantic Search Service 

  



 

 

  DX.Y7, VERSION X.YZ, 20YY-MM-DD 

 

12 

 

2.3 Ontology based Semantic Search (IFAK) 

2.3.1 Use case  

Clients generally reach out to DEMAG, the Use Case Partner, through email or a contact form, 
outlining their product requirements. Due to divergent levels of customer knowledge, some 
offer comprehensive descriptions, while others may overlook pertinent details, requiring a 
sales engineer to decipher and finalize the product configuration process, including identifying 
absent information and consulting past projects for guidance in product development and 
pricing. For efficiency, the sales engineer looks for similar projects in the past to derive new 
technical solutions from proven ones. 

2.3.2 Inputs / Outputs 

Figure 5 indicates that the input of this technology are inquiry emails of customers, while the 
output is a sorted list of past projects. In the result list, the most similar projects are provided 
first. 

 

Ontology Based
Semantic Search

Customer

Inquiry
Email / Text

Sales Engineer
 

Ontology-based
index of past projects
(Result of T3.1)

Sorted list
of past projects
(most similar first)

 

Figure 5: Application of Ontology Based Semantic Search for sales cases 

2.3.3 Business logic 

Project documents frequently employ technical terminology that differs significantly from the 

language used by customers in their requests. This discrepancy presents a challenge for 

effective information retrieval, hindering users from finding relevant information.  

An ontology can bridge this gap by establishing relationships (synonyms, generalizations) 

between expert and layman terms. Semantic search techniques leverage these relationships 

within the ontology to deliver more accurate and relevant results compared to simple 

keyword searches.  

We explored two semantic search approaches:  

• Ontology-based:  This approach retrieves documents containing synonyms or 

generalizations of the user's search terms, even if those exact words aren't present.   

• Word Embedding:  We compare the ontology-based approach with a word 

embedding approach to analyse similarities and differences in the retrieved results.  

Two main methods connect documents and ontologies:  

• Tight Coupling:  Documents explicitly reference ontology concepts, simplifying 

synonym resolution. However, this method requires extensive annotation of 

documents with semantic information.  
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• Loose Coupling:  Documents aren't bound to a specific ontology, offering flexibility in 

choosing the most appropriate ontology for the task. However, loose coupling can 

potentially hinder semantic resolution compared to tight coupling.  

Our project adopts a loose coupling approach for its flexibility. Even with loose coupling, 

connecting document entities to the ontology is crucial for effective semantic search. We 

leverage shared tokens and entities between documents and existing ontology concepts for 

annotation, avoiding the need for extensive manual annotation. For detailed information 

about the ontology structure see section 3.3.  

Table 1 and Table 2 show the relations between concepts and existing project files. Existing 
project files need to be indexed to get search results with high performance. Hence, we 
initially store the path of each project file, along with a generated ID, in the database. To 
extract entities from documents, we utilize NER and also perform simple tokenization of the 
documents. Subsequently, we compare these entities and tokens with concepts in the 
ontology to establish their linkage. 

Table 1: document_index_table      Table 2: concept_document_table                                                  

 

 

 

To determine the documents within project files that are most similar to our customer inquiry, 
we propose a method termed "concept frequency". This method calculates the frequency of 
concepts within each document. Unlike traditional "term frequency“, this approach considers 
all terms related to a specific term, resulting in the same frequency for terms with different 
relations. Consequently, terms in different languages that are synonyms to specific terms 
within our customer inquiry receive the same frequency. Thus, when seeking the most similar 
project files, those containing terms from other languages are also considered. Once concept 
frequency is calculated, we identify project files containing these concepts. Given that we have 
already linked concepts and documents in our ontology database, locating them is 
straightforward. Subsequently, we assign a score to these project files based on the number 
of concepts they contain. The score is the sum of the frequencies of the concepts within them. 
The following formula summarizes the aforementioned process. 

Let: 

• 𝑪𝑭(𝒅, 𝒄) be the concept frequency of concept c within document d. 

• 𝑪𝒐𝒖𝒏𝒕(𝒄, 𝒅) be the number of times concept c appears within document d. 

• 𝑻𝒐𝒕𝒂𝒍𝑻𝒐𝒌𝒆𝒏𝒔(𝒅) be the total number of tokens (words or terms) in document d. 
• 𝑺𝒄𝒐𝒓𝒆(𝒅) be the score assigned to document d. 

• 𝑪𝒐𝒏𝒄𝒆𝒑𝒕𝒔(𝒅) be the set of concepts contained in document d. 

 

File Name (str) File ID (int) 

DemagCleanedData\DE-262-
00467107\_01\kfm\Anfrage\dE-262-
00467107  OFFER-301645  Hans 
Mustermann.txt 

1 

DemagCleanedData\DE-262-
00467107\_01\kfm\Angebot\AW Ihre 
Angebotsnummer DE-262-00453901-00 
DC-ProCC 2-250 11 H4 V82 380-41550.txt 

2 

Concept ID (List(int)) File ID (int) 

[1] 1 

[1, 2] 2 

[3 , 5 , 6] 3 

[4] 4 
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Then, the score 𝑺𝒄𝒐𝒓𝒆(𝒅) for document 𝒅 is calculated as the sum of the concept frequencies 
for all concepts within the document: 

 

𝑪𝑭(𝒅, 𝒄) =
𝐶𝑜𝑢𝑛𝑡(𝑐, 𝑑)

TotalTokens(d)
 

 

𝑺𝒄𝒐𝒓𝒆(𝒅)  = ∑  𝐶𝐹(𝑑, 𝑐)∞
𝑐∈𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠(𝑑)  

 

This formula represents the aggregation of concept frequencies for all concepts within a 
document, providing a measure of similarity between the document and the customer inquiry 
based on the shared concepts. 

We have created three distinct search functions. The first two adhere to ontology semantic 
search principles, while the third function employs word embedding techniques. 

 

  

 

 

 

 

 

 

 

 

 

 

2.3.4 Available Functions, APIs, User Interactions 

The following figures show the result pages of search by emphasizing synonym relations 
(Figure 6), abstract relations (Figure 7) and word embeddings (Figure 8). 

 

 

Figure 6: Similar Offers Emphasizing Synonym Relations 

 

scans through concepts within emails and directly 
compare them with corresponding concepts in the 
ontology, emphasizing synonym relations. 

Email concepts are matched with ontology concepts 
(synonyms), and then cross-referenced with project files. 
scans emails for concepts and matches them against a 
range of relations in the ontology database, including 
abstract-specification or part-of connections. 

Email concepts are matched with ontology concepts, 
encompassing synonyms as well as other relations, before 
being compared with project files.Email concepts are 
matched with ontology concepts (synonyms), and then 
cross-referenced with project files. 

generates word embeddings for each project file and the 
current email. It then compares these two word vectors 
using cosine similarity. Those project files with the highest 
similarities will be returned. 

Search Similar Offers 
(Ontology based) 

 

Extended Search 
(Ontology based) 

Search Similar Offers 
(Word Embedding) 
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Figure 7: Extended Search Utilizing Other Relation such as abstract-specification relation 

 

 

 

Figure 8: Similar Offers Using Word Embeddings 
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2.4 SentenceBERT-based Semantic Search for Historical Projects (VTT) 

2.4.1 Use case  

When a sales expert needs additional support for offer creation, a support ticket is used to 
communicate with back-office support. The back-office prepares manually a customized offer 
and returns it to the sales expert. Using the semantic search tool the back-office support can 
easily find historical support tickets with similar content, which can be used to make the 
process faster and smoother.  

2.4.2 Inputs / Outputs 

Inputs: Historical Efecte tickets in plain text. New Efecte ticket in plain text.   

Outputs: The results of semantic searches are provided in JSON format, showing the most 
relevant Efecte ticket, ranked based on similarity to the user's query. 

2.4.3 Business logic 

The aim is for the tool to understand the meaning of the support ticket to identify similar 
tickets and enable “search with meaning”. The search engine transforms the text to a word-
embedding format, compares it with historical data, and identifies relevant tickets using 
clustering algorithms. The results are presented in a user interface with case information, 
drawings, relevancy estimation, and voting options for validation. The core of the technical 
implementation is based on SentenceBERT. The semantic search solution developed by VTT 
uses SentenceTranformers framework1  for the utilization of SentenceBERT. The 
implementation of the semantic search components was done with Python programming 
language. 

2.4.4 Available Functions, APIs, User Interactions 

As at the time of this version of the semantic search component's development, the real data 
from a use case provider was not available; an open data set was used instead. The 
demonstrator shown in figure below is implemented using a credit card complaint –dataset2. 
The user interface was developed solely for demonstration purposes, but the underlying 
mechanism implements the SentenceBERT vector transformation and cosine similarity-based 
search described in the previous section.   

 

 

1 https://sbert.net 
2 https://www.consumerfinance.gov/data-research/consumer-complaints/ 

https://sbert.net/
https://www.consumerfinance.gov/data-research/consumer-complaints/
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Figure 9: Screenshots of a demonstrator of the VTT semantic search component. 

The component will be wrapped as a Docker container. The component can be called by using 
HTTP POST requests with JSON payloads. The responses are also JSON formatted. When 
writing this document, the API is not yet implemented but initial specification is presented 
below in the scope of credit card complaint dataset. 

 

Figure 10: API to perform semantic search with the VTT component. 

 

Example JSON payload for HTTP request to the semantic search component: 

{“query”: “I have lost my credit card”} 

 

Example JSON payload for HTTP response: 

{ 

“response”: 

 [ 

  { 

  “document_id”: 123, 

  “matching_text_block”: “May have lost my card or it was stolen is it way a to 
get a new card”, 

  “long_text”: “May have lost my card or it was stolen is it way a to get a new 
card please help me. My XXXX XXXX XXXX credit card # : XXXX and my XXXX XXXX XXXX XXXX 
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XXXX credit card # : XXXX is lost/stolen, and all the transactions on my credit card accounts is 
fraudulent transactions.”, 

  “title”:  “Visa credit card is lost/stolen”,  

  “score”: 0.765 

  } 

 ] 

} 
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2.5 Semantic Search Using an Ontology and a Knowledge Graph (PANEL) 

2.5.1 Use case  

Customers often require software solutions for their businesses but typically lack the technical 
expertise necessary to navigate traditional software marketplaces. Platforms like GitHub, 
Stack Overflow, and Microsoft AppSource usually require users to input specific keywords to 
search for software, which can be challenging for those without a technical background. Our 
aim is to allow customers to articulate their requirements in their own words, simplifying the 
search process and ensuring they find the most relevant software solutions without needing 
specialized knowledge. The decision to implement semantic search based on ontologies in 
InnoSale is driven by the need to effectively bridge the communication gap between non-
technical user queries and technical software solutions. By enhancing the search process in 
this way, InnoSale significantly improves accessibility and user satisfaction, catering to a 
broader audience with diverse technical backgrounds. 

2.5.2 Inputs / Outputs 

Inputs are natural language requirements as text (txt) files or PDF files. 
The output is a JSON with the information about the most related digital products. 

2.5.3 Business logic 

As shown in the following Figure 11, the user inputs a natural language query expressing their 
software needs. Using NLP techniques, the system extracts not only keywords but also 
contextual meanings that are then mapped onto specific ontology concepts and relationships 
defined in the ontology.  

 

Figure 11: Semantic Search Using an Ontology and a Knowledge Graph Process 

We utilized the spaCy NLP library to handle the processing of natural language queries. spaCy 
provided robust support for various NLP tasks such as tokenization, part-of-speech tagging, 
and NER. Our approach primarily relied on spaCy’s efficient processing pipeline and a set of 
heuristics we developed to identify and extract key information relevant to our ontology, such 
as software features, categories, and licensing details. 

The ontology, structured in RDF format and described using OWL, includes a variety of classes 
and object properties that represent different aspects of software solutions. This rich 
structure allows for detailed mappings and more accurate query formulations. 

Each query is analysed to identify which aspects of the ontology it pertains to. For instance, if 
a user searches for 'CRM software with a flexible license', the system identifies 'CRM' as a 
Category, 'software' as a Software, and 'flexible license' as a License type.  

Using the ontology, natural language queries are decomposed and mapped to these specific 
classes and their attributes. These mappings facilitate the dynamic construction of SPARQL 
queries, tailored to search the underlying knowledge graph effectively. The knowledge graph 
serves as an interconnected repository of data that includes detailed software descriptions 
and attributes as defined by the ontology. The knowledge graph is regularly updated with new 
software entries and user feedback, which not only refines current product categorizations 
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but also enhances the system's learning, making the ontology richer and more aligned with 
current market trends. 

The search algorithm then uses these ontology mappings to execute queries against the 
knowledge graph. By traversing the relationships in the knowledge graph, the system can 
retrieve and recommend software products that precisely match the user's expressed needs. 

 

2.5.4 Available Functions, APIs, User Interactions 

 

Figure 12: Available APIs 

An API (See Figure 12) was developed to process natural language queries from users and 
return a list of matching digital products. The API endpoints output structured JSON containing 
information about these digital products. Like other use cases within the InnoSale solution, 
we adhere to the OpenAPI standard to ensure seamless integration. 
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3 D3.3 Knowledge Base (DAKIK) 

3.1 Historical Data management (Demag, Panel, DAKIK) 

3.1.1 Use case  

SM (Sheet Metal Stamping): The database in the SM case generally contains numerical data, 
string and Boolean values, audio files, and 3D part files. Data is stored in table, object, and 
JSON types. Database management is done through MySQL and MongoDB systems, and data 
updating is done through Python, which is the backend.  

MySQL is a relational database management system in which table structures are predefined 
and immutable. All records within a given table must adhere to the fixed schema, containing 
the same set of fields. In such scenarios, the use of SQL is employed for data manipulation and 
retrieval. 

On the other hand, MongoDB is a document-oriented (non-relational) database, offering 
greater flexibility in terms of data structure. When new data is inserted, corresponding 
collections are dynamically created, and each record within a collection is not required to 
possess an identical set of fields. Due to the absence of join operations in MongoDB, the 
process of retrieving and writing data is generally more straightforward compared to 
relational databases. 

LLE (Material Handling for Light Lifting Equipment): For one of the LLE demonstrators, which 
is being created as part of UC 1,3,4,5, historical data on past sales cases are required. These 
historical sales cases are to be mapped and compared with current enquiries coming in as E-
Mail requests. This allows similarities to old sales cases to be identified, which should then 
support the back office in processing the current enquiry. 

DPM (Digital Product Marketplace): DPM has a database containing internal digital products 
from Panel and Softtekt. These internal digital products include the following details: 

- requirements specification document,  
- class diagram,  
- natural language description by the creator,  
- tags like programming language, license, platform, quality metrics, etc.  

The knowledge base for the digital product marketplace is structured as an ontology. This 
ontology defines the relationships and classifications between various elements of the digital 
products. By using an ontology, the system enables semantic mapping of digital products, 
allowing for advanced querying and reasoning over the data. 

Each digital product is stored in a knowledge graph, which models the entities (e.g., digital 
products) and their relationships as nodes and edges. This graph-based structure allows the 
system to capture not only the data but also the context and meaning of each element, 
providing a way to infer new information and improve the discovery and management of 
digital products. 

3.1.2 Inputs / Outputs 

SM:  

(Inputs) Audio records, 3D metal part files, operation parameters, item parameters. 

(Outputs) Part similarity analysis, summarized meeting texts, semantic search results. 
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LLE:  

(Inputs) The data is currently stored in internal company systems to which the partners cannot 
be given access due to confidential data, a so-called dummy database must be created. This 
should be a structured database that the partners can access to implement their solutions in 
the demonstrator.  

Figure 13 shows the systems from which data is to be transferred to the dummy database. 
Firstly, past LLE orders containing information such as reference ID, quantity, price, and 
currency are filtered via the company's internal SAP system. With the help of the Ref-ID, the 
corresponding product configurations can be exported from the orders from the Camos 
system, which contain all the important technical parameters of the ordered product. A 
certain number of data records are now extracted from these two data sources, merged, and 
then transferred to the dummy database in a structured manner. 

 

 

Figure 13: Origin of the historical Datasets from Demag 

Another set of data which will be shared outside of the database, directly with the InnoSale 
partners Natif and ifak, are the E-Mail enquiries from customers. They should be used as 
historical Sales requests to train their algorithm regarding entity recognition and semantic 
search. 

(Outputs) Specifically, Ifak uses both the data from the database and the data shared from 
email customer inquiries for its “Semantic Search” approach. IOTIQ will also have visibility into 
the database as they essentially deal with the integration of the GUI. Also like the TU Dresden, 
where “rule-based search” is in the foreground. Although Natif will not directly use the data 
from the database, its solution approach will be used to extract the most important technical 
parameters from customers' email inquiries using their entity recognition algorithm and 
automatically transfer them to the required e-project sheet. This is then used, for example, as 
a basis to automatically fill in missing but essential parameters from historical queries (TU 
Dresden). 

 

DPM:  

(Inputs) JSON with digital product information 

(Outputs) OWL ontology 

3.1.3 Business logic 

SM: The data in the database is read through the backend to be sent to the frontend and 
transmitted to ReactJS and ThreeJS components. Data is read from the database with the 
Python backend and presented as endpoints that the frontend can access with the FlaskAPI 



 

 

  DX.Y7, VERSION X.YZ, 20YY-MM-DD 

 

23 

 

system. On the JavaScript frontend, requests are made to endpoints, and data is obtained 
using the axios system. Python's FlaskAPI system is used in this process. 

 

LLE: The database developed for this use case is a document-based MongoDB, as this was the 
best fit for the format, the original data was provided in. The initial plan was for Demag to 
export the needed data and anonymize personal information. This would have been read into 
the database hosted by :em AG. Because of legal reasons this concept was adapted so that 
Demag themselves would host the database on their servers. :em AG provides the software 
as a Docker image, so that Demag can easily start and stop the service as well as read in the 
initial data needed with a locally run script. The service of Natif is called via an API from 
Demag’s server while TUD’s inference tool nemo will run locally on the server. Each partner 
has the option to access the server hosted by Demag with an external account to develop and 
test their implementation. 

 

DPM: 

In this use case, the information is stored in a knowledge graph implemented using Neo4J, a 
graph database management system. To manage the knowledge graph, we have developed 
an API using FastAPI.  

The Knowledge Base in our use case provides information to two main components: the 
Inference Engine and the Knowledge Acquisition Component (KAC). The interactions are as 
follows: 

1. Inference Engine: This component requires information about all the digital products 
stored in the knowledge graph. It also has the capability to add new digital products. 
The API facilitates these interactions by exposing endpoints for querying and updating 
the digital product information. 

2. Knowledge Acquisition Component: This component is responsible for updating or 
modifying the ontology and its structure to refine and enhance the knowledge graph. 
The API supports these operations by providing endpoints for ontology management.  

 

3.1.4 Available Functions and APIs 

SM: An API was developed. See Figure 14. 
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Figure 14: Available APIs  

 

LLE: 

An API was developed with FastAPI to enable interaction with the knowledge base which 
stores historical product configurations and examples of anonymized inquiries. See Figure 15 

 

Figure 15: Available API 

DPM: The API developed with FastAPI exposes endpoints for interacting with the knowledge 
base. See Figure 16. 
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Figure 16: Available API 

These endpoints enable seamless communication between the knowledge base, the Inference 
Engine, and KAC, ensuring that the digital information and the ontology remain accurate and 
up to date. 
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3.2 Upper Ontology Development (PANEL) 

3.2.1 Use case  

This hierarchical structure consists of an upper ontology, which provides a foundational set of 
concepts applicable in the InnoSale context, and domain ontologies, which cover specific areas 
relevant to particular contexts. This approach is essential for mapping information into a 
comprehensive knowledge graph, enhancing data organization and retrieval.  

The upper ontology ensures a consistent framework that supports interoperability between 
different data sources and domains, while domain ontologies address specific contextual 
needs, enabling precise and relevant data utilization. 

The ontology's role in mapping information into the knowledge graph is crucial for organizing 
and retrieving data efficiently. It ensures that the data is interconnected through defined 
relationships, which enhances the system's ability to handle complex queries and provides 
more meaningful search results. 

 

3.2.2 Inputs / Outputs 

Inputs: 

- Ontology file (RDF/XML, Turtle(.rdf, .ttl))  
- Concept and relationship updates (JSON): These updates enable ongoing adjustments 

and refinements to the knowledge graph to reflect evolving domain requirements. 

Outputs: 

- Ontology structure (JSON): Upon loading, the system outputs the ontology’s structure 
in JSON, detailing nodes (concepts) and edges (relationships) that make up the initial 
graph. 

3.2.3 Business logic 

For this approach, the data is structured within a graph database, such as Neo4J. This allows 
for more dynamic and flexible querying of interconnected concepts and relationships, which 
is particularly beneficial for handling complex queries. The ontology facilitates creating and 
managing this knowledge graph by defining the nodes (concepts) and edges (relationships) 
that represent the data. 

The following Figure 17 shows the structure of the upper ontology and its branching into 
domain ontologies: 
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Figure 17: Upper Ontology Structure 

 

3.2.4 Available Functions, APIs, User Interactions 

To handle the ontology and knowledge graph effectively, we have an API with functions as 
`load_ontology’, `update_node(node_id, new_data)`,  `update_edge(edge_id, 
new_relationship)`, ̀ save_ontology_graph()`. These functions ensure that the ontology can be 
dynamically managed and updated, supporting the continuous evolution and refinement of 
the knowledge graph. 
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3.3 Development of an Ontology for Semantic Search(IFAK) 

3.3.1 Use case  

Actor: System Administrator / Knowledge Engineer 

Goal: Maintain and update a comprehensive product and product option ontology for efficient 
information retrieval and project file matching. 

Precondition: 

• Existing terminologies from Demag (Excel file, Acrolinx database) and Konecranes 
(Acrolinx database) are available. 

• A system for processing and storing the ontology is in place. 

Scenario: 

1. Initial Ontology Creation: The System Administrator imports existing terminologies 
from Demag and Konecranes into the ontology system.  

2. Terminology Unification: The system merges and standardizes terminology entries, 
resolving any discrepancies between sources.  It incorporates translations and 
synonyms from the Acrolinx databases.  

3. Term Abstraction Integration: The System Administrator adds term abstractions to the 
unified terminology, enabling representation of product variants and relationships 
between terms. This transforms the unified terminology into a functional ontology.  

4. Optional Ontology Update (Project Files): The System Administrator triggers a process 
to scan existing project files for terms not present in the ontology. Newly identified 
terms are added, and their relationships to existing terms are established. A blacklist 
of frequently occurring but irrelevant words is maintained and updated.  

5. Automatic Ontology Update (Inquiry Emails): When a new customer inquiry email 
arrives:  

a. The system automatically extracts keywords from the email text. 
b. New terms not found in the ontology are flagged for review by the Knowledge 

Engineer.  
c. The Knowledge Engineer manually adds new terms to the ontology, 

establishing their relationships as synonyms or term abstractions based on 
context. 

Postcondition:  The product ontology is continuously updated and refined, reflecting the 
evolving vocabulary used by both experts and customers. This ensures accurate information 
retrieval and efficient matching of customer inquiries with relevant project files. 

3.3.2 Inputs / Outputs 

Inputs: 

• Existing Terminologies: 

o Demag Excel Spreadsheet: Contains terms related to material handling. 

o Konecranes Acrolinx Database: A web-based system shared by Demag and 
Konecranes, containing terms in multiple languages, along with synonym 
relationships. 

• Project Files: Collection of previous project files in a searchable format. 

• Customer Inquiry Emails: Incoming emails from customers expressing their needs and 
requests. 
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• Blacklist of irrelevant words frequently appearing in project files. 

Outputs:  

• Enriched Product Ontology: A structured representation of product-related 
knowledge, including: 

o Terms and their definitions. 
o Term relationships (mostly synonyms and abstractions, while hyponyms, 

hypernyms, etc. have not been considered) enabling abstraction and variant 
identification. 

o Translations in multiple languages. 

The output was an SQLite database with a structure as depicted in Figure 18. Here is a short 
description of the tables:  

• term_table: Stores terms as string values paired with unique integer termIDs. This 
allows efficient representation of relations between terms. 

• concept_table: Links synonyms to the same conceptID, reflecting their semantic 
equivalence.  

• concept_concept_table: Captures relationships between concepts, such as "abstract-
specific" (e.g., "machine" is abstract to "chain hoist"). 

 

 

Figure 18: Structure of the Ontology database. 

3.3.3 Business logic 

3.3.3.1 Unifying Terminologies 

The business logic for unifying terminologies from Demag and Konecranes enables a shared 
understanding of key concepts in the material handling domain. This process involves several 
crucial steps.  

Term Identification and Relationship Extraction 

Existing terms from the Acrolinx database are matched with those in the Demag spreadsheet. 
Synonyms within the Acrolinx database are identified and linked through the conceptID. To 
detect relationships, we employed two techniques:  

A tree-like algorithm identifies parent-child relationships, representing hierarchical structures 
(e.g., "cover" as an abstract term with specific types like "cover plate" and "cover surface").  
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We also leveraged a Large Language Model (LLM), specifically the "llama3:8b-instruct-q6_K" 
model via the Ollama Python library, to analyse relationships between terms. Prompt 
engineering focused on determining whether one term is a subset of another ("is-a" 
relationship), with the LLM outputting either "yes" or "no".  

Data Integration and Storage 

All extracted terms and relationships are stored within a SQLite database using a defined table 
structure.  

Continuous Improvement 

This system allows for ongoing refinement, enabling new terms to be added, synonym 
relationships to be updated, and the LLM-based analysis to be iteratively improved. 

3.3.3.2 Optional Update of an Ontology Using Project Files 

Existing project files require scanning for uncovered terms to be added to the ontology, 
potentially relating them to existing entries. This process involves several key steps, outlined 
as follows.  

Preprocessing of Project Files 

To initiate this task, project files must first be converted into raw text. Subsequent processing 
removes unnecessary elements, including:  

• Stop words 

• Unnecessary numbers 

• URLs 

• Email addresses 

• Non-essential punctuation 

A normalization phase ensures spelling accuracy, correcting errors as detected. 

Term Extraction Approaches 

Two distinct methods can be employed for term extraction from pre-processed text:  

Approach 1: Keyword Extraction: This method focuses on extracting statistically 
significant terms based on factors such as:  

• Uppercase/acronym frequency 

• Sentence position 

• Term frequency within the document 

• Co-occurrence of specific terms 

• Cross-sentence term appearance 

Various algorithms (TKF, TF-IDF, RAKE, YAKE, GRAPH) are available for finding keywords. 
Notably, YAKE has demonstrated strong results in multilingual keyword extraction. 

Approach 2: Comprehensive Term Extraction via Tokenization: For a broader scope 
beyond just keywords, tokenization divides text into smaller units (tokens), which can be 
words, characters, or sub words. This approach encompasses all terms within the text.  

Ontology Update and Relation Mapping 

Regardless of the chosen extraction method, the extracted terms are:  

• Compared and matched with existing ontology terms 

• Analysed for potential synonym and abstraction relations 

• Used to update both the ontology and term-file relationships accordingly. 
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3.3.3.3 Regular update based on incoming inquiries 

Manufacturer-customer communication often involves vocabulary discrepancies between 
customers and project experts. To bridge this gap, an automated process should update and 
extend the ontology upon evaluation of each customer inquiry email.  

Upon email evaluation, the ontology and relation files are updated with newly encountered 
words. These additions require manual review to establish relationships, including:  

• Synonym terms 

• Term abstractions 

To facilitate this process, Named Entity Recognition (NER) was applied to sample Demag data. 
Evaluation results confirm NER's suitability for this task. As a Natural Language Processing 
(NLP) task, NER involves:  

• Identifying named entities within text 

• Classifying these entities into specific types, such as: Persons, Organizations, Locations, 
… 

Refer to Figure 19 for a visual representation of the dynamic ontology update process. 
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Figure 19: Evaluation of incoming customer inquiries 

3.3.4 Available Functions, APIs, User Interactions 

The software consists of several Python programs that must be executed separately in a 
specific order. Here is an overview of how to call each program, their correct execution order, 
and a brief description: 

1. python database_management.py: Create a database called OntologyDB.db, which 
contains all the tables as depicted in Figure 18. 

2. python ontology_creation.py: Import all terminology from the Demag Excel file 
(standard terms.xlsx) and TermsAcronix.csv into the database. Combine synonyms and 
establish "element-of". 
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3. python clean_document.py: Clean the project files by removing unnecessary 
information. Store the content in a singular format since plural terms are not needed. 

4. python document_processing.py: Index the documents by saving the path of each 
document into the database. Afterwards, relate the documents to concepts in the 
database. "is-a" relations between concepts are being also investigated here because 
it has dependency on data inside "concept_document_table" which is being filled 
during execution of document_processing table. 
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3.4 Fuzzy Logic Rules (IFAK) 

3.4.1 Use case  

The purpose of the service for managing fuzzy logic rules is to upload and download the rule 
base for the Fuzzy Control Language Engine (FCLE) as described in section 0. The functionality 
is now an integrated part of the FCLE and thus, we reference in the following to the 
comprehensive description of the FCLE. 

3.4.2 Inputs / Outputs 

The input is an FCL file as defined by IEC 61131-7. An example is provided in section 5.3.1. The 
output is a message about successful file transfer or a respective error message. 

3.4.3 Business logic 

We use standard logic for uploading a file to a server. Exceptions are translated into responses 
in JSON format. 

3.4.4 Available Functions and APIs 

The API is described as part of section 5.3.4. The routes ‘POST /set_rulebase’ and ‘GET 
/get_rulebase’ are the relevant parts of the FCLE-API. 
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3.5 Deductive Reasoning Rules (TUD) 

3.5.1 Use case  

Expert knowledge that is relevant for suggesting suitable products to customers can be 
maintained via deductive rules, which are simple if-then statements expressed within a logical 
formalism. For this purpose, we propose Datalog, extended with various features such as 
native support for numbers, aggregation, negation, and many built in functions. 

3.5.2 Inputs / Outputs 

The input is a string containing a list of rules. The output is a message indicating the validity of 
the given string according to the language specification.  

3.5.3 Business logic 

The language specification is implemented in Nemo, described in more detail in D3.6. 

3.5.4 Available Functions and APIs 

The Knowledge Base provides methods for updating and obtaining the rule base. 
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3.6 Entity Recognition (NATIF) 

3.6.1 Use case  

The use case for the named entity recognition is described in section 2.1.1. Within the NER 
component, all this knowledge is modelled implicitly. So instead of learning synonyms, 
antonyms, and relations like “is_part_of”, NLP algorithms working in a high-dimensional 
vector space learn such knowledge implicitly from data. 

To acquire the expert knowledge, data annotation is needed. For this, the annotation tool 
shown in Figure 20was used, which offers “types” for relevant entities that shall be extracted 
on the left and shows the free-form text on the right. Users simply need to select a colour on 
the left and apply it to the matching text on the right. 

 

Figure 20: Annotating entities in inquiries 

Based on these annotations, NER models can be trained that, given a text, apply the same 
typing as the user did during annotation.  

3.6.2 Inputs / Outputs 

Input: customer inquiries to be annotated 

Output: annotated inquiries stored in database, that can be used to train AI models 
automating the task. 

3.6.3 Business logic 

The tool allows marking text with entities, which are then stored in a database. From there, 
the machine learning training code can fetch the data to learn mimicking the expert annotator. 

3.6.4 Available Functions and APIs 

The functions can be summarized as follows: 

- Uploading data to be annotated 
- Visualizing data as depicted in the above figure 
- Selecting entities on the left, and applying that colour on the right via click or drawing 
- Storing the annotation 
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- Loading the next sample to be annotated 

That way, experts can easily put their knowledge example-based into our database, so that AI 
models automating the task can be trained.  
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3.7 Speech Recognition & Meeting Summarization Parameters (DAKIK) 

3.7.1 Use case  

Dakik's speech recognition and meeting summarization component is designed to help 
Ermetal employees search and retrieve key information from recorded meetings without 
needing to listen to entire recordings. This solution transcribes meetings, analyses them, and 
summarizes the key points, allowing users to search for specific topics discussed, aiding faster 
decision-making and information retrieval. 

3.7.2 Inputs / Outputs 

Inputs:  

- Audio files of recorded meetings uploaded via a web interface.   

- The user selects parameters for summarization, such as key topics, language models, and 
summarization settings.   

Outputs:   

- Transcribed text files stored in MongoDB.   

- Summarized meeting content is output in text format and stored in a relational database 
(MySQL) for further use in semantic searches and meeting reviews. 

3.7.3 Business logic 

After the user uploads the meeting audio, the Whisper model (fine-tuned for Turkish) 
processes the audio into text using speech-to-text recognition. This transcription is stored in 
MongoDB. The system then extracts key points and decisions from the text, applying 
summarization algorithms that prioritize information based on relevance, using models like 
Turkish Spacy for NLP. The summarized results are indexed for future searches, allowing users 
to query the data and quickly retrieve specific information from past meetings. 

3.7.4 Available Functions and APIs 

User Interaction:   

Users can upload audio files, choose summarization settings, and search through the 
transcriptions and summaries via a user-friendly interface. Results are presented in a 
structured format, allowing easy access to the key points and full meeting transcripts. 

APIs:  

- Audio Upload API: Uploads audio files and queues them for transcription. (See Figure 21) 

- Transcription API: Processes the audio and stores the text in MongoDB). (See Figure 21) 

- Summarization API: Summarizes the transcription based on user-defined parameters, stores 
the results, and makes them searchable. (See Figure 22) 
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Figure 21: Speech Recognition API 

 

Figure 22: Summarization API 
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3.8 Similarity Analysis (DAKIK) 

3.8.1 Use case  

Dakik's similarity analysis component is designed to assist Ermetal in comparing 3D shapes 
and components for manufacturing purposes. This system uses advanced algorithms to detect 
similarities between new and existing parts, enabling cost estimations and efficiency 
improvements by identifying reusable components or designs. The analysis focuses on 
manufacturing complexity and precision in matching geometric features, which helps sales 
engineers and product developers to make informed decisions. 

3.8.2 Inputs / Outputs 

Inputs:   
- 3D part files in STL format, along with associated geometric feature data.   
- Metadata including dimensions, material type, and other relevant manufacturing 
parameters.   
Outputs:  
- A similarity score based on geometric feature comparison and normalized metrics.   
- Ranked results displaying the most similar parts from the existing database, with detailed 
breakdowns of geometric and topological similarities. 

3.8.3 Business logic 

The similarity analysis begins by extracting geometric features, such as bounding box 
dimensions and Betti numbers (topological attributes), from the 3D models. These features 
are normalized using a robust scaler to handle outliers in the data. The system then computes 
Manhattan distances between feature vectors to determine initial similarity. For more precise 
alignment, it uses ICP (Iterative Closest Point) algorithms combined with PCA (Principal 
Component Analysis) to compare the 3D shapes more accurately. The results are ranked based 
on similarity scores, and parts with the highest matches are returned, enabling efficient reuse 
of designs in manufacturing. You can find an example in Figure 23. 
 

 

Figure 23: Example Result 

3.8.4 Available Functions and APIs 

User Interaction:   
Users can upload 3D part files and view similarity analysis results through a web interface. 
The system provides interactive visualizations of the compared parts, along with similarity 
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scores and suggested reusability. This helps sales engineers and developers quickly identify 
which existing designs or components can be adapted for new projects. 
 
APIs: 
An API was developed. See Figure 24. 
 

 

Figure 24: Part Similarity API 
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4 D3.4 Customer Segmentation (VTT) 

Customer segmentation is the process of dividing the customer base to subsets based on 
common features. In the case of data-driven tools, this segmentation requires accurate data 
about the historical, present, and potential customers, which is often stored in Customer 
Relationship Management (CRM) systems. The most typical way to segment the customer 
base is to use simple features such as the domain of the client as well as their geographical 
location. However, segmentation can also consider various other features that are contained 
in the CRM systems. 

4.1 Use case  

In the InnoSale project customer segmentation functionalities are included in multiple use 
cases. In the dynamic pricing use case the goal is to streamline price updates and improve 
responsiveness to cost changes. Customer segmentation is used to analyse historical sales 
cases based on customer segments to set pricing accordingly. Customer segmentation relies 
on data from the CRM system, considering factors like industry, region, and customer ID. 
Success probability is evaluated using historical data specific to the customer and matching 
customer segments.  

 

In the use case of area based product proposal the available products include a wide range of 
accessories and options tailored to specific market areas. The InnoSale tool streamlines sales 
expert orientation, reduces reliance on individual sales experts, and improves offer quality by 
considering area-specific trends and requirements. The customer segmentation component 
calculates customer and order similarity. It analyses order history data and compares it to 
customer information and order configuration details. Based on this analysis, the system 
identifies similar orders within the specific matching segment. Leveraging the best-matching 
order, the AI algorithm generates a proposed set of products with configuration parameters.  

4.2 Inputs / Outputs 

In this and the next sections the customer segmentation functionalities for the area based 
product proposal use case are presented.  

Input: historical order data, customer location and number of households 

Output: list of most prominent historical sales case IDs 

4.3 Business logic 

The data for the area-based product proposal was provided in an Excel spreadsheet. The data 

is first converted into machine readable format and filtered based on the country and postal 

code provided by the user. Each offer contains variable number of rows as the number of rows 

depends on the products included. The data is converted into hierarchical representation 

where each offer consists of subcomponents that specify the offered product and details in 

the configuration to enable further processing. Next frequency analysis is applied. The 

purpose of this step is to give each offer a numerical vector representation. Then the offers 

presented as vectors are clustered using density-based spatial clustering of applications with 

noise (DBSCAN) clustering method. For each cluster the most common configurations are 

searched and given as a result for recommended configurations.  



 

 

  DX.Y7, VERSION X.YZ, 20YY-MM-DD 

 

42 

 

Also, a method for evaluating the performance of the approach was developed. The 

evaluation is based on dividing the dataset into training and testing data based on time. The 

training data is used to create recommendations and the testing data is then used to see how 

many times the recommended configuration was used. This simulates the scenario where the 

salesperson asks for a recommended configuration based on the historical data collected until 

the present day and the success of the offer in the future is measured. 

 

Experiments on different dataset for offer outcome prediction are presented in InnoSale D3.4 

Customer Segmentation. 

4.4 Available Functions and APIs 

The product recommendation algorithm is provided as a Docker container. The API is 
implemented as an HTTP interface: 

• HTTP POST request with JSON payload contains customer location information 
including country and postal code, and the number of households 

• Response in JSON contains a list of best matching historical offer IDs, their 
timestamps (offer creation) and number of times a similar offer was made. 

 
Example of a JSON request: 
 
 
 
 
 
 
 
Example of a JSON response: 
 
 
 
 
 

  

{ 

“recommendation”: 

[ 

{ 

  "offerid": "Kailame-01", 

  "timestamps": [ 

 "2021-06-02T00:00:00.000000000", 

 "2022-04-12T00:00:00.000000000", 

 "2022-05-13T00:00:00.000000000“ 

 ], 

  "count": 3 

}, 

{ 

  "offerid": "Kailame-31", 

  "timestamps": [ 

 "2021-01-03T00:00:00.000000000", 

 "2021-02-12T00:00:00.000000000“ 

 ], 

  "count": 2 

} 

] 

} 

{ 

  "country": "Finland", 

  "postalCode": "90100", 

  "householdSize": ”iso” 

} 
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5 D3.5 Optimal pricing (adesso) 

5.1 3D Shape-based Pricing Strategies (Adesso) 

5.1.1 Use case  

3D Shape-based pricing service developed by Adesso is designed to be used by Ermetal to 
increase the efficiency of estimating the costs of new quotations, which can be easily extended 
into different use cases. This service provides a machine learning-based tool for predicting 
industrial product prices, specifically focusing on work-hour estimation for labour costs. The 
component integrates seamlessly with other applications through a dedicated API, enabling 
efficient and accurate pricing predictions based on 3D model data and operation parameters. 
This tool helps streamline cost estimation, allowing users to make informed pricing decisions 
quickly. 

5.1.2 Inputs / Outputs 

Inputs: 

• 3D Model: .stl file, which contains the part's geometric data. 

• Parameters: Numerical and categorical values, including material thickness, type, 
surface area, hardness, and additional specifications related to each operation, such 
as mold dimensions and press types. 

Outputs: 

• Predicted Labor Cost: The output is a floating-point value that represents the 
estimated work hours required for production. This estimation is used to calculate the 
total labour cost for each operation. 

The user will reach the service via the price prediction component added into the InnoSale 
user interface, in Figure 25 above, the component developed by Dakik for using the service 
can be seen. The user can input the data manually or populate the interface by selecting the 
part if it is already stored in the framework. It is possible to enable and disable the 3d data 
usage. The 3D model of the part is also shown at the side for supporting experts on decision 
making. When pressed the calculate button, the prediction is done with the best trained 
model (according to the validation result) and given as an estimation results. 

Figure 25: 3D Shape-based Pricing Component User Interface 
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5.1.3 Business logic 

Once the user uploads a 3D model, the system extracts three primary features: 

1. Triangle Count: Represents the complexity of the part. 

2. Total Surface Area: Calculated by summing the areas of all triangles in the model. 

3. Volume: Estimated by creating a voxelized point cloud of the model at a specified 
resolution. 

The extracted features, along with additional parameters, are fed into a machine learning 
model. After experimenting with multiple algorithms, LightGBM was selected due to its 
superior performance in predicting work hours within the target error rate of less than 10%.  

The predicted work hours are converted into a labour cost using a configurable multiplier, 
allowing the cost to be adjusted based on departmental rates or project-specific 
requirements. Various department-specific costs are also calculated proportionally to the 
work hours, providing a detailed cost breakdown for CAD, CAM, assembly, CNC processes, and 
other activities. This ratio can be set according to the desired rate per work hour, providing a 
flexible approach to labour cost calculation. (See example in Figure 26) 

There are 2 AI models; 5_fold model and single model (located under saved_models). 5_fold 
model includes 5 models trained on 5 fold CV, single model is trained on whole data. It should 
be specified in models.py to which one to use. 

5.1.4 Available Functions and APIs 

The service is dockerized, and designed to be deployed into on premises as most of the data 
that will be processed by this component is confidential. If the docker service is deployed into 
the local machine, it will be running on “http://localhost:5000“, in which the port can be 
configured. 

When the Industrial Price Prediction Tool is up and running, it is possible to access it through 
the API endpoint. Here's an example of how to make a prediction request using cURL: 
curl -X POST -H "Content-Type:application/json" 

http://127.0.0.1:5000/predict --data "{required_data}" 

curl -X POST -H "Content-Type:application/json" 

http://127.0.0.1:5000/costs --data "{required_data}" 

This will return a JSON response with the predicted price based on the specified work hours. 

Figure 26: Example cost distribution based on the estimated work-hour value. 
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5.1.4.1 Data Operations API End points 

• Upload 3D Model (POST /upload_3d_model): Allows uploading of a .stl file 
containing 3D model data. The path to the file is specified in the request. 

• Configure Cost Ratios (POST /config/ratios): Configures the multiplier ratios 
for calculating labour costs per department or process. Users can set ratios for areas 
such as CAD, CAM, Assembly, etc. 

• Upload Tabular Data (POST /data): Accepts a CSV file with tabular data and a label 
column. The data is prepared for further processing. 

• Get Dataset Statistics (GET /data/stats): Returns statistical information on an 

uploaded dataset, such as total rows, columns, and missing values. 

5.1.4.2 Model Training API End points 

• Train Model from Path (POST /train_from_path): Trains a new model using 
provided data files and saves it for future use. This endpoint requires paths to data 
files and a specified training type. 

o Example input data: 
{ 

        "TrainingType" : "5-folds", 

        "PartDataPath" : "raw/Parts.xlsx", 

        "OperationPath" : "raw/Operations.xlsx", 

        "3DFeaturesPath" : "raw/3D_features_pricing.csv", 

        "SaveName" : "save_test" 

} 

 

• Start Training (POST /train): Begins the model training process on the uploaded 
dataset, if available. 

• Query Training Status (GET /train/status): Retrieves the current status of the 
ongoing model training process, including progress and completion details. 

5.1.4.3 Prediction API End points 

• Predict Work Hours and Cost (POST /predict): Utilizes a trained machine learning 
model to predict work hours and calculate labour costs based on 3D model data and 
additional part/operation parameters. 

o Input Data Scheme: 
{ 

  "title": "Industrial Labour Work Man-hour Prediction", 

  "type": "object", 

  "properties": { 

    "part": { 

      "type": "object", 

      "properties": { 

        "PathToSTL": {"type": "string", "description": "Path to the STL file"}, 

        "OfferNo": {"type": "string", "description": "Offer number or ID"}, 

        "OfferRevisionNo": {"type": "integer", "description": "Offer revision number"}, 

        "OfferId": {"type": "integer", "description": "Unique identifier for the offer"}, 

        "MaterialThickness": {"type": "number", "description": "Material thickness"}, 

        "MaterialType": {"type": "string", "description": "Type of material"}, 

        "NetDimensions": { 

          "type": "object", 

          "properties": { 

            "NetX": {"type": "integer", "description": "Net width"}, 

            "NetY": {"type": "integer", "description": "Net height"} 
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          }, 

          "required": ["NetX", "NetY"] 

        }, 

        "ContourLength": {"type": "integer", "description": "Contour length"}, 

        "SurfaceArea": {"type": "integer", "description": "Surface area in square units"}, 

        "MaxStrength": {"type": "integer", "description": "Maximum tensile strength"}, 

        "Elongation": {"type": "integer", "description": "Material elongation rate"}, 

        "Hardness": { 

          "oneOf": [ 

            {"type": "null"}, 

            {"type": "string", "description": "Material hardness level"} 

          ] 

        } 

      }, 

      "required": ["PathToSTL", "OfferId", "MaterialThickness", "NetDimensions", "ContourLength", 

"SurfaceArea", "MaxStrength", "Elongation", "Hardness"], 

      "additionalProperties": true 

    }, 

    "operations": { 

      "type": "array", 

      "items": { 

        "type": "object", 

        "properties": { 

          "OfferNo": {"type": "string", "description": "Associated offer number"}, 

          "OfferRevisionNo": {"type": "integer", "description": "Offer revision number"}, 

          "OfferId": {"type": "integer", "description": "Unique identifier for the offer"}, 

          "OperationNo": {"type": "integer", "description": "Operation number"}, 

          "OperationType": { 

            "type": "array", 

            "items": {"type": "string"}, 

            "description": "List of operation types (flexible for custom entries)" 

          }, 

          "RL": { 

            "oneOf": [ 

              {"type": "null"}, 

              {"type": "string", "description": "Right/Left orientation (customizable)"} 

            ] 

          }, 

          "PressTypes": {"type": ["string", "null"], "description": "Type of press equipment used"}, 

          "MoldDimensions": { 

            "type": "object", 

            "properties": { 

              "X": {"type": "integer", "description": "Mold width"}, 

              "Y": {"type": "integer", "description": "Mold height"}, 

              "Z": {"type": "integer", "description": "Mold depth"} 

            }, 

            "required": ["X", "Y", "Z"] 

          }, 

          "MoldWeight": {"type": "integer", "description": "Mold weight"}, 

          "Density": {"type": "number", "description": "Density or fill ratio of the mold"} 

        }, 

        "required": ["OfferNo", "OfferId", "OperationNo", "OperationType", "MoldDimensions", "MoldWeight", 

"Density"], 

        "additionalProperties": true 

      } 

    } 

  } 

} 

 

 

• Calculate Total Cost (POST /cost): Computes the total cost of manufacturing, 
factoring in parameters like material, coating, and labour. 
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• Load Model (POST /load_model): Loads a previously saved model to use in 
predictions, allowing flexible model management. 

o Example input data: 
{ 

    "SaveName" : "5_fold_simple_op_seed_3" 

} 
 

• Show Current Model (GET /models/show_enabled): Displays the name of the 
currently loaded model used for predictions. 

o Example output data: 
5_fold_simple_op_seed_3 

 

• Show Available Models (GET /models/show_available): Lists all available 
models that can be loaded for predictions. 

o Example output data: 
[ 

    "5_fold_simple_op_seed_3", 

    "single_simple_op_seed_3" 

] 

 

See Figure 27 for available API. 

Figure 27: 3D Shape-Based Optimal Pricing API 
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5.2 Pricing Strategies based on Statistics and Forecasting (Software AG) 

5.2.1 Use case  

This chapter addresses innovative pricing strategies using artificial intelligence based on 
statistical analysis and forecasting. In the current workflow for adjusting the master price list, 
the prices must be defined by the product managers based on the available material, 
production and engineering costs as well as the target margin. This process is extremely time 
intensive and inflexible because all the information needs to be found manually from different 
sources and then implement these adjustments into the master price list. Moreover, a short-
term anticipation of material cost development is difficult to achieve. Also, material cost 
forecast has less precision for long term forecast compared to short term forecast. This causes 
difficulties for defining the suitable adjustment rate. The AI-based approach pursues the 
automated adjustment of the master price list for the different product groups in light lifting 
equipment. Internal data and parameters for each material item are thoroughly analysed in 
advance and a forecast is created with the help of external data sources. Material 
consumption, production times, current and future purchase prices from suppliers, stock 
levels, production and engineering costs as well as logistical costs should be considered. Of 
particular interest is the cost development of certain volatile materials such as steel, copper 
and aluminium.  

Real-time access to price developments enables an automated process for generating 
proposals for price adjustments or material surcharges. This approach considers key factors 
within the material price list and creates the basis for optimal pricing. The efficiency of the 
entire process is increased as less manual work is required. The improved quality of the 
forecasts leads to higher price quality and therefore stable margins. Customer centricity is 
driven by increased price transparency and the provision of convincing arguments for price 
adjustments. Customers gain an insight into the rational design of prices, which leads to more 
realistic price perceptions. 

The primary objective of developing AI based forecasting service was to develop accurate 
forecasting models that can reliably predict the future prices of materials we are concerned 
with in production, aiding in effective decision-making and resource allocation for the 
production process. Leveraging advanced analytical techniques and machine learning 
algorithms, we aimed to identify key trends, patterns, and correlations within the dataset to 
create robust predictive models, by considering various external economic factors such as 
material prices, interest rates, and inflation, the goal is to provide an insight of potential price 
movements in the future. 

5.2.2 Business logic 

All calculations are done using pretrained models, which are accessible by the online service. 

5.2.3 Available Functions, APIs, User Interactions 

We implemented multiple functions that contributes to the overall functionality of the service 
that can be invoked by the end user. 
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5.2.3.1 Status 

By invoking this function call: http://innosale.sagresearch.de:8012/status, you can easily 
check the current status of the server. This call provides real-time information, indicating 
whether the server is currently running or out of service. 

5.2.3.2 Help 

When you call http://innosale.sagresearch.de:8012/help, the end user is provided with a 
detailed list of all the arguments that can be passed to the prediction function, along with 
concise explanations for each. Here’s what the function call returns: 
 
{"st37":"Weight of ST37 in KG","p_st37":"Spot price of 

ST37","p_high_carbon":"Spot price of High Carbon","alu":"Weight of Alu in 

KG","labour":"Labor hours","high_carbon":"Weight of High Carbon in 

KG","medium_carbon":"Weight of Medium Carbon in 

KG","p_medium_carbon":"Spot Price of Medium 

Carbon","p_nodular_cast_iron":"Spot Price of Nodular Cast 

Iron","nodular_cast_iron":"Weight of Nodular Cast Iron in 

KG","grey_cast_iron":"Weight of Grey Cast Iron in 

KG","p_grey_cast_iron":"Spot Price of Grey Cast 

Iron","nonalloy_cast":"Weight of Nonalloy Cast in 

KG","p_nonalloy_cast":"Spot Price of Nonalloy Cast","months":"Forecasting 

period in months (default is 24 months if argument not provided)"} 

 
This comprehensive return allows users to understand the parameters they can manipulate 
and how each one influences the prediction model. 

5.2.3.3  Calculate 

This is the core functionality of the service we developed. For example, when calling 
http://innosale.sagresearch.de:8012/calculate/?copper=15&alu=12, you can input material 
weights, such as copper and aluminium, into the query. The function then predicts and returns 
the accumulated price of the product over the next two years. This powerful tool allows users 
to forecast costs with precision based on the materials used. 

5.2.3.4 Spot price 

The spot price is provided by using the spot-price flag, which is a floating-point number that 
precedes the alloy type. This flag allows the system to accurately represent the current market 
price for a specific alloy. By prefixing the alloy with its corresponding spot-price value, the 
function ensures that the most up-to-date pricing is factored into the overall cost calculations. 
This parameter is essential for generating precise forecasts and making informed decisions 
based on real-time market data. 

http://innosale.sagresearch.de:8012/calculate/?st37=12&months=12&p_st37=20 

5.2.3.5 Plot Price 

The price with the above mentioned parameters may also be plotted as a graph (see Figure 
28) for better visualization. All parameters are provided as mentioned above, but with the 
“plot” command. 

http://innosale.sagresearch.de:8012/plot/?st37=500&copper=1&p_copper=1&labour=12 

http://innosale.sagresearch.de:8012/status
http://innosale.sagresearch.de:8012/help
http://innosale.sagresearch.de:8012/calculate/?copper=15&alu=12
http://innosale.sagresearch.de:8012/calculate/?st37=12&months=12&p_st37=20
http://innosale.sagresearch.de:8012/plot/?st37=500&copper=1&p_copper=1&labour=12
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Figure 28: Product Price Forecast 
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5.3 Fuzzy Logic-based Pricing Strategies (ifak) 

5.3.1 Use case  

A Fuzzy Control Language Engine (FCLE) has been developed, which is an innovative tool for 
Fuzzy Logic applications, primarily designed for dynamic pricing systems. Adhering to the IEC 
61131-7 standard, FCLE offers versatile use across various industries. It supports flexible rule 
management and seamless integration, enabling users to customize control strategies by 
easily modifying rule bases and input configurations. Beyond dynamic pricing, FCLE is suitable 
for diverse applications requiring fuzzy logic-based control algorithms. 

Here is a more detailed list of the features of the FCLE: 

• IEC 61131-7 Compliance: Is compatible to a subset of the IEC 61131-7 standard for 
Fuzzy Control Language, allowing for standardized evaluation of function blocks. 

• Comprehensive RESTful API: Offers a robust API for configuring rule bases, input 
values, and dynamically triggering the evaluation of fuzzy logic rules. 

• Easy Installation and Setup: Designed for straightforward installation with minimal 
configuration, enabling quick deployment. 

• Integration Ready: Seamlessly integrates with existing GUIs and external systems, 
suitable for a wide range of industrial applications beyond dynamic pricing. 

• Flexible Rule Base Management: Supports uploading, modifying, and retrieving rule 
bases in a standardized format, enhancing adaptability for various control strategies. 

• Dynamic Input Handling: Capable of processing and evaluating input values from 
multiple sources, ensuring robust and responsive control algorithms. 

An example Fuzzy Logic file, which is used in the test cases of the FCLE, looks like this: 

 

FUNCTION_BLOCK DynamicPricing 

 

    VAR_INPUT 

        factory_load: REAL;   // Represents the current load on the factory (0 to 100%) 

        market_demand: REAL;  // Represents the market demand level (0 to 100%) 

        production_cost: REAL; // Represents the cost of production (0 to 100%) 

    END_VAR 

 

    VAR_OUTPUT 

        pricing_factor: REAL; // The output factor used for dynamic pricing 

    END_VAR 

 

    FUZZIFY factory_load 

        TERM low := (0, 1) (30, 1) (60, 0); 

        TERM medium := (30, 0) (50, 1) (70, 0); 

        TERM high := (60, 0) (100, 1); 

    END_FUZZIFY 

 

    FUZZIFY market_demand 

        TERM low := (0, 1) (25, 1) (50, 0); 

        TERM medium := (25, 0) (50, 1) (75, 0); 

        TERM high := (50, 0) (100, 1); 

    END_FUZZIFY 

 

    FUZZIFY production_cost 

        TERM low := (0, 1) (20, 1) (40, 0); 

        TERM medium := (20, 0) (50, 1) (80, 0); 

        TERM high := (60, 0) (100, 1); 

    END_FUZZIFY 

 

    DEFUZZIFY pricing_factor 

        TERM low := 0; 
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        TERM medium := 50; 

        TERM high := 100; 

        METHOD: CoGS; 

        DEFAULT := 0; 

    END_DEFUZZIFY 

 

    RULEBLOCK No1 

        AND: MIN; 

        ACCU: MAX; 

 

        RULE 1: IF factory_load IS high THEN pricing_factor IS high; 

        RULE 2: IF market_demand IS high THEN pricing_factor IS high; 

        RULE 3: IF production_cost IS high THEN pricing_factor IS high; 

        RULE 4: IF factory_load IS medium AND market_demand IS medium  

                THEN pricing_factor IS medium; 

        RULE 5: IF factory_load IS low AND market_demand IS low AND production_cost IS low  

                THEN pricing_factor IS low; 

        RULE 6: IF factory_load IS medium AND market_demand IS low 

                THEN pricing_factor IS medium; 

        RULE 7: IF production_cost IS medium THEN pricing_factor IS medium; 

 

    END_RULEBLOCK 

 

END_FUNCTION_BLOCK 

 

5.3.2 Inputs / Outputs 

Basically you need following static data, which can be uploaded by use of the API: 

• Rulebase: A fuzzy logic file as provided in the “Use case” section. 

• Service configuration: This file is read at start of the service. It contains information 
about the binding address of the service, the IP port and some variable addresses. 
Those variable addresses are currently not evaluated. The respective functionality will 
be added in demonstrators (WP6). Thus currently all variable values appearing as input 
variables in the rulebase, need to be transferred when calling the ‘/evaluate’ API call. 

Here is an example of the service configuration: 

engine_server: 

  server_name: engine_server 

  host: 0.0.0.0 

  port: 8000 

variables: 

  factory_load: 

    endpoint: http://localhost:8080/get_factory_load 

    header_params: 

      days: 14 

  market_demand: 

    endpoint: http://localhost:8080/get_market_demand 

    header_params: 

      days: 0 

      product: KBK 

5.3.3 Business logic 

Let’s explain the business logic by use of an example. We assume to have a fuzzy logic rules 
base like the following: 

            IF factory_load(high) THEN pricing_factor(quite_high). 

            IF customer_buys(frequently) THEN pricing_factor(quite_low). 

Here, factory load and customer buys are price influencing parameters. We have to gather 
them from the IT systems of the manufacturer. Both rules have influence on the target 
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variable final_price_factor. Therefore, the inference engine needs to be capable to handle 
conflicting formulas. It is likely, that factory_load and customer_buys but also the target 
variable final_price_factor have numeric value representations. The parameters need to be 
transformed into a representation, which is applicable for a fuzzy logic inference engine by 
fuzzyfication. Vice versa, the fuzzy logic representation of pricing_factor has to be converted 
back by de-fuzzyfication. 

5.3.4 Available Functions, APIs, User Interactions 

If you have started the FCLE, then an interactive API documentation is available at: 

• Swagger UI: http://localhost:8000/docs 

• Redoc: http://localhost:8000/redoc 

These interfaces provide detailed information about each endpoint, expected parameters, 
and response formats. The OpenAPI specification is also available at 
http://localhost:8000/redoc. 

If you have started FCLE on a remote host, then replace “localhost” with the IP address of that 
host computer. In the following, we describe detailed examples of how to interact with the 
FCLE API using curl. Also here, replace localhost with your server’s address if it’s running 
elsewhere. 

 

1. Evaluate Endpoint 

Endpoint: POST /evaluate 

Evaluates the fuzzy logic rules based on provided input values. 

Example Request: 

curl -X POST "http://localhost:8000/evaluate" \ 

     -H "Content-Type: application/json" \ 

     -d '{"input_values": {"factory_load": 75, "market_demand": 60, 
"production_cost": 50}}' 

Note: Make sure that those 3 input values are defined in the rulebase. If necessary parameters 
are missing, you will get an error. An example rulebase is given in the section “Use case” 
above. 

Headers: 

Content-Type: application/json 

Body: 

input_values: JSON object containing input variables. 

Example Response: 

{ 

  "status": "success", 

  "timestamp": "2024-09-02T12:34:56Z", 

  "request_id": "abcd1234", 

  "input_params": { 

    "factory_load": 75, 

    "market_demand": 60, 

    "production_cost": 50 

  }, 

  "output_values": { 

    "pricing_factor": 1.23 

  }, 

http://localhost:8000/docs
http://localhost:8000/redoc
http://localhost:8000/redoc
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  "message": "Pricing factor successfully calculated."  

} 

Explanation: 

• Input Variables: 
o factory_load: Current load on the factory (0 to 100%, or more with extra 

shifts). 
o market_demand: Market demand level (0 to 100, 50 is normal demand). 
o production_cost: Cost of production (0 to 100, 50 is normal production cost). 

• Output Variables: 
o pricing_factor: Calculated pricing factor based on fuzzy logic rules. 

 

2. Set Rulebase Endpoint 

Endpoint: POST /set_rulebase 

Uploads a new rule base in FCL (Fuzzy Control Language) format. 

Example Request: 

curl -X POST "http://localhost:8000/set_rulebase" \ 

     -H "Content-Type: application/json" \ 

     -d '{"rulebase": "'$(base64 -w 0 path_to_your_rulebase.fcl)'"}' 

Headers: 

Content-Type: application/json 

Body: 

rulebase: Base64-encoded string of your rulebase.fcl file. 

Example Response: 

{ 

  "status": "success", 

  "timestamp": "2024-09-02T12:35:10Z", 

  "message": "Rule base successfully updated." 

} 

Explanation: 

This endpoint replaces the existing rule base with the provided one. 

Ensure your FCL file is correctly formatted and encoded. 

 

3. Get Rulebase Endpoint 

Endpoint: GET /get_rulebase 

Retrieves the current rule base in use. 

Example Request: 

curl -X GET "http://localhost:8000/get_rulebase"  

Example Response: 

{ 

  "status": "success", 

  "timestamp": "2024-09-02T12:35:30Z", 

  "rulebase": "<base64_encoded_rulebase>", 

  "message": "Rule base successfully retrieved." 

} 



 

 

  DX.Y7, VERSION X.YZ, 20YY-MM-DD 

 

55 

 

Explanation: 

The rulebase field contains the Base64-encoded FCL content. 

Decode using: 

echo "<base64_encoded_rulebase>" | base64 -d > retrieved_rulebase.fcl 

 

4. Set Service Configuration Endpoint 

Endpoint: POST /set_service_conf 

Updates the service configuration. 

Example Request: 

curl -X POST "http://localhost:8000/set_service_conf" \ 

     -H "Content-Type: application/json" \ 

     -d '{"service_conf": "'$(base64 -w 0 
path_to_your_service_conf.yaml)'"}' 

Headers: 

Content-Type: application/json 

Body: 

service_conf: Base64-encoded string of your service_conf.yaml file. 

Example Response: 

{ 

  "status": "success", 

  "timestamp": "2024-09-02T12:35:50Z", 

  "message": "Service configuration successfully updated."  

} 

Explanation: 

• Updates the service configuration parameters. 

• Useful for changing server settings or variable endpoints. 

 

5. Get Service Configuration Endpoint 

Endpoint: GET /get_service_conf 

Retrieves the current service configuration. 

Example Request: 

curl -X GET "http://localhost:8000/get_service_conf"  

Example Response: 

{ 

  "status": "success", 

  "timestamp": "2024-09-02T12:36:10Z", 

  "service_conf": "<base64_encoded_service_conf>", 

  "message": "Service configuration successfully retrieved."  

} 

Explanation: 

The service_conf field contains the Base64-encoded YAML content. 

Decode using: 

echo "<base64_encoded_service_conf>" | base64 -d > 
retrieved_service_conf.yaml 
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6 D3.6 Inference Engine (TUD) 

6.1 Use case  

InnoSale aims to optimize the sales process of specialized and therefore highly customizable 
products. As their complexity does not allow for a complete representation within a catalogue, 
customer requests usually arrive as unstructured, free-form text that often omits crucial 
details. Such cases require substantial back-office support, relying on the expertise of sales 
engineers to infer missing information and to spot inconsistencies. Towards automating this 
task, deductive rule-based systems offer clear advantages. By encoding expert knowledge as 
simple if-then statements, it is possible to validate and to complete customer requests in an 
understandable and explainable manner. Systems using this approach are easy to maintain 
and can scale effectively as rules provide a clear, logical structure that is easy to understand, 
even for people without programming experience.  

Existing solutions in this space are either limited in scope [1], do not scale well in terms of 
performance [2], or are closed-sourced commercial projects [3], [4]. We therefore develop 
Nemo, an open-source rule-based reasoning toolkit [5], [6]. Its rule-language is based on the 
recursive query language Datalog, extended with various features to accommodate the use 
cases of InnoSale. In addition, Nemo provides a convenient web interface and supports the 
Language Server Protocol enabling efficient rule editing within compatible editors. 
Furthermore, Nemo can explain why certain facts were inferred, which improves the 
trustworthiness of the system. Experiments show that it outperforms existing systems on 
common benchmarks.  

6.2 Inputs / Outputs 

Nemo expects two kinds of inputs: 

• A rule file specifying expert knowledge as if-then rules formatted in the Nemo 
language, which is described in more detail in Deliverable D3.6 

• Relational data in CSV, RDF, or JSON format 

Nemo computes the logical consequences of the rules given the provided data and exports it 
in either CSV or RDF format. 

6.3 Business logic 

At its core, Nemo is a fast and scalable reasoner that materializes logical consequences using 
semi-naïve bottom-up evaluation [7]. Existential rules are evaluated using the restricted (also 
known as standard) chase [8]. 

Data is maintained in-memory, representing tables as hierarchically sorted, column-based 
tables, following the design of VLog [1]. However, unlike VLog, Nemo can handle data of 
various types. This includes fixed-sized values, such as integer or floating-point numbers, 
which are stored directly, and variable-sized data such as strings, which are mapped to 
integers and accessed via a dictionary. Data is compressed using Run-Length-Encoding with 
increments.  

Rules are evaluated by compiling them into a series of relational algebra operations such as 
joins or unions. They are implemented by providing trie iterators [9]. 
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6.4 Available Functions and APIs 

The standard way to use Nemo is as a command-line application. After installation (described 
in more detail in Deliverable D3.6), Nemo can be run via the following command: 

./nmo <RULES>  
Executing the above command computes all inferences implied by the provided rule file, which 
may reference additional input data via import directives, and saves the result according to 
the export statements. Further options can be provided by the user: 

• export: Override export directives in the program 

• export-dir: Base directory for exporting files 

• overwrite-results: Replace any existing files during export 

• gzip: Use gzip to compress exports by default; does not affect export directives that 
already specify a compression 

• import-dir: Base directory for importing files (default is working directory) 

• trace: Facts for which a derivation trace should be computed; multiple facts can be 
separated by a semicolon, e.g. "P(a, b);Q(c)" 

• report: Control amount of reporting printed by the program 

In addition, Nemo provides a Python API, which exposes data import and export, the reasoner, 
and gives access to the internal rule structure. 
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