

SmartDelta

Automated Quality Assurance and Optimization in Incremental

Industrial Software Systems Development

D4.5 - SmartDelta Quality Optimization and

Recommendation Methodology

Submission date of deliverable: November 30, 2024

Project start date

Project duration

Project coordinator

Project number & call

Project website

Contributing partners

Dec 1, 2021

36 months

Dr. Mehrdad Saadatmand, RISE Research Institutes of Sweden

20023 - ITEA 3 Call 7

https://itea4.org/project/smartdelta.html & https://smartdelta.org/

WP4 partners

Version number V1.0

Work package

Work package leader

Dissemination level

WP4

Akramul Azim

Public

Description

This deliverable reports on the different planned activities of WP4 for quality

improvement, optimization, and recommendation methodology in SmartDelta.

https://itea4.org/project/smartdelta.html
https://smartdelta.org/

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 2 of 117

Executive Summary

This document discusses the quality optimization and recommendation methodology of

SmartDelta. Three different tasks are performed which are: software quality trend analysis and

prediction, similarity analysis and reuse recommendation, and change impact analysis and

prediction. These tasks lead to three key innovations areas which are novel ML-based anomaly

and threat detection methods, automatic code analysis and change impact analysis

approaches, and similarity analysis approaches and recommendations. More than 20 tools

were developed in this work package for software quality optimization and recommendations.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 3 of 117

Project Description

Acronym and Full-length Title

20023 SmartDelta

Program Call ITEA 3 Call 7

Full-length Title Automated Quality Assurance and Optimization in Incremental Industrial

Software Systems Development

Roadmap Challenge Smart engineering

Description

Software-intensive industrial systems are typically not designed and built from scratch for

each new customer and order, but rather as increments over an existing product or as a

modified version tailored for the needs of a particular customer, market, or region. Similarly,

for a single product and considering a continuous integration/continuous delivery approach

with frequent builds and commits, a system gets built incrementally and iteratively resulting

in many intermediate builds and versions. However, far too often it is observed that as a

system is being built and incremented with new features, certain quality aspects of the

system begin to deteriorate. Therefore, it is important to be able to accurately analyse and

determine the quality implications of each change and increment to a system, particularly

in a continuous engineering context. To address these challenges, SmartDelta builds

automated solutions for quality assessment of product deltas in a continuous engineering

environment by providing smart analytics from development artifacts (e.g., source code,

log files, requirement specifications, etc.,) and system execution, offering insights into

quality improvements or degradation of different product versions, and providing

recommendations for next builds.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 4 of 117

Table of Contents

Executive Summary .. 2

Project Description ... 3

Document Glossary... 8

1. Introduction .. 9
1.1. Project Context .. 10
1.2. Tasks .. 11
1.3. Use Cases... 12
1.4. Functional and Non-Functional Requirements ... 13

2. Background and Literature Review .. 14
2.1. Software quality trend analysis and prediction .. 14
2.2. Importance of Software Quality Metrics ... 14

2.2.1. Process Metrics .. 15
2.2.2. Product Metrics .. 15
2.2.3. Project Metrics ... 16
2.2.4. Production Metrics ... 16
2.2.5. Security Response Metrics ... 16
2.2.6. Defect and version control metrics .. 17

2.3. Metrics Reporting Template ... 17
2.4. Software Quality Analysis Prediction .. 18

2.4.1. Neural network-based software quality prediction models .. 19
2.4.2. Bayesian network for predicting software quality models .. 19
2.4.3. Models for using Genetic Algorithm to forecast software quality Identifying defective

modules 20
2.4.4. Fuzzy logic for software quality prediction Models: .. 20
2.4.5. Software quality estimation using Case-based reasoning (CBR) 21
2.4.6. Decision tree algorithm for software quality Classification .. 21
2.4.7. Large Language Model (LLM).. 21

2.5. Similarity analysis and reuse recommendation .. 23
2.6. Change impact analysis and prediction ... 25

2.6.1. Change Impact Analysis ... 25
2.6.2. Traceability Based Change Impact Analysis ... 27
2.6.3. Dependency Based Change Impact Analysis ... 27
2.6.4. Traceability Based Change Impact Analysis Techniques .. 27
2.6.5. Dependency Based Change Impact Analysis Techniques .. 29
2.6.6. Dependency based Change Impact Analysis Challenges ... 30
2.6.7. Tool Support for Change Impact Analysis ... 31
2.6.8. Commercial Change Impact Analysis Tools .. 36
2.6.9. Findings and Future Scope .. 40

3. Key Innovation Areas .. 42

4. Contributions to the State-of-the-art ... 44
4.1. Novel ML-Based Anomaly Detection Methods ... 44

4.1.1. Prediction of localization of anomalies and errors using ML methods in micro-service-based

architecture (NetRD) .. 44
4.1.2. Anomaly detection and prioritizing cybersecurity offenses by utilizing a diverse set of

supervised and unsupervised models (Ontario Tech, Glasshouse Systems) 50

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 5 of 117

4.1.3. Anomaly detection for telemetric data (Hoxhunt) .. 55
4.2. Automatic Code Analysis and Change Impact Analysis Approaches ... 58

4.2.1. Improved knowledge sharing among developers using automatic metrics collection

from version control systems for impact analysis (ERSTE, DAKIK, Kuveyt Turk, Cape of Good

Code) 58
4.2.2. Automatic collection of code analysis metrics of cloud-based software and faults

predictions (Ontario Tech, Team Eagle) .. 63
4.2.3. Automatic analysis of technical debts (Cape of Good Code, Vaadin) 69
4.2.4. Automatic code analysis for historical code analysis and quality assessment

(University of Innsbruck and cc.com) ... 73
4.2.5. Analyze software quality trends based on issues and schedule the issues to find the

balance between focussing on improving quality versus adding new features (FOKUS) 80
4.3. ML-Based Similarity Analysis Approaches and Recommendations ... 85

4.3.1. Similarity analysis of State Machines using hierarchical modularization (TWT,

Akkodis) 85
4.3.2. Graph based similarity analysis and recommendations (TWT, Software AG, Vaadin)

 89
4.3.3. ML-based methods to identify requirements from large data repository and generate

recommendations (RISE, Alstom) .. 92
4.3.4. Automatic issue labeling and similarity analysis using advanced natural language

processing (IFAK, Software AG) ... 99
4.3.5. LLM-based indexing for advanced semantic artefacts search in corpus-based reuse

use case (Akkodis) .. 105
4.3.6. Predicting commercial charging station energy usage (eCamion and OntarioTechU)

 108

5. Tools/Technologies Developed in WP4 ... 110

6. Conclusions .. 112

7. References ... 113

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 6 of 117

List of Figures

Figure 1 : WP4 related entities: TE10 and TE11, will be analyzed through – Automated CI/CD Feedback

Loops ... 9

Figure 2 : Incident response Lifecycle .. 17

Figure 3 : CI/CD pipeline with LLM Integration ... 23

Figure 4: Word2vec embedding architecture with the skip-gram model. .. 24

Figure 5: Change impact analysis process. © Diamani et al. [3] ... 25

Figure 6: Traceability in software work products ©IEEE, 1991... 27

Figure 7: Static change impact analysis process. © Diamani et al. [3] .. 29

Figure 8: Dynamic change impact analysis process [3] ... 30

Figure 9: A high-level visual overview of our proposed framework, showing the key steps in our

pipeline. ... 51

Figure 10: Knowledge Sharing Network Diagram ... 60

Figure 11: Team Healthiness tables and bubble charts .. 61

Figure 12: Knowledge Risks and Team Turnover dashboard .. 61

Figure 13: Matched contributors of open source Django project .. 62

Figure 14: System Model ... 64

Figure 15: AMAF Architecture ... 65

Figure 16: Developer Effort to Resolve All Bugs (Logistic Regression n) ... 67

Figure 17: Sample Anomaly Detection Results (Isolation Forest) ... 67

Figure 18: Average Hotspot Vulnerabilities with Additional GAN-generated Data (Logistic Regression)

 ... 68

Figure 19: Code Analysis Methodology ... 74

Figure 20: Distribution Analysis of Software Quality Metrics ... 77

Figure 21: Correlation among Software Quality Metrics .. 78

Figure 22: Usage for SoHist v2 .. 79

Figure 23: Results for grafana/grafana without fine-tuning ... 82

Figure 24: Results for grafana/grafana with fine-tuning ... 83

Figure 25: 3 Results for vaadin/flow without fine-tuning ... 83

Figure 26: Results for vaadin/flow with fine-tuning.. 83

Figure 27: Commit Frequency, Average Commit Size and Bug Issue Count Over Time for the vaadin/flow

repository with a log scale for average commit size ... 84

Figure 28: Evolution of comparison time depending on the state machine size 87

Figure 29: REQ-I Approach: Approach for requirements extraction and identification 93

Figure 30: REQ-I Data: Considered data from REQ-I evaluation ... 93

Figure 31: REQA Approach: Approach for requirements allocation ... 95

Figure 32: REQA Data: Considered data for REQA evaluation .. 96

Figure 33: ReqIndentifier: Evaluation results REQ-I .. 97

Figure 34: REQAev: Evaluation with various pipelines for REQA .. 98

Figure 35: Automatic Issue Similarity Analysis pipeline .. 102

Figure 36: Visualization of artefact distribution in 2-dim space showing no separation of file types 107

Figure 37: Overview of the approach to data collection and prediction .. 109

Figure 38: Example of prediction cycle made using Random Forest Regression during cross-validation

process .. 110

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 7 of 117

List of Tables

Table 1: SmartDelta WP4 tasks ... 11

Table 2: SmartDelta use cases ... 12

Table 3: Academic Change Impact Analysis Tools ... 32

Table 4: Academic Change Impact Analysis Tool Helpers ... 35

Table 5: Commercial Change Impact Analysis Tools ... 36

Table 6: Microservice Interactions Prediction Experimental Results .. 47

Table 7: Accuracy Rates of Anomaly Prediction in Manually Labelled Data Experiments 47

Table 8: Accuracy Rates of Anomaly Detection with Unsupervised Methods Experiments 48

Table 9: Accuracy Rates of Anomaly Prediction in Unsupervised Labelled Data Experiments for

Quadruple Combined Data (IF_4)} .. 48

Table 10: Anomaly detection tool performance ... 53

Table 11: Comparison of ML Model Scores and SOC Ratings for Offenses ... 54

Table 12: Comparison of Impact Score and SOC Ratings for Offenses ... 54

Table 13: Bug and Code Smell Descriptions .. 74

Table 14: Counts of Issues Across Different Software Projects .. 75

Table 15: Success rate of finding the correct delta paths ... 88

Table 16: Models tested for energy load prediction and their evaluation of rolling cross validation 109

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 8 of 117

Document Glossary

Acronym Definition

AST Abstract Syntax Tree

AI/ML Artificial Intelligence / Machine Learning

CI/CD Continuous Integration / Continuous Delivery

CIT Combinatorial Interaction Testing

CPaaS Communications Platform as a Service

DataOps Data Operations

DevOps Development (Dev) and Operations (Ops)

EFP Extra-Functional Property

FinTech Financial Technology

FM Feature Modelling

FR Functional Requirement

FODA Feature-Oriented Domain Analysis

IoT Internet of Things

MBT Model-Based Testing

MLOps Machine Learning Operations

NFP Non-Functional Property

NFR Non-Functional Requirement

NLP Natural Language Processing

OEM Original Equipment Manufacturer

OVM Orthogonal Variability Modelling

PaaS Platform as a Service

PLE Product Line Engineering

QA Quality Assurance

QIP Quality Improvement Paradigm

RCS Rich Communication Services

RL Reinforcement Learning

SPLE Software Product Line Engineering

UC Use Case

UCaaS Unified Communication as a Service

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 9 of 117

1. Introduction

SmartDelta aims to build automated solutions for quality assessment of product deltas in

a continuous engineering environment by providing smart analytics from development

artifacts (e.g., source code, log files, requirement specifications) and system execution,

offering insights into quality improvements or degradation both in and of different product

evolutions, and providing recommendations for next builds. SmartDelta will develop

solutions for automated trend analysis and build recommendation with respect to quality

characteristics using AI/ML for pattern recognition, optimization, and fault prediction

techniques.

 Figure 1 : WP4 related entities: TE10 and TE11, will be analyzed through – Automated CI/CD Feedback Loops

Figure 1 shows WP4 related entities Smart Analysis Services (TE10) and Quality Analysis

and Visualization Dashboard (TE11), smart analytics services and quality analysis and

visualization dashboard. To achieve the goals of work package 4, it utilizes advanced AI

and ML techniques to enable automated trend analysis, pattern recognition, fault

prediction, and build recommendations. Key contributions include novel methods for

anomaly detection and cybersecurity threat prioritization, which enhance operational

stability and security in complex systems like micro-service architectures and telemetric

environments. Additionally, automated tools for code analysis streamline maintenance,

manage technical debt, and improve software reliability. Furthermore, our work advances

similarity analysis and reuse recommendations, employing ML-driven techniques to identify

reusable components and optimize software evolution. Moreover, tools for change impact

analysis predict and evaluate the effects of changes on system quality, ensuring robust,

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 10 of 117

scalable solutions for continuous integration and delivery. These contributions set a high

standard for quality assurance and optimization in industrial software systems.

1.1. Project Context

Software is a dynamic entity that exhibits various quality characteristics as it undergoes

updates over time. These enhancements not only contribute to its own development but

also influence the operational environments in which it operates. Approaching software

development with this awareness regarding quality can be a key factor for the long-term

success of a company in the highly competitive market of industrial software-intensive

products today. Far too often it is observed that as a system is being built and incremented

with new features, certain quality aspects of the system begin to deteriorate. Therefore, it

is important to be able to accurately analyse and determine the implications of each change

and increment to a system, particularly in a continuous engineering context. This is,

however, a complicated problem to solve because: i) most quality attributes are inter-

dependent and cannot be addressed in isolation, for instance, adding more security

features to a system can degrade its overall performance and also impact its energy

consumption; ii) over time, companies end up having many different product versions and

builds (including internal versions), tailored and customized for different customers,

markets and regions, but each having different quality characteristics to analyse and test;

iii) while at the same time, the size and complexity of the systems are also rapidly growing;

iv) making the problem even more challenging under constant pressures to reduce

development cost and time-to-market to be able to stay ahead of the competition.

To address the above challenges, SmartDelta will develop solutions for large-scale

automated quality assurance and optimization in incremental development of industrial

software-intensive systems. Towards this goal, SmartDelta will develop a set of tools and

approaches as part of the SmartDelta framework in the following directions:

• Automated analysis solutions (e.g., based on AI/ML, model extraction, and pattern

recognition) to identify and extract quality improvement or degradation trends from and

across a set of existing/previous product versions and development artifacts.

• Techniques to identify the features, design decisions, and development artifacts

causing quality degradation and deviation in a system.

• Static and dynamic verification and validation solutions, using techniques such as static

code analysis, model-based test generation, test prioritization and selection, and

mutation testing, to assess and ensure desired quality attributes of a system.

• Novel techniques for automated reuse analysis and design recommendation for next

builds optimizing with respect to specific quality attributes such as performance.

• A set of innovative visualization solutions to illustrate software quality attributes, and

their evolution and trend analysis results over different builds and versions.

Considering the relevance and importance of the project topic for a wide range of industries

offering software-intensive products, the project has attracted and brought together various

partners from different sectors and market domains with complementary expertise,

knowledge, and technologies to develop the proposed solutions and verify their technology

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 11 of 117

readiness levels. In particular, the consortium consists of a well-balanced mix of partners

from Sweden, Germany, Canada, Turkey, Spain, and Austria, including industrial use-

cases from the railway, telecommunication, logistics and mobility, FinTech and banking,

cybersecurity, and enterprise software domains.

In this work package WP4, one of the technical activities is Service Specification and

Implementation. In this activity, services for optimization as well as ML-based solutions

for predicting quality trends, pattern recognition, and automated recommendations are

specified and implemented. The challenges in this activity are to collect quality-related

data, to analyze data and observe quality trends, to analyze trends and predict future

trends, to recommend quality measures aligned with the observed trends, and to provide

recommendations for next and updated builds to improve quality. Trends shall include

development as well as operation (DevOps; feedback of operational data into

development), intermediate products as well as releases (CI/CD), and functional as well as

extra-functional quality characteristics.

Another technical activity of this work package, which is also related to WP5, is Tool Set

and Service Dashboard Integration. The main goal of this activity is to provide a turnkey

framework for rapid quality assessment of product deltas through advanced automated tool

sets. The challenge is software integration and connectivity of different tools, developed by

different groups, with various interfaces and intermediate representations of artifacts. The

resulting integrated dashboard shall be applicable and useful for different end-users, such

as industrial system providers, developers, testers, and infrastructure operators, and shall

provide a uniform view on quality, the evolution of quality, pinpointing to potential problems

and issues, and making recommendations for improvement.

1.2. Tasks

The following table outlines the different tasks of this work package.

Table 1: SmartDelta WP4 tasks

Task Task Name Task Description

T4.1
Software quality trend analysis and

prediction

Task 4.1 will develop automated
solutions to extract software quality

trends in terms of degradation or
improvement of different quality
characteristics across different

versions and builds

T4.2
Similarity analysis and reuse

recommendation

In task T4.2, automated solutions to
perform similarity analysis with the

purpose of identifying similar software
artifacts across a range of product
versions are developed. Moreover,
based on the results of the similarity

analysis, reuse recommendations will
also be provided for i) selecting design

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 12 of 117

Task Task Name Task Description

artifacts and component that can be
reused for the next builds to achieve

desired levels of quality characteristics in
the system, as well as ii) test cases that
can be reused across different product

versions.

T4.3 Change impact analysis and prediction

This task will build solutions to
automatically determine how a change in

the software has affected its quality
characteristics and provide predictions
on possible impacts of the upcoming

changes.

1.3. Use Cases

The use cases and summary in the SmartDelta project are as in Table 2.

Table 2: SmartDelta use cases

Use

Case ID
Country Partner Domain Topic

UC1 Sweden Alstom Railway
Quality in agile model-based

system and product line
engineering

UC2 Germany AKKA eMobility
Charging communication

controller software for electrical
vehicle

UC3 Canada eCAMION eMobility
High quality and cybersecure
software in deployable energy

hubs

UC4 Turkey NetRD Telecommunication
AI based fault and performance
analysis in cloud communication

services

UC5 Turkey Kuveyt Türk Banking and Finance

Continuous improvement of code

quality, security and performance in

core banking software

UC6 Germany
Software

AG
Enterprise Software

Continuous security and quality

improvement in enterprise software

UC7 Austria
c.c.com

Logistics and
Personal mobility

Continuous quality monitoring &

improvement in automated

traffic detection software

UC8 Canada GlassHouse Cybersecurity
Continuous improvement of

cybersecurity solutions

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 13 of 117

Use

Case ID
Country Partner Domain Topic

UC9 Spain
Izertis and

UC3M
Digital and IT Semantic Matchmaking

UC10 Finland Vaadin
Software development

platform

Continuous quality, security and

performance improvement in

software development platform

UC11 Turkey Arcelik Home Appliances

Measure code quality and

performance in employees’ single

point of solution: connecta

1.4. Functional and Non-Functional Requirements

Business requirements define the scope of the solution, what a company needs and its

objectives, while functional requirements deal with how the company will achieve it.

Functional requirements (FRs) help to understand why the application exists in the first

place. In other words, what business problem does it solve? More to the point, what is it

originally designed to do? When you analyse an application with a focus on how the

application goes about solving their business problem, you will end up analysing its

functional requirements. Functional requirements are the things that the application

absolutely must do. In this project, all business and user requirements are handled as

functional requirements.

Non-functional requirements (NFRs) are requirements that may not necessarily need to be

met for the application to function (i.e., functional correctness), but define the quality of

services and functionalities that a system is expected to provide. NFRs define system

attributes such as security, reliability, performance, maintainability, scalability, and

usability. They serve as constraints or restrictions on the design of the system across the

different backlogs and subsystems.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 14 of 117

2. Background and Literature Review

2.1. Software quality trend analysis and prediction

Software quality metrics are integral to understanding and enhancing a wide range of

project-related aspects of the development lifecycle if we want to manage all the elements

effectively and assess the product's quality before release.

Managers use metrics as valuable tools to enhance their understanding of the production

process. While metrics alone may not directly improve development, they serve as a

powerful means to illustrate the current state of the project by offering insightful statistics

for each process step. This information equips managers with the necessary insights to

identify potential issues and implement effective solutions, ultimately contributing to the

overall improvement of the project.

Software development is a complicated and multifaceted process. It involves many

different tasks and activities. We will evaluate some of the most important metrics to help

you assess the success of the software development life cycle.

According to the IEEE, software quality metrics are [1]:

(1) A quantitative assessment of the extent to which a specific quality attribute is

present in each item.

(2) A function that takes software data as inputs and produces a single numerical result

that may be used to represent how much a specific quality feature is present in the

software

2.2. Importance of Software Quality Metrics

It would be wiser to start with their objective before delving into the IT world and all its code

quality criteria. Why is it necessary to use these technologies at all? Let's examine the

significant benefits of software metrics in more detail [2]:

Productivity: Fast data processing is an application's most valuable feature. The better,

the less time it needs to do the job. Some indicators aid in boosting and monitoring the

project's productivity and resolving pressing problems.

Creating decisions: These indicators can be helpful when determining how decisions

were influenced. Project leaders can organize goals and priorities while avoiding rash

decisions. It enables them to meet the objectives of software quality assurance, optimize

the project, and make informed concessions.

Sorting data: Metrics can be used in complex projects to lessen misconceptions and

ambiguities. You can obtain unbiased information by using the software organization.

Priorities: Managers will no longer struggle to track, recognize, or order the project's

problems without measurements. All levels of a company can communicate with them.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 15 of 117

Progress control: Is the project finished on time? How is everything going? Controlling

the work's progress and the outcome is crucial, and you should always have the answers.

These metrics display the software product's status, quality, and modifications.

Management approach: Some hazards require direct estimation, management, and

prioritization. Metrics assist in managing such problems and preventing further expensive

remedies. In addition, they help with management tactics, identify faults, and fix technical

aspects of the project.

There are different categories of metrics. Some example categories of metrics are:

1. Process metrics

2. Product metrics

3. Project metrics

4. Production metrics

5. Security response metrics

6. Traditional metrics

7. Object-oriented metrics

Below, a detailed discussion of each of the above metrics is listed:

2.2.1. Process Metrics

Process metrics [3] make the Software Development Life Cycle (SDLC) more efficient.

Process metrics measure various aspects of software development. One good example of

this metric is the duration of time that the process of software creation tasks.

2.2.2. Product Metrics

Product metrics are software product measures at any phase of its development, from

requirements to the installed system. Product metrics define the product's attributes, such

as size, code complexity, design aspect, performance, and quality level.

Line of Code: This simple metric is used to calculate the software size, including any line

of program text, excluding comments or blank lines. By utilizing this, one can measure the

productivity of programmers.

Token Count: A software can be considered a collection of either operators or operands

(also known as a token). A token can be used as a metric.

Function Count: Software can be better interpreted as a collection of a larger unit called

a function or module. Modules can be compiled independently. For example, if the software

requires n modules. We can say that the module size should be about fifty to sixty code

lines. Hence the software is about n x 60 lines of code.

McCabe’s Cyclomatic Metric: McCabe presented a software program as a set of a

connected directed graphs consisting of nodes and arcs. The nodes, parts of the code, do

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 16 of 117

not have any branches, while arcs represent the control flow when the program runs. The

complexity of software can be associated with the topological density of a graph.

Stetter’s Program Complexity Measure: Stetter’s metric looks into the data flow and the

program's control flow, which may be viewed as a sequence of declarations and

statements.

2.2.3. Project Metrics

The software team adjusts project workflow and technical operations using software project

metrics. Project metrics prevent delays in the development timeline, reduce potential risks,

and continuously evaluate the quality of the final result. Every project should evaluate its

resources, deliverables, and outcomes (effectiveness of deliverables).

For example, in a software development project aimed at creating a new e-commerce

website, project metrics are used to track key indicators such as website load times,

conversion rates, and customer feedback. By analyzing these metrics, the team can

identify and address performance bottlenecks, improve user experience, and optimize the

site's overall quality and effectiveness.

2.2.4. Production Metrics

This metric estimates the developers' productivity, speed, and quantity of completed work.

We can check production metrics by using the number of active days, failure and debugging

times, productivity, task scopes, and other factors.

Active days: During this time, developers write and iterate over code. It does not include

any additional minor tasks, like planning. Finding hidden costs is made simpler by these

metrics.

Failure and repair time: Errors and defects cannot be completely eliminated when making

a new product. As a result, all you can do is monitor the amount of time the engineers

spend searching for a solution.

Productivity: Although measuring this aspect is difficult, each developer's code volume

can serve as a guide.

Task scopes: An annual maximum of this amount of code can be produced by a developer.

It may seem odd but knowing how many engineers a project will need is helpful.

Code turnover: Chaos in the code represents the proportion of the product's code that has

been altered. B dividing the frequency of application failures (F) by the frequency of usage

(U), the application crash rate (ACR) can be calculated = F/U.

2.2.5. Security Response Metrics

These metrics aim to ensure product safety, as the name suggests. When evaluating the

quality of your software, you should pay attention to how well it handles security. Due to

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 17 of 117

the increasing frequency of hacking attacks, this stage is crucial. It is essential to observe

how quickly the project can either notify the IT manager of the issue or find a solution [9].

Endpoint incidents: the number of devices affected by a virus or other security threat over

a given time frame.

Mean time to response (MTTR): the interval between discovering a security event and

taking corrective action.

Mean Time to Detect (MTTD): It measures the time interval between the occurrence of a

security event and its successful detection. A shorter MTTD indicates a more efficient and

timely identification of security incidents, enabling quicker response and mitigation actions.

Figure 2 : Incident response Lifecycle

2.2.6. Defect and version control metrics

The primary determinant of how well-made a piece of software is its defect count. It

contains:

• Stages of the flaws' emergence

• How many defect reports were there

• The number of defects per code line (density)

• The number of defects per code line (thickness)

Version control system (GitHub) requests might demonstrate project complexity, pull

request involvement, and team communication. The following indicators are part of quality

control for software development:

• Pull requests that failed the testing process

• Breaking pull requests for the build

• The number of requests that were merged and rejected

• The number of comments on pull requests

• They shouldn't be excessively large or little. However, these indicators rise the more

complex the software gets.

From the above analysis, we have created a metrics reporting template as follows:

2.3. Metrics Reporting Template

• Product metrics: Measures certain characteristics of the software, such as size,

complexity, design features, performance, and quality level.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 18 of 117

• Process metrics: These metrics can be used to expand the development and

maintenance activities of the software.

• Project metrics: These metrics define the project characteristics and execution.

• Production metrics: These types of metrics measure the amount of work

completed and determine the efficiency of software development teams.

• Security response metrics: They are used to check how security, operations, and

development teams are countering to security issues for each application

supported. Applications that have low-security metrics may have underlying quality

issues.

• Defect and Version control system Metrics: The primary determinant of how well-

made a piece of software is its defect count.

• Traditional metrics: Such as Line of code (LOC), Cyclometric complexity, etc.

2.4. Software Quality Analysis Prediction

The quality of software plays a pivotal role in the successful deployment of software products.

However, software developers face significant challenges in predicting a product's quality

before it is tested in real-world scenarios. As highlighted in the literature, research in software

quality prediction remains relatively limited [4].

Machine learning approaches have emerged as effective solutions for forecasting software

quality. These approaches not only enhance the accuracy of quality predictions but also aim

to minimize the developer’s workload by providing early warnings during the software

development lifecycle. Early detection of potential quality issues can significantly reduce

downstream costs and improve the overall efficiency of the development process.

To achieve this, machine learning methods can be broadly categorize into supervised and

unsupervised learning techniques, each addressing different aspects of quality analysis:

• Supervised Learning Techniques:

These methods leverage labeled data to train models for predicting software quality

attributes. By learning from historical data, supervised techniques can predict the

likelihood of defects, identify problematic modules, and classify software components

based on their quality. Examples include:

• Neural Networks: Used for pattern recognition and mapping relationships between

inputs and outputs.

• Bayesian Networks (BN): Capture probabilistic dependencies between software

metrics and quality attributes.

• Decision Tree Techniques: Provide interpretable models to identify quality issues

based on logical conditions.

• Unsupervised Learning Techniques:

Unsupervised methods are particularly useful when labeled data is scarce or

unavailable. These techniques identify hidden patterns or anomalies in software

metrics that could indicate potential quality issues. Examples include:

• Fuzzy Logic: Handles uncertainty in software metrics and offers insights into vague

or imprecise quality data.

• Genetic Algorithms (GA): Optimize software quality predictions by simulating

evolutionary processes.

• Case-Based Reasoning (CBR): Uses historical cases to provide recommendations

for similar quality concerns in new software.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 19 of 117

• Large Language Models (LLMs):

Emerging techniques like LLMs (e.g., GPT models) are being explored for software

quality analysis. These models excel in understanding natural language and

structured code data, enabling tasks like defect prediction, code review automation,

and generation of quality improvement suggestions.

2.4.1. Neural network-based software quality prediction models

Neural networks are versatile models that can be used for various software quality

prediction tasks. They can analyze large and complex datasets, making them suitable for

tasks like defect prediction and code quality assessment. Neural networks can capture

intricate patterns and relationships in the data, providing accurate predictions when trained

on ample quality-related data.

For example, Karunanithi et al. [6] propose a neural network model for reliability prediction.

The failure history is used as the basis for the model's internal failure prediction model,

which adapts to the software model's complexity. Network training is required for this. Using

the software's error history to alter the strength of neural connections in this process.

2.4.2. Bayesian network for predicting software quality models

The Bayesian Network method for predicting software quality relies on activity-based

quality models, simplifying complex concepts into precise definitions based on relevant

facts [7]. To create a Bayesian Network (BN) for software quality assessment and

prediction, a four-step process is followed:

(1) Development of Activities: The first step involves defining activities based on goals

and the associated indicators used to measure these activities.

(2) Identification of New Criteria: Using the quality model, new criteria connected to the

activities are identified. This step helps in refining the quality assessment.

(3) Incorporation of Quantitative Data: Quantitative data related to software quality is

integrated into the BN by adding additional nodes for each fact and its associated

activity node. This allows for breaking down complex quality models into tangible

definitions, enhancing the model's ability to access and predict quality.

(4) Accessing and Predicting Quality: The resulting BN is used to access and predict

software quality by searching for operations that enable it to forecast quality effectively.

One specific application of BN in software quality prediction is for Extreme Programming

(XP) process success/failure prediction, which is particularly relevant in iterative software

development approaches like XP [13]. In XP, traditional software requirement specification

documents are replaced with user stories, and each user story is developed during a single

iteration. However, XP projects often face challenges in predicting software quality

accurately. The mathematical model proposed by Abouelela and Benedicenti for XP

procedures based on BNs has several noteworthy characteristics:

• Succession of Releases: The model accounts for the iterative nature of XP projects

by considering the succession of releases.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 20 of 117

• Completion Time Prediction: It accurately predicts the expected completion time, a

critical factor in determining project success or failure.

• Development Velocity Tracking: The model enhances development velocity by

tracking it daily in terms of user story points. This prediction can be made during the

planning phase, significantly before the actual development begins.

• Defect Rate Calculation: To forecast process quality, the model calculates the defect

rate for each release, providing insights into software quality. Results from two distinct

case studies demonstrate the model's ability to forecast project completion time

effectively.

Bayesian Networks offer a structured approach to predict and assess software quality by

breaking down complex models into manageable components. Their application in

predicting software quality in iterative development processes like Extreme Programming

has demonstrated the ability to improve project planning, predict completion times

accurately, and enhance development velocity.

2.4.3. Models for using Genetic Algorithm to forecast software quality Identifying

defective modules

Genetic Algorithms (GAs) emerge as a valuable tool for not only locating faults but also

identifying their root causes and, notably, predicting defects. GAs operates as problem-

solving algorithms inspired by genetic principles. The GA approach, as proposed by Puri

and Singh [12], is particularly relevant for fault discovery in open-source software and

encompasses several key steps. Firstly, it involves gathering raw data from the source

code of an open-source software system. Subsequently, the gathered data undergoes

evaluation utilizing a metrics suite, which includes various metrics such as coupling

between objects (CBO), lack of cohesion (LCOM), and others. Following this, the relevant

metrics for fault prediction are refined through data filtering. The GA process is then applied

to work with the reduced data or attributes, leveraging genetic principles to explore

potential fault factors. Finally, confusion metrics are employed to evaluate the model's

predictive performance comprehensively. This comprehensive approach enables software

developers and analysts to effectively harness Genetic Algorithms to identify and rectify

faults within open-source software systems, ultimately contributing to enhanced software

quality and reliability.

2.4.4. Fuzzy logic for software quality prediction Models:

To evaluate the quality of software, numerous models for software quality assessment have

been put forth by multiple authors, each considering a different software metric. However,

these models are always missing two crucial elements that, from the implementer's

perspective, could increase the transparency of the quality model. These quality elements

are imprecise professional linguistic understanding and precise numerical quantitative

knowledge from the historical dataset. Ahmed and Al-Jamimi et al. [15] develop a fuzzy-

based transparent model for software quality assessment using both these knowledge

forms. The main focus of the model is maintainability prediction. Here, the authors use the

Mamdani fuzzy inference model that performs satisfactorily better than any other machine

learning technique. ￼

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 21 of 117

2.4.5. Software quality estimation using Case-based reasoning (CBR)

Case-Based Reasoning (CBR) in software quality estimation relies on past cases or

experiences stored in a repository. When a new quality estimation task arises, CBR

retrieves relevant past cases, assesses their similarity to the current problem, adapts the ir

insights, and generates an estimation based on historical knowledge. This approach

benefits from human experts who can guide the relevance and adaptation process, making

it a valuable tool for predicting and improving software quality by drawing from real-world

experiences. For example, Rashid et al. [11] employ CBR to evaluate software quality, with

human experts performing the estimation task. This method considers the resemblance

between previous projects established by the primary quality characteristics.

2.4.6. Decision tree algorithm for software quality Classification

Decision tree techniques, including random forests and gradient boosting, offer

interpretability in software quality analysis. These models are capable of identifying the

most crucial factors contributing to software quality issues. Decision trees are often

employed for feature selection, allowing developers to focus on critical aspects of quality

improvement. Their transparency makes them a valuable choice when understanding and

explaining the factors impacting software quality is essential.

For example, Using the SPRINT decision tree algorithm, Najafabadi , Khoshgoftaar and

Seiya [10] explicitly provide a thorough investigation on calibrating classification trees that

help estimate software quality. Additionally, this strategy effectively overcomes the memory

constraints that prevent a faster and more scalable analysis for several other classification

algorithms. As an extension of the decision tree algorithm CART, it investigates a novel

approach to tree pruning based on the minimum description length (MDL) approach.

SPRINT's modified CART algorithm and MDL principle enable it to provide precise quality

predictions. Large telecommunication systems are used for the case study implementation,

and defect data from four different system versions are collected along with pertinent

software metrics. According to the authors' observations, SPRINT can produce

classification trees that are more evenly distributed and stable than those produced by the

CART classification algorithm.

2.4.7. Large Language Model (LLM)

Large Language Models (LLMs), exemplified by GPT-3 and its successors, operate through

a two-step process: pre-training and fine-tuning. During pre-training, LLMs learn language

patterns, grammar, and common linguistic structures by predicting the next word in a

sentence, using vast amounts of text data. In the fine-tuning phase, they specialize in

specific tasks, adapting to the domain in question. When it comes to software quality

prediction, fine-tuning would involve training the model on software-related datasets

encompassing code repositories, bug reports, user feedback, and documentation.

LLMs bring distinctive advantages to the field of software quality prediction. Their natural

language understanding capabilities enable them to analyze textual data effectively,

identifying patterns, sentiments, and potential quality issues within unstructured text. They

can also assist in generating documentation by summarizing code changes, explaining

intricate algorithms, or even automatically producing user-friendly documentation for

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 22 of 117

software products. Additionally, LLMs excel in predictive analytics, capable of forecasting

potential quality issues by examining historical data, recognizing trends in code changes,

and anticipating potential bugs or performance bottlenecks.

Contrasting traditional machine learning models, LLMs operate differently. They require

extensive pre-training on large text corpora, whereas traditional models rely on structured

datasets with explicitly labelled features. LLMs are highly adaptable, requiring minimal

task-specific fine-tuning, while traditional models necessitate more feature engineering and

specialized tuning for each task. However, it's important to note that LLMs are less

interpretable than traditional models due to their complex neural network architecture.

To incorporate LLMs into existing software quality prediction systems, one typically starts

with fine-tuning the model on a specific software quality prediction task, utilizing relevant

datasets from the software development domain. Integration can be achieved through the

development of an API or interface that enables seamless interaction between the LLM

and the existing prediction system. Regular updates and continuous fine-tuning are

essential to ensure the LLM adapts to evolving software development trends and maintains

its effectiveness.

Evaluating the performance of an LLM-based software quality prediction system involves

a combination of traditional machine learning metrics and domain-specific measures.

Metrics such as accuracy, precision, recall, and F1 score provide insights into the model's

overall predictive performance. However, it's equally important to introduce domain-

specific metrics like bug detection rate, code review efficiency improvement, and user

satisfaction to assess the model's real-world impact in the software development context.

A/B testing can further compare LLM-based predictions with traditional methods to

determine the model's efficacy in practical scenarios.

Incorporating LLMs into software quality prediction systems has the potential to enhance

accuracy, adaptability, and insights, ultimately contributing to more effective software

development processes and improved user satisfaction. Careful fine-tuning, evaluation,

and ongoing monitoring are critical to ensure that LLMs deliver their promised benefits in

the specific context of software quality assessment.

LLMs are transforming CI/CD pipelines by enabling smarter, automated workflows in

software testing and quality assurance. These models enhance pipeline efficiency by

analyzing code changes, predicting potential defects, and generating automated test

cases. LLMs can assist in identifying patterns from historical build failures, suggesting

fixes, and optimizing test case prioritization. By integrating LLMs into CI/CD workflows,

organizations can ensure faster feedback loops, reduce manual intervention, and improve

the overall reliability of software deployments, making them invaluable in modern, fast -

paced development environments.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 23 of 117

Figure 3 : CI/CD pipeline with LLM Integration

2.5. Similarity analysis and reuse recommendation

Similarity refers to the degree of closeness on relevant dimensions, features, and/or

characteristics. Typically, for similarity analysis, different similarity measures are used that

quantify the degrees of closeness between two elements. Similarity measures are used mainly

in recommender systems for ranking potential recommendations to support various steps in

the software development and maintenance lifecycle. As most of the measures are applied to

quantify the degree of closeness on a scale of features and dimensions, often an intermediate

representation is used for computing the similarity. Therefore, this section also summarizes

the different representation that enable similarity analysis.

To apply similarity measures to textual input often the text is converted into representation

vectors for better computation of similarity. The representation vectors are computed using

different approaches ranging from lexical to embeddings. Approaches based on lexical

features often use term frequency matrix-based extraction of the feature vectors. Seminal

approaches include the bag of words and term frequency-inverse document frequency

(tfidf). Bag of word-based vector extraction often uses the frequencies as values for the

features. On the other hand, tfidf also considers inverse document frequencies of terms for

enriching the feature vectors. Other approaches focus on representing textual input using

embeddings, often extracted as weights of a representation learning-based neural

network’s layer. This is often done by mapping textual token to real numbers using the

probability of relatedness of the words in the dataset. Seminal architectures for

embeddings include the skip gram neural network [63], recurrent neural networks [64] and

transformer-based neural networks [65].

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 24 of 117

Figure 4: Word2vec embedding architecture with the skip-gram model1.

Similarity metrics: Various similarity metrics could be applied to the representation

vectors for quantification of the degree of closeness. The most seminal ones are

summarized below.

Edit distance is a class of similarity metrics based on the dissimilarity between input [66].

Edit distance-based metrics could be applied to both raw text or its representation vector

and works based on quantifying the number of edits required to make the two-input similar.

A widely used metric based on edit distance within software engineering is Levenshtein

distance.

Jaccard Similarity Index (JSI) also works both on the raw text of the representation

vector. However, unlike edit distance, JSI is based on the ratio of common terms over their

union.

Cosine similarity metric is based on the cosine angle between two vectors across multiple

dimensions.

Euclidean distance is a metric based on the space in length between two points on one

or many dimension(s).

Below, we briefly summarized the different approaches that are leveraging similarity to aid

different software engineering tasks.

The text-based similarity is often leveraged in requirements engineering for reuse

recommendation [67], change impact analysis, and tracing [68]. These recommenders are

based on the assumption that similarity in one domain (e.g., requirements) could be used

as a proxy for similarity in the other domain (e.g., software) [69,70]. A typical recommender

1 Efstathiou, V., Chatzilenas, C., & Spinellis, D. (2018, May). Word embeddings for the software

engineering domain. In Proceedings of the 15th international conference on mining software

repositories (pp. 38-41).

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 25 of 117

usually retrieves the most similar artifact (with a link to an artifact in another domain) to the

query and uses that as a case to recommend reuse or relevance in the other domain.

In addition, the textual similarity is also leveraged in identifying code clones [71], feature

similarity [72], and feature model extraction [73].

2.6. Change impact analysis and prediction

2.6.1. Change Impact Analysis

“Change Impact Analysis (CIA) is the process of exploring the tentative effects of a change

in other parts of a system. CIA is considered beneficial in practice, since it reduces cost of

maintenance and the risk of software development failures.” [16] In other words, it is the

process of inspecting the undesired consequences of a change in a software module.[17]

Change impact is a significant matter in software and programming since several

innovations are made over time, which may result in negative consequences if not checked

and not determined by the changes in the software. A tiny change in software can cause

devastating impacts, and it may be challenging to determine the affected function(s).

Therefore, it should be required to examine which parts of the software are affected during

the software maintenance process and their impacts.

To determine the change set in which the components might be impacted by the change

request, CIA first analyzes the source code and the change request. Other components

potentially impacted by the items in the change set are then estimated using the change

impact analysis approach. The set that results is known as the estimated impact set (EIS).

The items in the actual impact set (AIS) are updated after the change is put into practice

to fulfil the change request. Because changes may be executed in various methods, the

AIS is not always the best option for change requests in practice [18].

Figure 5: Change impact analysis process. © Diamani et al. [3]

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 26 of 117

The software change impact analysis process is an iterative one, as seen in Figure 5. And

when a modification is put into practice, some more impacted aspects that are not in the

EIS could be found. The false-negative impact set (FNIS), which reflects an

underestimation of effects, is a collection of similar items [19, 20]. The false-positive impact

set (FPIS), which denotes an overestimation of impacts in the study, is a set that is typically

included in EIS but does not actually need to be changed or redone [19, 20]. These four

sets are connected in the following ways:

(EIS + FNIS) - FPIS = AIS

Estimating an EIS that is as near to the AIS as feasible is the aim of the CIA method. To

assess the precision of the impact analysis process, several metrics may be established

[21, 22]. Precision and recall are two often utilized measures for CIA method accuracy [23,

24, 5]. They were often applied in a situation involving information retrieval [9]. Precision

and recall are defined as follows in the CIA scenario:

Precision = |EIS ꓵ AIS| / |EIS|

Recall = |EIS ꓵ AIS| / |AIS|

While recall gauges how well the EIS accounts for actual changes, precision gauges how

well the projected consequences line up with the actual impacts caused by modifications.

Maintainers will take less time finding and apply the adjustments using a high-precision

EIS. Maintainers are certain that all of the effects of those suggested adjustments will be

taken into account because of the high recall EIS.

The CIA method begins with the determination of change demands and all the affected

parts, which are referred to as the ‘Change Set’. There are several techniques for

classifying the change set. The Estimated Impact Set is designed for identifying differences

in the software, and it is estimated by using several CIA techniques. The Actual Impact Set

is constructed to detect the position of the changes made in the software. Also, another

two impact sets, namely, False Negative Impact Set for indicating underestimation and

False Positive Impact Set for indicating overestimation of effects are designed. The aim

here is to guarantee that the Estimated Impact Set and the Actual Impact Set are the same

[18].

Having equal sets of an Estimated Impact and Actual Impact is the primary goal of the CIA;

however, it is challenging to implement. By cautiously choosing suitable CIA techniques,

this goal can be achieved. There are diverse metrics to examine the precision of CIA

techniques, but Precision and Recall are the ones that are used generally. Precision is

about what degree Estimated Impact Sets overlap with Actual Impact Sets uncovered by

the changes. Recall is about what degree Estimated Impact Set encompasses the real

changes in the software [18].

If the Estimated Impact Set has high precision, it signifies that defining the position of the

changes and accomplishing the changes take less time. If the Estimated Impact Set has his

recall, it indicates that the effects of these suggested changes will be taken into account.

There are two main CIA techniques: Traceability based CIA, and Dependence Based CIA.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 27 of 117

2.6.2. Traceability Based Change Impact Analysis

In this analysis, in order to grasp the potential impact of presenting a change in software, some

elements like design, code, documents, test cases, etc., are defined and evaluated. This type

of analysis focuses on exploring connections between software elements. [18]

Figure 6: Traceability in software work products ©IEEE, 1991

2.6.3. Dependency Based Change Impact Analysis

In this type of analysis, to discover the impacts of implementing a change, some software

artifacts like logic, modules, etc., are taken into account to examine the linkage of these

artifacts. While Traceability-based CIA displays impact analysis at unique levels, Dependency-

based CIA displays at the same level, for instance, design to design and code to code [18].

In the following sections, we discuss traceability-based change impact analysis techniques,

related example studies and challenges, dependency-based change impact analysis

techniques, related example studies and challenges. CIA tools which are built for academic

purposes and their comparison table, and a commercial CIA tool list.

2.6.4. Traceability Based Change Impact Analysis Techniques

Traceability was described as “the ability to describe and follow the life of an artifact, in

both a forwards and backwards direction” by Lucia et al. [20] If a document, for example,

a requirement or use case is linked to a feature that needs to change, traceability helps in

finding areas in the code and design that need to be preserved. There are 2 major types

of traceability, horizontal and vertical. Horizontal traceability refers to traceability between:

• Requirement artifact and coding/testing/design artifact

• Requirement artifact and defect report

• Design artifact and coding artifact

Vertical traceability refers not only to traces between different software artifacts in a

software phase, but also dependencies within a software artifact itself, such as

dependencies among requirements in a use case specification. Data dependency, control

dependency and component dependency use different vertical traceability techniques [61].

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 28 of 117

In this section, academic articles are analyzed by categorizing traceability as an experimental

and empirical case.

A. Experimental Studies:

• Shahid et al. [27] suggested the Hybrid Coverage Analysis Tool (HYCAT) as a tool for

managing traceability during software artifact changes. The technology was tested on

an On-Board Automobile (OBA), and the findings were positive and noteworthy when

compared to previous methodologies.

• Kugele et al. [28] suggested a model-based algorithm to aid trace connection

visualization and better comprehend the relevance of each artifact and its effect on the

others.

• In order to reestablish traceability linkages in IR techniques, Dit [29] suggested using

genetic algorithms. The near-optimal solution is discovered by IR-GA using their

method at each stage of the information retrieval process.

• According to Kchaou et al. [30], an IR strategy for ensuring “semantic traceability

between use case documentation and sequence diagrams” was created, as well as a

graph-based mechanism for modeling structural relationships. They conducted “a

quantitative experiment with LSI frequency and Inverse Document Frequency” on

JHotDraw 7.4.1, and the findings revealed that LSI had a greater clarity and recall

value.

• According to Huang et al. Nejati et al. [31]. Their modeling technique identifies the

influence of introducing changes in “requirements on a design” using the Systems

Modeling Language (SysML). They used a static slicing technique to obtain an

approximated set of impacted model elements and then ranked the resulting set of

elements to anticipate the influence of the elements. According to their findings, 4.8

percent of the whole design must be reviewed to determine the elements that are

impacted.

B. Empirical and Case Study Based

• The link between software and its code, or traceability, enables engineers to articulate

their theories. When software traceability is maintained, according to Ghabi et al. [32],

time is saved, and quality is increased. However, the information is not collected at the

appropriate moment. They have put up a language for capturing traceability.

• Almasri et al. [33] proposed a model-based approach to telecommunications or

embedded systems, in which their model employs dependencies to build two impact

sets and EFSM models. Their findings revealed that a single change has a 14 to 38

percent influence on the overall model size.

Traceability based Change Impact Analysis Challenges

• Traceability links between heterogeneous artifacts (e.g., as test case, source code,

design, requirements) are required to be established. Yet, the knowledge gap is a main

challenge to establish such links. There is a high level of knowledge gap between

software documentation and source code. The latter one follows language and program

syntax while the formal one is usually expressed in natural language. To recover

knowledge-based traceability links between these heterogeneous artifacts, data

normalization and human expert verification is needed. [58]

• To determine the problem of recovering knowledge-based traceability links between

artifacts of different types, IR has been widely used in recent decades. This approach

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 29 of 117

establishes traceability relationships with the assumption that two artifacts are

potentially related if they share textual similarity. Although, IR-based approaches are

error-prone, time-consuming and need human experts to verify selected trace links.

[58]

2.6.5. Dependency Based Change Impact Analysis Techniques

Dependency-based in order to determine the impacts of making a change, CIA considers

numerous software artifacts like variables, logic, modules, etc. and analyzes their

interaction. They might be static, dynamic, or both.

In this section, static and dynamic techniques are examined in two different categories.

A. Static Techniques: Static approaches analyze software artifacts without running the

program by using syntax and semantic analysis, text analysis, and change history

repositories.

Figure 7: Static change impact analysis process. © Diamani et al. [3]

These techniques concentrate on the structure of the software. Most CIA techniques

currently lack support for hidden dependencies and intergranular change impact questions,

according to Sharma and Suryanarayana [34]. They invented AUGUR, a static automatic

code analysis tool that addresses these issues by retaining semantic and environment

dependencies between source code entities across granularities.

According to T Rolfsnes et al. [35], through a new technique named “Targeted Association

Rule Mining for All Queries” (TARMAQ), they proposed using evolutionary coupling. They

compared it to the ROSE and SVD tools and discovered that it is superior to both and is

best suited for “performing robust change impact analysis for heterogeneous systems.”

According to Musco et al. [36], a strategy for forecasting influences circulation using four

types of call graphs. To investigate how faults propagate, 17000 mutants were created

using ten open-source Java projects and five mutation operators. According to their

findings, the simplest basic call graph provides the optimal balance of accuracy and recall.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 30 of 117

B. Dynamic Techniques: It consists of both offline and online CIA. It is carried out while

the software is running. Offline CIA refers to a CIA approach in which data is obtained and

evaluated after the program's execution is complete, whereas Online CIA refers to data

retrieved while the program is still running [18].

Figure 8: Dynamic change impact analysis process [3]

Cai and Santelices [37] suggested a three-instance approach for generating very precise

impact sets at a low cost. To achieve high accuracy, they exploited static dependencies

and execution traces. They presented a dynamic approach for Sensitivity Analysis dubbed

SENSA in another study [30], which created statement-level impact sets. They used open-

source Java applications and case studies to assess SENSA.

Cai and Thain [49] introduced DISTIA, a tool that evaluated the effects within and outside

implementation by partly sorting distributed method-execution events and using message

forwarding semantics. Their findings indicated that the analysis was completed in one

minute and that the size of the impact set was decreased by 43 percent.

To forecast behavioral impact, Rajan and Kroening [39] created a measure that quantifies

the change impact using two software versions. Their method is unusual in that it analyzes

both versions of the software. They also put their measure to the test in three case studies.

Cai and Santelics [40] used a two-way method to investigate the prediction accuracy of

dynamic CIA. To assess accuracy and retrieval, they employed execution differencing and

sensitivity analysis. Their findings revealed that most low-cost dynamic analysis

methodologies generate erroneous results in most situations, with an average precision of

38-50 percent and a recall of 50-56 percent.

2.6.6. Dependency based Change Impact Analysis Challenges

Inter-granular queries are not supported by most static CIA techniques. An inter-granular

query specifies the proposed change at one source code granularity and provides the result

of the query at another source code granularity. For example, the query “Display potentially

impacted methods when this change will be made in this class” is an intergranular query.

Contrarily, most of the current approaches would have only notified what other classes

would be impacted by the proposed change. Inter-granular query support in CIA tool can

accurately identify the change impact leading to a more effective CIA [34].

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 31 of 117

Current static techniques determine impacted entities by using control or/and data

dependencies. Recall of such methods are low because they are affected by presence of

hidden dependencies. Such dependencies have not been deeply researched and not

supported by current CIA methods [34].

2.6.7. Tool Support for Change Impact Analysis

(1) TRIC [42, 43]: Requirements Management Tool Inferencing and Consistency Checking

(TRIC) performs CIA and requirements estimations on software requirements using

formal requirement semantics. The software's functionality improved by including

capabilities such as displaying incompatible suggested modifications, proposing,

propagating, and apply changes, and anticipating changes and their impact on the

requirements model.

(2) ImpactMiner [38]: A tool that uses dynamic tracing, history mining, and SVN repository

queries to estimate an influence set. It features a highly user-friendly GUI and is used as

a plugin for the Eclipse tool. The user can easily grasp the findings thanks to the two

tabs labelled "Feature view" and "Results view."

(3) SafeRefactorImpact [43]: Based on change effect analysis, Safe Refactor Impact is a

method for determining if a transformation saves program activities. It works by

assessing modifications made to Java or AspectJ applications and creating test cases

for the methods that have been affected. It employs Safira, a change impact analyzer

that detects affected techniques.

(4) TraceAnalyzer [32]: The utility, which is implemented as an Eclipse plug-in, supports

many input perspectives. The list of imputes and the customary "trace matrix" (TM) are

still present on the right and left sides, respectively. It also offers capabilities that assist

engineers in discovering the footprint graph, flagging, and removing issues with accuracy

and granularity.

(5) FaultTracer [50]: A toolkit which determines atomic changes from abstract syntax trees,

finds their dependencies by tracing definition with reference to each used method and

field, runs selected tests to emphasize failure-affecting changes and ranks these

changes by using spectrum-based fault localization technique for Java programs.

(6) CIAT [46]: Change Impact Analysis Tool has two modules, Class Iteration Prediction

and Impact Analysis Module. It is an automated tool that is developed based on our

previous work on CIA for the software development phase. The uniqueness of the

approach or the prototype tool is that the element of integration between static and

dynamic analysis techniques.

(7) Chianti [53]: An Eclipse plug-in which takes two program versions and a regression test

suite, finds interdependent atomic changes from different versions of programs, creates

call graphs for test suite and determines potentially impacted methods and relevant

affecting changes.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 32 of 117

(8) EAT [57]: Created to evaluate the CollectEA technique, Execute-After Tool (EAT)

focuses to emphasize the benefits of dynamic analysis over static analysis. EAT consists

of three components: An analysis module, an instrumentation module and a set of

runtime monitors.

(9) Impala [22]: An Eclipse plug-in which performs CIA before with data mining algorithms,

before execution of changes. By comparing two program versions, Impala creates a

changeset that contains potentially impacted entities and detected changes by

generating a dependence graph.

(10) ROSE [57]: An Eclipse plug-in that mines project’s version history with CVS and makes

users understand the consequences of making changes. Based on previous commits to

version control, ROSE can propose changes to prevent errors. The proposals are ranked

by confidence level.

(11) JRipples [52]: An Eclipse plug-in that uses static information to analyze dependencies

between entities in order to help developers locate the impact set manually, by keeping

track of visited elements and the elements that are dependent on them.

Table 3: Academic Change Impact Analysis Tools

Tool
Name

Objective
Change
Impact

Category

Supporte
d

Language
s

Method Input Output Validation

TRIC

Limiting
the impact
explosion

during
change
impact

analysis
and

prediction
in

requireme
nts models

Traceabilit
y Based
Change
Impact

Analysis

Java

Requireme
nts

Inferencin
g and

Consisten
cy

Checking

Change
Type

Requireme
nt which
Changes

Introduced

Decision
Tree

Propagatio
n Path

5 change
scenarios
in a real
software

requireme
nts

specificati
on

ImpactMin
er

Impact
analysis at

change
request

level that
adapts to

the
specific
software

maintenan
ce

scenario at
hand

Dependen
cy Based
Change
Impact

Analysis

Java
Integrated

Impact
Analysis

Source
Code

Search
Query

Execution
Traces

Historical
Data

Potentially
Affected
Methods

4 open-
source
system

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 33 of 117

Tool
Name

Objective
Change
Impact

Category

Supporte
d

Language
s

Method Input Output Validation

SafeRefac
tor Impact

Check
whether
an object

oriented or
aspected
oriented

transforma
tion is

behavior
preserving

Dependen
cy Based
Change
Impact

Analysis

Java
Behavioral

Change
Analysis

Source
Code

Impacted
Methods
and Test
Cases

Generated
for Them

5
transforma

tions
applied to
programs

with
different
sizes (10
LOC to 79

KLOC)

TraceAnal
yzer

Automate
the

traceability
between
software

architectur
al models
and extra-
functional

results

Traceabilit
y Based
Change
Impact

Analysis

Java
Footprint

Graph

Trace
Assumptio

ns

Video on
Demand
Footprint

Graph
Trace
Matrix

Dependen
cies List

6 case
study

systems

CIAT

Overcome
the

challenges
when

using both
static

analysis
and

dynamic
analysis

techniques

Traceabilit
y and

Dependen
cy Based
Change
Impact

Analysis

C++

Class
Dependen

cy
Filtration

Change
Request
Source
Code

Impacted
Class List

3 software
developme
nt projects

FaultTrace
r

Ranks
program
edits in
order to
reduce

developers
’

effort in
manually
inspecting

all
affecting
changes

Dependen
cy Based
Change
Impact

Analysis

Java

Syntax
Tree

Bytecode
Manipulati

on

Source
Code

Regressio
n Test
Suite

Ranked
List of

Affecting
Changes

23
versions of
4 different
program

Chianti

Find a
subset of

the
changes

that impact
a test
whose

behavior
has

Dependen
cy Based
Change
Impact

Analysis

Java
Call Graph

Syntax
Tree

Source
Code

Regressio
n Test
Suite

Affected
Tests

Affecting
Changes

Versions
of a

software
developme
nt project

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 34 of 117

Tool
Name

Objective
Change
Impact

Category

Supporte
d

Language
s

Method Input Output Validation

(potentially
) changed.

Diver

Exploits
static

dependen
cies to
identify
runtime
impacts
precisely
without

reducing
safety and

at
acceptable

costs

Dependen
cy Based
Change
Impact

Analysis

Java
Call Graph
Execution

Trace

Java
Bytecode

Call
Queries

Impact Set
4 Java

programs

EAT

Introduce
a new

dynamic
analysis
approach
which is
practical,
precise

and
efficient

Dependen
cy Based
Change
Impact

Analysis

Java
Execute

After
Relation

Source
Code

Impact Set

Several
releases of

2
programs

Impala

Calculates
the

impacted
elements

by
identifying

all the
direct and

indirect
dependen
cies of a
change

Dependen
cy Based
Change
Impact

Analysis

Java
Call Graph
Dependen

cies

Source
Code from
Subseque

nt
Revisions

Impact Set
3 software
projects

ROSE

Suggests
locations
for further
changes
and warn

for missing
changes

Dependen
cy Based
Change
Impact

Analysis

Java C++
C Python

Historical
Analysis

Source
Code

Ordered
list of

suggested
places
which

should be
changed

10k
transaction

s in 8
open-
source
projects

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 35 of 117

Tool
Name

Objective
Change
Impact

Category

Supporte
d

Language
s

Method Input Output Validation

Coda

Analyze
Scala
source

code with
its change
to provide
impacted
elements

Dependen
cy Based
Change
Impact

Analysis

Scala
Dependen

cy
Analysis

Source
Code

Ordered
list of

impacted
classes by
likelihood

3 open-
source
projects

JRipples

Provide
organizatio

nal
support to
make the
increment
al change
process

easier and
systematic

Dependen
cy Based
Change
Impact

Analysis

Java
Change

Propagatio
n

Source
Code

Method/Cl
ass Status

List

An open
source
projects

The full table can be reached from here: Tool Tables

Change Impact Analyzer Helpers

(12) CodeDiff [44]: This tool used to process all the files in every change-set for source

code differences at a fine-grained syntactic level.

(13) Cobra [45]: To scan in source code, Cobra employs a lexical analyzer for C. It makes

it easier to look for trends, determine whether coding standards and norms are being

followed or not, find suspicious code fragments, etc. offers an interactive tool to

software developers, peer reviewers, testers, and quality assurance staff.

(14) FLAT [51]: A tool for performing feature location using textual searches, execution

traces, annotating features and visualization.

Table 4: Academic Change Impact Analysis Tool Helpers

Tool
Name

Objectiv
e

Supported

Language
s

Method Input Output Year
Source

Code Link

CodeDiff

Source
Code

Difference
Process

Any
Word

Differenc
er

Source
Code

HTML
Report

-

http://www.s
afe-

corp.biz/pro
ducts_coded

iff.htm

https://docs.google.com/spreadsheets/d/1Fs6ravRP8vSWv719NzJZKVYagv703hDdtII0miEGDvo/edit#gid=0
http://www.safe-corp.biz/products_codediff.htm
http://www.safe-corp.biz/products_codediff.htm
http://www.safe-corp.biz/products_codediff.htm
http://www.safe-corp.biz/products_codediff.htm
http://www.safe-corp.biz/products_codediff.htm

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 36 of 117

Tool
Name

Objectiv
e

Supported

Language
s

Method Input Output Year
Source

Code Link

Cobra

Source
Code

Lexical
Analysis

C, C++,
Java

Lexical
Analysis

Source
Code

Call/Contr
ol Graph

2015

https://softw
are.nasa.go
v/software/N
PO-50050-1

FLAT
Feature
Location

Java
SITIR

Approach

Search
Query

Test Case
for Desired

Feature

Feature
Mapping

2010
https://www.
cs.wm.edu/s
emeru/flat3/

2.6.8. Commercial Change Impact Analysis Tools

In this section, commercial change impact analysis tools are presented with their main

features. Also, CIA tool link information and demo information is given.

Table 5: Commercial Change Impact Analysis Tools

Tool Name Description Link(s)
Demo

Available

Smart TS XL

The Software Intelligence® technology in SMART
TS XL provides rapid impact analysis by means of

an extensive cross-reference utility, showing
users a color-coded graphic of how and where

programs interact. You can identify the areas that
could require additional attention and testing with

the capability to map dependencies between
related modules. Responsive and user-friendly,

this impact analysis tool greatly reduces the time
required to understand and evaluate IT projects.

• Build color-coded cross-reference
diagrams

• Click and follow hyperlinks that connect
elements

• View specific lines where references occur

• Identify which elements are connected
and where

• Create reports that can be saved,
exported and printed

https://in-
com.com/sol
utions/impac
t-analysis/

YES

Foresight

Foresight provides full visibility and deep insights
into the health and performance of your tests and

CI/CD pipelines. Assess the risk of changes,
resolve bottlenecks, reduce build times, and
deliver high-quality software at speed with

Foresight.

https://www.
runforesight.
com/#Chang

e-impact-
analysis

YES

Spec-
TRACER

“Spec-TRACER™ addresses the objectives
defined by safety critical standards and related to

traceability data and requirements coverage.

https://www.
aldec.com/e
n/products/r

YES

https://software.nasa.gov/software/NPO-50050-1
https://software.nasa.gov/software/NPO-50050-1
https://software.nasa.gov/software/NPO-50050-1
https://software.nasa.gov/software/NPO-50050-1
https://www.cs.wm.edu/semeru/flat3/
https://www.cs.wm.edu/semeru/flat3/
https://www.cs.wm.edu/semeru/flat3/
https://in-com.com/solutions/impact-analysis/
https://in-com.com/solutions/impact-analysis/
https://in-com.com/solutions/impact-analysis/
https://in-com.com/solutions/impact-analysis/
https://www.runforesight.com/#Change-impact-analysis
https://www.runforesight.com/#Change-impact-analysis
https://www.runforesight.com/#Change-impact-analysis
https://www.runforesight.com/#Change-impact-analysis
https://www.runforesight.com/#Change-impact-analysis
https://www.aldec.com/en/products/requirements_management/spec-tracer
https://www.aldec.com/en/products/requirements_management/spec-tracer
https://www.aldec.com/en/products/requirements_management/spec-tracer

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 37 of 117

Tool Name Description Link(s)
Demo

Available

Spec-TRACER captures traceability data from
miscellaneous design files, verifies it, and

produces traceability matrices required for the
certification processes.”

It has a direct integration with IBM DOORS.

It facilitates management, traceability, reporting,
requirements capture and impact analysis.

Change Impact Analysis

Know the impact of requirements changes before
and after they occur

Know the exact number of projects elements that
will be impacted

equirements
_manageme

nt/spec-
tracer

https://www.
aldec.com/fil
es/products/
SpecTracer_
Datasheet.p

df

Visure

Gain End-to-End Traceability by Automatizing
your Change Impact Analysis Process.

Empower your team to make better and informed
decisions by eliminating manual tracking change

impact & providing them an accurate
understanding of the implications of a proposed

change.

https://visure
solutions.co
m/features/i

mpact-
analysis

YES

Tricentis

Tricentis LiveCompare provides fast, automated
impact analysis for any update to your SAP

systems. It works across the entire SAP
ecosystem, including ECC, CRM, BW, Fiori, and,
of course, S/4HANA. When paired with Tricentis

Tosca, LiveCompare reduces testing time by
85%, accelerates releases by 40%, and increases

quality by 75%.

• Use LiveCompare to analyze the impact of
change. From audits through to SAP

upgrades, identify how code, config and
data is impacted by change, as well as

security settings.

• Automatically compare multiple SAP
systems to ensure they are aligned when
making change. Tackle the challenges of

dual maintenance and transport overrides.

• Test less without compromising system
quality. Use LiveCompare to identify

exactly what to test and why. Integrate
with Tricentis Tosca for resilient test

automation or your own solution.

https://www.t
ricentis.com/
resources/tri

centis-
livecompare-
data-sheet/

https://www.t
ricentis.com/

wp-
content/uplo
ads/2021/07

/Tricentis-
data-

sheet_LiveC
ompare-for-

SAP.pdf

YES

https://www.aldec.com/en/products/requirements_management/spec-tracer
https://www.aldec.com/en/products/requirements_management/spec-tracer
https://www.aldec.com/en/products/requirements_management/spec-tracer
https://www.aldec.com/en/products/requirements_management/spec-tracer
https://www.aldec.com/files/products/SpecTracer_Datasheet.pdf
https://www.aldec.com/files/products/SpecTracer_Datasheet.pdf
https://www.aldec.com/files/products/SpecTracer_Datasheet.pdf
https://www.aldec.com/files/products/SpecTracer_Datasheet.pdf
https://www.aldec.com/files/products/SpecTracer_Datasheet.pdf
https://www.aldec.com/files/products/SpecTracer_Datasheet.pdf
https://visuresolutions.com/features/impact-analysis
https://visuresolutions.com/features/impact-analysis
https://visuresolutions.com/features/impact-analysis
https://visuresolutions.com/features/impact-analysis
https://visuresolutions.com/features/impact-analysis
https://www.tricentis.com/resources/tricentis-livecompare-data-sheet/
https://www.tricentis.com/resources/tricentis-livecompare-data-sheet/
https://www.tricentis.com/resources/tricentis-livecompare-data-sheet/
https://www.tricentis.com/resources/tricentis-livecompare-data-sheet/
https://www.tricentis.com/resources/tricentis-livecompare-data-sheet/
https://www.tricentis.com/resources/tricentis-livecompare-data-sheet/
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 38 of 117

Tool Name Description Link(s)
Demo

Available

Lattix

Impact Analysis
Perform impact analysis on a defect, to see what
files and packages are affected by a fault in the

software.

Changed Based Testing
Perform Change Based Testing by analyzing the

impact of code changes and re triggering only
those unit and integration level tests affected by

the changes.

https://www.l
attix.com/pro
ducts/lattix-

2021/

YES

Jama

• Easily navigate upstream and downstream
relationships to understand the impact of

change and coverage across the
development lifecycle.

• Save time finding gaps in overall test
coverage

• Understand change impact before it
happens

• Produce traceability documentation
required by regulators

• Relationship Rules are tracked across
projects with a visual schematic that

shows the impact and reach of information
across the organization

• Engage in real-time conversations about
the impact and prioritization of defects

https://www.j
amasoftware
.com/platfor

m/jama-
connect/feat
ures/#tab-id-

1

NO

Roadmap
Pro

The Change Impact Assessment (CIA) is an
online change management assessment tool that:

• Measures and compares the likely
disruption of a change project on people in

different parts of the affected business

• Assesses how difficult it could be for
people to adapt or commit to change

• Updates project risk logs with diagnosis of
new barriers to successful implementation

• Determines how the impacts and risks
inherent in the change inform

implementation choices

https://info.c
hangefirst.co
m/change-

impact-
assessment-

tool

https://www.
changefirst.c
om/change-
managemen

t-
products/roa

dmap-pro

YES

ChangeMine
r

Change impact analysis with business logic
information in source code.

Path-sensitive string analysis technology enables
the most accurate application change impact

analysis.
Robust string analysis engine enables the most
accurate application change impact analysis!

Improve your application team’s productivity by
30~75% with application visibility!

http://www.c
hangeminer.

com/
NO

https://www.lattix.com/products/lattix-2021/
https://www.lattix.com/products/lattix-2021/
https://www.lattix.com/products/lattix-2021/
https://www.lattix.com/products/lattix-2021/
https://www.jamasoftware.com/platform/jama-connect/features/#tab-id-1
https://www.jamasoftware.com/platform/jama-connect/features/#tab-id-1
https://www.jamasoftware.com/platform/jama-connect/features/#tab-id-1
https://www.jamasoftware.com/platform/jama-connect/features/#tab-id-1
https://www.jamasoftware.com/platform/jama-connect/features/#tab-id-1
https://www.jamasoftware.com/platform/jama-connect/features/#tab-id-1
https://www.jamasoftware.com/platform/jama-connect/features/#tab-id-1
https://info.changefirst.com/change-impact-assessment-tool
https://info.changefirst.com/change-impact-assessment-tool
https://info.changefirst.com/change-impact-assessment-tool
https://info.changefirst.com/change-impact-assessment-tool
https://info.changefirst.com/change-impact-assessment-tool
https://info.changefirst.com/change-impact-assessment-tool
https://www.changefirst.com/change-management-products/roadmap-pro
https://www.changefirst.com/change-management-products/roadmap-pro
https://www.changefirst.com/change-management-products/roadmap-pro
https://www.changefirst.com/change-management-products/roadmap-pro
https://www.changefirst.com/change-management-products/roadmap-pro
https://www.changefirst.com/change-management-products/roadmap-pro
https://www.changefirst.com/change-management-products/roadmap-pro
http://www.changeminer.com/
http://www.changeminer.com/
http://www.changeminer.com/

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 39 of 117

Tool Name Description Link(s)
Demo

Available

Ktern

To summarize the importance of KTern's
Simulation Bot in SAP Change Impact analysis

and Release Management. One can say that the
bot automates all the possible changes, which
can help in better strategizing the release plan
showing the possible impact, the stakeholders

who are impacted due to these changes.

https://ktern.
com/article/r

elease-
managemen

t-ktern-
simulation-

bot/

YES

AGS

This All-in-One Change Impact Assessment Tool
has been created for:

1. Conducting organizational impact
assessments, tracking, reporting, and

management
2. Business change assessments and reporting
3. Assessing impacts from the process, system,

technology, digitalization, and tool changes
4. Analyzing impacts from culture changes,
mindset shifts, business strategy, and vision

changes
5. Analyzing enterprise-wide or group-wide

transformations
6. Assessment of new policy and procedure

impacts
7. M&A and business expansions

https://www.
airiodion.co

m/best-
assessment-

tool/

https://www.
youtube.com
/watch?v=lE
SuWG_nxz
U&ab_chan
nel=AGSCor

p

NO

Oracle
Change
Impact

Analyser

Change Impact Analyzer is a tool installed
separately from PeopleSoft PeopleTools that

helps you determine the impact of specific
changes you plan to make during an application
upgrade. It's an interactive program where you

can see the relationships of PeopleSoft definitions
in a hierarchical view.

Change Impact Analyzer displays several views
of analyses in tabular and text views. It's

delivered with a set of rules that are used to
determine the relationships between definitions.

Typically, these rules are written in SQL.

https://docs.
oracle.com/c
d/E92519_0
2/pt856pbr3/
eng/pt/tcia.ht

ml

(Use

navigation
menu on the

left side.)

NO

Praxie

A Change Management Impact Analysis is a
method that is used to identify relevant

stakeholders in a change management process
as well as the risks and benefits that the change

management initiative provides to them. Based on
this information, your team will be able to discern
the impact that the change management program

has on key individuals.

https://praxie
.com/change

-
managemen

t-impact-
analysis-

online-tools-
templates/

YES

Infotech

In order to lead your staff members through
change, you must understand the level of impact

the change will have on them. Use this tool to
answer key questions that will inform your people
change management decisions during the change

process. This tool will provide you with staff

https://www.i
nfotech.com/
research/ch

ange-
impact-

assessment-

YES

https://ktern.com/article/release-management-ktern-simulation-bot/
https://ktern.com/article/release-management-ktern-simulation-bot/
https://ktern.com/article/release-management-ktern-simulation-bot/
https://ktern.com/article/release-management-ktern-simulation-bot/
https://ktern.com/article/release-management-ktern-simulation-bot/
https://ktern.com/article/release-management-ktern-simulation-bot/
https://ktern.com/article/release-management-ktern-simulation-bot/
https://www.airiodion.com/best-assessment-tool/
https://www.airiodion.com/best-assessment-tool/
https://www.airiodion.com/best-assessment-tool/
https://www.airiodion.com/best-assessment-tool/
https://www.airiodion.com/best-assessment-tool/
https://www.youtube.com/watch?v=lESuWG_nxzU&ab_channel=AGSCorp
https://www.youtube.com/watch?v=lESuWG_nxzU&ab_channel=AGSCorp
https://www.youtube.com/watch?v=lESuWG_nxzU&ab_channel=AGSCorp
https://www.youtube.com/watch?v=lESuWG_nxzU&ab_channel=AGSCorp
https://www.youtube.com/watch?v=lESuWG_nxzU&ab_channel=AGSCorp
https://www.youtube.com/watch?v=lESuWG_nxzU&ab_channel=AGSCorp
https://www.youtube.com/watch?v=lESuWG_nxzU&ab_channel=AGSCorp
https://docs.oracle.com/cd/E92519_02/pt856pbr3/eng/pt/tcia.html
https://docs.oracle.com/cd/E92519_02/pt856pbr3/eng/pt/tcia.html
https://docs.oracle.com/cd/E92519_02/pt856pbr3/eng/pt/tcia.html
https://docs.oracle.com/cd/E92519_02/pt856pbr3/eng/pt/tcia.html
https://docs.oracle.com/cd/E92519_02/pt856pbr3/eng/pt/tcia.html
https://docs.oracle.com/cd/E92519_02/pt856pbr3/eng/pt/tcia.html
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal
https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal
https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal
https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal
https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal
https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 40 of 117

Tool Name Description Link(s)
Demo

Available

impact assessment, risk points analysis and
recommendations for managers.

tool#unlock-
modal

Change
Method

The Change Impact Assessment Framework tool
provides a framework for examining the detailed
impacts that will arise from the change program.

Begin by documenting any headline process
changes identified during the Define Future State

process, make an initial classification of the
changes required and build out the detail as you

gather more and more information through
surveys, interviews, workshops and even

observation.

https://www.
changemeth
od.com/chan
ge-impact-

assessment-
framework/

NO

WhatFix

Navigating through organizational change is a
multi-step process. Whatfix helps you scale

enterprise-wide changes, improve user
engagement, and drive user adoption.

https://whatfi
x.com/soluti
ons/change-
managemen

t/

YES

2.6.9. Findings and Future Scope

• To verify validity of trace links generated by IR, some studies recommend training

machine learning classification models. Also, several researchers have stated benefits

of deep learning-based approaches against IR-based approaches. Mostly, the former

can learn unstructured data of any format such as correlations among design and

requirement documents [58].

• It is spotted that the relation of CIA parameters and existing metrics is over-studied.

Instead of empirically exploring the correlation with old metrics, researchers should

propose accurate, direct and novel indicators [54].

• The knowledge gap between CIA tools used by academia and CIA tools used by

industry should be filled with a bridge. Creating a roadmap beforehand can help tool

planning, development and future plans of the tool [57].

• The outcome of usability inspection and literature review have exposed many fruitful

fields of future work. Full usability analysis combined with informal usability inspection

can be conducted to determine developers’ needs [57].

• The measurement of impact needs to be researched deeper. A new technique can be

discovered which has a reliable and helpful metric. Developers can save analysis time

with a metric that helps them to decide whether they should implement the changeset

[57].

• There is a belief that the CIA is crucial and should be done. However, there is little

evidence about which aspect of software development is affected by the CIA [54].

https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal
https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal
https://www.changemethod.com/change-impact-assessment-framework/
https://www.changemethod.com/change-impact-assessment-framework/
https://www.changemethod.com/change-impact-assessment-framework/
https://www.changemethod.com/change-impact-assessment-framework/
https://www.changemethod.com/change-impact-assessment-framework/
https://www.changemethod.com/change-impact-assessment-framework/
https://whatfix.com/solutions/change-management/
https://whatfix.com/solutions/change-management/
https://whatfix.com/solutions/change-management/
https://whatfix.com/solutions/change-management/
https://whatfix.com/solutions/change-management/

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 41 of 117

• It is noted that there is not any change impact analysis API library, even though there

are plenty of CIA tools. Implemented CIA algorithms in tools can be repackaged in

open-source API so that industry can reach them easily [57].

Software change impact analysis (CIA) is a technique used to identify the potential effects

caused by software changes, which plays an important role in software development and

maintenance. There are many automated tools that apply Change Impact Analysis

available. These tools mainly use traceability-based CIA or dependency-based CIA.

Dependency based CIA techniques can be divided as static analysis, dynamic analysis or

combination of them while traceability-based CIA has 2 major types, horizontal traceability

and vertical traceability. We presented studies and challenges for both CIA types. Also, we

provided a comparison table for academic based tools with functional metrics and a list of

commercial tools to emphasize the status of CIA in industry. Then, we outlined our findings

and future scope. Our findings show that CIA research should be broadened with new

perspectives and metrics so that the impact of a change can be determined

comprehensively. To conclude, CIA is still a popular research topic which has many active

researchers and practitioners. It has a great potential to be evolved further with different

approaches.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 42 of 117

3. Key Innovation Areas

Figure 7 WP4 Dependencies with SmartDelta Methodology

In this work package, we have three main innovation areas which belong to the recommend

and predict module of the SmartDelta methodology as shown in Figure 7. They are based on

the quality assurance input from Work Package 3. In the following, we discuss each of the

innovation areas along with the projects that the SmartDelta project contributed so far.

A. Novel ML-Based Anomaly and Threat Detection Methods

The development and deployment of machine learning-based methods have transformed

anomaly and threat detection across various domains. These approaches have

significantly enhanced the ability to detect anomalies, localize errors, and prioritize threats

in complex systems, including micro-service architectures, cybersecurity environments,

and telemetric data applications. By employing both supervised and unsupervised models,

these methods achieve significant accuracy, scalability, and adaptability, enabling

proactive responses to potential threats. The integration of these techniques into live

environments demonstrates their robustness and readiness for real-world challenges,

marking a large step forward in operational security and reliability. The related projects are

as follows:

• Prediction of localization of anomalies and errors using ML methods in micro-

service-based architecture (NetRD)

• Anomaly detection and prioritizing cybersecurity offenses by utilizing a diverse

set of supervised and unsupervised models (Ontario Tech, Glasshouse

Systems)

• Anomaly detection for telemetric data (Hoxhunt)

B. Automatic Code Analysis and Change Impact Analysis Approaches

Automated tools for code analysis and change impact evaluation have contributed to

advancements in software development practices. These approaches have addressed

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 43 of 117

challenges in knowledge sharing, fault prediction, and technical debt management,

enabling teams to focus on high-impact tasks. By automating tedious processes like

metrics collection and analysis, these methods reduce manual effort, increase productivity,

and ensure the scalability of modern software systems. The achievements in this area have

not only improved code maintainability but also facilitated better decision-making. The

related projects are as follows:

• Improved knowledge sharing among developers using automatic metrics collection

from version control systems for impact analysis (ERSTE, DAKIK, Kuveyt Turk)

• Automatic collection of code analysis metrics of cloud-based software and faults

predictions (Ontario Tech, Team Eagle)

• Automatic code analysis for ease of software maintenance (University of Innsbruck

and cc.com)

• Automatic analysis of technical debts (Cape of good code, Vaadin)

• Analyze software quality trends based on issues and schedule the issues to find

the balance between focussing on improving quality versus adding new features

(FOKUS)

C. Similarity Analysis Approaches and Recommendations

The advancements in similarity analysis and recommendation techniques represent an

advancement in optimizing software systems. By implementing graph-based methods,

hierarchical modularization, and machine learning-driven insights, these approaches

enable developers to uncover patterns and produce actionable recommendations

efficiently. The ability to identify similarities and address issues proactively has streamlined

development workflows, improved modularity, and fostered a deeper understanding of

system behavior. The achievements in this domain have laid the groundwork for more

intelligent and adaptive software systems, promoting innovation and reducing complexity

in software engineering processes. The related projects are as follows:

• Graph based similarity analysis and recommendations (TWT, Software AG,

Vaadin)

• Similarity analysis of State Machines using hierarchical modularization (TWT,

Akkodis)

• ML-based methods to identify requirements from large data repository and

generate recommendations (RISE, Alstom)

• Software requirements and issues analysis using Natural Language Processing

and Continual Learning (IFAK, Software AG)

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 44 of 117

4. Contributions to the State-of-the-art

4.1. Novel ML-Based Anomaly Detection Methods

4.1.1. Prediction of localization of anomalies and errors using ML methods in micro-service-based

architecture (NetRD)

Synopsis:

In microservice platforms with high number of users and heavy traffic, it is necessary

to monitor the system, take quick action against errors and ensure the

maintainability of the system. However, debugging on these platforms can take a

long time. This difficulty arises from the need of understanding the behavior of

microservices and detecting their interactions. In the first phase of this study, which

aims to increase the efficiency of DevOps engineers on the work/time unit, it has

been observed that providing microservice flows and interactions saves operation

teams a significant amount of time during debugging. Accordingly, the study

focused on microservice interactions and anomaly detection. First, different

machine learning-based models predicting microservice interactions have been

developed and their performances compared. In these models, log patterns are

extracted on microservice log data and the interaction map of the mentioned

microservice is created by estimating the previous and next microservices that the

current microservice interacts with at a certain moment. In the next step, anomalous

data were injected into the microservice logs, models were developed to detect

these data and their performances were compared. In the experiments, successful

estimation results were obtained that can contribute positively to the debugging

process.

Related works:

There are many works in the literature that address fault analysis and anomaly

detection. In this section, we provide a brief review of recent studies in the existing

literature.

X. Zhou et al. [NR1] conducted an industrial survey of typical faults encountered in

microservice systems, current debugging methods used in industry, and challenges

faced by developers. According to this study, monitoring and visualization analysis

techniques are methods that developers use to find various types of errors involving

microservice interactions.

Giamattei et al. [NR2] present a systematic study of 71 monitoring tools for DevOps

and microservices. The study follows three main phases: search and selection, data

extraction, and synthesis. The tools are categorized according to 26 parameters,

including general characteristics, monitored aspects, and implementation details.

The study includes a comprehensive map of the monitoring tools landscape, a

reusable classification framework, and discussions on implications for researchers

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 45 of 117

and practitioners. In particular, the map can be used to understand tool

characteristics, identify gaps and make informed decisions in the context of DevOps

and microservice monitoring.

Wang et al. [NR3] conducted a survey study on localization and replication of

software bugs. In this survey study, the authors discuss the research questions

related to the problems studied, the research methodologies used, and the findings

of previous research. They analyzed 134 papers published between 2011 and 2021

and investigated defect localization approaches.

Zhou et al. [NR4] conducted an industrial survey and an empirical study to

investigate fault analysis and debugging in complex microservice systems. The

survey reveals the challenges developers face in microservices debugging and

shows the need for improved techniques. The empirical study evaluates the

effectiveness of current industrial debugging practices and shows that appropriate

tracing and visualization techniques improve microservice debugging. The findings

highlight the importance of intelligent trace analysis and visualization and suggest

potential directions for future research. The study presents a survey on industrial

microservice systems, a benchmark for microservice failure analysis, and insights

into improving microservice debugging with advanced tracing and visualization

methods.

Yu et al. [NR5] investigate the efficiency and effectiveness of machine learning

algorithms such as K-nearest neighbor (KNN) and deep learning methods such as

convolutional neural network (CNN) in log anomaly detection considering their

computational cost. The study on five general log anomaly detection datasets

reveals that basic algorithms such as KNN outperform DL methods in terms of both

time efficiency and accuracy. This result is driven by log preprocessing strategies,

the simplicity of available log benchmarks, and the nature of binary classification in

log anomaly detection. Based on the findings, the authors recommend critically

analyzing datasets and research tasks before opting for computationally expensive

DL methods in log anomaly detection and exploring simpler approaches as a basis

for software engineering tasks.

Yu et al. [NR6] introduce the Nezha approach, which offers an innovative root cause

analysis (RCA) for large-scale microservice systems. Their aim is to address the

limitations of existing RCA methods, such as poor root cause interpretation and

underutilization of data. Nezha combines multimodal observability data, including

metrics, traces and logs, and transforms them into a unified event representation to

create event graphs. It focuses on obtaining detailed and interpretable RCA by

comparing error-free and error-exposed stages, identifying root causes at the code

region and source type level. They tested the approach through empirical

evaluations on two widely used microservice applications and observed its

performance. The study shows that Nezha improves the observability of two

microservice applications, is successful in anomaly detection, and contributes to

RCA on multimodal data.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 46 of 117

Methodology:

CPaaS Platform Worked On:

CPaaS, a telecommunications platform with a high number of microservices,

developed in a technology company, operating in 5 different data centers located in

4 different continents, is a software platform that provides communication services

to users through a scalable, microservice architecture-based platform by making

use of PaaS, which is one of the popular cloud computing models. On the other

hand, it can also offer VoIP (Voice over Internet Protocol) APIs on the same platform

so that companies can use them in line with their own needs.

Debugging and problem addressing process varies according to the components in

the CPaaS platform, which contains a large number of microservices and consists

of many different components. The most difficult errors to address for operations

teams are in the fields Routing and Services and are reported directly from user

scenarios as they include service functions. The main reason for the challenge here

is the need to detect microservice interactions. For example, for debugging process

in a basic call scenario, all interacting microservices and their behaviours must be

known and understood. This creates a time handicap for a solution with a high

number of microservices. On the other hand, it has been observed that the time

required for troubleshooting user scenarios is related to knowing the relationship

between the scenario and microservices.

Solution Stages:

In the first phase, different machine learning algorithms were used to estimate,

interactions between microservices and model performances were compared. The

experiments were carried out within the framework of data belonging to multiple

scenarios, but performance comparison includes the results for both single and

multiple scenarios results.

In the second phase, anomaly detection studies were performed. The anomalies

injected into the system were manually labelled and the problem was transformed

into a classification problem. Classification was made with different algorithms on

manually labelled data and model performances were compared. On the other

hand, unsupervised labelling process was performed with different data

combinations created considering feature importance test results, and the

performance of this process against actual values was observed. At the end of this

process, the labelling process with the unsupervised method gave almost real

results and it was observed that the effort to be applied for manual labelling

processes could be eliminated.

Results:

Microservice Interactions Prediction

The k-fold cross-validation technique was used in the performance analysis of the

interaction prediction models between microservices, and tests were made for the

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 47 of 117

value of k = 5. The performance metrics were calculated separately for each model

during the experiments. The average accuracy values obtained as the mean of three

models are given in Table I. The success of estimating “Previous Hop” vary between

95-99% whereas the average success in evaluating “Next Hop” is in the range of

94-99%. Among the tested algorithms, the highest success was achieved with the

models created by the MLP algorithm, with 99% for both “Previous Hop” and “Next

Hop” predictions.

Table 6: Microservice Interactions Prediction Experimental Results

Anomaly Detection and Prediction

In the performance analysis of the anomaly prediction models in manually labelled

data, the tests were repeated for each of the algorithm. There are three models

(generic service, brokers, and adapters) created and evaluated by each algorithm.

The average accuracy values obtained are given in Table 7.

Table 7: Accuracy Rates of Anomaly Prediction in Manually Labelled Data Experiments

Table 7 shows that the highest success was obtained with the Decision Tree

algorithm, and the average percentage of success achieved is 93%. However,

despite the high success rates achieved in the experiments, 83% of the anomaly

cases were correctly predicted at most. This shows that, in fact, normal situations

were predicted more accurately, and thus model performance metrics were

positively affected. This is because the data set mainly contains normal data rather

than anomalies and unstable data sets are often encountered in the industry.

In the second phase of the anomaly detection experiments, it was aimed to

automatically detect and label anomalies. Firstly, a ranking list from highest to

lowest value score was obtained via feature importance test. In this respect, the

features with the most important degrees for determining the anomaly class were

used as input data with different combinations. Here, the highest scored four

features were used to create double, triple, quadruple in combinations. Also, the

last combination includes all the features except the highest one. Afterwards,

anomalies were automatically detected and labelled in these data using the

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 48 of 117

Isolation Forest algorithm. The average accuracy values obtained for each

combination are given in Table III.

Table 8: Accuracy Rates of Anomaly Detection with Unsupervised Methods Experiments

The highest success in anomaly detection was achieved for the quadruple data

combinations with the highest significance. The accuracy of the predictions and,

accordingly, the performance metrics were calculated by comparing them with the

manually labelled actual anomaly values. At least 95% of anomalies were correctly

predicted in these models with an average success rate of 93%. The results show

that the Isolation Forest method has obtained results that are very close to the

manually labelled actual values for the detection of anomalies. Only 5% of injected

anomalies were labelled as normal status. Such a small loss allows Isolation Forest

to be preferred as an automatic anomaly detection and tagging method, eliminating

such manual labelling operations.

Table 9: Accuracy Rates of Anomaly Prediction in Unsupervised Labelled Data Experiments for

Quadruple Combined Data (IF_4)}

In the anomaly detection in unsupervised labelled data step, the same supervised

classification algorithms were used for evaluation with the same input data, but the

targets labelled by the Isolation Forest were used to be predicted. Since Isolation

Forest models show the most successful results when labelling anomalies in the

quadruple combination data, Table IV shows the average success values of the

estimation results using only this target column. According to the results of these

experiments, the highest performance was demonstrated by the Decision Tree

algorithm. The best degree of success was achieved with a combination of four

data. The percentage of success in these experiments ranged between 85% and

93%, and almost the same success rate was achieved with manually labelled data.

Summary:

For CPaaS, a microservice architecture telecommunications platform with a high

number of users and heavy traffic, the error addressing process depends on the

system components. In the examinations made, it has been observed that the

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 49 of 117

operation teams spend the most time to eliminate the errors experienced in user

scenarios, pointing to the routing and service components. On the other hand, it

was concluded that knowing the interaction between microservices shortens the

error recovery times.

This study, which aims to increase the efficiency of the operation teams on the

work/time unit and to enable the new members of the operation team, especially

newly graduated engineers with no experience in the industry, to adapt to the

debugging processes faster, is based on the aforementioned inference. The study

focuses on prediction of interactions between microservices and detecting

anomalies on the CPaaS platforms’ microservice system.

Note:

More detailed information can be found in the following publications.

1. Interaction Prediction and Anomaly Detection in a Microservices-based

Telecommunication Platform

2. Microservice Interaction Prediction in Communication Platform as a Service

References:

[NR1] X. Zhou et al., "Fault Analysis and Debugging of Microservice

Systems:Industrial Survey, Benchmark System, and Empirical Study," in IEEE

Transactions on Software Engineering, vol. 47, no. 2, pp. 243-260, 1 Feb. 2021.

[NR2] L. Giamattei, A. Guerriero, R. Pietrantuono, S. Russo, I. Malavolta, T. Islam,

M. Dˆınga, A. Koziolek, S. Singh, M. Armbruster, J.M. Gutierrez-Martinez, S. Caro-

Alvaro, D. Rodriguez, S. Weber, J. Henss, E. Fernandez Vogelin, F. Simon Panojo,

”Monitoring tools for DevOps and microservices: A systematic grey literature

review,” Journal of Systems and Software, Volume 208, 2024.

[NR3] D. Wang, M. Galster, M. Morales-Trujillo,” A systematic mapping study of bug

reproduction and localization”, Information and Software Technology, Volume 165,

2024.

[NR4] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, D. Ding,” Fault Analysis and

Debugging of Microservice Systems: Industrial Survey, Benchmark System, and

Empirical Study,” IEEE Trans. Softw. Eng., 47, 2 (Feb. 2021), 243–260.

[NR5] B. Yu, J. Yao, Q. Fu, Z. Zhong, H. Xie, Y. Wu, Y. Ma, P. He,” Deep Learning

or Classical Machine Learning? An Empirical Study on Log- Based Anomaly

Detection.” In Proceedings of the 46th IEEE/ACM International Conference on

Software Engineering (ICSE ’24) New York, NY, USA, Article 35, 1–13.

[NR6] G. Yu, P. Chen, Y. Li, H. Chen, X. Li, Z. Zheng, ”Nezha: Interpretable Fine-

Grained Root Causes Analysis for Microservices on Multi-modal Observability

Data,” In Proceedings of the 31st ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE 2023)., New York, NY, USA, 553–565

https://dl.acm.org/doi/10.1145/3666015.3666017
https://dl.acm.org/doi/10.1145/3666015.3666017
https://www.researchgate.net/publication/361815155_Microservice_Interaction_Prediction_in_Communication_Platform_as_a_Service

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 50 of 117

4.1.2. Anomaly detection and prioritizing cybersecurity offenses by utilizing a diverse

set of supervised and unsupervised models (Ontario Tech, Glasshouse

Systems)

Synopsis:

This section explores the development of Machine Learning (ML) based anomaly

detection and offense prioritization tool inside a Security Information and Event

Management (SIEM) environment. SIEM solutions aggregate data from multiple

sources, enabling analysts to monitor and detect threat patterns, respond to

incidents, and manage security effectively. Our application, specifically designed

for the QRadar SIEM platform, integrates ML models to enhance both anomaly

detection and offense prioritization.

For anomaly detection, the application uses a time-and-space-efficient data

extraction process with QRadar's Ariel Query Language (AQL) to manage large

data volumes. ML models like Isolation Forest (iForest) and Local Outlier Factor

(LOF) are selected for their efficiency in real-time SEIM environments. Point

adjustment further refines anomaly detection by identifying anomaly sequences,

allowing improved detection.

While anomaly detection helps the analyst to identify potential offense, a

probabilistic ML approach is also employed that assigns impact scores to detected

offenses. Probabilistic ML Models such as Cluster-based Outlier Probability

(COPOD), calculate prediction probabilities, producing a prioritization list that

guides SOC analysts in focusing on high-risk events. Evaluated using metrics such

as Mean Time to Detect (MTTD) and Mean Time to Resolve (MTTR), this

prioritization framework effectively reduces response time, streamlines analyst

workflows, and enhances SOC efficiency.

This work, a collaboration between Ontario Tech University and Glasshouse

Systems, demonstrates how advanced ML techniques can be integrated into SIEM

applications to improve cybersecurity operations through accurate anomaly

detection and offense prioritization.

Related works:

The integration of ML for cybersecurity anomaly detection has recently got a lot of

attention, focusing on the application of both supervised and unsupervised

techniques. Supervised models like Support Vector Machines (SVM) and Random

Forests have been widely adopted for their accuracy in known attack scenarios

[GHS1]. Meanwhile, unsupervised approaches such as k-means clustering and

Autoencoders are effective for identifying new and emerging threats by analysing

patterns in data [GHS2] [GHS3]. Hossain et al. (2021) developed an Automatic

Event Categorizer for SIEM that utilizes ML to categorize events within a SOC

environment, aiming to streamline alert management and reduce manual

categorization efforts [GHS4]. This approach demonstrates how machine learning

can improve SOC workflows by filtering and categorizing high-volume alerts, which

is aligned with our goal of prioritizing cybersecurity offenses based on anomaly

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 51 of 117

scores. Time-series anomaly detection techniques, as discussed by Mejri et al.

[GHS5], provide foundational methods, yet the application within real-time SIEM

settings is still developing. However, utilizing ML for prioritizing offenses and

detecting anomalies of event per second (EPS) in real-time is less explored. This

work addresses the gap by implementing solutions that optimizes both detection

and prioritization within a live SIEM application.

Methodology:

First, to detect anomaly, our tool employs a series of steps as shown in Figure 9

Upper Left) to ensure efficient and accurate identification of unusual patterns in time

series data. The methodology comprises:

Figure 9: A high-level visual overview of our proposed framework, showing the key steps in our pipeline.

1. Time-and-Space-Efficient Data Extraction: Data is collected from a

production environment using QRadar’s Ariel Query Language (AQL). Given the

large volume of log data, queries are optimized to reduce time and space

complexity. Aggregating data into 1-minute intervals helps manage the volume

while retaining meaningful insights.

2. Feature Extraction and Data Pre-processing: Data from multiple log sources

is processed, including separating log sources and applying noise reduction

techniques. Events are aggregated using a Simple Moving Average (SMA) to

smooth out noise, and sub-sequencing is applied to identify collective anomalies

over time, rather than isolated points.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 52 of 117

3. Lightweight Model Selection: The framework uses classical machine learning

models for interpretability, essential for real-world deployment in SOC

environments. Key models include Isolation Forest (iForest) for anomaly

detection based on isolation trees and Local Outlier Factor (LOF) for detecting

density-based anomalies.

4. Point Adjustment for Anomaly Detection: Post-processing involves point

adjustment, a technique that focuses on detecting the presence of anomalies

within sequences rather than isolated events. This adjustment prioritizes quick

anomaly flagging over precise duration measurement, aiding analysts in faster

threat identification.

5. Hyper-parameter Tuning and Active Learning: To optimize the models, an

exhaustive grid search tunes hyper-parameters based on F1 scores. Active

learning is employed, with feedback from analysts iteratively improving the

model’s performance. The most relevant parameters from our search:

o Isolation Forest - contamination=0.03, n_estimators=300,

max_samples=300

o LOF - contamination=0.03, n_neighbors=10000

o Sub-sequencing - window_length=45, stride=22 (50%)

o SMA - window_length=20

Then we further collect detected offenses to implement our offense prioritization

aspect of the tool. as shown in Figure 9 Upper Right) depicts the automatic offense

prioritization system. As mentioned, this system is explicitly designed for QRadar

SIEM and utilizes the training data from QRadar.

1. Data Collection: Approximately five million events were collected from QRadar,

covering diverse attributes like event names, low-level categories, timestamps,

and network data. This dataset was enhanced through API calls and AQL

queries to retrieve accurate, comprehensive data.

2. Feature Collection and Selection: Features critical to detecting and prioritizing

offenses were gathered, including attributes like event names, severity,

credibility, usernames, and IP addresses. These features allow for a holistic

analysis of each offense's potential impact.

3. Probabilistic ML Models: A suite of probabilistic models, such as Angle-Based

Outlier Detection (ABOD), Cluster-based Outlier Probability (COPOD), and

Stochastic Outlier Selection (SOS), were used. These models calculate

prediction probabilities for offenses, enabling nuanced classification of potential

threats.

4. Automated Offense Prioritization: Offenses are assigned scores based on

model-generated probabilities and QRadar-calculated magnitudes. The

resulting impact score prioritizes offenses by severity, allowing SOC analysts to

focus on the highest-risk events.

5. Experimental Evaluation: Offenses were evaluated using metrics like Mean

Time to Detect (MTTD) and Mean Time to Resolve (MTTR). The model

performance was compared with baseline values to assess its effectiveness in

real-time threat response.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 53 of 117

Results:

Our tool demonstrated notable performance across eight datasets from a production

SIEM environment, evaluated primarily through F1 scores to balance precision and

recall. In Table 10, P, R, and F1 represent Precision, Recall, and F1 score

respectively. For each metric, the top row represents the score with no point-

adjustment applied, and the bottom row represents the score with point-adjustment

applied. The cells separated on the right side of the table represent the averages

across all datasets. Bold values represent the best performing model for each

dataset. The separated cells on the bottom represent the averages performance of

the tested models across each dataset.

Table 10: Anomaly detection tool performance

- When paired with point adjustment and sub-sequencing techniques, iForest

achieved the highest F1 scores across most datasets. This model proved highly

effective in detecting diverse anomaly patterns within the data.

- LOF performed well in identifying outliers in high-density datasets, leveraging

local density deviations. Although slightly outperformed by Isolation Forest in

some scenarios, LOF remained a reliable model for anomaly detection.

- The tool achieved an average F1 score of 87.24% with iForest, indicating its

ability to detect true anomalies accurately while minimizing false positives and

negatives. LOF also demonstrated competitive precision and recall values,

especially in data-rich event streams.

On the hand, when prioritizing offenses our tool demonstrated significant

improvements in managing high-volume security alerts within the QRadar SIEM

environment In Table11, the "Offense ID" uniquely identifies each offense. The

"Average Prediction Probability" reflects the output from the ML models, while the

"SOC Rating" is the severity level assigned by SOC analysts. The comparison

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 54 of 117

between the ML models’ prediction probabilities and SOC ratings sheds light on

how likely offenses are to be true positives. For example, Offense 1169 has a high

prediction probability of 0.95, aligning with its "Critical" SOC rating, suggesting a

strong likelihood of it being a true positive. However, Offense 1212 also has a high

prediction probability of 0.95, despite a "Low" SOC rating, showing cases where ML

models predict high probabilities but differ from analysts’ severity assessments due

to additional context.

Table 11: Comparison of ML Model Scores and SOC Ratings for Offenses

Table 12: Comparison of Impact Score and SOC Ratings for Offenses

Table 12 compares impact scores (representing the potential severity of offenses)

with SOC ratings, revealing further insights. Different ML models generate varying

impact scores for the same offense, reflecting differing assessments of severity. For

example, Offense 1171 has a low average impact score of 0.6814 across models

but is assigned a "High" SOC rating. This discrepancy suggests that while the

models may indicate a lower severity, analysts consider other contextual factors

that raise the offense’s perceived severity level.

Summary:

We have outlined the development of an anomaly detection and offense

prioritization tool in the QRadar SIEM environment to improve SOC operations. Our

tool effectively identifies unusual patterns in data, while the offense prioritization

system assigns impact scores to prioritize high-risk threats. Key findings show that

these tools reduce detection and response times, enhance alignment with SOC

analyst assessments, and demonstrate how ML-based analysis can complement

human expertise.

Reference:

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 55 of 117

[GHS1] L. Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32,

2001.

[GHS2] C. Bishop, "Pattern Recognition and Machine Learning," Springer, 2006.

[GH3] X. Zhu et al., "Anomaly Detection in Network Traffic: A Machine Learning

Perspective," IEEE Transactions on Network and Service Management, vol. 17, no.

1, pp. 87-101, 2020.

[GH4] S. M. M. Hossain, R. Couturier, J. Rusk, and K. B. Kent, "Automatic event

categorizer for SIEM," Proceedings of the 31st Annual International Conference on

Computer Science and Software Engineering (CASCON '21), pp. 104-112, 2021.

[GH5] N. Mejri, L. Lopez-Fuentes, K. Roy, P. Chernakov, E. Ghorbel, and D.

Aouada. “Unsupervised Anomaly Detection in Time-series: An Extensive Evaluation

and Analysis of State-of-the-art Methods”. In: arXiv preprint arXiv:2212.03637

(2022)

4.1.3. Anomaly detection for telemetric data (Hoxhunt)

Synopsis:

This section explores the development of a machine learning-based anomaly

detection tool designed to monitor microservices in a Software as a Service (SaaS)

environment. Microservices, characterized by their modular and distributed nature,

require robust observability to detect and resolve anomalies that could affect system

performance, security, or privacy. Our application integrates telemetry data

collection using OpenTelemetry, provides a pluggable machine learning model

infrastructure which initially employs unsupervised machine learning models—K-

means clustering and Autoencoders—to identify anomalies, but allow for more

sophisticated models to be inserted. Finally, it provides actionable insights via a

visualization dashboard.

The tool aggregates telemetry data at the service handler and hour levels, enabling

it to process critical metrics such as error messages, latency, request counts, error

rates, and availability. These metrics are fed into the given machine learning models

that detect the anomalies. A visualization interface highlights anomalies, aiding

developers and support teams in promptly identifying and remediating potential

issues.

The toolset is aimed to improve the detection of anomalies in microservices,

enhancing operational reliability and efficiency.

Related Works:

Existing research on anomaly detection in distributed systems often relies on

supervised learning methods that require labelled data. For instance, Zhou et al.

[HH4] applied supervised models to telemetry data, achieving high detection

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 56 of 117

accuracy. However, supervised approaches are impractical in dynamic, real-time

environments due to the lack of labelled anomalies.

Unsupervised methods, such as K-means clustering and Autoencoders, have

gained traction for their ability to identify patterns without labelled datasets.

Chandola et al. [HH1] emphasized the challenges of anomaly detection, such as

high false-positive rates and the heterogeneity of anomalies, which unsupervised

models aim to address. Previous studies like those by Meng et al. [HH2] and Samir

and Pahl [HH3] demonstrated the utility of machine learning in identifying anomalies

through performance metrics and trace analysis, but often involved anomaly

injection, a method unsuitable for production systems.

The tool research builds on these findings, focusing on practical implementations of

unsupervised models in a live SaaS environment, leveraging telemetry data

collected through OpenTelemetry.

Methodology:

The development of the anomaly detection tool involved the following high-level

steps:

1. Telemetry Data Collection:

1.1. Data was gathered using OpenTelemetry, capturing logs, traces, and

metrics from the company’s microservices.

1.2. Relevant metrics were identified, including latency, request counts,

errors, availability, and time.

2. Data Aggregation and Preprocessing:

2.1. Data was aggregated at the service handler and hour levels to provide

actionable insights and reduce noise.

2.2. Service handlers generating excessive noise were excluded to

improve detection accuracy.

3. Model Implementation:

3.1. K-means clustering: Utilized to group data points and detect outliers.

3.2. Autoencoder: A neural network model trained to minimize

reconstruction errors, flagging deviations as anomalies.

4. Visualization:

4.1. Dashboards were developed using Apache Superset, displaying

visualizations including heatmaps, word clouds, and detailed tables for

detected anomalies.

5. Evaluation:

5.1. Qualitative feedback from the team and quantitative analysis of past

incidents were used as main metrics assess the tool’s performance in

facilitating a more rapid iterative process

Results:

The anomaly detection tool was evaluated using both qualitative and quantitative

methods:

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 57 of 117

1. Model Performance:

1.1. K-means achieved an initial detection accuracy of 57.1%,

outperforming the Autoencoder’s 28.6%

1.2. Both models detected different types of anomalies, indicating

complementarity

2. Efficiency:

2.1. Handler-level aggregation significantly reduced noise compared to

trace-level detection.

2.2. The models demonstrated robustness in identifying anomalies in a

dynamic environment.

3. Actionability:

3.1. The visualization dashboard provided clear and actionable insights,

augmenting the capabilities of the development and support teams to

locate and investigate anomalies efficiently.

Summary:

By combining telemetry data collection, unsupervised learning models, and a user-

friendly visualization interface, the telemetry anomaly analyzer tool addresses

critical challenges in monitoring distributed systems in a SaaS environment. While

the suite of tools is designed for a specific use case, the methods and findings can

be generalized to other contexts, highlighting the potential of unsupervised machine

learning in improving software observability. Future work includes enhancing model

robustness, exploring additional algorithms, and scaling the solution for broader

applications.

References:

[HH1] Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey.

ACM computing surveys (CSUR), 41(3), 1–58.

[HH2] Meng, L., Ji, F., Sun, Y., & Wang, T. (2021). Detecting anomalies in

microservices with execution trace comparison. Future Generation Computer

Systems, 116, 291–301.

[HH3] Samir, A., & Pahl, C. (2019). Dla: Detecting and localizing anomalies in

containerized microservice architectures using markov models. In 2019 7th

international conference on future internet of things and cloud (ficloud) (pp. 205–

213).

[HH4] Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Liu, D., . . . He, C. (2019). Latent

error prediction and fault localization for microservice applications by learning from

system trace logs. In Proceedings of the 2019 27 th acm joint meeting on european

software engineering conference and symposium on the foundations of software

engineering (pp. 683–694).

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 58 of 117

4.2. Automatic Code Analysis and Change Impact Analysis Approaches

4.2.1. Improved knowledge sharing among developers using automatic metrics

collection from version control systems for impact analysis (ERSTE, DAKIK,

Kuveyt Turk, Cape of Good Code)

Synopsis:

This section investigates the use of automatic code analysis and change impact

analysis as a mechanism to facilitate knowledge sharing among developers by

leveraging metrics automatically collected from version control systems (VCS). The

research focuses on designing an integrated toolchain that collects, analyzes, and

visualizes code metrics, such as knowledge sharing risks, churn rates, commit

frequencies, code complexity, and module dependencies. This tool provides

actionable insights for understanding the impact of code changes on software

quality, team productivity, and project timelines. The goal is to empower

development teams to make informed decisions while maintaining high code quality

and team coherence.

The approach uses automated techniques to extract metrics from VCS repositories,

combined with tools to parse code in code entity level such as classes and

functions. A visualization dashboard enables developers to identify high-risk

modules, track code evolution, and understand the broader implications of their

contributions. This framework is designed to enhance collaboration, minimize

technical debt, and improve knowledge transfer within software teams.

Related works:

Research in automated code analysis and change impact analysis has focused on

improving software quality through static and dynamic analyses. Notable studies by

Mockus and Weiss [TURK1] introduced the concept of mining version histories to

identify defect-prone modules. Similarly, Hassan [TURK2] proposed leveraging

historical metrics from VCS to predict maintenance effort and software reliability.

These works established the foundation for using data-driven techniques to analyze

software artifacts.

Recent advancements include tools like CodeScene and SonarQube, which analyze

codebase health and identify hotspots but often lack integration with predictive

models or actionable insights tailored to change impact. Studies by Gousios et al.

[TURK3] emphasized the importance of real-time metrics for pull request evaluation,

while Zimmermann et al. [TURK4] explored coupling metrics and their role in

change propagation.

DETANGLE is another recent effort focusing on knowledge distribution within teams

through collaborative tools that emphasize shared understanding of code changes.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 59 of 117

Their platform provides mechanisms for identifying knowledge gaps, distributing

expertise across teams.

This research builds on these efforts by incorporating automated metrics collection,

predictive analysis, and visualization tailored for knowledge sharing and team

productivity. By focusing on the social and technical dimensions of code changes,

this work bridges the gap between static analysis tools and collaborative

development needs.

Methodology:

The proposed methodology for automatic code analysis and change impact analysis

comprises the following steps:

1- Data Collection:

- Automatically collect metrics from VCS (e.g., Git), focusing on commit histories,

authorship, code churn, file dependencies, and test coverage.

- Extract additional metadata, such as timestamps, branch information, and merge

histories, to contextualize changes.

- Extract of code entities (both classes and functions) from the source files, as well

as their associated callee and caller relationships with other code entities, is

achieved using a specialized tool, Understand, provided by SciTools

- Collect PRs and reviewers of the PRs

2- Data Preprocessing:

- Normalize and aggregate metrics at the module and project levels to reduce noise

and ensure consistency.

- Apply filtering to exclude non-informative commits (e.g., formatting changes or

comments).

- Establish associations between commits and user stories through various means,

including analyzing commit messages, pull request metadata, and linked issue

references.

- Map reviewers to the commits they reviewed via pull requests and subsequently

link them to the corresponding files. This mapping supports knowledge distribution

by providing insights into the collaborative ownership of code.

- Resolve discrepancies in developer records caused by Git's reliance on

environment-provided email addresses, consolidating entries for the same

individual across different aliases. This is executed utilizing an internally developed

module known as 'Similar Contributor Matching.' This module scrutinizes the

username portion of every contributor's email address (preceding the @ symbol),

in addition to the person's name. It correlates these elements across the totality of

project contributors, thus detecting any overt similarities. These entities, having

surpassed a predetermined threshold of similarity, are then displayed through our

User Interface. Prior to the commencement of the analysis, these findings are

matched and consolidated for improved data harmonization and precision.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 60 of 117

3- Visualization and Reporting:

- Develop dashboards that display code health, hotspots, and dependency maps.

- Provide insights into knowledge silos and developer collaboration patterns to

highlight areas needing improved communication.

4- Evaluation:

- Validate the approach using historical project data and feedback from

development teams.

Results:

By leveraging the integrated toolchain consisting of automated metrics collection,

predictive analysis, and visualization, significant improvements in knowledge

sharing among developers were realized. This research's implementation in Kuveyt

Turk and Vaadin provided key insights:

Knowledge Transfer Efficiency:

The implementation identified code areas with elevated risk values and low

cohesion indicative of knowledge silos. Prioritizing these areas for information

sharing resulted in improved communication and decreased knowledge gaps within

the team.

Figure 10: Knowledge Sharing Network Diagram

Aided Decision Making:

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 61 of 117

Metrics such as churn rate and commit frequency provided insights into the most

volatile areas of the codebase, emphasizing the need for process improvements.

Visualizations and Informed Decisions:

The visualization dashboard enabled developers to track code evolution and

understand the broader implications of their code contributions. These graphical

displays made it easier for developers to identify high-risk modules, effectively

mitigating potential future issues.

Figure 11: Team Healthiness tables and bubble charts

Figure 12: Knowledge Risks and Team Turnover dashboard

Data Harmonization:

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 62 of 117

The 'Similar Contributor Matching' module established connections between

developers' records, thus creating a cohesive and holistic view for improved

decision making. This process mitigated discrepancies caused by Git's reliance on

environment-supplied email addresses, indicating how automation significantly

enhances data accuracy.

Figure 13: Matched contributors of open source Django project

Summary:

This research has proven its value in enhancing knowledge sharing among

developers in a software team environment using automatic code analysis and

change impact analysis. The implementation of this research in Kuveyt Turk

significantly transformed their development process.

Key outcomes realized include:

Improved Knowledge Transfer: The research pinpointed areas with high knowledge

sharing risks allowing developers to focus their efforts on these specific areas.

Data Harmonization: By effectively leveraging the 'Similar Contributor Matching'

module, the system was able to align entries of the same individual across different

aliases, providing a holistic view of individual contributions.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 63 of 117

Enhanced Decision-Making: The implementation of visualization dashboards

enabled developers to understand the broader implications of their code

contributions, leading to more informed decisions.

This research's integration into intra-team knowledge sharing has demonstrated its

ability to drive meaningful improvements in software quality and team coherence. It

bridges the gap between static analysis tools and collaborative development needs,

positioning it as a valuable tool for developers working on complex projects.

References:

[TURK1] A. Mockus and D. M. Weiss, "Predicting risk of software changes," in Bell

Labs Technical Journal, vol. 5, no. 2, pp. 169-180, April-June 2000, doi:

10.1002/bltj.2229.

[TURK2] A. E. Hassan, "The road ahead for Mining Software Repositories," 2008

Frontiers of Software Maintenance, Beijing, China, 2008, pp. 48-57, doi:

10.1109/FOSM.2008.4659248.

[TURK3] D. Mitropoulos, G. Gousios, P. Papadopoulos, V. Karakoidas, P. Louridas

and D. Spinellis, "The Vulnerability Dataset of a Large Software Ecosystem," 2014

Third International Workshop on Building Analysis Datasets and Gathering

Experience Returns for Security (BADGERS), Wroclaw, Poland, 2014, pp. 69-74,

doi: 10.1109/BADGERS.2014.8.

[TURK4] T. Zimmermann, A. Zeller, S. Diehl and P. Weißgerber, "Mining Version

Histories to Guide Software Changes" in IEEE Transactions on Software

Engineering, vol. 31, no. 06, pp. 429-445, June 2005, doi: 10.1109/TSE.2005.72.

4.2.2. Automatic collection of code analysis metrics of cloud-based software and

faults predictions (Ontario Tech, Team Eagle)

Synopsis:

Given the intricate composition and complex nature of airfield operations software,

it is paramount to ensure sufficient software quality throughout its entire

development life cycle. We have developed an automated solution for SQA metrics

acquisition and the analysis of quality-related data for a real-world airfield software

system. The end goal of this endeavour is to facilitate an end-to-end framework,

composed of distinct tools and pipelines, to automate the extraction of software

quality metrics from an airfield software system, analyze the historical metrics data

over time, and perform predictive analysis using machine-learning approaches.

Related works:

The Automated Metrics Acquisition Framework comprises a selection of distinct

tools, each of which is responsible for separate functionality. The technologies used

are summarized below.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 64 of 117

SonarQube Community Edition (open source) SonarQube source continuous

inspection platform for software source code [TE1]. SonarQube provides the

capability to perform automatic code reviews to detect bugs, code smells, and

security vulnerabilities in numerous programming languages [TE1]. SonarQube can

perform static code analysis and offers various metrics to help developers improve

the quality of their code [TE1]. In this framework, SonarQube is used for collecting

quality-related metrics from the project repository using static-analysis principles.

The metrics being collected are related to bugs, code smells, code vulnerabilities,

and security hotspots.

Azure Repos Azure Repos is a version control service provided by Microsoft Azure,

designed to help development teams manage and track changes to their source

code [2]. Azure Repos is integrated with other Azure DevOps services, providing a

comprehensive solution for the entire development life cycle [TE2]. The reason for

adopting the Azure DevOps tool suite is because the target software system utilizes

Azure's DevOps services, and the source code resides in an Azure Repos cloud

repository.

Azure VM Azure Virtual Machines (VMs) are on-demand, scalable computing

resources provided by Microsoft Azure [TE3]. These VMs run in the cloud and allow

users to deploy and manage virtualized Windows or Linux servers [TE3]. In the

context of this framework, an Azure VM is used for hosting a SonarQube instance

and executing data extraction and logging scripts.

Azure Pipelines Azure Pipelines is a cloud-based continuous integration and

continuous delivery (CI/CD) service provided by Microsoft Azure [TE4]. It enables

developers to automate the building, testing, and deployment of applications [TE4].

In this framework, it is used to facilitate the end-to-end process when triggered by

repository changes or a scheduled trigger.

Methodology:

This section introduces a comprehensive system model that serves as a conceptual

framework for understanding the solution being developed. This system model

visually represents the major components, relationships, and processes of the

system.

Figure 14: System Model

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 65 of 117

The system model comprises three principal components: the automated metrics

acquisition framework (AMAF), the data processing and logging pipeline (DPLP),

and the machine learning-enabled quality analysis framework (MLQAF). Each of

these components operates autonomously, exists in isolation, and engages in data

communication following a controlled flow delineated by the relationships shown in

Figure 1. The repository housing the source code of the target software serves as

the input of the system, with the system generating historical data logs and machine

learning predictions as its output artifacts.

Automated Metrics Acquisition Framework

The source code of the target software system resides within an external, cloud-

hosted repository, where the AMAF accesses this repository through secure tokens

employed for authentication and communication. The AMAF constitutes a set of

distinct and autonomous tools, as detailed in the subsequent sections. For the

system model, the AMAF is treated as a singular component from the scope of the

overarching system. The architecture supporting the Automated Metrics Acquisition

Framework can be seen on Figure 2.

Figure 15: AMAF Architecture

Data Processing and Logging Pipeline

The DPLP functions as an independent tool, comprising a collection of scripts

designed to process the raw data produced by the AMAF. This pipeline

systematically generates refined and organized metrics, culminating in historical

data intended for subsequent analysis. Alternatively, historical data logs can be

treated as standalone output artifacts.

Machine Learning-enabled Quality Analysis Framework

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 66 of 117

The MLQAF employs historical data logs as input and deploys machine learning

models to be designated and trained on a selected series of data. This automated

process features preconfigured parameters for the models, ensuring consistency in

both input and output dimensions. Currently, the MLQAF produces quality trends or

classification predictions as output artifacts. The MLQAF currently consists of four

predictive models and one generative model. The models used were as follows:

Predictive Models, Linear Regression, Logistic Regression, Decision Tree

Regression, Isolation Forest, Generative Adversarial Network (GAN). The 3

regression models are used making quality trend predictions based on historical

data, the isolation forest model is used to perform anomaly detection on API testing

results, and the generative adversarial network (GAN) is used for producing

significantly larger datasets to assess the long-term feasibility of the various

models.

Results:

The versatility of the Machine-learning-enabled Quality Analysis Framework

(MLQAF) opens avenues for diverse applications in software quality assurance.

This section explores a collection of sample use cases (UCs) that showcase the

adaptability and effectiveness of the MLQAF in addressing various challenges

within the software development lifecycle.

UC 1: Quality Trend Analysis

The MLQAF serves as a powerful tool for conducting in-depth quality trend analysis,

allowing developers to gain valuable insights into the evolution of software quality

metrics over time. By leveraging historical data, the MLQAF predicts future quality

trends, allowing teams to proactively address potential issues and optimize software

quality throughout the development cycle.

UC 2: Anomaly Detection on API Response Times

All methods of assessing the airfield software’s quality thus far have been focused

on static analysis techniques. Work is currently being done to extend the system to

also include run time performance metrics, the first selected being response times

made to API endpoints on the airfield software's back-end business logic.

Performing anomaly detection on the API response times consists of a two-step

process, performing the API tests themselves, and applying an anomaly detection

model on the logged data.

UC 3: Assessment of Model Feasibility

As mentioned previously, the notion of a generative adversarial network (GAN) was

applied in this system to assess the long-term feasibility of various prediction

models. This is done by substantially increasing the input data pool sizes for the

training of models substantially and observing the effects on prediction accuracy.

Found below are some sample results from a quality trend analysis performed using

a series of metrics collected from Team Eagle’s airfield software.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 67 of 117

Figure 16: Developer Effort to Resolve All Bugs (Logistic Regression n)

Figure 17: Sample Anomaly Detection Results (Isolation Forest)

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 68 of 117

Figure 18: Average Hotspot Vulnerabilities with Additional GAN-generated Data (Logistic Regression)

Summary:

The Automated Metrics Acquisition Framework, leveraging tools like SonarQube,

Azure Repos, and Pipelines, automates the extraction of software quality metrics

from the airfield software system. The Data Processing and Logging Pipeline

consists of intermediary procedures which process the data, visualizes metrics, and

facilitates quality trend analysis. The Machine Learning-enabled Quality Analysis

Framework utilizes various machine learning models, including linear regression,

logistic regression, decision tree regression, and isolation forest, to predict, classify,

and analyze quality trends. Additionally, a Generative Adversarial Network (GAN)

is employed to assess the long-term feasibility of predictive models by augmenting

input datasets. The sample results demonstrate the effectiveness of the system,

showcasing predictions made by different regression models and the impact of

increase input data pools using GAN-generated data. Anomaly detection has been

applied on API response times using the isolation forest model, providing insights

into deviations from expected behavior.

In conclusion, the solution in development offers a comprehensive approach to automate

SQA processes, enhance data-driven decision-making, and improve the overall quality of

software systems, such as Team Eagle Ltd.'s airfield software. Future work include s

refining models, experimenting with additional models, further incorporating run-time

metrics, and extending the system's capabilities to further advance automated

software quality assurance.

References:

[TE1] “Code quality tool & secure analysis with SonarQube,” Clean Code: Writing

Clear, Readable, Understandable & Reliable Quality Code,

https://www.sonarsource.com/products/sonarqube/.

[TE2] Vijayma, “Collaborate on code - Azure Repos,” learn.microsoft.com.

https://learn.microsoft.com/en-us/azure/devops/repos/get-started/what-is-

repos?view=azure-devops

https://www.sonarsource.com/products/sonarqube/
https://learn.microsoft.com/en-us/azure/devops/repos/get-started/what-is-repos?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/repos/get-started/what-is-repos?view=azure-devops

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 69 of 117

[TE3] Cynthn, “Overview of virtual machines in Azure - Azure Virtual Machines,”

learn.microsoft.com. https://learn.microsoft.com/en-us/azure/virtual-

machines/overview

[TE4] Juliakm, “What is Azure Pipelines? - Azure Pipelines,” learn.microsoft.com.

https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-

azure-pipelines?view=azure-devops

4.2.3. Automatic analysis of technical debts (Cape of Good Code, Vaadin)

Synopsis:

This section focuses on the DETANGLE Analysis Suite, a part of the broader

SmartDelta Quality Optimization and Recommendation Methodology. It offers

automated quality assurance tailored for incremental industrial software

development, focusing on the detection and management of different types of

technical debt.

DETANGLE computes Key Performance Indicators (KPIs) such as Maintenance

Effort, Feature Effort, Feature Effort Effectiveness to evaluate them as symptoms

of Technical Debt. Additionally, it provides architecture health factor metrics like

Feature Debt and Contributor Friction. It enables development teams to monitor

software quality trends, identify architectural hotspots (by correlating KPIs and

health factors), and prioritize refactoring efforts. By integrating data from code

repositories, issue trackers, testing and DevOps tools, DETANGLE provides a

comprehensive analysis of development activities, facilitating informed decisions on

cost-effective quality enhancements.

Within SmartDelta's framework, DETANGLE contributes to software quality trend

analysis and prediction by quantifying and visualizing the impact of technical debt

on modularity, maintainability, and extensibility. Its application to the Vaadin Flow

framework has demonstrated its effectiveness in identifying architectural

bottlenecks and guiding refactoring decisions, supporting long-term quality

improvement.

Related Work:

Technical debt management is a widely researched area in software engineering.

Existing tools, such as SonarQube, provide static code analysis to identify code

smells, duplication, and complexity [VD1]. While such tools effectively highlight

issues, they often lack the ability to predict trends or provide actionable

recommendations for addressing architectural and modular challenges.

In the context of the SmartDelta project, DETANGLE has been applied to analyze

software quality trends and identify architectural hotspots. Its ability to quantify and

visualize the impact of technical debt on modularity and maintainability extends

https://learn.microsoft.com/en-us/azure/virtual-machines/overview
https://learn.microsoft.com/en-us/azure/virtual-machines/overview
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 70 of 117

beyond traditional approaches, offering targeted recommendations for improving

code quality on architecture and design level. DETANGLE further integrates test

coverage and review activity data into its analysis, thus including process quality

into its comprehensive evaluation of the interplay between the symptoms and root

causes of technical debt [VD2].

During its evaluation on the Vaadin Flow framework, DETANGLE identified critical

areas requiring refactoring and offered actionable insights to guide design

improvements. By addressing gaps in traditional analysis tools, DETANGLE has

proven effective in supporting long-term quality improvements and fostering

informed decision-making in incremental industrial software development [VD3].

Methodology:

The DETANGLE Analysis Suite employs a comprehensive, data-driven

methodology to analyze technical debt, architecture health, and team collaboration

in software systems. Its approach integrates various data sources and computes a

wide range of metrics, providing actionable insights into software quality and

maintainability.

• Data Integration

o DETANGLE gathers data from development tools to capture a

comprehensive view of code changes, issue resolutions, and testing

activities. Examples include repositories for tracking modifications, issue

tracking systems for development activities, and optional inputs like code

quality or testing frameworks for detailed insights. This integration

ensures a holistic understanding of both technical and collaborative

aspects of software projects.

• Technical Debt KPIs and Health Factor Metrics

o DETANGLE calculates metrics across multiple categories to provide an

overall view of software quality:

▪ Effort KPIs: Maintenance Effort %, Primary Effort %, Primary

Effort Effectiveness, and Maintenance Effort Ineffectiveness.

▪ Architecture Health: Metrics such as the Feature Debt Index

(Primary/Feature Debt Index), Contributor Friction Index, Defect

Density, and Defect Impact assess modularity, maintainability,

and extensibility.

▪ Code Health: Derived from tools like SonarQube, these include

complexity, duplicated lines, maintainability, reliability, and

security findings.

▪ Technical Debt Effort Prediction: Provides estimates for

addressing code- (integrating the prediction from tools like

SonarQube) and architecture-related debt.

• Team Collaboration Metrics

o DETANGLE evaluates team health and collaboration through:

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 71 of 117

▪ Team KPIs: Metrics like Team Fluctuation/Turnover and Team

Effectiveness assess productivity and knowledge retention.

▪ Team Health Factors: Bus Factor Knowledge Islands, Knowledge

Balances, Coordination, and Healthiness highlight areas for team

improvement and risk mitigation.

• Visualization

o DETANGLE generates detailed visualizations, including:

▪ Network Graphs: Show dependencies and coupling at feature and

contributor levels.

▪ Architecture Dashboards: Provide insights into modularity

challenges and architectural health.

▪ Collaboration Visuals: Help teams identify risks in knowledge

sharing and collaboration. These tools enable root cause analysis

and help prioritize targeted refactoring and team interventions.

• Cost/Benefit Analysis

o DETANGLE predicts the effort required to remediate technical debt and

measures the potential benefits (like reduced maintenance effort or

higher feature effort effectiveness), enabling cost/benefit analyses for

informed decision-making. This allows teams to balance short-term fixes

against sustainable long-term improvements.

• Trend Analysis

o DETANGLE tracks changes in metrics over time to identify trends in

software quality and team collaboration. This historical perspective helps

teams proactively manage technical debt and maintain consistent

software health.

Results:

The DETANGLE Analysis Suite was applied to the Vaadin Flow framework to

identify technical debt hotspots and provide actionable recommendations for legacy

code refactoring. Key findings are outlined below:

• Architectural Hotspots

o DETANGLE identified specific areas in the flow-server/frontend module

with elevated Feature Debt Index values, highlighting strong feature

coupling and low cohesion. These hotspots were prioritized for

refactoring to improve modularity and reduce unintended side effects

during new feature development.

o Metrics such as Defect Density and Defect Impact pinpointed files and

folders most susceptible to recurring bugs and follow-up issues,

emphasizing the need for architectural improvements.

• Refactoring Recommendations

o Using network graphs and modularity analysis, DETANGLE provided

detailed insights into problematic areas of the codebase.

Recommendations included:

▪ Splitting complex source files to improve cohesion.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 72 of 117

▪ Extracting and reorganizing code into new, more modular

components.

▪ Addressing feature and contributor coupling to enhance

architectural extensibility.

o These recommendations enabled the Vaadin team to focus their efforts

on refactoring high-impact areas of legacy code.

• Visualizations and Root Cause Analysis

o DETANGLE’s architecture dashboards and network graphs facilitated a

clear understanding of feature and contributor dependencies. These

visualizations were useful in identifying the root causes of technical debt

and planning refactoring strategies.

• Impact on Legacy Code Refactoring

o DETANGLE supported the Vaadin team in identifying and addressing

technical debt in legacy modules, ensuring that the codebase became

more modular and maintainable. By focusing on architectural hotspots,

the team reduced risks associated with feature development and

maintenance in the refactored areas.

Summary:

The DETANGLE Analysis Suite has proven its value as a tool for identifying and

managing technical debt, specifically in the context of legacy code refactoring. Its

application to the Vaadin Flow framework, as part of the SmartDelta Quality

Optimization and Recommendation Methodology, provided actionable insights into

architectural hotspots and guided effective refactoring efforts.

Key outcomes include:

• Identification of Architectural Hotspots: DETANGLE pinpointed modules with

high Feature Debt Index values and elevated defect density, helping the Vaadin

team focus on critical areas for legacy code refactoring.

• Targeted Refactoring Recommendations: The tool delivered recommendations,

such as modularizing tightly coupled code, splitting complex, low-cohesion files

to improve code maintainability and extensibility.

• Enhanced Decision-Making: DETANGLE’s visualizations, including network

graphs and architecture dashboards, enabled the team to conduct root cause

analysis and prioritize high-impact improvements.

DETANGLE’s structured methodology, combining effort-based KPIs, architectural

health metrics, and actionable recommendations, ensured that the Vaadin team

could address legacy code challenges effectively. By focusing on technical debt

hotspots, the tool supported incremental improvements in modularity and

maintainability, aligning with the broader goals of SmartDelta.

Through its integration into the project, DETANGLE has demonstrated its ability to

drive meaningful improvements in software quality, particularly in complex, legacy

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 73 of 117

codebases. This positions it as a critical tool for managing technical debt in industrial

software systems.

Reference:

[VD1] “Code quality tool & secure analysis with SonarQube,” Clean Code: Writing

Clear, Readable, Understandable & Reliable Quality Code,

https://www.sonarsource.com/products/sonarqube/

[VD2] “Technical debt - why the term causes more confusion than clarity and how

to do it better!”

https://capeofgoodcode.com/hubfs/Downloads/Technische%20Schulden/CoGC_W

hitepaper_Tech_Debt_Analysis_with_DETANGLE%C2%AE.pdf

[VD3] “The Vaadin Flow Web Framework - On the Highway to a New Quality Level”,

https://capeofgoodcode.com/en/knowledge/architecture-quality-trends-vaadin-

flow-webframework

4.2.4. Automatic code analysis for historical code analysis and quality assessment

(University of Innsbruck and cc.com)

Synopsis:

One of the widely used code analysis tools is SonarQube. However, SonarQube

has some limitations in historical code analysis:

1. SonarQube and possible plugins update over time so that the quality

measurement approaches could change. That means, for your analysis, if you

update SonarQube or plugins, the comparability of your code artifacts suffers.

2. Consider whether you take over a system or have a long-term project that

expects a SonarQube integration. How can you analyze the history of the related

project? SonarQube focuses on the integration of "current" commits.

3. Maybe you only want to regard a specific time range of commits, analysis

commits of (a) specific person(s) or a particular branch.

4. Additionally, we identified that it would be advantageous to evaluate the quality

of other projects to establish a comparative benchmark. This approach allows

for a more objective assessment by providing context and reference points,

helping to identify relative strengths and areas for improvement in an evaluated

project.

A tool named SoHist was developed to overcome these limitations and enhance

functionalities for historical analysis. Consequently, points 1. – 3. were addressed

in WP3, while point 4. in SoHist v2 was the primary focus of WP4, which is

addressed further here.

https://www.sonarsource.com/products/sonarqube/
https://capeofgoodcode.com/hubfs/Downloads/Technische%20Schulden/CoGC_Whitepaper_Tech_Debt_Analysis_with_DETANGLE%C2%AE.pdf
https://capeofgoodcode.com/hubfs/Downloads/Technische%20Schulden/CoGC_Whitepaper_Tech_Debt_Analysis_with_DETANGLE%C2%AE.pdf
https://capeofgoodcode.com/en/knowledge/architecture-quality-trends-vaadin-flow-webframework
https://capeofgoodcode.com/en/knowledge/architecture-quality-trends-vaadin-flow-webframework

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 74 of 117

Methodology:

Therefore, we conducted Exploratory Data Analysis (EDA). We followed the data

analysis steps outlined by Tufféry [cc1] and adhered to the data analysis guidelines

from the Empirical Standards for Software Engineering [cc2] to ensure rigorous

practices. The overall process is displayed in the above figure.

Figure 19: Code Analysis Methodology

For the data mining done in June 2024, we selected SonarCloud, due to its open

structure and popularity. SonarCloud provides several metrics on code quality for

individual commits on the main branch. In total, 44 960 projects with more than 1000

Lines of Code (LOC) were publicly available. Additionally, we utilized GitHub to

obtain relevant information that was not available on SonarCloud. Consequently,

only SonarCloud projects that were on GitHub, identified using the difflib6 library,

were included in the analysis. All other projects were excluded.

Based on the data mining, we have selected 28 574 distinct projects, which

consisted of a range of metrics. Table 13 describes selected metrics and provides

descriptions relevant to the rest of the paper. In the table, some software quality

metrics include a highlighted [R] to denote that we also use their densities,

calculated by dividing the metric by the project’s LOC. This adjustment allows for a

more effective comparison of projects independent of their size. Otherwise, we have

observed a significant impact of LOC on other metrics, consistent with findings from

previous studies [cc3, cc4].

Table 13: Bug and Code Smell Descriptions

 Name Description [C=Count,% =Percentage,B=Boolean]

V
io

la
ti
o
n
s

Bug [R] A concert coding mistake that can lead to an
erroror
unexpected behavior at runtime [C].

Code Smell [R] Refers to any issue that makes code confusing and
hard maintain. They do not necessarily lead to errors
[C].

Vulnerability [R] A weakness that can be exploited to compromise
security [C].

C
o
m

p
le

x
.

Cyclomatic Complexity
[R]

Counts independent paths through the code,
indicating testing complexity [%].

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 75 of 117

Cognitive Complexity
[R]

A qualification of how difficult it is to understand
code
(SonarQube developed metric)[%].

T
e

s
t
C

o
v
.

Line Coverage Indicates the percentage of lines of code that have
been executed during testing [%].

Branch Coverage Measures the percentage of branches or decision
points in the code that have been executed during
testing.

Coverage SonarQube´s own test coverage [%].

D
u
p
.

Duplicated Lines [R] Number of lines of code that have an identical code line
[C].

Duplicated Blocks [R] Number of blocks of code that have identical code lines
[C].

P
ro

je
c
t

Lines of Code (LOC) Count of lines of programming code in all files [C].

Languages Project´s programming languages and theirLOC [Array
of Language with LOC].

Committers Total number of contributors via commits [C].

Commits Total count of individual changes made on a repository
[C].

Repository Stars Reflects the popularity (user likes) by the community
[C].

Is not Forked Outlines if have project emerged from another one [B].

Nevertheless, the 28 574 projects may present limitations concerning the overall

validity of the assumptions made. Consequently, we established a series of

Inclusion Criteria to filter and select projects based on defined relevance and

quality standards, outlined in the following Table 14.

Table 14: Counts of Issues Across Different Software Projects

No
.

Criteria and Description #Proj.

I1 At least 1000 LOC. 44 960

I2 Publicly available on GitHub. 28 574

I3 Is not forked from another project. 22 104

I4 More than 100 GitHub commits. 10 893

I5 More than 4 GitHub committers. 7 154

I6 More than 10 GitHub repository stars. 2 844

I7 At least 10 complete SonarCloud analyses. 2 007

For the data analysis of research objectives, we utilized Jupyter Notebook along

with Pandas for data manipulation, Seaborn and Matplotlib for visualization, and

Scipy and Statsmodel for statistical tests and analyses. After aggregating and

cleaning the data, we examined each metric, following Tufféry [cc1]. We analyzed

the distribution of the data and tested for normality and skewness using Q-Q plots

as well as D’Agostino and Pearson’s normality test (univariant analysis). Our

findings indicate that each quality metric is not normally distributed. Given this

nonnormality, we employed non-parametric approaches. To address the second

research objective (bivariant analysis), we selected Spearman rank correlation

to calculate the correlation between two metrics, such as Cyclomatic Complexity

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 76 of 117

Density and Bug Density. By comparing these attributes and calculating a score

within the range of -1 to +1, we aimed to gain insights into their relationship of

different software quality metrics. This correlation approach remains robust even

when dealing with skewed variables or extreme values.

Results:

Distribution Analysis of Software Quality Metrics

On the first chart of Fig. 20, we show the distribution of the three Test Coverage

metrics. Each of these has a median coverage of at least 65%. If we consider

80% of the projects with the highest Line Coverage, we have at least 52.5%.

Regarding Complexity, we distinguish between Cyclomatic Complexity and

Cognitive Complexity. In an initial attempt at chart visualization, considering only

the latest analysis, we observed a peak at zero for Cognitive Complexity Density.

This anomaly can be attributed to a known defect in SonarSource, as

documented in the issue report7. Consequently, for projects containing

JavaScript and TypeScript code, we used only the most recent analysis

conducted before the release of SonarCloud version 10. Additional ly, it can be

observed that Cognitive Complexity Density is shifted to the left relative to Cyclic

Complexity Density.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 77 of 117

Figure 20: Distribution Analysis of Software Quality Metrics

We also examined the distribution of Violations: Bugs, Code Smells, and

Vulnerabilities. For every 1000 LOC, Code Smells are the most prevalent, occur-

ring at a rate of 16 per 1000. This could be explained by the fact that most Sonar

Rules pertain to Code Smells, and the urgency of addressing them is relatively

low. In contrast, Bugs and Vulnerabilities are less common. To be precise, 81%

of projects report zero Vulnerabilities, and 45% of projects show no Bugs in their

most recent analysis.

Next, we closely examined the Duplication densities at both the line and block

levels. The distributions appear to be almost identical in shape. On average, a

Duplicated Block contains 22 LOC.

Lastly, we looked at the Comment Line density. On average, the median shows

that 120 lines of comments are used to document every 1000 LOC.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 78 of 117

Objective 2: Correlation among Software Quality Metrics

Figure 21: Correlation among Software Quality Metrics

Based on the results of Spearman’s correlation analysis of the software quality

metrics, specific p-values exceed the p > 0.05 threshold and are highlighted with a red

box in the correlation matrix of Fig. 21. Notably, Cyclomatic Complexity and

Comment Lines Density frequently exhibit non-significant correlations. All other

metrics have p-values below 0.05, permitting further exploration of their

correlations using other annotation boxes.

First, for Test Coverage, we consider Line Coverage, Branch Coverage, and

Coverage. The correlation between these coverage metrics and issue metrics (Bugs,

Vulnerabilities, Code Smells Density) is negatively weak. Also, the coefficients for

duplication densities per line and block fall within the range of -0.19 < ρ < -0.40,

indicating a weak negative correlation.

Additionally, we observe that (Cognitive) Complexity has a weak positive

correlation with metrics: Violations, Comment Lines, and Code Duplication.

Additionally, there is a moderate positive correlation with Code Smells. This is

obvious because a Sonar Rule flags high complexity as a Code Smell within the

code. As already outlined, Cyclic Complexity often has p > 0.05; however, if not, it

has a similar correlation behavior as Cognitive Complexity.

Similarly, within the green box, the Duplicated Code shows a nearly moderate

correlation to code smells for the same reason. In contrast, Bugs and

Vulnerabilities exhibit only a very weak correlation with Duplicated Code.

Considering the correlations within the Categories of Metrics shown in Fig. 3,

we observe the following:

• Test Coverage ↔ Coverage ↔ Line Coverage: Strong

• Duplicated Blocks Density ↔ Duplicated Lines Density: Strong

• Cyclomatic Complexity Density ↔ Cognitive Complexity Density:

• Moderate

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 79 of 117

• Bug Density ↔ Code Smells Density ↔ Vulnerability Density: Weak

 Summary and Usage for SoHist v2:

With this data, users can benchmark their project's quality metrics against a large set of

comparable projects, considering various programming languages and selected quality

criteria. A chart visualizes the distribution of these metrics across other projects, yielding

insights into metrics like Test Coverage, Code Smell Density, and more. An example of Code

Complexity is given in Fig. 22.

Figure 22: Usage for SoHist v2

References

[CC1] S. Tuffery, Data Mining and Statistics for Decision Making. Wiley Series in

Computational Statistics, Chichester, West Sussex ; Hoboken, NJ: Wiley, 2011.

[CC2] P. Ralph, N. bin Ali, S. Baltes, D. Bianculli, J. Diaz, Y. Dittrich, N. Ernst, M.

Felderer, R. Feldt, A. Filieri, B. B. N. de França, C. A. Furia, G. Gay, N. Gold, D.

Graziotin, P. He, R. Hoda, and S. Vegas, “Empirical Standards for Software

Engineering Research,” 2020.

[CC3] Y. Gil and G. Lalouche, “On the correlation between size and metric validity,”

Empirical Software Engineering, vol. 22, pp. 2585–2611, Oct. 2017.10. M. A. A.

Mamun, C. Berger, and J. Hansson, “Correlations of software code metrics:

[CC4] An empirical study,” in Proceedings of the 27th International Workshop on

Software Measurement and 12th International Conference on Software Process and

Product Measurement, (Gothenburg Sweden), pp. 255–266, ACM, Oct. 2017.

[CC5] M. M. Mukaka, “Statistics corner: A guide to appropriate use of correlation

coefficient in medical research,” Malawi Medical Journal, vol. 24, pp. 69–71, Sept.

2012.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 80 of 117

4.2.5. Analyze software quality trends based on issues and schedule the issues to

find the balance between focussing on improving quality versus adding new

features (FOKUS)

Synopsis:

This section describes the methods and tools for assessing the health of a software

product under continuous development by looking manly at the upcoming issues

and the reactions these provoke. Machine learning is used both for adding useful

information to individual issues (e.g. classification, criticality, related code) as well

as for time series analysis manly about changing frequencies eventually allowing to

predict expected issue volumes for the future. Especially the development of the

response time to issues is a good indicator for the overall health of a software

system. The scheduling of issues should try to keep the response time in a

reasonable corridor – i.e. postpend adding new features if fixing bugs tends to take

longer and longer already.

Related works:

Our tool for unifying an enriching the issues is closely related to "CatIss: An

Intelligent Tool for Categorizing Issues Reports using Transformers" [FOKUS1].

CatIss is a tool for categorizing GitHub issue reports using transformer-based

models. By leveraging RoBERTa, a transformer known for its strong performance

in NLP tasks, CatIss effectively automates the classification of issues into

categories like bug, enhancement, and support. This work establishes a significant

step forward in issue classification, as previous approaches relied primarily on

traditional machine learning models, which often struggled to capture the contextual

nuances in unstructured text. The model fine-tuning in CatIss adapts the

transformer to domain-specific data, enhancing classification accuracy. The paper

[FOKUS 1] provides a framework and model upon which our tool builds, with

adaptations and extensions to improve functionality and applicability for specific

repositories. Our work extends CatIss specifically by integrating an updated data

processing pipeline, fine-tuning strategies, and configurable label management,

allowing our tool to better serve the needs of ongoing software development

projects.

For identifying and filtering out duplicate issues with machine learning there is a

long research tradition. In [FOKUS 2] dating back to 2017 for instance, using

Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM)

already resulted in high accuracy. More recently, for instance in [FOKUS 3] an

approach for unsupervised learning is proposed.

Decision trees are used in [FOKUS 4] to assess the severity and priority of new

bugs and the approach allows detecting and forecasting faults.

Methodology:

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 81 of 117

Our method for an intelligent and software “health” oriented issue management

consists of three major steps:

1. unifying, enriching and filtering the issue data

2. analyze the issue trends

3. make assumptions about the expected soon incoming issues and schedule the

actual new issues with the goal to keep the average response time within certain

limits

The first step is required since issues created by human beings will most likely not

all have a comparable amount of amount, structure and quality of information. Even

with predefined input forms and input assistant systems some fields will not be

proper filled for many issues. Potential causes are that issuers do not have the

required knowledge to provide the data they are asked for or that they are do not

care, assuming that the textual description will be enough. Fortunately, with the help

of machine learning and particularly with natural language processing, it becomes

doable to automatically generate missing data. Within the SmartDelta project, such

methods and tools for classifying different kinds of issues, for assessing their

criticality and for identifying related code artefacts are developed. Identifying and

filtering out potential duplicate issues is also crucial for any quantitative issue trend

analysis. Applying methods and tools such es those developed in the SmartDelta

project to get rid of duplicates concludes the first step.

For the actual issue trend analysis (step two), we focus on the available response

times to already closed issues. There are at least five different time values between

which the timespans are worth considering: The time when the issue is created, the

time when the issue is assigned to someone who can eventually solve the issue,

the time of the first response to the issuer, the time when the discussion of the issue

in order to understand it ends and then the time when the issue is completed either

by providing a solution or by concluding that no change is going to happen for that

issue. Of course, not all issues have a discussion before solving them starts.

However, if there is a discussion, then the timespan for that discussion is eventually

not entirely a developer response time since it might include waiting for some

clarification by the issuer to communicate what he really wants. Those waiting times

must be subtracted. And dividing the discussion time by the number of clarification

cycles yields the average discussion response time. The timespan for implementing

a solution also needs to be corrected based on the amount of work required to make

the solution. Dividing the implementation time by the number of lines of code altered

already gives a simple correction, but more sophisticated approaches are

applicable, too. The development of the average response timespan values for fine

grained groups of issues – especially for issues of the same kind and criticality –

reflects the overall software quality trend because it is exactly what the customers

experience. In contrast to just looking at the development of the total number of

open issues for instance, our method considers eventually changing capacities for

managing the issues. If a software system massively grows and therefore more and

more people are working on it, for instance, then an increasing number of open

issues is expected and not necessarily a sign for a quality decline since there are

also more developers dealing with the issues. The response timespans do reflect

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 82 of 117

altering capacities and capabilities – as long as the timespan lengths do not get out

of control, it is fine for the customers.

Visualizing software quality trends graphically using the development of issue

response timestamps might already be valuable, but there is more that can be done

to support the strategic issue and more general software development

management. In step three we try to predict how many issues of a certain kind and

criticality are expected in the near future and how that will most likely affect the

average lengths response timespans. The idea is to early recognize potential

upcoming overloads before the customer support actually suffers from worse

feedback and painfully slow fixes for their issues. If response times tend to increase

too much or if higher issue frequencies are prognosed, the management is advised

to consider focussing on improving the quality of the software with the already

implemented features instead of increasing the complexity by adding additional

stuff.

Results:

For unifying and enriching issues, we developed an issue classification tool using

RoBERTa, a transformer known for its strong performance in NLP tasks. The tool

provides a sophisticated data processing pipeline, fine-tuning strategies, and

configurable label management. Here are some results for the two GitHub

repositories vaadin/flow and grafana/grafana:

Figure 23: Results for grafana/grafana without fine-tuning

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 83 of 117

Figure 24: Results for grafana/grafana with fine-tuning

Figure 25: 3 Results for vaadin/flow without fine-tuning

Figure 26: Results for vaadin/flow with fine-tuning

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 84 of 117

Our tool for visualizing the development of the average response times (step two)

takes advantage of the enriched issue data by using it for focussing on comparable

issues.

Figure 27: Commit Frequency, Average Commit Size and Bug Issue Count Over Time for the vaadin/flow

repository with a log scale for average commit size

Time series prediction for the expected upcoming issues is notoriously difficult. First

of all, it requires a large number of issues over a long period of time for learning.

Additionally, for good results it will probably be necessary to take changes of the

code base and in the developer community into account. We are still trying to figure

out how to make accurate forecasts and the work will be continued beyond the

SmartDelta project. Nonetheless, our response time analysis of only the real

existing issues can already give sound guidance for prioritizing bug fixes over

feature requests and thereby help to improve the scheduling of issues.

Summary:

With our approach, just by carefully analysing the responses to issues it is possible

to show software quality trends in a continuous development process. Furthermore,

it is possible to guide the issue scheduling so that the average response times will

stay within acceptable limits by recommending when it is appropriate to add new

features and when it is better to focus on improving the quality of the already

implemented stuff.

Reference:

[FOKUS1] M. Izadi, “CatIss: an intelligent tool for categorizing issues reports using

transformers,” in Proceedings of the 1st International Workshop on Natural

Language-based Software Engineering, Pittsburgh Pennsylvania: ACM, May 2022,

pp. 44–47. doi: 10.1145/3528588.3528662.

[FOKUS2] J. Deshmukh, K. M. Annervaz, S. Podder, S. Sengupta and N. Dubash,

"Towards Accurate Duplicate Bug Retrieval Using Deep Learning Techniques,"

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 85 of 117

2017 IEEE International Conference on Software Maintenance and Evolution

(ICSME), Shanghai, China, 2017, pp. 115-124, doi: 10.1109/ICSME.2017.69

[FOKUS3] H. Wang, Z. Gao, C. Wang and G. Sun, "Unsupervised Learning

Exploration for Duplicate Bug Report Detection," 2023 IEEE 11th International

Conference on Information, Communication and Networks (ICICN) , Xi'an, China,

2023, pp. 851-857, doi: 10.1109/ICICN59530.2023.10392320

[FOKUS4] Tran, H.M., Le, S.T., Nguyen, S.V. et al. An Analysis of Software Bug

Reports Using Machine Learning Techniques. SN COMPUT. SCI. 1, 4 (2020).

https://doi.org/10.1007/s42979-019-0004-1

4.3. ML-Based Similarity Analysis Approaches and Recommendations

4.3.1. Similarity analysis of State Machines using hierarchical modularization (TWT,

Akkodis)

Synopsis:

A State Machine (SM) is a behaviour model of a system. It consists of a finite number

of states and transitions and is also called Finite-State Machine (FSM). Starting from

specific state and a given input, the machine performs transitions resulting in outputs

[TWT1]. In our case, we are considering state machines that are following defined ISO

standards (like the ISO 15118-20).

A comparison between states machines is necessary, for example to track the evolution

over time of specific requirements of norms or to recognise possible reuse

opportunities. Manually analysing State Machines is a time-consuming task, especially

comparing one State Machine against numerous others is hence hardly possible. GSR

as a tool streamlines this process, particularly when the State Machines adhere to

specific logic, such as transitions defined by ISO standards. By leveraging background

knowledge, our tool saves time and enhances the quality of the analysis. This makes it

possible to compare a state machine to numerous other State Machines from a large

database to find and recommend similar or comparable State machines.

Related works:

The idea of model checking as an automatic verification technique has already been

around since the early 80’s with Clarke’s and Emerson’s work [TWT 2]. Model checking

serves as a powerful method for evaluating a finite state system's description in relation

to its formal specification, systematically identifying potential errors [TWT 3].

There are different methods to compare two models. One that gained a lot of traction

due to its high flexibility is the Graph Edit Distance (GED) method. GED is a method

that measures the similarity between two graphs based on the amount of distortion

required to convert a graph into another one. This method enables a selection process

for the cost model within a specific application of graph edit distance. Additionally, the

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 86 of 117

precise calculation of graph edit distance may utilize various algorithms, such as a tree

search algorithm [TWT 4].

Methodology:

Given a state machine as input, the tool searches for the most similar State machine

in each database. It is assumed that the states of all state machines are the parts

of a fixed ISO norm. The methodology consists of the following steps:

1. Hierarchical labelling of the state space: The parts of the ISO norm are labelled

hierarchically based on their contents. This grouping of states is also called

modularization. Different layers can be defined here for a more precise partitioning

of the State Machine. This step must be done only once.

2. Comparison of State Machines: Iteratively, the tool compares the input state

machine to every state machine in the database:

a. Hierarchical Modularization: Based on the labelling of the ISO norm, the

state machines are decomposed in hierarchical modules. Through this step,

a comparison on module level is possible. Such a comparison enables a

more industry driven similarity analysis for the whole State Machine, as

changes on specific parts can be focused on.

b. Identification of matching modules: Based on the hierarchical

modularization, the corresponding modules of the two state machines are

matched throughout the layers.

c. Comparison of modules: Starting with the modules in the lowest layer, the

modules of the state machines are compared using the graph edit distance

and the states of the modules are mapped. After a module has been

compared, all the states and transitions that are part of it are collapsed into

one state. This process is repeated till all the modules have been compared.

d. Determination of the Similarity: Recursively, the similarity values of all

modules are determined via graph edit distance. The similarity values

depend on the type of deviations between the state machines. 6 types are

covered: Addition/Removal of an edge, Addition/Removal of a state,

Relabelling of a state or edge. Each type has a different weight of influence

on the similarity analysis that can be customized.

e. Determination of the Deltas: Using the state mappings between the

corresponding modules, the nodes of the state machines are mapped as

well as the transitions. This results in a mapping, also called “delta paths”,

describing the differences between the two state machines.

f. Data storage: The output of the analysis, also called the delta paths, is then

stored in a JSON format. The output contains the definition of the State

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 87 of 117

Machines, the modularization, the similarity values for each module and the

delta paths.

Results:

When analysing such tools in an industry context there are two main parameters that

we focus on: process speed-up and accuracy.

Speed-up:

Time saving is a major focus point for industries. Manually comparing two state

machines is a time-consuming process that can take between minutes and hours,

depending on the complexity of the state machines. The required time rises

exponentially with the complexity.

The GRS tool is able to compare states machines in the range of seconds depending

on their complexity.

Figure 28: Evolution of comparison time depending on the state machine size

As shown in the graph above, a comparison between “small” (less than 10 states)

 state machines take 1.43 seconds. For “medium” (less than 20 states) state

 machines, the comparison takes 1.85 seconds. For “large” (above 20 states) state

 machines, the time goes up to 5.51 seconds. This shows a significant speed-up

 compared to a manual comparison.

With this, a comparison on a whole database can be performed in a few hours instead

of multiple days if done manually, depending on the size of the database.

Accuracy:

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 88 of 117

To measure the capacity of the tool to find all the differences between two State

Machines, we performed a test in which we tracked the reliability of the generated delta

paths during the analysis.

For this we took a base state machine, that we will call “base_example”, and randomly

generated 5 sets of 10.000 variations of the state machine. The number and type of

modifications is randomly chosen for each variation. For the number of modifications,

it is defined between 0 and 3 and for the types it chooses between all the 6 types of

modifications mentioned in the methodology section above. The “base_example” taken

here is a state machine containing 18 states and 53 transitions and can be classified

as having a medium complexity.

In the first step the 10.000 variations are compared with the “base_example” and the

delta paths are computed. For every variation, the computed delta path is applied to

the “base_example” and it is checked if the resulting state machine is identical to the

tested variation.

The below shows the success rate of going from one state machine to the other based

on the computed delta paths.

Table 15: Success rate of finding the correct delta paths

Set Set 1 Set 2 Set 3 Set 4 Set 5

Success rate [%] 91,04 91,46 91,22 91,20 91,31

In each set a success rate of above 90% was achieved.

Summary:

The GSR tool enables a fast and efficient comparison of a state machine against

numerous other State Machines from a large database, a task that would otherwise be

impractical and highly labour-intensive when done manually. Additionally, it allows for

focused comparisons on specific regions or functionalities. This is done by partitioning

the State machines into modules based on the clustering and comparing those modules

via graph edit distance. Based on the module similarities, a similarity of the state

machines is computed. Moreover, deltas between the State machines are determined

and returned on demand.

Initial tests indicate that the differences between the state machines are accurately

detected and changes in state machines are allocated in correct regions of the state

machines. However, the detailed evaluation is still pending.

References:

[TWT1] 27 March 2024 at the Wayback Machine, Wright, D. R. (2005), Finite State

Machines, NC State University,

https://web.archive.org/web/20140327131120/http:/www4.ncsu.edu/~drwrigh3/docs/c

ourses/csc216/fsm-notes.pdf

[TWT2] Clarke, Edmund M., and E. Allen Emerson. "Design and synthesis of

synchronization skeletons using branching time temporal logic." Workshop on logic of

programs. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981.

https://web.archive.org/web/20140327131120/http:/www4.ncsu.edu/~drwrigh3/docs/courses/csc216/fsm-notes.pdf
https://web.archive.org/web/20140327131120/http:/www4.ncsu.edu/~drwrigh3/docs/courses/csc216/fsm-notes.pdf

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 89 of 117

[TWT3] Clarke, Edmund & Grumberg, Orna & Peled, Doron. (2001). Model Checking.

[TWT4] Riesen, K. (2015). Graph Edit Distance. In: Structural Pattern Recognition with

Graph Edit Distance. Advances in Computer Vision and Pattern Recognition. Springer,

Cham. https://doi.org/10.1007/978-3-319-27252-8_2

4.3.2. Graph based similarity analysis and recommendations (TWT, Software AG,

Vaadin)

Synopsis:

The rapid digitalization has led to increasingly complex software systems. Managing

this complexity poses significant challenges for developers, particularly in tasks

such as maintenance, code reuse across different projects, and adherence to

regulatory requirements. To address these challenges and accelerate software

development cycles, a novel tool called Code Similarity Investigator (CSI) has been

developed. CSI utilizes graph-based code similarity analysis to automate code

reuse suggestions, streamline API replacements, enhance code refactoring

processes, and prioritize test cases, thereby reducing the time developers spend

on repetitive and mundane tasks.

Related works:

Efficiently handling large and complex codebases has been a longstanding

challenge in software engineering. Traditional methods for detecting code

similarities often rely on clone detection techniques, which compare code based on

syntactic patterns. Tools like CCFinder [AG1] and JPlag [AG2] have been used for

plagiarism detection and clone analysis by identifying exact or near-exact code

duplicates. However, these methods are typically limited to specific programming

languages and may not effectively capture semantic similarities.

Recent research has shifted towards semantic code analysis using graph-based

representations. Code Property Graphs (CPGs) have emerged as a powerful tool,

combining Abstract Syntax Trees (ASTs), Control Flow Graphs (CFGs), and

Program Dependency Graphs (PDGs) into a unified model. This rich representation

enables more nuanced analysis of code semantics. Studies like Suneja et al. [AG3]

have leveraged CPGs for vulnerability detection by identifying patterns in code

graphs.

Machine learning approaches, including Graph Neural Networks (GNNs), have also

been explored to learn embeddings of code graphs for similarity detection. Works

such as DeepSim [AG4] encode control and data flow into high-dimensional feature

vectors to measure functional code similarity. However, these methods often face

challenges related to computational complexity and the availability of large,

annotated datasets for training.

Methodology:

https://doi.org/10.1007/978-3-319-27252-8_2

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 90 of 117

CSI focuses on leveraging graph-based models to identify code similarities within

large codebases. The methodology comprises several key steps:

1. Code Representation Using Code Property Graphs (CPGs): Source code is

transformed into CPGs using tools like Joern. CPGs integrate syntactic and

semantic information by combining ASTs, CFGs, and PDGs, providing a

comprehensive representation of the code structure and behaviour.

2. Subgraph Extraction: Relevant subgraphs are extracted from the full CPGs to

focus on specific code sections, such as methods or classes. Selecting

appropriate subgraphs is crucial to balance detail and computational efficiency.

Subgraphs that are too large may introduce unnecessary complexity and hinder

performance, while overly small subgraphs may lack sufficient context.

3. Graph Similarity Measurement with Graph Edit Distance (GED): The core of the

similarity analysis relies on computing the GED between code subgraphs. GED

measures the minimal number of edit operations required to transform one

graph into another, where edit operations include adding, deleting, or

substituting nodes and edges [AG5]. By quantifying these differences, GED

provides a customizable way to assess the similarity between code sections

through application specific costs for each operation.

4. Due to the NP-hard nature of exact GED computation, approximate algorithms

are employed to make the process tractable for large graphs. These

approximations aim to balance accuracy and computational efficiency, allowing

the methodology to scale to real-world codebases.

5. Similarity Classification: Based on close collaboration with Software AG and

Vaadin, the Code Similarity Investigator (CSI) labels the similarity into four

classes:

• None: No similarity detected.

• Low: Minor similarities that may not warrant action.

• Medium: Moderate similarities suggesting potential for code reuse or

refactoring.

• High: Significant similarities indicating strong candidates for code reuse,

refactoring, or applying similar fixes.

Results:

Preliminary tests of the Code Similarity Investigator (CSI) were conducted using

data provided by Vaadin, based on their open-source web application development

platform. A total of 29 code pairs were evaluated to compare the automated

similarity assessments generated by CSI with manual assessments conducted by

developers at Vaadin.

The similarity levels were categorized into four classes: None, Low, Medium, and

High. Each code pair received an assessment from both the automated tool and the

manual evaluation.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 91 of 117

To quantify the agreement between the two assessments, we calculated the

difference between the two similarity assessments based on the following mapping:

None = 1, Low = 2, Medium = 3, High = 4. This indicates how closely the tool

matches human judgment.

The results are summarized as follows:

• Exact Match (Difference of 0): 18 out of 29 code pairs (62%)

• Close Agreement (Difference of 1): 9 out of 29 code pairs (31%)

• Significant Disagreement (Difference of 2): 2 out of 29 code pairs (7%)

• Completely Off (Difference of 3): 0 out of 29 code pairs (0%)

These preliminary results demonstrate that CSI aligns closely with expert

evaluations, with 93% of cases showing exact matches or close agreements. CSI

can furthermore be finetuned for a certain use case, which was not done for these

preliminary tests and can further improve its performance.

Summary:

The Code Similarity Investigator (CSI) offers a promising solution to the challenges

posed by complex and evolving software systems. By modelling code as CPGs and

utilizing GED for similarity measurement, CSI automates tedious tasks, ensures

consistency across projects, and reduces development time. Future work will focus

on extensive validation across larger and more diverse codebases, optimization of

the GED approximation algorithms, and exploration of machine learning techniques

to enhance the accuracy and scalability of the methodology.

References:

[AG1] Kamiya, T., Kusumoto, S., & Inoue, K. (2002). CCFinder: A multilinguistic

token-based code clone detection system for large scale source code. IEEE

Transactions on Software Engineering, 28(7), 654–670.

[[AG2] Prechelt, L., Malpohl, G., & Philippsen, M. (2002). Finding plagiarisms

among a set of programs with JPlag. Journal of Universal Computer Science, 8(11),

1016.

[AG3] Suneja, S., Zheng, Y., Zhuang, Y., Laredo, J., & Morari, A. (2020). Learning

to map source code to software vulnerability using code-as-a-graph. arXiv preprint

arXiv:2006.08614.

[AG4] Zhao, G., & Huang, J. (2018). DeepSim: Deep learning code functional

similarity. In Proceedings of the 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering (pp. 141–151). ACM.

[AG5] Fischer, A., Riesen, K., & Bunke, H. (2017). Improved quadratic time

approximation of graph edit distance by combining Hausdorff matching and greedy

assignment. Pattern Recognition Letters, 87, 55–62.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 92 of 117

4.3.3. ML-based methods to identify requirements from large data repository and

generate recommendations (RISE, Alstom)

Synopsis:

Requirements are often mixed with supporting information, contractual obligations,

and other customer-supplied documents. This makes it harder to analyze and

understand customers’ wishes and perceptions of the end system, especially in the

process of responding to a call for tender in a project-based industry. Therefore, it

is essential and a prerequisite to software development to extract technical

specifications from customer-supplied documents such as tender documents. The

identified technical specifications can be used as a base for other downstream

activities, such as feasibility analysis, requirements quality assurance, and

requirements allocation for development and verification. Manual requirements

extraction from large documents is a resource-intensive and experience-dependent

process and is subject to human fatigue [RISE1]. In addition, it is not scalable and

could add additional delays to the project procurement process in the already very

competitive bidding processes.

Related works:

Literature has been focusing on distinguishing requirements from other information

using machine learning. Like our use case, Winkler et al. [RISE2] propose a deep

learning (DL) classifier based on Convolution Neural Networks (CNNs) to identify

requirements from additional material stored in IBM DOORS. Falkner et al. [RISE3]

propose a Naive Bayes (NB) classifier---trained on unique words---to identify

requirements from Request of Proposal (RFP) documents within the railway safety

domain. Furthermore, Abualhaija et al. [RISE4] proposes an automated ML-based

approach to demarcate requirements in textual specifications by considering one

sentence as a unit of classification. They empirically evaluate ML classifiers on the

industrial dataset consisting of 12 documents. In addition, Sainani et al. [RISE5]

defines a two-step methodology to first extract requirements from 20 Software

Engineering (SE) contracts and then allocate them to their specific types. For

identification and extraction of requirements, Bi-LSTM yields the best results

compared to ML algorithms. To allocate identified requirements in sub-classes,

BERT (Bi-directional Encoder Representations from Transformers) performed

better in terms of F-1 score.

Methodology:

We proposed two approaches, requirements identifier (REQ-I) [RISE 6] and

requirements allocator (REQA) [RISE7] to support the project bidding and feasibility

phase for one use-case provider in SmartDelta. The REQ-I approach enable faster

and more automated requirements extraction and identification from tender

documents for later analysis, feasibility and implementation. On the other hand, the

REQA approach is meant to smartly recommend various teams for the identified

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 93 of 117

requirements, for implementation and verification. We briefly introduce the

approaches, their evaluation setup and the obtained results from the evaluation, as

follows.

1) REQ-I

Figure 29: REQ-I Approach: Approach for requirements extraction and identification

The REQ-I approach takes new tender documents as input and produces a PDF file

with highlighted requirements. The approach first parses the text of the PDF files

using optical character recognition (OCR) and then applies a fine-tuned version of

the BERT model to classify the text into requirements or non-requirements. Below,

we detail the evaluation setup used to evaluate the approach and obtain the results.

We focused the evaluation on the effectiveness of the requirements identification

process. To achieve this, we considered five already annotated tender documents

from Alstom. These five documents were annotated by experts, and requirements

among the documents were identified. In addition, to allow replication, we also

considered a public dataset.

Figure 30: REQ-I Data: Considered data from REQ-I evaluation

As shown in Figure REQ-I Data, in the industrial data, around 1680 requirements

were identified by experts, while the rest of the 1293 text chunks were considered

to be additional supporting information. We use five-fold validation to avoid model

overfitting and enable generalizability of the results. On average 2378 textual chunk

were considered across the five folds for training various classifiers for requirements

identification.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 94 of 117

Considered classifiers included traditional classifiers, deep language models, and

few-shot classifiers. For traditional classifier, we feed term-frequency inverse

document frequency (TF-IDF) based vectors to the classifiers Support Vector

Machines (SVM), Logistic Regression (LR), Decision Tree (DT), Random Forest

(RF), and Naïve Bayes (NB). For a fair comparison and tuning, we applied random

multi-search optimization to select the optimal hyperparameters. SVM and LR

achieved better results on evaluation metrics when trained with normalized and

reduced TF-IDF vectors using PCA. However, the rest of the ML pipelines---RF, DT,

and NB---performed better with normalized TF-IDF vectors without PCA-based

dimensionality reduction. In addition, we also consider a baseline random pipeline

(W. Rand.) that classifies input as a requirement or not based on their frequency

distribution in the dataset.

For deep language model-based classifiers, we considered the seminal GLoVE and

FastText based embedding for the LSTM classifier. We considered the REQ-I

approach based on BERT uncased model and few other variants of the approach

SciBERT, RoBERTa, XLMRoBERTa (XRBERT), DistilBERT (DisBERT), and

XLNet.

Finally, for few-shot classifiers, we considered MiniLM and S-BERT-based

classifiers with only 10% and 20% of the data to evaluate their performance of “few”

shot classification.

As typical in the NLP domain, pre-processing of the input text might impact

classification performance. Therefore, we also consider the datasets both with

(pipeline with names starting with “p”) and without pre-processing.

We use the standard evaluation metrics for text classification, as follows:

- Accuracy (A) is the ratio of the number of correct predictions and the total predictions.

- Precision (Prec. Or P) is the ratio of correct positive predictions and the total number

of positive predictions.

- Recall (Rec. Or R) quantifies the number of correct positive predictions from all possible

positive predictions.

- F1 score (F1) is the harmonic mean of precision and recall.

We report the macro and weighted average across the fold for all our evaluation

metrics in the results section.

2) REQA

After requirements are identified and agreed upon, it is essential to allocate those

requirements to the right teams for implementation and verification. In this regard,

we also proposed the REQA approach for smart requirements allocation to teams.

The approach uses both traditional and state-of-the-art machine learning

approaches to achieve this in an explainable manner. The REQA approach is

composed of two main modules, Assigner and Augmenter, as shown in the following

Figure. The Assigner module is responsible for generating a representation for the

input requirement and for suggesting a possible allocation based on the results of

a classification algorithm. Given a requirement, the Assigner outputs a list of

potential allocation classes, ranked by likelihood.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 95 of 117

Figure 31: REQA Approach: Approach for requirements allocation

Only the most probable class is shown to the user, while the ranked list will be used

by the Augmenter. The Augmenter module produces additional information to

complement the predictions generated by the Assigner. This additional information

helps in providing the most likely classes derived from lexical similarity-based

measurements. The Augmenter searches for the most similar requirements in the

training set used to train the Assigner. Then, it checks whether the classes produced

by the Assigner match the classes with the most similar requirements identified

based on lexical features. This can be regarded as a complementary channel to

better inform the requirements analyst in deciding the allocation. Below we detail

the evaluation methodology of the REQA approach.

The REQA tool for requirements allocation to teams was evaluated on 1680

requirements that were already allocated to various teams at Alstom. As shown in

Figure REQA Data, the requirements were allocated to 15 different teams at the

company responsible for developing various sub-systems. We use five-fold

validation to avoid model overfitting and enable generalizability of the results. On

average 1344 requirements were considered across the five folds for training

various classifiers for requirements allocation.

Considered classifiers for comparison included traditional classifiers and classifiers

based on deep language models. For traditional classifiers, we feed term-frequency

inverse document frequency (TF-IDF) based vectors to the classifiers like the setup

for REQ-I but instead of Naïve Bayes we use the multi-class version (MNB). In

addition, we also consider a baseline random pipeline (W. Rand.) that classifies

input as a requirement or not based on their frequency distribution in the dataset.

For deep language model-based classifiers, we considered the seminal FastText

based embedding for the LSTM classifier. We considered the REQA approach

based on SciBERT model and few other variants of the approach BERT base, and

RoBERTA.

We use the same evaluation metrics as of REQ-I.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 96 of 117

Figure 32: REQA Data: Considered data for REQA evaluation

Results:

1) REQ-I: The requirement identification part of the toolchain uses the BERT large

language model for identifying requirements in tender documents with an average

accuracy of 82%. The toolchain also allows checking the quality of the extracted

technical specifications from the tender documents. Particularly, VARA+ compute

metrics, such as Automated Readability Index, Complexity, and subjectivity to allow

quality assessment of the extracted requirements. We evaluated various binary

classifiers for our requirements identification sub-tool to select the best one for the

pipeline. As shown in Figure ReqIdentifier, we evaluate weighted random (W.

Rand.), Support Vector Machine (SVM), multinomial Naive bayes (NMB), Decision

trees (DT), Logistic Regression (LR), Random Forest (RF), BERT and its variants,

and LSTM and its variants. We achieve an average accuracy of 82% in

requirements identification in large tender documents with the BERT language

model. Results also show that the BERT-based requirements identification

approach performs the best in terms of precision (P), recall (R) and their harmonic

mean (F1 score) with an average accuracy of 82%.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 97 of 117

Figure 33: ReqIndentifier: Evaluation results REQ-I

2) REQA: As a railway vehicle typically consists of more than 20 sub-systems, once

the requirements are extracted, they must be allocated to various teams responsible

for the development and testing of those sub-systems. In this regard, the VARA+

toolchain provides the REQA approach for the allocation of requirements to various

teams. The approach combines large language models with case-based

recommender systems to assign requirements to teams (and generate useful

explanations for the allocation to enable a well-informed allocation decision.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 98 of 117

Figure 34: REQAev: Evaluation with various pipelines for REQA

As shown in Figure REQAev, we evaluate various classifiers for the REQA approach

on Alstom’s use case. In particular, we evaluate weighted random (W. Rand.),

Support Vector Machine (SVM), multinomial naive bayes (NMB), Decision trees

(DT), Logistic Regression (LR), Random Forest (RF), BERT and its variants, and

LSTM. Results show that BERT-based REQA approach performs the best in terms

of precision (P), recall (R) and their harmonic mean (F1 score) with an average

accuracy of 68%.

Summary:

In summary, with REQ-I it is possible to identify and extract technical requirements

from large tender documents. The approach also makes the process more

automated and less dependent on human expertise. On the other hand, we also

support the allocation of the identified requirements with our REQA tool for smart

allocation to teams within company for implementation and verification.

References:

[RISE1] Berry, D.M.: Empirical evaluation of tools for hairy requirements

engineering tasks. Empirical Software Engineering 26(6), 1–77 (2021)

[RISE2] Winkler, J., Vogelsang, A.: Automatic classification of requirements based

on convolutional neural networks. In: 2016 IEEE 24th International Requirements

Engineering Conference Workshops (REW). pp. 39–45. IEEE (2016)

[RISE3] Falkner, A., Palomares, C., Franch, X., Schenner, G., Aznar, P.,

Schoerghuber, A.: Identifying requirements in requests for proposal: A research

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 99 of 117

preview. In: International Working Conference on Requirements Engineering:

Foundation for Software Quality. pp. 176–182. Springer (2019)

[RISE4] Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L.C., Traynor, M.:

Automated demarcation of requirements in textual specifications: a machine

learning-based approach. Empirical Software Engineering 25(6), 5454–5497 (2020)

[RISE5] Sainani, A., Anish, P.R., Joshi, V., Ghaisas, S.: Extracting and classifying

requirements from software engineering contracts. In: 2020 IEEE 28th International

Requirements Engineering Conference (RE). pp. 147–157. IEEE (2020)

[RISE6] Bashir, S., Abbas, M., Saadatmand, M., Enoiu, E.P., Bohlin, M., Lindberg,

P. (2023). Requirement or Not, That is the Question: A Case from the Railway

Industry. In: Ferrari, A., Penzenstadler, B. (eds) Requirements Engineering:

Foundation for Software Quality. REFSQ 2023.

[RISE7] S. Bashir, M. Abbas, A. Ferrari, M. Saadatmand and P. Lindberg,

"Requirements Classification for Smart Allocation: A Case Study in the Railway

Industry," 2023 IEEE 31st International Requirements Engineering Conference

(RE), Hannover, Germany, 2023, pp. 201-211, doi: 10.1109/RE57278.2023.00028.

4.3.4. Automatic issue labeling and similarity analysis using advanced natural

language processing (IFAK, Software AG)

Synopsis:

Efficient management of software requirements and issues is a cornerstone of

successful software development. In a productive development environment,

several dozen or hundreds of new or adapted requirements or bug reports may

appear per day and must be processed manually. An established way to process

issues in a structured manner is to assign labels or tags so that they can be

processed more quickly and in a more targeted manner. However, this involves a

lot of manual work, reading the texts and discussing them if necessary. It requires

expert knowledge, is very time-consuming and error prone. Classification of

software requirements and issues is helpful for many purposes, such as

prioritization in processing (e.g. less time for solving security-relevant issues),

assigning specific people/teams for design, implementation and testing, creating

specific test cases (e.g. performance testing) and supporting bug fixing (e.g. using

knowledge from former bug fixes).

Another critical challenge in issue management is the risk posed by duplicates and

strongly related issues. These occur when multiple users report the same or closely

connected problems using slightly different descriptions or terminology. Such issues

often appear not only within the same product but also across different versions,

variants, or even entirely separate products, further complicating their detection. In

fully manual processes, such connections are often overlooked, leading to

inefficiencies where teams unknowingly address the same problem multiple times

or fail to consider interlinked issues holistically. Identifying related issues can

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 100 of 117

significantly reduce redundancy, allowing teams to resolve multiple instances of a

problem simultaneously. Additionally, uncovering interlinked problems helps

address root causes comprehensively, improving system stability and reducing

recurring errors. By streamlining issue management, organizations can enhance

efficiency, accelerate resolution times, and deliver more reliable software.

Related works:

Requirements classification is an evolving research area where state-of-the-art

natural language processing (NLP) techniques have not yet been fully exploited.

Much of the existing work relies on traditional machine learning approaches or

keyword-based methods due to limited dataset access, with models like Support

Vector Machines (SVM) and Naive Bayes being commonly used [IFAK1]. Text

vectorization techniques like TF-IDF are often used to convert requirement text into

a format suitable for these models [IFAK 2]. Recent advancements have introduced

deep learning models such as Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs), including bidirectional LSTMs and GRUs, to

enhance classification performance [IFAK 3]. However, many studies face

challenges such as data scarcity and imbalanced datasets, often limiting

classification to functional and non-functional requirements without delving into

subcategories. The lack of standardized definitions for requirements fur ther

complicates classification, as the same text can be interpreted differently depending

on its context. Few studies have explored alternative learning methods, with active

learning, transfer learning [IFAK 4], and zero-shot learning [IFAK 5] offering

promising directions for better handling limited data. In this context, the so-called

"catastrophic forgetting" is the well-known Achilles' heel of deep neural networks,

that the knowledge learned from previous tasks is forgotten when the networks are

retrained to adapt to new tasks.

A similar situation can be seen with Duplicate Bug Report Detection. This research

area of identifying duplicate bug reports involves various natural language

processing methods. Current approaches are either statistical methods based on

words or Machine Learning/Deep Learning models based on syntactic information.

For example, BM25 is a traditional information retrieval method that relies on textual

and categorical features, while Siamese Pair employs deep learning with LSTM and

CNN to encode textual and categorical data separately. Ranking bug reports for

duplicates is preferred over classification in real-world scenarios, as it reflects

practical usage more accurately. Traditional classification settings often

overestimate performance due to unrealistic assumptions about candidate pairs.

[IFAK 6]

Methodology:

Within the project SmartDelta, IFAK has developed two tools for Automatic Issue

Labeling (AILA) and Automatic Issue Similarity Analysis (AISA).

AILA – Automatic Issue Labeling Tool:

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 101 of 117

We developed solutions leveraging three primary learning techniques to address the

challenges of incremental requirements classification:

Transfer Learning: We utilized knowledge from pre-trained models like BERT and

fine-tuned them on domain-specific tasks. This approach allowed our model to

generalize effectively with limited labeled data across diverse domains.

Multi-Task Learning (MTL): We trained models on multiple tasks concurrently, sharing

representations to improve performance across related tasks. Our implementation

included hard and soft parameter sharing to enhance data efficiency and minimize

overfitting.

Continual Learning (CL): We adopted a sequential learning process, enabling the

model to retain knowledge from previous tasks while adapting to new tasks.

Techniques such as experience replay, elastic weight consolidation, and adapter

modules were used to mitigate catastrophic forgetting.

Additionally, we addressed the issue of class imbalance through data augmentation

methods like synonym replacement and back-translation, generating synthetic data for

underrepresented classes. Class weighting schemes, including normalized and log-

transformed weights, were employed to balance the influence of minority and majority

classes during training. Our architecture was based on a BERT model with multiple

classification heads tailored to specific tasks, such as security and other non-functional

categories. By treating each dataset as a new task, we ensured adaptability to

incremental data streams. We have applied recent continual lifelong learning methods

to accumulate past knowledge and use it for future learning and knowledge reasoning.

In this way, the model learns better with little data for incrementally growing datasets.

AISA – Automatic Issue Similarity Analysis Tool:

We developed an issue similarity analysis approach using advanced language models,

specifically SentenceBERT, to provide a semantic approach for identifying related

issues. The method leverages ChromaDB as a vector database to store semantic

embeddings, ensuring scalability and efficiency for large datasets. Vector embeddings

for a large database of historical issues are generated, which supports multiple

sentence-transformer models. Querying for similar issues is conducted, where the top

k most similar results can be retrieved. Cosine similarity is used as the metric to rank

the similarity between issues. To enhance processing speed, we use the HNSW

(Hierarchical Navigable Small World) algorithm, which reduces the computational load

by narrowing down the comparison set intelligently. Before analysis, we apply manual

pre-filtering to exclude non-relevant issues, optimizing the process and ensuring faster,

more accurate results.

To improve interpretability, results can be visualized in a user interface, highlighting the

most common words between two issues using the KeyBERT library. This enables

clear identification of semantic overlaps between related issues.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 102 of 117

Figure 35: Automatic Issue Similarity Analysis pipeline

Results:

As a first step, IFAK has experimentally evaluated the two tools for Automatic Issue

Labeling (AILA) and Automatic Issue Similarity Analysis (AISA) on publicly available

data. In a second step, Software AG has thoroughly evaluated both tools for their use

case, particularly with regard to security-related issues and recommendations for

possible reuse.

AILA – Automatic Issue Labeling Tool:

In our experimental evaluation, we assessed the performance of various learning

techniques for incremental requirements classification. We utilized five public datasets

representing different software domains, such as security and web development, to

ensure diversity in classification tasks (SecReq, CWE, Slankas, PURE, PROMISE).

Our experiments involved splitting the datasets into training and testing sets, applying

data augmentation techniques, and employing class weighting to address data

imbalance. We focused on both macro and weighted F1 scores to evaluate the

accuracy of classifications for both minority and majority classes.

We implemented and compared single-task learning, transfer learning, multi-task

learning, and three variations of continual learning: experience replay, elastic weight

consolidation, and adapter modules. Continual learning with experience replay

emerged as the most effective approach, achieving the highest weighted F1 scores

and the lowest forgetting measures, demonstrating robust retention of prior knowledge

while adapting to new tasks. In contrast, single-task learning yielded the lowest scores,

underscoring the limitations of isolated task training.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 103 of 117

Table 16: Automatic Issue Labeling using different ML techniques for security-related requirements

Software AG evaluated the tool initially using publicly available GitHub issues. The

initial model, trained on a small dataset of GitHub issues, demonstrated promising

results with an accuracy of approximately 80% in predicting whether issues were

security-relevant. This phase highlighted the model’s ability to transfer learning,

leveraging pre-trained knowledge from similar tasks. However, the dataset differences

between GitHub and Software AG's internal data prompted additional fine-tuning. We

conducted multiple fine-tuning experiments using internal datasets annotated with

reliable security labels. Fine-tuning the GitHub model on the smaller SAG dataset

improved accuracy slightly to around 83%, though false positives remained a challenge

due to differences in style and content between the datasets. A subsequent experiment

pre-finetuned the model on a much larger dataset of Software AG issues with uncertain

labels before fine-tuning on reliable ground truth data. This approach showed a very

high accuracy of 98.4% on the large data set. However, the uncertain quality of the

labels probably increased these results.

AISA – Automatic Issue Similarity Analysis Tool:

We conducted an experimental evaluation with publicly available datasets such as

Microsoft Visual Studio Code with information of issue duplicates. We have compared

traditional statistical methods such as TF-IDF and advanced language models such as

Sentence-BERT. The results showed that even simple word-based statistical methods

can achieve good performance. However, the use of language models provided a slight

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 104 of 117

improvement in accuracy, and further gains were achieved through careful

preprocessing of the issues.

Despite these improvements, a similarity-based approach cannot detect all duplicates,

as some are expressed in entirely different ways. There is an inherent trade-off

between increasing the detection rate and the effort required to review more issue

pairs. For instance, recommending only the top result (k=1) correctly identifies the

duplicate in 32% of cases. Expanding to the top two recommendations (k=2) increases

the success rate to 37% but doubles the number of issue pairs to review. When

providing the top five recommendations (k=5), the duplicate is included in 44% of

cases, illustrating the balance between accuracy and efficiency in duplicate detection.

Table 17: Automatic Issue Similarity Analysis using different ML techniques

The tool was rigorously evaluated at Software AG, where a team conducted a manual

review of many issue pairs, refining the filtering process to ensure that irrelevant issues

are excluded from the similarity analysis. This refinement process has proven essential,

revealing a consistent number of relevant duplicate issues that can be further leveraged

to improve software quality and reduce technical debt.

Summary:

The Automatic Issue Labeling Tool (AILA) helps development and test teams prioritize

requirements and monitor software quality by automatically classifying non-functional

properties, such as security relevance. This automation streamlines processes,

enabling teams to focus on critical tasks while maintaining high-quality standards. The

tool also aligns with the SmartDelta Methodology by linking historical issues to current

requirements, providing insights across software versions.

The Automatic Issue Similarity Analysis Tool (AISA) identifies and connects related

issues from past and current code commits, uncovering patterns, reoccurring problems,

and reusable fixes. By leveraging historical data, it helps teams proactively manage

software stability and improve development efficiency. Both tools support smoother

development cycles, better management of technical debt, and enhanced software

quality, and are planned for release as Open Source solutions.

References:

[IFAK1] M. Binkhonain and L. Zhao, “A review of machine learning algorithms for

identification and classification of non-functional requirements,” Expert Systems

with Applications: X, vol. 1, p. 100001, 2019.

[IFAK2] J. M. Pérez-Verdejo, A. J. Sánchez-García, J. O. Ocharán-Hernández, E.

Mezura-Montes, and K. Cortés-Verdín, “Requirements and GitHub issues: An

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 105 of 117

automated approach for quality requirements classification,” Programming and

Computer Software, vol. 47, no. 8, pp. 704–721, 2021

[IFAK3] K. Kaur and P. Kaur, “SABDM: A self-attention based bidirectional-RNN

deep model for requirements classification,” Journal of Software: Evolution and

Process, 2022.

[IFAK4] Hey, T., Keim, J., Koziolek, A., & Tichy, W. F. (2020). NoRBERT: Transfer

learning for requirements classification. In 2020 IEEE 28th International

Requirements Engineering Conference (RE) (pp. 169-179). IEEE.

[IFAK5] W. Alhoshan, A. Ferrari, and L. Zhao, “Zero-shot learning for requirements

classification: An exploratory study,” arXiv:2302.04723, 2023.

[IFAK6] Zhang, T., Han, D., Vinayakarao, V., Irsan, I. C., Xu, B., Thung, F., LO, D.

& Jiang, L. (2023). Duplicate bug report detection: How far are we?. ACM

Transactions on Software Engineering and Methodology, 32(4), 1-32.

4.3.5. LLM-based indexing for advanced semantic artefacts search in corpus-based

reuse use case (Akkodis)

Synopsis:

This section explores the implementation of Large Language Model (LLM)-based

indexing techniques to enhance semantic search capabilities for artifacts in a

corpus-based reuse context. By leveraging advanced natural language processing

and embedding models, the proposed approach aims to improve the retrieval of

relevant artifacts—such as requirements, models, and code—thereby facilitating

more efficient reuse and modification of existing resources.

Related Works:

The use of retrievers in Retrieval-Augmented Generation (RAG) pipelines presents

numerous opportunities for improvement and optimization, spanning from the

indexing phase to the augmentation phase. Various techniques can be applied at

each step to enhance document parsing, indexing, storage, retrieval processes, and

prompt augmentation using retrieved data, culminating in multi-stage and multi-

agent answer distillation. Many RAG optimization methods focus on refining the

retrieval process and the execution of prompts using the retrieved data [AKK1]

[AKK2].

In the context of software artifact retrieval, the data differs significantly from natural

language documents, introducing new challenges. For instance, [AKK3] explores

the use of LLM-based metadata for filtering during the retrieval process. However,

the generation of LLM-supported metadata for optimized indexing of software

artifacts remains a largely unexplored area.

Methodology:

The proposed methodology involves the following steps:

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 106 of 117

1. Data Collection: Gather a diverse corpus of artifacts, including requirements,

models, and code files.

2. LLM Integration: Employ a Large Language Model to generate a set of

descriptive labels and comprehensive descriptions for each artifact. This

enhances the metadata associated with the artifacts, making them more

searchable and contextually relevant. This step brings all types of artifacts into

a common space, which would not be achieved during embedding calculation

due to the different characteristics of each artifact type.

3. Embedding Generation: Utilize embedding models to create a dense embedding

vector for each artifact. This process transforms the artifacts into a numerical

format that captures their semantic meaning.

4. Data Storage: Store all artifacts, along with their embedding vectors and

generated metadata, in a PostgreSQL database. This database supports full -

text search capabilities using tsvector and tsquery.

5. Search Implementation: Develop a user interface that supports both keyword-

based and full-text semantic searches, enabling users to input queries in natural

language or as specific keywords.

Results:

Results indicate that using direct embedding vector calculations for artifacts

presents two main challenges:

Embedding models often lack a robust understanding of certain technical input data

and file formats, leading to imprecise semantic representations.

Different file formats (natural language for requirements, specific formats for

encoding UML state machines as models, and C++ code) result in varied

representations in the embedding space, making it difficult for a single query to

retrieve all relevant types of artifacts/files.

By using label lists and descriptions generated by an LLM, a shared language is

introduced, allowing for the creation of a unified embedding space for all types of

artifacts. Initial results are showing that the different artifacts are distributed and not

separated in the space. This can be seen in Figure 5, where the distribution of labels

is visualized by applying TD-IDF as a vectorizer, K-means for clustering, and PCA

to bring data to a 2-dimensional space.

Figure 5 Visualization of artifact distribution in 2-dimensional space showing no

separation of file types

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 107 of 117

Figure 36: Visualization of artefact distribution in 2-dim space showing no separation of file types

The search results, while filtering and re-ranking the results from multi-stream

retrievers (vector search, full-text, BM25, etc.), present many opportunities for

further improvement. Thus, additional research and detailed evaluation are needed

to stabilize and optimize search results across various software repositories.

The search results can reveal related file artifacts; however, this is not a

recommendation for any kind of changes. It is up to the human user to assess these

results, decide whether to use them as a basis for software changes, or provide this

context to any AI-based software agent.

Summary:

In summary, the integration of LLM-based indexing for semantic artifact search

represents a promising advancement in the field of corpus-based reuse. By

enabling more context-aware and nuanced searches, this approach not only

enhances the efficiency of artifact retrieval but also supports better decision-making

in software development processes. Future work will focus on further refining the

model and exploring additional applications of LLMs in software engineering

contexts.

References

[AKK1] Gao, Y., et al. (2023). Retrieval-augmented generation for large language

models: A survey. arXiv preprint arXiv:2312.10997.

[AKK2] Sawarkar, K., et al. (August 2024). Blended RAG: Improving RAG

(Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid

Query-Based Retrievers. arXiv preprint arXiv:2404.07220.

[AKK3] Poliakov, M., et al. (August 2024). Multi-Meta-RAG: Improving RAG for

Multi-Hop Queries using Database Filtering with LLM-Extracted Metadata. arXiv

preprint arXiv:2406.13213.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 108 of 117

4.3.6. Predicting commercial charging station energy usage (eCamion and

OntarioTechU)

Synopsis:

This section explores the implementation of Random Forest Regressor- based

machine learning model to predict the hourly energy usage by a commercial

charging station. Predicting the magnitude of energy used and the predicted peak

usage hours bring additional values to charging station management and analysis.

Related works:

The charging station load prediction can be predicted using two data sources, using

the customer profiles or through the station measurement. In Majidpour et al. [EC1],

the two data sources were compared for their relation to load prediction accuracy

using four different machine learning models (TWDP-NN, MPSF, SVR and RF),

revealing that the datasets have no significant difference and viable for predictions.

Using an application protocol Open Charge Point Protocol (OCPP) to collect station

measurements from multiple charging stations, Renata et al. [EC2] predicted the

daily energy use of commercial charging stations in Indonesia. Using features

extracted from the charging records, the team compared four different machine

learning models (RF, SVR, XGBoost and MLP) and evaluated them. Using the K-

fold cross validation for evaluation, the result showed that Multilayer Perceptron

(MLP) method had, and Random Forest Regression (RF) yielded the highest R2

and lowest error values respectively.

Methodology:

1. Data collection: Historical data of charging station transactions and meter values

2. Development of OCPP compliant systems: OCPP compliant charging station

and Charging Station Management System (CSMS) are developed and

implemented functionalities are tested using OCPP Compliance Testing Tool

3. Training and Prediction: Features are analyzed and extracted from the charging

station transaction and meter value data. Due to lacking historical OCPP data

collected, historical data was provided by eCamion for model training.

4. Model selection: Compare and evaluate the prediction from different machine

learning models

5. Visualization: The predicted energy load is displayed on management

dashboard, along with other real-time charging station readings from the OCPP

for charging station analysis

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 109 of 117

Figure 37: Overview of the approach to data collection and prediction

Results:

During the feature extraction stage, it was discovered that the selecting the hourly

interval had influence over model accuracy. The hourly interval was therefore

selected to maximize the model’s accuracy while providing useful and relevant data

for management.

Based on the transaction records from multiple charging stations, charging stations can

have different charging patterns based on variety of different factors including location

and customer behaviours. Due to the difficulties of capturing factors outside of reporting

functionalities of OCPP, the training data was added a label to classify the charging

pattern based on time, which was found to increase accuracy of the models.

For model selection, four machine learning models, Random Forest, SVM, LSTM

and Prophet were used to compare and their outcomes evaluated, where Random

Forest Regression was found to yield highest accuracy.

Table 16: Models tested for energy load prediction and their evaluation of rolling cross validation

 MAE RMSE R2

Random Forest
Regression

0.0101 0.0134 0.3278

SVR 0.0509 0.0537 -10.5937

LSTM 0.0342 0.0455 0.09445

Prophet 0.005 0.0666 0.0636

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 110 of 117

Figure 38: Example of prediction cycle made using Random Forest Regression during cross-validation

process

Summary:

Using historical charging station’s measurement data, energy consumption of a

charging station can be predicted by the selected hourly interval. To increase the

accuracy of the model, additional features were engineered including labels based

on charging pattern.

The outcome of the prediction system adds additional insight for the management

and lays ground for potential work for cost-saving solutions. Using the historical

charging station’s measurements.

References

[EC1] Majidpour, Mostafa, et al. "Forecasting the EV charging load based on

customer profile or station measurement?." Applied energy 163 (2016): 134-141.

[EC2] Renata, Dionysius A., et al. "Modelling of electric vehicle charging energy

consumption using machine learning." 2021 International Conference on Advanced

 Computer Science and Information Systems (ICACSIS). IEEE, 2021.

5. Tools/Technologies Developed in WP4

SoHist is an open-source tool developed by the University of Innsbruck and c.c.com to

manage technical debt through retrospective code analysis. It extends SonarQube by

providing historical insights into technical debt evolution, offering comprehensive GIT history

quality analysis and visualizations. Developers can analyze the long-term impact of their

decisions on maintenance costs and risks.

The EPS Cybersecurity Anomaly Detector, created by Glasshouse Systems and Ontario

Tech University, integrates with QRadar to identify network anomalies using unsupervised

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 111 of 117

machine learning models. By analyzing event-per-second (EPS) data, this closed-source tool

provides graphical visualizations of anomalies to enhance the efficiency of SOC operations.

The Offense Prioritization App, also developed by Glasshouse Systems and Ontario Tech

University, leverages machine learning to prioritize critical security threats. Integrated with

SIEM solutions, it ranks offenses based on risk levels, enabling SOC analysts to address high-

priority issues more effectively.

INIMASU, an open-source tool by Fraunhofer FOKUS, supports intelligent issue management

by optimizing scheduling and classification. It processes data from Git repositories and

configuration files to produce management reports and predictions, aiding in decision-making

and resource allocation.

ReqIdentifier simplifies requirement identification in large tender documents using machine

learning classifiers. This partially open-source tool processes PDF or CSV files, highlighting

requirements for better scalability and accuracy in bidding processes.

DIA4M, an open-source tool by NetRD, focuses on detecting faults and anomalies in

microservice interactions. By processing logs from CSV or ElasticSearch, it generates

visualized reports to aid DevOps engineers in quality assurance and fault detection.

YATAP, a licensed tool by Erste, performs comprehensive change impact analysis by

integrating data from Jira, GitHub, SonarQube, and other sources. It outputs data in

ElasticSearch or PostgreSQL formats to help assess the effects of changes on systems.

AILA, developed by IFAK and Software AG, automates issue labeling using fine-tuned BERT

models. This planned open-source tool classifies requirements or issues based on

descriptions, aiding in prioritization and team assignments.

AISA, developed by IFAK and Software AG, automates issue similarity analysis using

language models such as Sentence-BERT. This planned open-source tool provides similar

requirements or issues based on descriptions, aiding in code and test reuse recommendations.

VARA+, a closed-source tool by RISE, automates asset reuse analysis and assesses

requirements quality. By analyzing CSV files, it predicts reusable assets and computes metrics

to enhance efficiency in software projects.

SmartTrace, a closed-source tool by Akkodis Research, enables semantic searches to locate

and analyze reusable artifacts. By processing natural language or keyword queries, it provides

a list of related artifacts for better reuse and efficiency.

ReqAllocator (REQA) automates requirements allocation and classification using machine

learning and deep learning techniques. This closed-source tool processes CSV files to

recommend allocations and augmentations, facilitating efficient team assignments.

RADICLE, a closed-source tool by RISE, leverages LLMs to detect ambiguities in

requirements and provide rational explanations. It processes CSV files to identify ambiguous

requirements and their rationale, improving clarity and quality.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 112 of 117

Telemetry Anomaly Analyzer by Hoxhunt detects telemetry anomalies in distributed systems

using OpenTelemetry-compatible data. This closed-source tool generates anomaly heatmaps

and dashboards, enabling efficient monitoring and troubleshooting.

RAG-based QA Chatbot uses retrieval-augmented generation and LLMs to answer

requirement-related queries. This closed-source tool processes text-based inputs and

produces comprehensive answers, aiding engineers in understanding software releases.

DETANGLE, by Cape of Good Code, provides dashboards and visualizations to analyze

technical debt and its impact. This closed-source tool processes data from issue trackers, code

repositories, and test coverage reports to support root cause analysis and quality

improvements.

Modernization Toolkit by Vaadin analyzes Java code for compatibility with Vaadin and

applies transformations to update source code. This closed-source tool generates summaries

of transformation coverage and transformed code for efficient modernization.

SONATA leverages ontologies and knowledge graphs to recommend test cases for new code.

This closed-source tool processes code repositories and outputs tailored test case

recommendations, improving software quality management.

Code Similarity Investigator (CSI), by TWT, provides automated code reuse suggestions

using Code Property Graphs. It processes source code to identify similar sections and

suggests improvements, enhancing efficiency and maintainability.

Graph Similarity Recommender (GSR) compares state machines to identify similarities and

recommend comparable ones. This closed-source tool processes state machine data and

outputs similarity values and delta paths to streamline analysis.

Team Eagle QA Tool analyzes software quality metrics for cloud-based software hosted on

Microsoft Azure. This closed-source tool provides quality assurance metrics to help engineers

monitor and improve software quality.

ReqIdentifier (RADICLE) uses LLMs to detect ambiguous requirements in CSV files,

providing classifications and rationales. This planned open-source tool improves requirements

clarity and supports quality assurance efforts.

These tools collectively address critical challenges in software engineering, offering innovative

solutions to improve quality, efficiency, and maintainability across various domains.

6. Conclusions

This report highlights the significant contributions made in Work Package 4, focusing on

advancing the state of the art in software quality trend analysis and prediction, similarity

analysis and reuse recommendation, and change impact analysis and prediction. Key

achievements include the development of novel machine learning methodologies for

identifying and analysing quality trends, enabling predictive insights across various

domains. These methodologies have enabled automated detection of quality

improvements and degradations, streamlining continuous engineering workflows.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 113 of 117

In the area of anomaly detection and offense prioritization, advanced ML techniques were

employed to identify anomalies in complex systems and prioritize cybersecurity threats

effectively. These solutions have demonstrated significant improvements in operational

stability, reducing detection and response times, and ensuring the robustness of live

systems in domains such as micro-service architectures and telemetric data analysis. In

similarity analysis and reuse recommendation, innovative graph-based and ML-driven

techniques were developed to identify reusable components and design artifacts,

significantly enhancing efficiency in software evolution. Additionally, the work package

introduced advanced change impact analysis tools that predict and evaluate the effects of

software changes, providing actionable recommendations for maintaining and improving

system quality.

These contributions collectively establish a strong foundation for improving software quality

across industrial domains, offering scalable, intelligent solutions that address critical

challenges in modern software engineering. The methodologies and tools developed in this

work package pave the way for further innovation and integration into diverse software

development environments.

7. References

1. Kaner, C. (2004). Software engineering metrics: What do they measure and how do

we know? In In METRICS 2004. IEEE CS.

2. Galin, D. (2018). Software quality: concepts and practice. John Wiley & Sons.

3. Dlamini, G., Ergasheva, S., Kholmatova, Z., Kruglov, A., Sadovykh, A., Succi, G., ... &

Zouev, E. (2022). Metrics for Software Process Quality Assessment in the Late Phases

of SDLC. In Science and Information Conference (pp. 639-655). Springer, Cham.

4. Masuda, S., Ono, K., Yasue, T., & Hosokawa, N. (2018, April). A survey of software

quality for machine learning applications. In 2018 IEEE International conference on

software testing, verification and validation workshops (ICSTW) (pp. 279-284). IEEE.

5. Reddivari, S., & Raman, J. (2019, July). Software quality prediction: an investigation

based on machine learning. In 2019 IEEE 20th International Conference on Information

Reuse and Integration for Data Science (IRI) (pp. 115-122). IEEE.

6. Karunanithi, N., Malaiya, Y. K., & Whitley, L. D. (1991, May). Prediction of software

reliability using neural networks. In ISSRE (pp. 124-130).

7. Dragicevic, S., Celar, S., & Turic, M. (2017). Bayesian network model for task effort

estimation in agile software development. Journal of systems and software, 127, 109-

119.

8. Ruk, S. A., Khan, M. F., Khan, S. G., & Zia, S. M. (2019, December). A survey on

adopting agile software development: issues & its impact on software quality. In 2019

IEEE 6th International Conference on Engineering Technologies and Applied Sciences

(ICES) (pp. 1-5). IEEE.

9. Mahfuz, A. S. (2016). Software Quality Assurance: Integrating Testing, Security, and

Audit. CRC Press.

10. Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., &

Muharemagic, E. (2015). Deep learning applications and challenges in big data

analytics. Journal of big data, 2(1), 1-21.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 114 of 117

11. Rashid, E., Patnaik, S., & Bhattacherjee, V. (2012). Software quality estimation using

machine learning: Case-Based reasoning technique. International Journal of Computer

Applications, 58(14).

12. Puri, A., & Singh, H. (2014). Genetic algorithm based approach for finding faulty

modules in open source software systems. International Journal of Computer Science

and Engineering Survey, 5(3), 29.

13. Abouelela, M., & Benedicenti, L. (2010). Bayesian network based XP process

modelling. arXiv preprint arXiv:1007.5115.

14. Ebert, C., Cain, J., Antoniol, G., Counsell, S., & Laplante, P. (2016). Cyclomatic

complexity. IEEE Software, 33(6), 27-29.

15. Ahmed, M. A., & Al-Jamimi, H. A. (2013). Machine learning approaches for predicting

software maintainability: a fuzzy‐based transparent model. IET software, 7(6), 317-326.

16. M. Kretsou, E.M. Arvanitou, A. Ampatzoglou, I. Deligiannis, and V. C. Gerogiannis,

“Change impact analysis: A systematic mapping study”, Journal of Systems and

Software, vol. 174, Dec. 2020.

17. S. A. Bohner, “Impact analysis in the software change process: A year 2000

perspective,” Proceedings of International Conference on Software Maintenance

ICSM-96, pp. 42–51, Aug. 2002.

18. B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based Change Impact

Analysis Techniques,” Software Testing, Verification and Reliability, vol. 23, no. 8, pp.

613–646, Apr. 2012.

19. S. A. Bohner, “Software change impacts-an evolving perspective,” International

Conference on Software Maintenance, 2002. Proceedings., pp. 263–271, Jan. 2003.

20. A. De Lucia, F. Fasano, and R. Oliveto, “Traceability management for Impact Analysis,”

2008 Frontiers of Software Maintenance, pp. 21–30, Nov. 2008.

21. R. S. Arnold and S. A. Bohner, “Impact analysis-towards a framework for comparison,”

1993 Conference on Software Maintenance, pp. 292–301, Sep. 1993.

22. L. Hattori, D. Guerrero, J. Figueiredo, J. Brunet, and J. Dam, “On the precision and

accuracy of Impact Analysis Techniques,” Seventh IEEE/ACIS International

Conference on Computer and Information Science (icis 2008), pp. 513–518, May 2008.

23. X. Sun, B. Li, C. Tao, W. Wen, and S. Zhang, “Change impact analysis based on a

taxonomy of change types,” 2010 IEEE 34th Annual Computer Software and

Applications Conference, pp. 373–382, Jul. 2010.

24. B. Riberio-Neto and R. Baeza-Yates, Modern Information Retrieval. Boston: Addison–

Wesley Longman Publishing Co., 1999.

25. S. Jiang, C. McMillan, and R. Santelices, “Do programmers do change impact analysis

in debugging?” Empirical Software Engineering, vol. 22, no. 2, pp. 631–669, Jul. 2016.

26. A. Dhamija and S. Sikka, “A systematic review of feature location techniques under

software change impact analysis,” International Journal of Computer Sciences and

Engineering, vol. 7, no. 3, pp. 184–192, Mar. 2019.

27. M. Shahid and S. Ibrahim, “Change impact analysis with a software traceability

approach to support software maintenance,” 2016 13th International Bhurban

Conference on Applied Sciences and Technology (IBCAST), pp. 391–396, Jan. 2016.

28. S. Kugele and D. Antkowiak, “Visualization of trace links and change impact analysis,”

2016 IEEE 24th International Requirements Engineering Conference Workshops

(REW), pp. 165–169, Sep. 2016.

29. B. Dit, “Configuring and assembling information retrieval based solutions for software

engineering tasks,” 2016 IEEE International Conference on Software Maintenance and

Evolution (ICSME), pp. 641–646, Jan. 2017.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 115 of 117

30. D. Kchaou, N. Bouassida, and H. Ben-Abdallah, “UML models change impact analysis

using a text similarity technique,” IET Software, vol. 11, no. 1, pp. 27–37, Oct. 2016.

31. S. Nejati, M. Sabetzadeh, C. Arora, L. C. Briand, and F. Mandoux, “Automated change

impact analysis between SysML models of requirements and design,” Proceedings of

the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pp. 242–253, Nov. 2016.

32. A. Ghabi and A. Egyed, “Exploiting traceability uncertainty among artifacts and code,”

Journal of Systems and Software, vol. 108, pp. 178–192, Jun. 2015.

33. N. Almasri, L. Tahat, and B. Korel, “Toward automatically quantifying the impact of a

change in Systems,” Software Quality Journal, vol. 25, no. 3, pp. 601–640, May 2016.

34. T. Sharma and G. Suryanarayana, “Augur: Incorporating hidden dependencies and

variable granularity in Change Impact Analysis,” 2016 IEEE 16th International Working

Conference on Source Code Analysis and Manipulation (SCAM), pp. 73–78, Oct. 2016.

35. T. Rolfsnes, S. Di Alesio, R. Behjati, L. Moonen, and D. W. Binkley, “Generalizing the

analysis of evolutionary coupling for software change impact analysis,” 2016 IEEE 23rd

International Conference on Software Analysis, Evolution, and Reengineering

(SANER), pp. 201–212, May 2016.

36. V. Musco, M. Monperrus, and P. Preux, “A large-scale study of call graph-based impact

prediction using mutation testing,” Software Quality Journal, vol. 25, no. 3, pp. 921–

950, Jul. 2016.

37. H. Cai and R. Santelices, “A framework for cost-effective dependence-based dynamic

impact analysis,” 2015 IEEE 22nd International Conference on Software Analysis,

Evolution, and Reengineering (SANER), Mar. 2015.

38. B. Dit, M. Wagner, S. Wen, W. Wang, M. Linares-Vásquez, D. Poshyvanyk, and H.

Kagdi, “Impactminer: A tool for change impact analysis,” Companion Proceedings of

the 36th International Conference on Software Engineering, pp. 540–543, May 2014.

39. A. Rajan and D. Kroening, “Measuring change impact on program behaviour,”

Validation of Evolving Software, pp. 125–145, Jul. 2015.

40. H. Cai and R. Santelices, “A comprehensive study of the predictive accuracy of

dynamic change-impact analysis,” Journal of Systems and Software, vol. 103, no. C,

pp. 248–265, May 2015.

41. A. Goknil, R. van Domburg, I. Kurtev, K. van den Berg, and F. Wijnhoven,

“Experimental evaluation of a tool for change impact prediction in requirements models:

Design, results, and lessons learned,” 2014 IEEE 4th International Model-Driven

Requirements Engineering Workshop (MoDRE), pp. 57–66, Aug. 2014.

42. A. Goknil, I. Kurtev, K. van den Berg, and W. Spijkerman, “Change impact analysis for

requirements: A metamodeling approach,” Information and Software Technology, vol.

56, no. 8, pp. 950–972, Mar. 2014.

43. M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, and P. Borba, “Making refactoring safer

through impact analysis,” Science of Computer Programming, vol. 93, pp. 39–64, Nov.

2014.

44. M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated Impact Analysis for

managing software changes,” 2012 34th International Conference on Software

Engineering (ICSE), pp. 430–440, Jun. 2012.

45. G. J. Holzmann, “Cobra: A light-weight tool for static and dynamic program analysis,”

Innovations in Systems and Software Engineering, vol. 13, no. 1, pp. 35–49, Jun. 2016.

46. S. Basri, N. Kama, R. Ibrahim, and S. A. Ismail, “A change impact analysis tool for

software development phase,” International Journal of Software Engineering and Its

Applications, vol. 9, no. 9, pp. 245–256, Sep. 2015.

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 116 of 117

47. S. L. Pfleeger and S. A. Bohner, “A framework for software maintenance metrics,”

Proceedings. Conference on Software Maintenance 1990, pp. 320–327, Nov. 1990.

48. K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution,” Proceedings of

the conference on The future of Software engineering - ICSE '00, May 2000.

49. H. Cai and D. Thain, “Distia: A cost-effective dynamic impact analysis for distributed

programs,” Proceedings of the 31st IEEE/ACM International Conference on Automated

Software Engineering, Aug. 2016.

50. L. Zhang, M. Kim, and S. Khurshid, “FaultTracer: A Change Impact and Regression

Fault Analysis Tool for Evolving Java Programs,” Proceedings of the ACM SIGSOFT

20th International Symposium on the Foundations of Software Engineering - FSE '12,

pp. 1–4, Nov. 2012.

51. T. Savage, M. Revelle, and D. Poshyvanyk, “FLAT3: feature location and textual tracing

tool,”Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering - ICSE '10, pp. 255–258, May 2010.

52. J. Buckner, J. Buchta, M. Petrenko, and V. Rajlich, “JRipples: A tool for program

comprehension during Incremental Change,” 13th International Workshop on Program

Comprehension (IWPC'05), May 2005.

53. X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: a tool for change impact

analysis of java programs,” ACM SIGPLAN Notices, vol. 39, no. 10, pp. 432–448, Oct.

2004.

54. M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou, I. Deligiannis, and V. C. Gerogiannis,

“Change impact analysis: A systematic mapping study,”Journal of Systems and

Software, vol. 174, Dec. 2020.

55. D. Binkley, N. Gold, and M. Harman, “An empirical study of static program slice size,”

ACM Transactions on Software Engineering and Methodology, vol. 16, no. 2, p. 8, Apr.

2007.

56. M. Stoerzer, B. G. Ryder, X. Ren, and F. Tip, “Finding failure-inducing changes in java

programs using change classification,” Proceedings of the 14th ACM SIGSOFT

international symposium on Foundations of software engineering - SIGSOFT '06/FSE-

14, pp. 57–68, Nov. 2006.

57. S. P. Day Galbo,“A Survey of Impact Analysis Tools for Effective Code Evolution,”M.S.

thesis, Florida Ins. Tech., Central Florida Univ., Melbourne, Apr. 2017. [Online].

Available: https://repository.lib.fit.edu/handle/11141/1438

58. T. W. Aung, H. Huo, and Y. Sui, “A literature review of automatic traceability links

recovery for software change impact analysis”, Proceedings of the 28th International

Conference on Program Comprehension, pp. 14–24, Jul. 2020.

59. T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining version histories to

guide software changes”, IEEE Transactions on Software Engineering, vol. 31, no. 6,

pp. 429–445, Jul. 2004.

60. T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient and precise dynamic impact

analysis using execute-after sequences”, Proceedings of the 27th international

conference on Software engineering - ICSE '05, May 2005.

61. M. Shahid and S. Ibrahim, “Change impact analysis with a software traceability

approach to support software maintenance,” 2016 13th International Bhurban

Conference on Applied Sciences and Technology (IBCAST), pp. 391–396, Jan. 2016.

62. Suneja, S., Zheng, Y., Zhuang, Y., Laredo, J., and Morari, A., “Learning to map source

code to software vulnerability using code-as-a-graph”, arXiv e-prints, 2020.

doi:10.48550/arXiv.2006.08614.

https://repository.lib.fit.edu/handle/11141/1438

Deliverable 4.5

 © 2024 SmartDelta Consortium Page 117 of 117

63. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

64. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735-1780.

65. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

66. Ukkonen, Esko (1985). "Algorithms for approximate string matching". Information and

Control. 64 (1–3): 100–118.

67. Abbas, M., Saadatmand, M., Enoiu, E., Sundamark, D., & Lindskog, C. (2020).

Automated reuse recommendation of product line assets based on natural language

requirements. In International Conference on Software and Software Reuse (pp. 173-

189). Springer, Cham.

68. Borg, M., Wnuk, K., Regnell, B., Runeson, P.: Supporting change impact analysis using

a recommendation system: An industrial case study in a safety-critical context. IEEE

Transactions on Software Engineering 43(7), 675–700 (2016)

69. Abbas, M., Ferrari, A., Shatnawi, A., Enoiu, E. P., & Saadatmand, M. (2021). Is

requirements similarity a good proxy for software similarity? an empirical investigation

in industry. In International Working Conference on Requirements Engineering:

Foundation for Software Quality (pp. 3-18). Springer, Cham.

70. Abbas, M., Ferrari, A., Shatnawi, A., Enoiu, E., Saadatmand, M., & Sundmark, D.

(2022). On the relationship between similar requirements and similar software.

Requirements Engineering, 1-25.

71. Walker, A., Cerny, T., Song, E.: Open-source tools and benchmarks for code-clone

detection: past, present, and future trends. ACM SIGAPP Applied Computing Review

19(4), 28–39 (2020)

72. Kaindl, H., & Mannion, M. (2015). A feature-similarity model for product line

engineering. In International Conference on Software Reuse (pp. 34-41). Springer,

Cham.

73. Davril, J. M., Delfosse, E., Hariri, N., Acher, M., Cleland-Huang, J., & Heymans, P.

(2013, August). Feature model extraction from large collections of informal product

descriptions. In proceedings of the 2013 9th joint meeting on foundations of software

engineering (pp. 290-300).

74. OMA compliant API, http://www.openmobilealliance.org/wp/API_Inventory.html

75. M.-C. Lee, “Software Quality Factors and Software Quality Metrics to Enhance

Software Quality Assurance,” Br J Appl Sci Technol, vol. 4, no. 21, pp. 3069–3095,

Jan. 2014, doi: 10.9734/BJAST/2014/10548

76. Benedikt Dornauer, Michael Felderer, Johannes Weinzerl, Mircea-Cristian Racasan,

and Martin Hess. 2023. SoHist: A Tool for Managing Technical Debt through Retro

Perspective Code Analysis. In Proceedings of the 27th International Conference on

Evaluation and Assessment in Software Engineering (EASE '23). Association for

Computing Machinery, New York, NY, USA, 184–187.

https://doi.org/10.1145/3593434.3593460

77. https://www.splunk.com/en_us/blog/learn/incident-response-metrics.html

http://www.openmobilealliance.org/wp/API_Inventory.html
https://doi.org/10.1145/3593434.3593460

	Executive Summary
	Project Description
	Document Glossary
	1. Introduction
	1.1. Project Context
	1.2. Tasks
	1.3. Use Cases
	1.4. Functional and Non-Functional Requirements

	2. Background and Literature Review
	2.1. Software quality trend analysis and prediction
	2.2. Importance of Software Quality Metrics
	2.2.1. Process Metrics
	2.2.2. Product Metrics
	2.2.3. Project Metrics
	2.2.4. Production Metrics
	2.2.5. Security Response Metrics
	2.2.6. Defect and version control metrics

	2.3. Metrics Reporting Template
	2.4. Software Quality Analysis Prediction
	2.4.1. Neural network-based software quality prediction models
	2.4.2. Bayesian network for predicting software quality models
	2.4.3. Models for using Genetic Algorithm to forecast software quality Identifying defective modules
	2.4.4. Fuzzy logic for software quality prediction Models:
	2.4.5. Software quality estimation using Case-based reasoning (CBR)
	2.4.6. Decision tree algorithm for software quality Classification
	2.4.7. Large Language Model (LLM)

	2.5. Similarity analysis and reuse recommendation
	2.6. Change impact analysis and prediction
	2.6.1. Change Impact Analysis
	2.6.2. Traceability Based Change Impact Analysis
	2.6.3. Dependency Based Change Impact Analysis
	2.6.4. Traceability Based Change Impact Analysis Techniques
	2.6.5. Dependency Based Change Impact Analysis Techniques
	2.6.6. Dependency based Change Impact Analysis Challenges
	2.6.7. Tool Support for Change Impact Analysis
	2.6.8. Commercial Change Impact Analysis Tools
	2.6.9. Findings and Future Scope

	3. Key Innovation Areas
	4. Contributions to the State-of-the-art
	4.1. Novel ML-Based Anomaly Detection Methods
	4.1.1. Prediction of localization of anomalies and errors using ML methods in micro-service-based architecture (NetRD)
	4.1.2. Anomaly detection and prioritizing cybersecurity offenses by utilizing a diverse set of supervised and unsupervised models (Ontario Tech, Glasshouse Systems)
	4.1.3. Anomaly detection for telemetric data (Hoxhunt)

	4.2. Automatic Code Analysis and Change Impact Analysis Approaches
	4.2.1. Improved knowledge sharing among developers using automatic metrics collection from version control systems for impact analysis (ERSTE, DAKIK, Kuveyt Turk, Cape of Good Code)
	4.2.2. Automatic collection of code analysis metrics of cloud-based software and faults predictions (Ontario Tech, Team Eagle)
	4.2.3. Automatic analysis of technical debts (Cape of Good Code, Vaadin)
	4.2.4. Automatic code analysis for historical code analysis and quality assessment (University of Innsbruck and cc.com)
	4.2.5. Analyze software quality trends based on issues and schedule the issues to find the balance between focussing on improving quality versus adding new features (FOKUS)

	4.3. ML-Based Similarity Analysis Approaches and Recommendations
	4.3.1. Similarity analysis of State Machines using hierarchical modularization (TWT, Akkodis)
	4.3.2. Graph based similarity analysis and recommendations (TWT, Software AG, Vaadin)
	4.3.3. ML-based methods to identify requirements from large data repository and generate recommendations (RISE, Alstom)
	4.3.4. Automatic issue labeling and similarity analysis using advanced natural language processing (IFAK, Software AG)
	4.3.5. LLM-based indexing for advanced semantic artefacts search in corpus-based reuse use case (Akkodis)
	4.3.6. Predicting commercial charging station energy usage (eCamion and OntarioTechU)

	5. Tools/Technologies Developed in WP4
	6. Conclusions
	7. References

