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Executive Summary 

This document discusses the quality optimization and recommendation methodology of 

SmartDelta. Three different tasks are performed which are: software quality trend analysis and 

prediction, similarity analysis and reuse recommendation, and change impact analysis and 

prediction. These tasks lead to three key innovations areas which are novel ML-based anomaly 

and threat detection methods, automatic code analysis and change impact analysis 

approaches, and similarity analysis approaches and recommendations. More than 20 tools 

were developed in this work package for software quality optimization and recommendations.   
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Project Description 

Acronym and Full-length Title 

20023 SmartDelta 

Program Call ITEA 3 Call 7 

Full-length Title Automated Quality Assurance and Optimization in Incremental Industrial 

Software Systems Development 

Roadmap Challenge Smart engineering 

Description 

 
Software-intensive industrial systems are typically not designed and built from scratch for 

each new customer and order, but rather as increments over an existing product or as a 

modified version tailored for the needs of a particular customer, market, or region. Similarly, 

for a single product and considering a continuous integration/continuous delivery approach 

with frequent builds and commits, a system gets built incrementally and iteratively resulting 

in many intermediate builds and versions. However, far too often it is observed that as a 

system is being built and incremented with new features, certain quality aspects of the 

system begin to deteriorate. Therefore, it is important to be able to accurately analyse and 

determine the quality implications of each change and increment to a system, particularly 

in a continuous engineering context. To address these challenges, SmartDelta builds 

automated solutions for quality assessment of product deltas in a continuous engineering 

environment by providing smart analytics from development artifacts (e.g., source code, 

log files, requirement specifications, etc.,) and system execution, offering insights into 

quality improvements or degradation of different product versions, and providing 

recommendations for next builds. 

 
  



Deliverable 4.5 

 © 2024 SmartDelta Consortium Page 4 of 117 

 

Table of Contents 

Executive Summary .................................................................................................................. 2 

Project Description ................................................................................................................... 3 

Document Glossary................................................................................................................... 8 

1. Introduction ...................................................................................................................... 9 
1.1. Project Context ................................................................................................................................ 10 
1.2. Tasks ................................................................................................................................................ 11 
1.3. Use Cases......................................................................................................................................... 12 
1.4. Functional and Non-Functional Requirements ............................................................................... 13 

2. Background and Literature Review .................................................................................. 14 
2.1. Software quality trend analysis and prediction .............................................................................. 14 
2.2. Importance of Software Quality Metrics ......................................................................................... 14 

2.2.1. Process Metrics ...................................................................................................................... 15 
2.2.2. Product Metrics ...................................................................................................................... 15 
2.2.3. Project Metrics ....................................................................................................................... 16 
2.2.4. Production Metrics ............................................................................................................... 16 
2.2.5. Security Response Metrics ................................................................................................. 16 
2.2.6. Defect and version control metrics .................................................................................... 17 

2.3. Metrics Reporting Template ........................................................................................................... 17 
2.4. Software Quality Analysis Prediction .............................................................................................. 18 

2.4.1. Neural network-based software quality prediction models ............................................ 19 
2.4.2. Bayesian network for predicting software quality models .............................................. 19 
2.4.3. Models for using Genetic Algorithm to forecast software quality Identifying defective 

modules 20 
2.4.4. Fuzzy logic for software quality prediction Models: ........................................................ 20 
2.4.5. Software quality estimation using Case-based reasoning (CBR) ................................. 21 
2.4.6. Decision tree algorithm for software quality Classification ............................................ 21 
2.4.7. Large Language Model (LLM)............................................................................................ 21 

2.5. Similarity analysis and reuse recommendation .............................................................................. 23 
2.6. Change impact analysis and prediction ........................................................................................... 25 

2.6.1. Change Impact Analysis ..................................................................................................... 25 
2.6.2. Traceability Based Change Impact Analysis ................................................................... 27 
2.6.3. Dependency Based Change Impact Analysis ................................................................. 27 
2.6.4. Traceability Based Change Impact Analysis Techniques .............................................. 27 
2.6.5. Dependency Based Change Impact Analysis Techniques ............................................ 29 
2.6.6. Dependency based Change Impact Analysis Challenges ............................................. 30 
2.6.7. Tool Support for Change Impact Analysis ....................................................................... 31 
2.6.8. Commercial Change Impact Analysis Tools .................................................................... 36 
2.6.9. Findings and Future Scope ................................................................................................ 40 

3. Key Innovation Areas ...................................................................................................... 42 

4. Contributions to the State-of-the-art ............................................................................... 44 
4.1. Novel ML-Based Anomaly Detection Methods ............................................................................... 44 

4.1.1. Prediction of localization of anomalies and errors using ML methods in micro-service-based 

architecture (NetRD) ................................................................................................................................ 44 
4.1.2. Anomaly detection and prioritizing cybersecurity offenses by utilizing a diverse set of 

supervised and unsupervised models (Ontario Tech, Glasshouse Systems) .............................. 50 



Deliverable 4.5 

 © 2024 SmartDelta Consortium Page 5 of 117 

 

4.1.3. Anomaly detection for telemetric data (Hoxhunt) ............................................................ 55 
4.2. Automatic Code Analysis and Change Impact Analysis Approaches ............................................... 58 

4.2.1. Improved knowledge sharing among developers using automatic metrics collection 

from version control systems for impact analysis (ERSTE, DAKIK, Kuveyt Turk, Cape of Good 

Code) 58 
4.2.2. Automatic collection of code analysis metrics of cloud-based software and faults 

predictions (Ontario Tech, Team Eagle) ............................................................................................ 63 
4.2.3. Automatic analysis of technical debts (Cape of Good Code, Vaadin) ......................... 69 
4.2.4. Automatic code analysis for historical code analysis and quality assessment 

(University of Innsbruck and cc.com) ................................................................................................. 73 
4.2.5. Analyze software quality trends based on issues and schedule the issues to find the 

balance between focussing on improving quality versus adding new features (FOKUS) .......... 80 
4.3. ML-Based Similarity Analysis Approaches and Recommendations ................................................. 85 

4.3.1. Similarity analysis of State Machines using hierarchical modularization (TWT, 

Akkodis) 85 
4.3.2. Graph based similarity analysis and recommendations (TWT, Software AG, Vaadin)

 89 
4.3.3. ML-based methods to identify requirements from large data repository and generate 

recommendations (RISE, Alstom) ...................................................................................................... 92 
4.3.4. Automatic issue labeling and similarity analysis using advanced natural language 

processing (IFAK, Software AG) ......................................................................................................... 99 
4.3.5. LLM-based indexing for advanced semantic artefacts search in corpus-based reuse 

use case (Akkodis) .............................................................................................................................. 105 
4.3.6. Predicting commercial charging station energy usage (eCamion and OntarioTechU)

 108 

5. Tools/Technologies Developed in WP4 ........................................................................... 110 

6. Conclusions .................................................................................................................... 112 

7. References ..................................................................................................................... 113 

 

  



Deliverable 4.5 

 © 2024 SmartDelta Consortium Page 6 of 117 

 

List of Figures 

 

Figure 1 :  WP4 related entities: TE10 and TE11, will be analyzed through – Automated CI/CD Feedback 

Loops ....................................................................................................................................................... 9 

Figure 2 :  Incident response Lifecycle .................................................................................................. 17 

Figure 3 : CI/CD pipeline with LLM Integration ..................................................................................... 23 

Figure 4: Word2vec embedding architecture with the skip-gram model. ............................................ 24 

Figure 5: Change impact analysis process. © Diamani et al. [3] ........................................................... 25 

Figure 6: Traceability in software work products ©IEEE, 1991............................................................. 27 

Figure 7: Static change impact analysis process. © Diamani et al. [3] .................................................. 29 

Figure 8: Dynamic change impact analysis process [3] ......................................................................... 30 

Figure 9: A high-level visual overview of our proposed framework, showing the key steps in our 

pipeline. ................................................................................................................................................. 51 

Figure 10: Knowledge Sharing Network Diagram ................................................................................. 60 

Figure 11: Team Healthiness tables and bubble charts ........................................................................ 61 

Figure 12: Knowledge Risks and Team Turnover dashboard ................................................................ 61 

Figure 13: Matched contributors of open source Django project ........................................................ 62 

Figure 14: System Model ....................................................................................................................... 64 

Figure 15: AMAF Architecture ............................................................................................................... 65 

Figure 16: Developer Effort to Resolve All Bugs (Logistic Regression n) ............................................... 67 

Figure 17: Sample Anomaly Detection Results (Isolation Forest) ......................................................... 67 

Figure 18: Average Hotspot Vulnerabilities with Additional GAN-generated Data (Logistic Regression)

 ............................................................................................................................................................... 68 

Figure 19: Code Analysis Methodology ................................................................................................. 74 

Figure 20: Distribution Analysis of Software Quality Metrics ............................................................... 77 

Figure 21: Correlation among Software Quality Metrics ...................................................................... 78 

Figure 22: Usage for SoHist v2 .............................................................................................................. 79 

Figure 23: Results for grafana/grafana without fine-tuning ................................................................. 82 

Figure 24: Results for grafana/grafana with fine-tuning ....................................................................... 83 

Figure 25: 3 Results for vaadin/flow without fine-tuning ..................................................................... 83 

Figure 26: Results for vaadin/flow with fine-tuning.............................................................................. 83 

Figure 27: Commit Frequency, Average Commit Size and Bug Issue Count Over Time for the vaadin/flow 

repository with a log scale for average commit size ............................................................................. 84 

Figure 28: Evolution of comparison time depending on the state machine size .................................. 87 

Figure 29: REQ-I Approach: Approach for requirements extraction and identification ....................... 93 

Figure 30: REQ-I Data: Considered data from REQ-I evaluation ........................................................... 93 

Figure 31: REQA Approach: Approach for requirements allocation ..................................................... 95 

Figure 32: REQA Data: Considered data for REQA evaluation .............................................................. 96 

Figure 33: ReqIndentifier: Evaluation results REQ-I .............................................................................. 97 

Figure 34: REQAev: Evaluation with various pipelines for REQA .......................................................... 98 

Figure 35: Automatic Issue Similarity Analysis pipeline ...................................................................... 102 

Figure 36: Visualization of artefact distribution in 2-dim space showing no separation of file types 107 

Figure 37: Overview of the approach to data collection and prediction ............................................ 109 

Figure 38: Example of prediction cycle made using Random Forest Regression during cross-validation 

process ................................................................................................................................................ 110 



Deliverable 4.5 

 © 2024 SmartDelta Consortium Page 7 of 117 

 

 

List of Tables 

Table 1: SmartDelta WP4 tasks ............................................................................................................. 11 

Table 2: SmartDelta use cases ............................................................................................................... 12 

Table 3: Academic Change Impact Analysis Tools ................................................................................. 32 

Table 4: Academic Change Impact Analysis Tool Helpers ..................................................................... 35 

Table 5: Commercial Change Impact Analysis Tools ............................................................................. 36 

Table 6: Microservice Interactions Prediction Experimental Results .................................................... 47 

Table 7: Accuracy Rates of Anomaly Prediction in Manually Labelled Data Experiments .................... 47 

Table 8: Accuracy Rates of Anomaly Detection with Unsupervised Methods Experiments ................. 48 

Table 9: Accuracy Rates of Anomaly Prediction in Unsupervised Labelled Data Experiments for 

Quadruple Combined Data (IF_4)} ........................................................................................................ 48 

Table 10: Anomaly detection tool performance ................................................................................... 53 

Table 11: Comparison of ML Model Scores and SOC Ratings for Offenses ........................................... 54 

Table 12: Comparison of Impact Score and SOC Ratings for Offenses ................................................. 54 

Table 13: Bug and Code Smell Descriptions .......................................................................................... 74 

Table 14: Counts of Issues Across Different Software Projects ............................................................ 75 

Table 15: Success rate of finding the correct delta paths ..................................................................... 88 

Table 16: Models tested for energy load prediction and their evaluation of rolling cross validation 109 

 

  



Deliverable 4.5 

 © 2024 SmartDelta Consortium Page 8 of 117 

 

Document Glossary 

Acronym Definition 

AST Abstract Syntax Tree  

AI/ML Artificial Intelligence / Machine Learning 

CI/CD Continuous Integration / Continuous Delivery 

CIT Combinatorial Interaction Testing 

CPaaS Communications Platform as a Service 

DataOps Data Operations 

DevOps Development (Dev) and Operations (Ops) 

EFP Extra-Functional Property 

FinTech Financial Technology 

FM Feature Modelling 

FR Functional Requirement 

FODA Feature-Oriented Domain Analysis  

IoT Internet of Things  

MBT Model-Based Testing 

MLOps Machine Learning Operations 

NFP Non-Functional Property 

NFR Non-Functional Requirement 

NLP Natural Language Processing 

OEM Original Equipment Manufacturer 

OVM Orthogonal Variability Modelling 

PaaS Platform as a Service 

PLE Product Line Engineering 

QA Quality Assurance 

QIP Quality Improvement Paradigm 

RCS Rich Communication Services 

RL Reinforcement Learning 

SPLE Software Product Line Engineering 

UC Use Case 

UCaaS Unified Communication as a Service 

  



Deliverable 4.5 

 © 2024 SmartDelta Consortium Page 9 of 117 

 

1. Introduction 

SmartDelta aims to build automated solutions for quality assessment of product deltas in 

a continuous engineering environment by providing smart analytics from development 

artifacts (e.g., source code, log files, requirement specifications) and system execution, 

offering insights into quality improvements or degradation both in and of different product 

evolutions, and providing recommendations for next builds. SmartDelta will develop 

solutions for automated trend analysis and build recommendation with respect to quality 

characteristics using AI/ML for pattern recognition, optimization, and fault prediction 

techniques. 

 

 
 Figure 1 :  WP4 related entities: TE10 and TE11, will be analyzed through – Automated CI/CD Feedback Loops 

 

Figure 1 shows WP4 related entities Smart Analysis Services (TE10) and Quality Analysis 

and Visualization Dashboard (TE11), smart analytics services and quality analysis and 

visualization dashboard. To achieve the goals of work package 4, it utilizes advanced AI 

and ML techniques to enable automated trend analysis, pattern recognition, fault 

prediction, and build recommendations. Key contributions include novel methods for 

anomaly detection and cybersecurity threat prioritization, which enhance operational 

stability and security in complex systems like micro-service architectures and telemetric 

environments. Additionally, automated tools for code analysis streamline maintenance, 

manage technical debt, and improve software reliability. Furthermore, our work advances 

similarity analysis and reuse recommendations, employing ML-driven techniques to identify 

reusable components and optimize software evolution. Moreover, tools for change impact 

analysis predict and evaluate the effects of changes on system quality,  ensuring robust, 
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scalable solutions for continuous integration and delivery. These contributions set a high 

standard for quality assurance and optimization in industrial software systems.  

 

1.1. Project Context 

Software is a dynamic entity that exhibits various quality characteristics as it undergoes 

updates over time. These enhancements not only contribute to its own development but 

also influence the operational environments in which it operates. Approaching software 

development with this awareness regarding quality can be a key factor for the long-term 

success of a company in the highly competitive market of industrial software-intensive 

products today. Far too often it is observed that as a system is being built and incremented 

with new features, certain quality aspects of the system begin to deteriorate. Therefore, it 

is important to be able to accurately analyse and determine the implications of each change 

and increment to a system, particularly in a continuous engineering context. This is, 

however, a complicated problem to solve because: i) most quality attributes are inter-

dependent and cannot be addressed in isolation, for instance, adding more security 

features to a system can degrade its overall performance and also impact its energy 

consumption; ii) over time, companies end up having many different product versions and 

builds (including internal versions), tailored and customized for different customers, 

markets and regions, but each having different quality characteristics to analyse and test; 

iii) while at the same time, the size and complexity of the systems are also rapidly growing; 

iv) making the problem even more challenging under constant pressures to reduce 

development cost and time-to-market to be able to stay ahead of the competition.  

 

To address the above challenges, SmartDelta will develop solutions for large-scale 

automated quality assurance and optimization in incremental development of industrial 

software-intensive systems. Towards this goal, SmartDelta will develop a set of tools and 

approaches as part of the SmartDelta framework in the following directions: 

 

• Automated analysis solutions (e.g., based on AI/ML, model extraction, and pattern 

recognition) to identify and extract quality improvement or degradation trends from and 

across a set of existing/previous product versions and development artifacts. 

• Techniques to identify the features, design decisions, and development artifacts 

causing quality degradation and deviation in a system. 

• Static and dynamic verification and validation solutions, using techniques such as static 

code analysis, model-based test generation, test prioritization and selection, and 

mutation testing, to assess and ensure desired quality attributes of a system.  

• Novel techniques for automated reuse analysis and design recommendation for next 

builds optimizing with respect to specific quality attributes such as performance.  

• A set of innovative visualization solutions to illustrate software quality attributes, and 

their evolution and trend analysis results over different builds and versions. 

 

Considering the relevance and importance of the project topic for a wide range of industries 

offering software-intensive products, the project has attracted and brought together various 

partners from different sectors and market domains with complementary expertise, 

knowledge, and technologies to develop the proposed solutions and verify their technology 
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readiness levels. In particular, the consortium consists of a well-balanced mix of partners 

from Sweden, Germany, Canada, Turkey, Spain, and Austria, including industrial use-

cases from the railway, telecommunication, logistics and mobility, FinTech and banking, 

cybersecurity, and enterprise software domains. 

 

In this work package WP4, one of the technical activities is Service Specification and 

Implementation. In this activity, services for optimization as well as ML-based solutions 

for predicting quality trends, pattern recognition, and automated recommendations are 

specified and implemented. The challenges in this activity are to collect quality-related 

data, to analyze data and observe quality trends, to analyze trends and predict future 

trends, to recommend quality measures aligned with the observed trends, and to provide 

recommendations for next and updated builds to improve quality. Trends shall include 

development as well as operation (DevOps; feedback of operational data into 

development), intermediate products as well as releases (CI/CD), and functional as well as 

extra-functional quality characteristics. 

 

Another technical activity of this work package, which is also related to WP5, is Tool Set 

and Service Dashboard Integration. The main goal of this activity is to provide a turnkey 

framework for rapid quality assessment of product deltas through advanced automated tool 

sets. The challenge is software integration and connectivity of different tools, developed by 

different groups, with various interfaces and intermediate representations of artifacts. The 

resulting integrated dashboard shall be applicable and useful for different end-users, such 

as industrial system providers, developers, testers, and infrastructure operators, and shall 

provide a uniform view on quality, the evolution of quality, pinpointing to potential problems 

and issues, and making recommendations for improvement. 

1.2. Tasks 

The following table outlines the different tasks of this work package. 

 
Table 1: SmartDelta WP4 tasks 

Task Task Name Task Description 

T4.1 
Software quality trend analysis and 

prediction 

Task 4.1 will develop automated 
solutions to extract software quality 

trends in terms of degradation or 
improvement of different quality 
characteristics across different 

versions and builds 
 

T4.2 
Similarity analysis and reuse 

recommendation 

In task T4.2, automated solutions to 
perform similarity analysis with the 

purpose of identifying similar software 
artifacts across a range of product 
versions are developed. Moreover, 
based on the results of the similarity 

analysis, reuse recommendations will 
also be provided for i) selecting design 
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Task Task Name Task Description 

artifacts and component that can be 
reused for the next builds to achieve 

desired levels of quality characteristics in 
the system, as well as ii) test cases that 
can be reused across different product 

versions. 
 

T4.3 Change impact analysis and prediction 

This task will build solutions to 
automatically determine how a change in 

the software has affected its quality 
characteristics and provide predictions 
on possible impacts of the upcoming 

changes. 
 

1.3. Use Cases 

The use cases and summary in the SmartDelta project are as in Table 2. 

 

Table 2: SmartDelta use cases 

Use 

Case ID 
Country  Partner Domain Topic 

UC1 Sweden Alstom Railway 
Quality in agile model-based 

system and product line 
engineering  

UC2 Germany AKKA eMobility 
Charging communication 

controller software for electrical 
vehicle 

UC3 Canada eCAMION  eMobility  
High quality and cybersecure 
software in deployable energy 

hubs 

UC4 Turkey NetRD Telecommunication 
AI based fault and performance 
analysis in cloud communication 

services 

UC5 Turkey Kuveyt Türk Banking and Finance 

Continuous improvement of code 

quality, security and performance in 

core banking software 

UC6 Germany 
Software 

AG 
Enterprise Software  

Continuous security and quality 

improvement in enterprise software 

UC7 Austria 
c.c.com  

 

Logistics and 
Personal mobility  

 

Continuous quality monitoring & 

improvement in automated 

traffic detection software 

UC8 Canada GlassHouse Cybersecurity 
Continuous improvement of 

cybersecurity solutions 
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Use 

Case ID 
Country  Partner Domain Topic 

UC9 Spain 
Izertis and 

UC3M  
Digital and IT  Semantic Matchmaking 

UC10 Finland Vaadin 
Software development 

platform 

Continuous quality, security and 

performance improvement in 

software development platform 

UC11 Turkey Arcelik Home Appliances 

Measure code quality and 

performance in employees’ single 

point of solution: connecta 

 

1.4. Functional and Non-Functional Requirements  

Business requirements define the scope of the solution, what a company needs and its 

objectives, while functional requirements deal with how the company will achieve it. 

 

Functional requirements (FRs) help to understand why the application exists in the first 

place. In other words, what business problem does it solve? More to the point, what is it 

originally designed to do? When you analyse an application with a focus on how the 

application goes about solving their business problem, you will end up analysing its 

functional requirements. Functional requirements are the things that the application 

absolutely must do. In this project, all business and user requirements are handled as 

functional requirements. 

 

Non-functional requirements (NFRs) are requirements that may not necessarily need to be 

met for the application to function (i.e., functional correctness), but define the quality of 

services and functionalities that a system is expected to provide. NFRs define system 

attributes such as security, reliability, performance, maintainability, scalability, and 

usability. They serve as constraints or restrictions on the design of the system across the 

different backlogs and subsystems. 
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2. Background and Literature Review 

2.1. Software quality trend analysis and prediction 

Software quality metrics are integral to understanding and enhancing a wide range of 

project-related aspects of the development lifecycle if we want to manage all the elements 

effectively and assess the product's quality before release. 

 

Managers use metrics as valuable tools to enhance their understanding of the production 

process. While metrics alone may not directly improve development, they serve as a 

powerful means to illustrate the current state of the project by offering insightful statistics 

for each process step. This information equips managers with the necessary insights to 

identify potential issues and implement effective solutions, ultimately contributing to the 

overall improvement of the project. 

 

Software development is a complicated and multifaceted process. It involves many 

different tasks and activities. We will evaluate some of the most important metrics to help 

you assess the success of the software development life cycle. 

According to the IEEE, software quality metrics are [1]:  

(1) A quantitative assessment of the extent to which a specific quality attribute is 

present in each item. 

(2) A function that takes software data as inputs and produces a single numerical result 

that may be used to represent how much a specific quality feature is present in the 

software 

2.2. Importance of Software Quality Metrics 

It would be wiser to start with their objective before delving into the IT world and all its code 

quality criteria. Why is it necessary to use these technologies at all? Let's examine the 

significant benefits of software metrics in more detail [2]: 

 

Productivity: Fast data processing is an application's most valuable feature. The better, 

the less time it needs to do the job. Some indicators aid in boosting and monitoring the 

project's productivity and resolving pressing problems. 

 

Creating decisions: These indicators can be helpful when determining how decisions 

were influenced. Project leaders can organize goals and priorities while avoiding rash 

decisions. It enables them to meet the objectives of software quality assurance, optimize 

the project, and make informed concessions. 

 

Sorting data: Metrics can be used in complex projects to lessen misconceptions and 

ambiguities. You can obtain unbiased information by using the software organization.  

 

Priorities: Managers will no longer struggle to track, recognize, or order the project's 

problems without measurements. All levels of a company can communicate with them.  
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Progress control: Is the project finished on time? How is everything going? Controlling 

the work's progress and the outcome is crucial, and you should always have the answers. 

These metrics display the software product's status, quality, and modifications.  

 

Management approach: Some hazards require direct estimation, management, and 

prioritization. Metrics assist in managing such problems and preventing further expensive 

remedies. In addition, they help with management tactics, identify faults, and fix technical 

aspects of the project. 

 

There are different categories of metrics. Some example categories of metrics are:  

 

1. Process metrics  

2. Product metrics 

3. Project metrics  

4. Production metrics 

5. Security response metrics 

6. Traditional metrics 

7. Object-oriented metrics 

 

Below, a detailed discussion of each of the above metrics is listed: 

2.2.1. Process Metrics 

Process metrics [3] make the Software Development Life Cycle (SDLC) more efficient. 

Process metrics measure various aspects of software development. One good example of 

this metric is the duration of time that the process of software creation tasks.  

2.2.2. Product Metrics 

Product metrics are software product measures at any phase of its development, from 

requirements to the installed system. Product metrics define the product's attributes, such 

as size, code complexity, design aspect, performance, and quality level.  

 

Line of Code:  This simple metric is used to calculate the software size, including any line 

of program text, excluding comments or blank lines. By utilizing this, one can measure the 

productivity of programmers.  

 

Token Count: A software can be considered a collection of either operators or operands 

(also known as a token). A token can be used as a metric. 

 

Function Count: Software can be better interpreted as a collection of a larger unit called 

a function or module. Modules can be compiled independently. For example, if the software 

requires n modules. We can say that the module size should be about fifty to sixty code 

lines. Hence the software is about n x 60 lines of code. 

 

McCabe’s Cyclomatic Metric:  McCabe presented a software program as a set of a 

connected directed graphs consisting of nodes and arcs. The nodes, parts of the code, do 
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not have any branches, while arcs represent the control flow when the program runs. The 

complexity of software can be associated with the topological density of a graph.  

 

Stetter’s Program Complexity Measure: Stetter’s metric looks into the data flow and the 

program's control flow, which may be viewed as a sequence of declarations and 

statements.   

2.2.3. Project Metrics 

The software team adjusts project workflow and technical operations using software project 

metrics. Project metrics prevent delays in the development timeline, reduce potential risks, 

and continuously evaluate the quality of the final result. Every project  should evaluate its 

resources, deliverables, and outcomes (effectiveness of deliverables).  

 

For example, in a software development project aimed at creating a new e-commerce 

website, project metrics are used to track key indicators such as website load times, 

conversion rates, and customer feedback. By analyzing these metrics, the team can 

identify and address performance bottlenecks, improve user experience, and optimize the 

site's overall quality and effectiveness. 

2.2.4. Production Metrics 

This metric estimates the developers' productivity, speed, and quantity of completed work. 

We can check production metrics by using the number of active days, failure and debugging 

times, productivity, task scopes, and other factors.  

  

Active days: During this time, developers write and iterate over code. It does not include 

any additional minor tasks, like planning. Finding hidden costs is made simpler by these 

metrics. 

 

Failure and repair time: Errors and defects cannot be completely eliminated when making 

a new product. As a result, all you can do is monitor the amount of time the engineers 

spend searching for a solution. 

 

Productivity:  Although measuring this aspect is difficult, each developer's code volume 

can serve as a guide. 

 

Task scopes: An annual maximum of this amount of code can be produced by a developer. 

It may seem odd but knowing how many engineers a project will need is helpful.  

 

Code turnover: Chaos in the code represents the proportion of the product's code that has 

been altered. B dividing the frequency of application failures (F) by the frequency of usage 

(U), the application crash rate (ACR) can be calculated = F/U. 

2.2.5. Security Response Metrics 

These metrics aim to ensure product safety, as the name suggests. When evaluating the 

quality of your software, you should pay attention to how well it handles security. Due to 
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the increasing frequency of hacking attacks, this stage is crucial. It is essential to observe 

how quickly the project can either notify the IT manager of the issue or find a solution [9].  

 

Endpoint incidents: the number of devices affected by a virus or other security threat over 

a given time frame. 

 

Mean time to response (MTTR): the interval between discovering a security event and 

taking corrective action. 

 

Mean Time to Detect (MTTD): It measures the time interval between the occurrence of a 

security event and its successful detection. A shorter MTTD indicates a more efficient and 

timely identification of security incidents, enabling quicker response and mitigation actions.  

 

 
Figure 2 :  Incident response Lifecycle 

2.2.6. Defect and version control metrics  

The primary determinant of how well-made a piece of software is its defect count. It 

contains: 

• Stages of the flaws' emergence 

• How many defect reports were there 

• The number of defects per code line (density) 

• The number of defects per code line (thickness) 

 

Version control system (GitHub) requests might demonstrate project complexity, pull 

request involvement, and team communication. The following indicators are part of quality 

control for software development: 

• Pull requests that failed the testing process 

• Breaking pull requests for the build 

• The number of requests that were merged and rejected 

• The number of comments on pull requests 

• They shouldn't be excessively large or little. However, these indicators rise the more 

complex the software gets.  

 

From the above analysis, we have created a metrics reporting template as follows: 

2.3. Metrics Reporting Template 

• Product metrics: Measures certain characteristics of the software, such as size, 

complexity, design features, performance, and quality level.  
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• Process metrics: These metrics can be used to expand the development and 

maintenance activities of the software. 

• Project metrics: These metrics define the project characteristics and execution.  

• Production metrics: These types of metrics measure the amount of work 

completed and determine the efficiency of software development teams. 

• Security response metrics: They are used to check how security, operations, and 

development teams are countering to security issues for each application 

supported. Applications that have low-security metrics may have underlying quality 

issues. 

• Defect and Version control system Metrics: The primary determinant of how well-

made a piece of software is its defect count. 

• Traditional metrics: Such as Line of code (LOC), Cyclometric complexity, etc. 

2.4. Software Quality Analysis Prediction 

The quality of software plays a pivotal role in the successful deployment of software products. 

However, software developers face significant challenges in predicting a product's quality 

before it is tested in real-world scenarios. As highlighted in the literature, research in software 

quality prediction remains relatively limited [4]. 

Machine learning approaches have emerged as effective solutions for forecasting software 

quality. These approaches not only enhance the accuracy of quality predictions but also aim 

to minimize the developer’s workload by providing early warnings during the software 

development lifecycle. Early detection of potential quality issues can significantly reduce 

downstream costs and improve the overall efficiency of the development process. 

 

To achieve this, machine learning methods can be broadly categorize into supervised and 

unsupervised learning techniques, each addressing different aspects of quality analysis: 

• Supervised Learning Techniques: 

These methods leverage labeled data to train models for predicting software quality 

attributes. By learning from historical data, supervised techniques can predict the 

likelihood of defects, identify problematic modules, and classify software components 

based on their quality. Examples include: 

• Neural Networks: Used for pattern recognition and mapping relationships between 

inputs and outputs. 

• Bayesian Networks (BN): Capture probabilistic dependencies between software 

metrics and quality attributes. 

• Decision Tree Techniques: Provide interpretable models to identify quality issues 

based on logical conditions. 

• Unsupervised Learning Techniques: 

Unsupervised methods are particularly useful when labeled data is scarce or 

unavailable. These techniques identify hidden patterns or anomalies in software 

metrics that could indicate potential quality issues. Examples include: 

• Fuzzy Logic: Handles uncertainty in software metrics and offers insights into vague 

or imprecise quality data. 

• Genetic Algorithms (GA): Optimize software quality predictions by simulating 

evolutionary processes. 

• Case-Based Reasoning (CBR): Uses historical cases to provide recommendations 

for similar quality concerns in new software. 
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• Large Language Models (LLMs): 

Emerging techniques like LLMs (e.g., GPT models) are being explored for software 

quality analysis. These models excel in understanding natural language and 

structured code data, enabling tasks like defect prediction, code review automation, 

and generation of quality improvement suggestions. 

 

2.4.1. Neural network-based software quality prediction models 

Neural networks are versatile models that can be used for various software quality 

prediction tasks. They can analyze large and complex datasets, making them suitable for 

tasks like defect prediction and code quality assessment. Neural networks can capture 

intricate patterns and relationships in the data, providing accurate predictions when trained 

on ample quality-related data.  

 

For example, Karunanithi et al. [6] propose a neural network model for reliability prediction. 

The failure history is used as the basis for the model's internal failure prediction model, 

which adapts to the software model's complexity. Network training is required for this. Using 

the software's error history to alter the strength of neural connections in this process.  

2.4.2. Bayesian network for predicting software quality models 

The Bayesian Network method for predicting software quality relies on activity-based 

quality models, simplifying complex concepts into precise definitions based on relevant 

facts [7]. To create a Bayesian Network (BN) for software quality assessment and 

prediction, a four-step process is followed: 

 

(1) Development of Activities: The first step involves defining activities based on goals 

and the associated indicators used to measure these activities. 

(2) Identification of New Criteria: Using the quality model, new criteria connected to the 

activities are identified. This step helps in refining the quality assessment. 

(3) Incorporation of Quantitative Data: Quantitative data related to software quality is 

integrated into the BN by adding additional nodes for each fact and its associated 

activity node. This allows for breaking down complex quality models into tangible 

definitions, enhancing the model's ability to access and predict quality. 

(4) Accessing and Predicting Quality: The resulting BN is used to access and predict 

software quality by searching for operations that enable it to forecast quality effectively. 

 

One specific application of BN in software quality prediction is for Extreme Programming 

(XP) process success/failure prediction, which is particularly relevant in iterative software 

development approaches like XP [13]. In XP, traditional software requirement specification 

documents are replaced with user stories, and each user story is developed during a single 

iteration. However, XP projects often face challenges in predicting software quality 

accurately. The mathematical model proposed by Abouelela and Benedicenti for XP 

procedures based on BNs has several noteworthy characteristics: 

 

• Succession of Releases: The model accounts for the iterative nature of XP projects 

by considering the succession of releases. 
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• Completion Time Prediction: It accurately predicts the expected completion time, a 

critical factor in determining project success or failure. 

• Development Velocity Tracking: The model enhances development velocity by 

tracking it daily in terms of user story points. This prediction can be made during the 

planning phase, significantly before the actual development begins. 

• Defect Rate Calculation: To forecast process quality, the model calculates the defect 

rate for each release, providing insights into software quality. Results from two distinct 

case studies demonstrate the model's ability to forecast project completion time 

effectively. 

 

Bayesian Networks offer a structured approach to predict and assess software quality by 

breaking down complex models into manageable components. Their application in 

predicting software quality in iterative development processes like Extreme Programming 

has demonstrated the ability to improve project planning, predict completion times 

accurately, and enhance development velocity. 

2.4.3. Models for using Genetic Algorithm to forecast software quality Identifying 

defective modules 

Genetic Algorithms (GAs) emerge as a valuable tool for not only locating faults but also 

identifying their root causes and, notably, predicting defects. GAs operates as problem-

solving algorithms inspired by genetic principles. The GA approach, as proposed by Puri 

and Singh [12], is particularly relevant for fault discovery in open-source software and 

encompasses several key steps. Firstly, it involves gathering raw data from the source 

code of an open-source software system. Subsequently, the gathered data undergoes 

evaluation utilizing a metrics suite, which includes various metrics such as coupling 

between objects (CBO), lack of cohesion (LCOM), and others. Following this, the relevant 

metrics for fault prediction are refined through data filtering. The GA process is then applied 

to work with the reduced data or attributes, leveraging genetic principles to explore 

potential fault factors. Finally, confusion metrics are employed to evaluate the model's 

predictive performance comprehensively. This comprehensive approach enables software 

developers and analysts to effectively harness Genetic Algorithms to identify and rectify 

faults within open-source software systems, ultimately contributing to enhanced software 

quality and reliability. 

2.4.4. Fuzzy logic for software quality prediction Models:  

To evaluate the quality of software, numerous models for software quality assessment have 

been put forth by multiple authors, each considering a different software metric. However, 

these models are always missing two crucial elements that, from the implementer's 

perspective, could increase the transparency of the quality model. These quality elements 

are imprecise professional linguistic understanding and precise numerical quantitative 

knowledge from the historical dataset. Ahmed and Al-Jamimi et al. [15] develop a fuzzy-

based transparent model for software quality assessment using both these knowledge 

forms. The main focus of the model is maintainability prediction. Here, the authors use the 

Mamdani fuzzy inference model that performs satisfactorily better than any other machine 

learning technique. ￼ 
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2.4.5. Software quality estimation using Case-based reasoning (CBR)  

Case-Based Reasoning (CBR) in software quality estimation relies on past cases or 

experiences stored in a repository. When a new quality estimation task arises, CBR 

retrieves relevant past cases, assesses their similarity to the current problem, adapts the ir 

insights, and generates an estimation based on historical knowledge. This approach 

benefits from human experts who can guide the relevance and adaptation process, making 

it a valuable tool for predicting and improving software quality by drawing from real-world 

experiences. For example, Rashid et al. [11] employ CBR to evaluate software quality, with 

human experts performing the estimation task. This method considers the resemblance 

between previous projects established by the primary quality characteristics.  

2.4.6. Decision tree algorithm for software quality Classification 

Decision tree techniques, including random forests and gradient boosting, offer 

interpretability in software quality analysis. These models are capable of identifying the 

most crucial factors contributing to software quality issues. Decision trees are often 

employed for feature selection, allowing developers to focus on critical aspects of quality 

improvement. Their transparency makes them a valuable choice when understanding and 

explaining the factors impacting software quality is essential.  

 

For example, Using the SPRINT decision tree algorithm, Najafabadi , Khoshgoftaar and 

Seiya [10] explicitly provide a thorough investigation on calibrating classification trees that 

help estimate software quality. Additionally, this strategy effectively overcomes the memory 

constraints that prevent a faster and more scalable analysis for several other classification 

algorithms. As an extension of the decision tree algorithm CART, it investigates a novel 

approach to tree pruning based on the minimum description length (MDL) approach. 

SPRINT's modified CART algorithm and MDL principle enable it to provide precise quality 

predictions. Large telecommunication systems are used for the case study implementation, 

and defect data from four different system versions are collected along with pertinent 

software metrics. According to the authors' observations, SPRINT can produce 

classification trees that are more evenly distributed and stable than those produced by the 

CART classification algorithm.  

2.4.7. Large Language Model (LLM) 

Large Language Models (LLMs), exemplified by GPT-3 and its successors, operate through 

a two-step process: pre-training and fine-tuning. During pre-training, LLMs learn language 

patterns, grammar, and common linguistic structures by predicting the next word in a 

sentence, using vast amounts of text data. In the fine-tuning phase, they specialize in 

specific tasks, adapting to the domain in question. When it comes to software quality 

prediction, fine-tuning would involve training the model on software-related datasets 

encompassing code repositories, bug reports, user feedback, and documentation.  

 

LLMs bring distinctive advantages to the field of software quality prediction. Their natural 

language understanding capabilities enable them to analyze textual data effectively, 

identifying patterns, sentiments, and potential quality issues within unstructured text. They 

can also assist in generating documentation by summarizing code changes, explaining 

intricate algorithms, or even automatically producing user-friendly documentation for 
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software products. Additionally, LLMs excel in predictive analytics, capable of forecasting 

potential quality issues by examining historical data, recognizing trends in code changes, 

and anticipating potential bugs or performance bottlenecks. 

 

Contrasting traditional machine learning models, LLMs operate differently. They require 

extensive pre-training on large text corpora, whereas traditional models rely on structured 

datasets with explicitly labelled features. LLMs are highly adaptable, requiring minimal 

task-specific fine-tuning, while traditional models necessitate more feature engineering and 

specialized tuning for each task. However, it's important to note that LLMs are less 

interpretable than traditional models due to their complex neural network architecture. 

 

To incorporate LLMs into existing software quality prediction systems, one typically starts 

with fine-tuning the model on a specific software quality prediction task, utilizing relevant 

datasets from the software development domain. Integration can be achieved through the 

development of an API or interface that enables seamless interaction between the LLM 

and the existing prediction system. Regular updates and continuous fine-tuning are 

essential to ensure the LLM adapts to evolving software development trends and maintains 

its effectiveness. 

 

Evaluating the performance of an LLM-based software quality prediction system involves 

a combination of traditional machine learning metrics and domain-specific measures. 

Metrics such as accuracy, precision, recall, and F1 score provide insights into the model's 

overall predictive performance. However, it's equally important to introduce domain-

specific metrics like bug detection rate, code review efficiency improvement, and user 

satisfaction to assess the model's real-world impact in the software development context. 

A/B testing can further compare LLM-based predictions with traditional methods to 

determine the model's efficacy in practical scenarios. 

 

Incorporating LLMs into software quality prediction systems has the potential to enhance 

accuracy, adaptability, and insights, ultimately contributing to more effective software 

development processes and improved user satisfaction. Careful fine-tuning, evaluation, 

and ongoing monitoring are critical to ensure that LLMs deliver their promised benefits in 

the specific context of software quality assessment. 

 

LLMs are transforming CI/CD pipelines by enabling smarter, automated workflows in 

software testing and quality assurance. These models enhance pipeline efficiency by 

analyzing code changes, predicting potential defects, and generating automated test 

cases. LLMs can assist in identifying patterns from historical build failures, suggesting 

fixes, and optimizing test case prioritization. By integrating LLMs into CI/CD workflows, 

organizations can ensure faster feedback loops, reduce manual intervention, and improve 

the overall reliability of software deployments, making them invaluable in modern, fast -

paced development environments. 
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Figure 3 : CI/CD pipeline with LLM Integration 

2.5. Similarity analysis and reuse recommendation  

Similarity refers to the degree of closeness on relevant dimensions, features, and/or 

characteristics. Typically, for similarity analysis, different similarity measures are used that 

quantify the degrees of closeness between two elements. Similarity measures are used mainly 

in recommender systems for ranking potential recommendations to support various steps in 

the software development and maintenance lifecycle. As most of the measures are applied to 

quantify the degree of closeness on a scale of features and dimensions, often an intermediate 

representation is used for computing the similarity. Therefore, this section also summarizes 

the different representation that enable similarity analysis.  

 

To apply similarity measures to textual input often the text is converted into representation 

vectors for better computation of similarity. The representation vectors are computed using 

different approaches ranging from lexical to embeddings. Approaches based on lexical 

features often use term frequency matrix-based extraction of the feature vectors. Seminal 

approaches include the bag of words and term frequency-inverse document frequency 

(tfidf). Bag of word-based vector extraction often uses the frequencies as values for the 

features. On the other hand, tfidf also considers inverse document frequencies of terms for 

enriching the feature vectors. Other approaches focus on representing textual input using 

embeddings, often extracted as weights of a representation learning-based neural 

network’s layer. This is often done by mapping textual token to real numbers using the 

probability of relatedness of the words in the dataset. Seminal architectures for 

embeddings include the skip gram neural network [63], recurrent neural networks [64] and 

transformer-based neural networks [65]. 
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Figure 4: Word2vec embedding architecture with the skip-gram model1. 

Similarity metrics: Various similarity metrics could be applied to the representation 

vectors for quantification of the degree of closeness. The most seminal ones are 

summarized below. 

 

Edit distance is a class of similarity metrics based on the dissimilarity between input [66]. 

Edit distance-based metrics could be applied to both raw text or its representation vector 

and works based on quantifying the number of edits required to make the two-input similar. 

A widely used metric based on edit distance within software engineering is Levenshtein 

distance. 

 

Jaccard Similarity Index (JSI) also works both on the raw text of the representation 

vector. However, unlike edit distance, JSI is based on the ratio of common terms over their 

union. 

 

Cosine similarity metric is based on the cosine angle between two vectors across multiple 

dimensions. 

 

Euclidean distance is a metric based on the space in length between two points on one 

or many dimension(s). 

 

Below, we briefly summarized the different approaches that are leveraging similarity to aid 

different software engineering tasks. 

 

The text-based similarity is often leveraged in requirements engineering for reuse 

recommendation [67], change impact analysis, and tracing [68]. These recommenders are 

based on the assumption that similarity in one domain (e.g., requirements) could be used 

as a proxy for similarity in the other domain (e.g., software) [69,70]. A typical recommender 

 
1 Efstathiou, V., Chatzilenas, C., & Spinellis, D. (2018, May). Word embeddings for the software 

engineering domain. In Proceedings of the 15th international conference on mining software 

repositories (pp. 38-41). 
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usually retrieves the most similar artifact (with a link to an artifact in another domain) to the 

query and uses that as a case to recommend reuse or relevance in the other domain.  

In addition, the textual similarity is also leveraged in identifying code clones [71], feature 

similarity [72], and feature model extraction [73].  

2.6. Change impact analysis and prediction 

2.6.1. Change Impact Analysis 

“Change Impact Analysis (CIA) is the process of exploring the tentative effects of a change 

in other parts of a system. CIA is considered beneficial in practice, since it reduces cost of 

maintenance and the risk of software development failures.” [16] In other words, it is the 

process of inspecting the undesired consequences of a change in a software module.[17] 

Change impact is a significant matter in software and programming since several 

innovations are made over time, which may result in negative consequences if not checked 

and not determined by the changes in the software. A tiny change in software can cause 

devastating impacts, and it may be challenging to determine the affected function(s). 

Therefore, it should be required to examine which parts of the software are affected during 

the software maintenance process and their impacts. 

 

To determine the change set in which the components might be impacted by the change 

request, CIA first analyzes the source code and the change request. Other components 

potentially impacted by the items in the change set are then estimated using the change 

impact analysis approach. The set that results is known as the estimated impact set (EIS). 

The items in the actual impact set (AIS) are updated after the change is put into practice 

to fulfil the change request. Because changes may be executed in various methods, the 

AIS is not always the best option for change requests in practice [18]. 

 

 

 
 

Figure 5: Change impact analysis process. © Diamani et al. [3] 
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The software change impact analysis process is an iterative one, as seen in Figure 5. And 

when a modification is put into practice, some more impacted aspects that are not in the 

EIS could be found. The false-negative impact set (FNIS), which reflects an 

underestimation of effects, is a collection of similar items [19, 20]. The false-positive impact 

set (FPIS), which denotes an overestimation of impacts in the study, is a set that is typically 

included in EIS but does not actually need to be changed or redone [19, 20]. These four 

sets are connected in the following ways: 

 

(EIS + FNIS) - FPIS = AIS 

 

Estimating an EIS that is as near to the AIS as feasible is the aim of the CIA method. To 

assess the precision of the impact analysis process, several metrics may be established 

[21, 22]. Precision and recall are two often utilized measures for CIA method accuracy [23, 

24, 5]. They were often applied in a situation involving information retrieval [9]. Precision 

and recall are defined as follows in the CIA scenario: 

 

Precision = |EIS ꓵ AIS| / |EIS| 

Recall = |EIS ꓵ AIS| / |AIS| 

 

While recall gauges how well the EIS accounts for actual changes, precision gauges how 

well the projected consequences line up with the actual impacts caused by modifications. 

Maintainers will take less time finding and apply the adjustments using a high-precision 

EIS. Maintainers are certain that all of the effects of those suggested adjustments will be 

taken into account because of the high recall EIS. 

 

The CIA method begins with the determination of change demands and all the affected 

parts, which are referred to as the ‘Change Set’. There are several techniques for 

classifying the change set. The Estimated Impact Set is designed for identifying differences 

in the software, and it is estimated by using several CIA techniques. The Actual Impact Set 

is constructed to detect the position of the changes made in the software. Also, another 

two impact sets, namely, False Negative Impact Set for indicating underestimation and 

False Positive Impact Set for indicating overestimation of effects are designed. The aim 

here is to guarantee that the Estimated Impact Set and the Actual Impact Set are the same 

[18]. 

Having equal sets of an Estimated Impact and Actual Impact is the primary goal of the CIA; 

however, it is challenging to implement. By cautiously choosing suitable CIA techniques, 

this goal can be achieved. There are diverse metrics to examine the precision of CIA 

techniques, but Precision and Recall are the ones that are used generally. Precision is 

about what degree Estimated Impact Sets overlap with Actual Impact Sets uncovered by 

the changes. Recall is about what degree Estimated Impact Set encompasses the real 

changes in the software [18]. 

If the Estimated Impact Set has high precision, it signifies that defining the position of the 

changes and accomplishing the changes take less time. If the Estimated Impact Set has his 

recall, it indicates that the effects of these suggested changes will be taken into account.  

 

There are two main CIA techniques: Traceability based CIA, and Dependence Based CIA. 
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2.6.2. Traceability Based Change Impact Analysis 

In this analysis, in order to grasp the potential impact of presenting a change in software, some 

elements like design, code, documents, test cases, etc., are defined and evaluated. This type 

of analysis focuses on exploring connections between software elements. [18] 

 

  
Figure 6: Traceability in software work products ©IEEE, 1991 

2.6.3. Dependency Based Change Impact Analysis 

In this type of analysis, to discover the impacts of implementing a change, some software 

artifacts like logic, modules, etc., are taken into account to examine the linkage of these 

artifacts. While Traceability-based CIA displays impact analysis at unique levels, Dependency-

based CIA displays at the same level, for instance, design to design and code to code [18]. 

 

In the following sections, we discuss traceability-based change impact analysis techniques, 

related example studies and challenges, dependency-based change impact analysis 

techniques, related example studies and challenges. CIA tools which are built for academic 

purposes and their comparison table, and a commercial CIA tool list.  

2.6.4. Traceability Based Change Impact Analysis Techniques 

Traceability was described as “the ability to describe and follow the life of an artifact, in 

both a forwards and backwards direction” by Lucia et al. [20] If a document, for example, 

a requirement or use case is linked to a feature that needs to change, traceability helps in 

finding areas in the code and design that need to be preserved. There are 2 major types 

of traceability, horizontal and vertical. Horizontal traceability refers to traceability between: 

• Requirement artifact and coding/testing/design artifact 

• Requirement artifact and defect report 

• Design artifact and coding artifact 

 

Vertical traceability refers not only to traces between different software artifacts in a 

software phase, but also dependencies within a software artifact itself, such as 

dependencies among requirements in a use case specification. Data dependency, control 

dependency and component dependency use different vertical traceability techniques [61]. 
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In this section, academic articles are analyzed by categorizing traceability as an experimental 

and empirical case. 

  

A. Experimental Studies:  

• Shahid et al. [27] suggested the Hybrid Coverage Analysis Tool (HYCAT) as a tool for 

managing traceability during software artifact changes. The technology was tested on 

an On-Board Automobile (OBA), and the findings were positive and noteworthy when 

compared to previous methodologies. 

• Kugele et al. [28] suggested a model-based algorithm to aid trace connection 

visualization and better comprehend the relevance of each artifact and its effect on the 

others.  

• In order to reestablish traceability linkages in IR techniques, Dit [29] suggested using 

genetic algorithms. The near-optimal solution is discovered by IR-GA using their 

method at each stage of the information retrieval process. 

• According to Kchaou et al. [30], an IR strategy for ensuring “semantic traceability 

between use case documentation and sequence diagrams” was created, as well as a 

graph-based mechanism for modeling structural relationships. They conducted “a 

quantitative experiment with LSI frequency and Inverse Document Frequency” on 

JHotDraw 7.4.1, and the findings revealed that LSI had a greater clarity and recall 

value.  

• According to Huang et al. Nejati et al. [31]. Their modeling technique identifies the 

influence of introducing changes in “requirements on a design” using the Systems 

Modeling Language (SysML). They used a static slicing technique to obtain an 

approximated set of impacted model elements and then ranked the resulting set of 

elements to anticipate the influence of the elements. According to their findings, 4.8 

percent of the whole design must be reviewed to determine the elements that are 

impacted. 

 

B. Empirical and Case Study Based 

• The link between software and its code, or traceability, enables engineers to articulate 

their theories. When software traceability is maintained, according to Ghabi et al. [32], 

time is saved, and quality is increased. However, the information is not collected at the 

appropriate moment. They have put up a language for capturing traceability. 

• Almasri et al. [33] proposed a model-based approach to telecommunications or 

embedded systems, in which their model employs dependencies to build two impact 

sets and EFSM models. Their findings revealed that a single change has a 14 to 38 

percent influence on the overall model size. 

 

Traceability based Change Impact Analysis Challenges 

• Traceability links between heterogeneous artifacts (e.g., as test case, source code, 

design, requirements) are required to be established. Yet, the knowledge gap is a main 

challenge to establish such links. There is a high level of knowledge gap between 

software documentation and source code. The latter one follows language and program 

syntax while the formal one is usually expressed in natural language. To recover 

knowledge-based traceability links between these heterogeneous artifacts, data 

normalization and human expert verification is needed. [58] 

• To determine the problem of recovering knowledge-based traceability links between 

artifacts of different types, IR has been widely used in recent decades. This approach 
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establishes traceability relationships with the assumption that two artifacts are 

potentially related if they share textual similarity. Although, IR-based approaches are 

error-prone, time-consuming and need human experts to verify selected trace links. 

[58] 

 

2.6.5. Dependency Based Change Impact Analysis Techniques 

Dependency-based in order to determine the impacts of making a change, CIA considers 

numerous software artifacts like variables, logic, modules, etc. and analyzes their 

interaction. They might be static, dynamic, or both. 

 

In this section, static and dynamic techniques are examined in two different categories. 

 

A. Static Techniques: Static approaches analyze software artifacts without running the 

program by using syntax and semantic analysis, text analysis, and change history 

repositories.  

 

 
Figure 7: Static change impact analysis process. © Diamani et al. [3] 

 

These techniques concentrate on the structure of the software. Most CIA techniques 

currently lack support for hidden dependencies and intergranular change impact questions, 

according to Sharma and Suryanarayana [34]. They invented AUGUR, a static automatic 

code analysis tool that addresses these issues by retaining semantic and environment 

dependencies between source code entities across granularities.  

 

According to T Rolfsnes et al. [35], through a new technique named “Targeted Association 

Rule Mining for All Queries” (TARMAQ), they proposed using evolutionary coupling. They 

compared it to the ROSE and SVD tools and discovered that it is superior to both and is 

best suited for “performing robust change impact analysis for heterogeneous systems.”  

 

According to Musco et al. [36], a strategy for forecasting influences circulation using four 

types of call graphs. To investigate how faults propagate, 17000 mutants were created 

using ten open-source Java projects and five mutation operators. According to their 

findings, the simplest basic call graph provides the optimal balance of accuracy and recall.  
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B. Dynamic Techniques: It consists of both offline and online CIA. It is carried out while 

the software is running. Offline CIA refers to a CIA approach in which data is obtained and 

evaluated after the program's execution is complete, whereas Online CIA refers to data 

retrieved while the program is still running [18]. 

 

 
Figure 8: Dynamic change impact analysis process [3] 

 

Cai and Santelices [37] suggested a three-instance approach for generating very precise 

impact sets at a low cost. To achieve high accuracy, they exploited static dependencies 

and execution traces. They presented a dynamic approach for Sensitivity Analysis dubbed 

SENSA in another study [30], which created statement-level impact sets. They used open-

source Java applications and case studies to assess SENSA. 

 

Cai and Thain [49] introduced DISTIA, a tool that evaluated the effects within and outside 

implementation by partly sorting distributed method-execution events and using message 

forwarding semantics. Their findings indicated that the analysis was completed in one 

minute and that the size of the impact set was decreased by 43 percent.  

 

To forecast behavioral impact, Rajan and Kroening [39] created a measure that quantifies 

the change impact using two software versions. Their method is unusual in that it analyzes 

both versions of the software. They also put their measure to the test in three case studies.  

 

Cai and Santelics [40] used a two-way method to investigate the prediction accuracy of 

dynamic CIA. To assess accuracy and retrieval, they employed execution differencing and 

sensitivity analysis. Their findings revealed that most low-cost dynamic analysis 

methodologies generate erroneous results in most situations, with an average precision of 

38-50 percent and a recall of 50-56 percent. 

2.6.6. Dependency based Change Impact Analysis Challenges 

Inter-granular queries are not supported by most static CIA techniques. An inter-granular 

query specifies the proposed change at one source code granularity and provides the result 

of the query at another source code granularity. For example, the query “Display potentially 

impacted methods when this change will be made in this class” is an intergranular query. 

Contrarily, most of the current approaches would have only notified what other classes 

would be impacted by the proposed change. Inter-granular query support in CIA tool can 

accurately identify the change impact leading to a more effective CIA [34]. 
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Current static techniques determine impacted entities by using control or/and data 

dependencies. Recall of such methods are low because they are affected by presence of 

hidden dependencies. Such dependencies have not been deeply researched and not 

supported by current CIA methods [34]. 

 

2.6.7. Tool Support for Change Impact Analysis 

(1) TRIC [42, 43]: Requirements Management Tool Inferencing and Consistency Checking 

(TRIC) performs CIA and requirements estimations on software requirements using 

formal requirement semantics. The software's functionality improved by including 

capabilities such as displaying incompatible suggested modifications, proposing, 

propagating, and apply changes, and anticipating changes and their impact on the 

requirements model. 

 

(2) ImpactMiner [38]: A tool that uses dynamic tracing, history mining, and SVN repository 

queries to estimate an influence set. It features a highly user-friendly GUI and is used as 

a plugin for the Eclipse tool. The user can easily grasp the findings thanks to the two 

tabs labelled "Feature view" and "Results view."  

 

(3) SafeRefactorImpact [43]: Based on change effect analysis, Safe Refactor Impact is a 

method for determining if a transformation saves program activities. It works by 

assessing modifications made to Java or AspectJ applications and creating test cases 

for the methods that have been affected. It employs Safira, a change impact analyzer 

that detects affected techniques. 

 

(4) TraceAnalyzer [32]: The utility, which is implemented as an Eclipse plug-in, supports 

many input perspectives. The list of imputes and the customary "trace matrix" (TM) are 

still present on the right and left sides, respectively. It also offers capabilities that assist 

engineers in discovering the footprint graph, flagging, and removing issues with accuracy 

and granularity. 

 

(5) FaultTracer [50]: A toolkit which determines atomic changes from abstract syntax trees, 

finds their dependencies by tracing definition with reference to each used method and 

field, runs selected tests to emphasize failure-affecting changes and ranks these 

changes by using spectrum-based fault localization technique for Java programs.  

 

 

(6) CIAT [46]: Change Impact Analysis Tool has two modules, Class Iteration Prediction 

and Impact Analysis Module. It is an automated tool that is developed based on our 

previous work on CIA for the software development phase. The uniqueness of the 

approach or the prototype tool is that the element of integration between static and 

dynamic analysis techniques.  

 

(7) Chianti [53]: An Eclipse plug-in which takes two program versions and a regression test 

suite, finds interdependent atomic changes from different versions of programs, creates 

call graphs for test suite and determines potentially impacted methods and relevant 

affecting changes. 
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(8) EAT [57]: Created to evaluate the CollectEA technique, Execute-After Tool (EAT) 

focuses to emphasize the benefits of dynamic analysis over static analysis. EAT consists 

of three components: An analysis module, an instrumentation module and a set of 

runtime monitors. 

 

(9) Impala [22]: An Eclipse plug-in which performs CIA before with data mining algorithms, 

before execution of changes. By comparing two program versions, Impala creates a 

changeset that contains potentially impacted entities and detected changes by 

generating a dependence graph.   

 

(10) ROSE [57]: An Eclipse plug-in that mines project’s version history with CVS and makes 

users understand the consequences of making changes. Based on previous commits to 

version control, ROSE can propose changes to prevent errors. The proposals are ranked 

by confidence level. 

 

(11) JRipples [52]: An Eclipse plug-in that uses static information to analyze dependencies 

between entities in order to help developers locate the impact set manually, by keeping 

track of visited elements and the elements that are dependent on them. 

 

Table 3: Academic Change Impact Analysis Tools 

Tool 
Name 

Objective 
Change 
Impact 

Category 

Supporte
d 

Language
s 

Method Input Output Validation 

TRIC 

Limiting 
the impact 
explosion 

during 
change 
impact 

analysis 
and 

prediction 
in 

requireme
nts models 

Traceabilit
y Based 
Change 
Impact 

Analysis 

Java 

Requireme
nts 

Inferencin
g and 

Consisten
cy 

Checking 

Change 
Type 

Requireme
nt which 
Changes 

Introduced 

Decision 
Tree 

Propagatio
n Path 

5 change 
scenarios 
in a real 
software 

requireme
nts 

specificati
on 

ImpactMin
er 

Impact 
analysis at 

change 
request 

level that 
adapts to 

the 
specific 
software 

maintenan
ce 

scenario at 
hand 

Dependen
cy Based 
Change 
Impact 

Analysis 

Java 
Integrated 

Impact 
Analysis 

Source 
Code 

Search 
Query 

Execution 
Traces 

Historical 
Data 

Potentially 
Affected 
Methods 

4 open-
source 
system 
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Tool 
Name 

Objective 
Change 
Impact 

Category 

Supporte
d 

Language
s 

Method Input Output Validation 

SafeRefac
tor Impact 

Check 
whether 
an object 

oriented or 
aspected 
oriented 

transforma
tion is 

behavior 
preserving 

Dependen
cy Based 
Change 
Impact 

Analysis 

Java 
Behavioral 

Change 
Analysis 

Source 
Code 

Impacted 
Methods 
and Test 
Cases 

Generated 
for Them 

5 
transforma

tions 
applied to 
programs 

with 
different 
sizes (10 
LOC to 79 

KLOC) 

TraceAnal
yzer 

Automate 
the 

traceability 
between 
software 

architectur
al models 
and extra- 
functional 

results 

Traceabilit
y Based 
Change 
Impact 

Analysis 

Java 
Footprint 

Graph 

Trace 
Assumptio

ns 

Video on 
Demand 
Footprint 

Graph 
Trace 
Matrix 

Dependen
cies List 

6 case 
study 

systems 

CIAT 

Overcome 
the 

challenges 
when 

using both 
static 

analysis 
and 

dynamic 
analysis 

techniques 

Traceabilit
y and 

Dependen
cy Based 
Change 
Impact 

Analysis 

C++ 

Class 
Dependen

cy 
Filtration 

Change 
Request 
Source 
Code 

Impacted 
Class List 

3 software 
developme
nt projects 

FaultTrace
r 

Ranks 
program 
edits in 
order to 
reduce 

developers
’ 

effort in 
manually 
inspecting 

all 
affecting 
changes 

Dependen
cy Based 
Change 
Impact 

Analysis 

Java 

Syntax 
Tree 

Bytecode 
Manipulati

on 

Source 
Code 

Regressio
n Test 
Suite 

Ranked 
List of 

Affecting 
Changes 

23 
versions of 
4 different 
program 

Chianti 

Find a 
subset of 

the 
changes 

that impact 
a test 
whose 

behavior 
has 

Dependen
cy Based 
Change 
Impact 

Analysis 

Java 
Call Graph 

Syntax 
Tree 

Source 
Code 

Regressio
n Test 
Suite 

Affected 
Tests 

Affecting 
Changes 

Versions 
of a 

software 
developme
nt project 
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Tool 
Name 

Objective 
Change 
Impact 

Category 

Supporte
d 

Language
s 

Method Input Output Validation 

(potentially
) changed. 

Diver 

Exploits 
static 

dependen
cies to 
identify 
runtime 
impacts 
precisely 
without 

reducing 
safety and 

at 
acceptable 

costs 

Dependen
cy Based 
Change 
Impact 

Analysis 

Java 
Call Graph 
Execution 

Trace 

Java 
Bytecode 

Call 
Queries 

Impact Set 
4 Java 

programs 

EAT 

Introduce 
a new 

dynamic 
analysis 
approach 
which is 
practical, 
precise 

and 
efficient 

Dependen
cy Based 
Change 
Impact 

Analysis 

Java 
Execute 

After 
Relation 

Source 
Code 

Impact Set 

Several 
releases of 

2 
programs 

Impala 

Calculates 
the 

impacted 
elements 

by 
identifying 

all the 
direct and 

indirect 
dependen
cies of a 
change 

Dependen
cy Based 
Change 
Impact 

Analysis 

Java 
Call Graph 
Dependen

cies 

Source 
Code from 
Subseque

nt 
Revisions 

Impact Set 
3 software 
projects 

ROSE 

Suggests 
locations 
for further 
changes 
and warn 

for missing 
changes 

Dependen
cy Based 
Change 
Impact 

Analysis 

Java C++  
C Python 

Historical 
Analysis 

Source 
Code 

Ordered 
list of 

suggested 
places 
which 

should be 
changed 

10k 
transaction

s in 8 
open-
source 
projects 
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Tool 
Name 

Objective 
Change 
Impact 

Category 

Supporte
d 

Language
s 

Method Input Output Validation 

Coda 

Analyze 
Scala 
source 

code with 
its change 
to provide 
impacted 
elements 

Dependen
cy Based 
Change 
Impact 

Analysis 

Scala 
Dependen

cy 
Analysis 

Source 
Code 

Ordered 
list of 

impacted 
classes by 
likelihood 

3 open-
source 
projects 

JRipples 

Provide 
organizatio

nal 
support to 
make the 
increment
al change 
process 

easier and 
systematic 

Dependen
cy Based 
Change 
Impact 

Analysis 

Java 
Change 

Propagatio
n 

Source 
Code 

Method/Cl
ass Status 

List 

An open 
source 
projects 

 

The full table can be reached from here: Tool Tables   

 

Change Impact Analyzer Helpers 

 

(12) CodeDiff [44]: This tool used to process all the files in every change-set for source 

code differences at a fine-grained syntactic level. 

 

(13) Cobra [45]: To scan in source code, Cobra employs a lexical analyzer for C. It makes 

it easier to look for trends, determine whether coding standards and norms are being 

followed or not, find suspicious code fragments, etc. offers an interactive tool to 

software developers, peer reviewers, testers, and quality assurance staff. 

 

(14) FLAT [51]: A tool for performing feature location using textual searches, execution 

traces, annotating features and visualization. 

 
Table 4: Academic Change Impact Analysis Tool Helpers 

Tool 
Name 

Objectiv
e 

Supported 

Language
s 

Method Input Output Year 
Source 

Code Link 

CodeDiff 

Source 
Code 

Difference 
Process 

Any 
Word 

Differenc
er 

Source 
Code 

HTML 
Report 

- 

http://www.s
afe-

corp.biz/pro
ducts_coded

iff.htm 

https://docs.google.com/spreadsheets/d/1Fs6ravRP8vSWv719NzJZKVYagv703hDdtII0miEGDvo/edit#gid=0
http://www.safe-corp.biz/products_codediff.htm
http://www.safe-corp.biz/products_codediff.htm
http://www.safe-corp.biz/products_codediff.htm
http://www.safe-corp.biz/products_codediff.htm
http://www.safe-corp.biz/products_codediff.htm
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Tool 
Name 

Objectiv
e 

Supported 

Language
s 

Method Input Output Year 
Source 

Code Link 

Cobra 

Source 
Code 

Lexical 
Analysis 

C, C++, 
Java 

Lexical 
Analysis 

Source 
Code 

Call/Contr
ol Graph 

2015 

https://softw
are.nasa.go
v/software/N
PO-50050-1 

FLAT 
Feature 
Location 

Java 
SITIR 

Approach 

Search 
Query 

Test Case 
for Desired 

Feature 

Feature 
Mapping 

2010 
https://www.
cs.wm.edu/s
emeru/flat3/ 

 

2.6.8. Commercial Change Impact Analysis Tools 

In this section, commercial change impact analysis tools are presented with their main 

features. Also, CIA tool link information and demo information is given.  

 
Table 5: Commercial Change Impact Analysis Tools 

Tool Name Description Link(s) 
Demo 

Available 

Smart TS XL 

The Software Intelligence® technology in SMART 
TS XL provides rapid impact analysis by means of 

an extensive cross-reference utility, showing 
users a color-coded graphic of how and where 

programs interact. You can identify the areas that 
could require additional attention and testing with 

the capability to map dependencies between 
related modules. Responsive and user-friendly, 

this impact analysis tool greatly reduces the time 
required to understand and evaluate IT projects. 

• Build color-coded cross-reference 
diagrams 

• Click and follow hyperlinks that connect 
elements 

• View specific lines where references occur 

• Identify which elements are connected 
and where 

• Create reports that can be saved, 
exported and printed 

https://in-
com.com/sol
utions/impac
t-analysis/ 

 
 

 

YES 

Foresight 

Foresight provides full visibility and deep insights 
into the health and performance of your tests and 

CI/CD pipelines. Assess the risk of changes, 
resolve bottlenecks, reduce build times, and 
deliver high-quality software at speed with 

Foresight. 

https://www.
runforesight.
com/#Chang

e-impact-
analysis 

YES 

Spec-
TRACER 

“Spec-TRACER™ addresses the objectives 
defined by safety critical standards and related to 

traceability data and requirements coverage. 

https://www.
aldec.com/e
n/products/r

YES 
 

 

https://software.nasa.gov/software/NPO-50050-1
https://software.nasa.gov/software/NPO-50050-1
https://software.nasa.gov/software/NPO-50050-1
https://software.nasa.gov/software/NPO-50050-1
https://www.cs.wm.edu/semeru/flat3/
https://www.cs.wm.edu/semeru/flat3/
https://www.cs.wm.edu/semeru/flat3/
https://in-com.com/solutions/impact-analysis/
https://in-com.com/solutions/impact-analysis/
https://in-com.com/solutions/impact-analysis/
https://in-com.com/solutions/impact-analysis/
https://www.runforesight.com/#Change-impact-analysis
https://www.runforesight.com/#Change-impact-analysis
https://www.runforesight.com/#Change-impact-analysis
https://www.runforesight.com/#Change-impact-analysis
https://www.runforesight.com/#Change-impact-analysis
https://www.aldec.com/en/products/requirements_management/spec-tracer
https://www.aldec.com/en/products/requirements_management/spec-tracer
https://www.aldec.com/en/products/requirements_management/spec-tracer
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Tool Name Description Link(s) 
Demo 

Available 

Spec-TRACER captures traceability data from 
miscellaneous design files, verifies it, and 

produces traceability matrices required for the 
certification processes.” 

 
It has a direct integration with IBM DOORS. 

It facilitates management, traceability, reporting, 
requirements capture and impact analysis. 

 
Change Impact Analysis 

Know the impact of requirements changes before 
and after they occur 

Know the exact number of projects elements that 
will be impacted 

equirements
_manageme

nt/spec-
tracer 

 

 
https://www.
aldec.com/fil
es/products/
SpecTracer_
Datasheet.p

df 

Visure 

Gain End-to-End Traceability by Automatizing 
your Change Impact Analysis Process. 

Empower your team to make better and informed 
decisions by eliminating manual tracking change 

impact & providing them an accurate 
understanding of the implications of a proposed 

change. 

https://visure
solutions.co
m/features/i

mpact-
analysis 

YES 

Tricentis 

Tricentis LiveCompare provides fast, automated 
impact analysis for any update to your SAP 

systems. It works across the entire SAP 
ecosystem, including ECC, CRM, BW, Fiori, and, 
of course, S/4HANA. When paired with Tricentis 

Tosca, LiveCompare reduces testing time by 
85%, accelerates releases by 40%, and increases 

quality by 75%. 
 

• Use LiveCompare to analyze the impact of 
change. From audits through to SAP 

upgrades, identify how code, config and 
data is impacted by change, as well as 

security settings. 

• Automatically compare multiple SAP 
systems to ensure they are aligned when 
making change. Tackle the challenges of 

dual maintenance and transport overrides. 

• Test less without compromising system 
quality. Use LiveCompare to identify 

exactly what to test and why. Integrate 
with Tricentis Tosca for resilient test 

automation or your own solution. 

https://www.t
ricentis.com/
resources/tri

centis-
livecompare-
data-sheet/ 

 

 
https://www.t
ricentis.com/

wp-
content/uplo
ads/2021/07

/Tricentis-
data-

sheet_LiveC
ompare-for-

SAP.pdf 
 

 

YES 

https://www.aldec.com/en/products/requirements_management/spec-tracer
https://www.aldec.com/en/products/requirements_management/spec-tracer
https://www.aldec.com/en/products/requirements_management/spec-tracer
https://www.aldec.com/en/products/requirements_management/spec-tracer
https://www.aldec.com/files/products/SpecTracer_Datasheet.pdf
https://www.aldec.com/files/products/SpecTracer_Datasheet.pdf
https://www.aldec.com/files/products/SpecTracer_Datasheet.pdf
https://www.aldec.com/files/products/SpecTracer_Datasheet.pdf
https://www.aldec.com/files/products/SpecTracer_Datasheet.pdf
https://www.aldec.com/files/products/SpecTracer_Datasheet.pdf
https://visuresolutions.com/features/impact-analysis
https://visuresolutions.com/features/impact-analysis
https://visuresolutions.com/features/impact-analysis
https://visuresolutions.com/features/impact-analysis
https://visuresolutions.com/features/impact-analysis
https://www.tricentis.com/resources/tricentis-livecompare-data-sheet/
https://www.tricentis.com/resources/tricentis-livecompare-data-sheet/
https://www.tricentis.com/resources/tricentis-livecompare-data-sheet/
https://www.tricentis.com/resources/tricentis-livecompare-data-sheet/
https://www.tricentis.com/resources/tricentis-livecompare-data-sheet/
https://www.tricentis.com/resources/tricentis-livecompare-data-sheet/
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
https://www.tricentis.com/wp-content/uploads/2021/07/Tricentis-data-sheet_LiveCompare-for-SAP.pdf
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Tool Name Description Link(s) 
Demo 

Available 

Lattix 

Impact Analysis 
Perform impact analysis on a defect, to see what 
files and packages are affected by a fault in the 

software. 
 

Changed Based Testing 
Perform Change Based Testing by analyzing the 

impact of code changes and re triggering only 
those unit and integration level tests affected by 

the changes. 

https://www.l
attix.com/pro
ducts/lattix-

2021/ 

YES 

Jama 

• Easily navigate upstream and downstream 
relationships to understand the impact of 

change and coverage across the 
development lifecycle. 

• Save time finding gaps in overall test 
coverage 

• Understand change impact before it 
happens 

• Produce traceability documentation 
required by regulators 

• Relationship Rules are tracked across 
projects with a visual schematic that 

shows the impact and reach of information 
across the organization 

• Engage in real-time conversations about 
the impact and prioritization of defects 

https://www.j
amasoftware
.com/platfor

m/jama-
connect/feat
ures/#tab-id-

1 
 

 

NO 

Roadmap 
Pro 

The Change Impact Assessment (CIA) is an 
online change management assessment tool that:  

• Measures and compares the likely 
disruption of a change project on people in 

different parts of the affected business 

• Assesses how difficult it could be for 
people to adapt or commit to change 

• Updates project risk logs with diagnosis of 
new barriers to successful implementation 

• Determines how the impacts and risks 
inherent in the change inform 

implementation choices 

https://info.c
hangefirst.co
m/change-

impact-
assessment-

tool 
 

 
https://www.
changefirst.c
om/change-
managemen

t-
products/roa

dmap-pro 

YES 

ChangeMine
r 

Change impact analysis with business logic 
information in source code. 

Path-sensitive string analysis technology enables 
the most accurate application change impact 

analysis. 
Robust string analysis engine enables the most 
accurate application change impact analysis! 

Improve your application team’s productivity by 
30~75% with application visibility! 

http://www.c
hangeminer.

com/ 
NO 

https://www.lattix.com/products/lattix-2021/
https://www.lattix.com/products/lattix-2021/
https://www.lattix.com/products/lattix-2021/
https://www.lattix.com/products/lattix-2021/
https://www.jamasoftware.com/platform/jama-connect/features/#tab-id-1
https://www.jamasoftware.com/platform/jama-connect/features/#tab-id-1
https://www.jamasoftware.com/platform/jama-connect/features/#tab-id-1
https://www.jamasoftware.com/platform/jama-connect/features/#tab-id-1
https://www.jamasoftware.com/platform/jama-connect/features/#tab-id-1
https://www.jamasoftware.com/platform/jama-connect/features/#tab-id-1
https://www.jamasoftware.com/platform/jama-connect/features/#tab-id-1
https://info.changefirst.com/change-impact-assessment-tool
https://info.changefirst.com/change-impact-assessment-tool
https://info.changefirst.com/change-impact-assessment-tool
https://info.changefirst.com/change-impact-assessment-tool
https://info.changefirst.com/change-impact-assessment-tool
https://info.changefirst.com/change-impact-assessment-tool
https://www.changefirst.com/change-management-products/roadmap-pro
https://www.changefirst.com/change-management-products/roadmap-pro
https://www.changefirst.com/change-management-products/roadmap-pro
https://www.changefirst.com/change-management-products/roadmap-pro
https://www.changefirst.com/change-management-products/roadmap-pro
https://www.changefirst.com/change-management-products/roadmap-pro
https://www.changefirst.com/change-management-products/roadmap-pro
http://www.changeminer.com/
http://www.changeminer.com/
http://www.changeminer.com/
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Tool Name Description Link(s) 
Demo 

Available 

Ktern 

To summarize the importance of KTern's 
Simulation Bot in SAP Change Impact analysis 

and Release Management. One can say that the 
bot automates all the possible changes, which 
can help in better strategizing the release plan 
showing the possible impact, the stakeholders 

who are impacted due to these changes. 

https://ktern.
com/article/r

elease-
managemen

t-ktern-
simulation-

bot/ 

YES 

AGS 

This All-in-One Change Impact Assessment Tool 
has been created for: 

1. Conducting organizational impact 
assessments, tracking, reporting, and 

management 
2. Business change assessments and reporting 
3. Assessing impacts from the process, system, 

technology, digitalization, and tool changes 
4. Analyzing impacts from culture changes, 
mindset shifts, business strategy, and vision 

changes 
5. Analyzing enterprise-wide or group-wide 

transformations 
6. Assessment of new policy and procedure 

impacts 
7. M&A and business expansions 

https://www.
airiodion.co

m/best-
assessment-

tool/ 
 

 
https://www.
youtube.com
/watch?v=lE
SuWG_nxz
U&ab_chan
nel=AGSCor

p 

NO 

Oracle 
Change 
Impact 

Analyser 

Change Impact Analyzer is a tool installed 
separately from PeopleSoft PeopleTools that 

helps you determine the impact of specific 
changes you plan to make during an application 
upgrade. It's an interactive program where you 

can see the relationships of PeopleSoft definitions 
in a hierarchical view. 

Change Impact Analyzer displays several views 
of analyses in tabular and text views. It's 

delivered with a set of rules that are used to 
determine the relationships between definitions. 

Typically, these rules are written in SQL. 

https://docs.
oracle.com/c
d/E92519_0
2/pt856pbr3/
eng/pt/tcia.ht

ml 
 

 
(Use 

navigation 
menu on the 

left side.) 

NO 

Praxie 

A Change Management Impact Analysis is a 
method that is used to identify relevant 

stakeholders in a change management process 
as well as the risks and benefits that the change 

management initiative provides to them. Based on 
this information, your team will be able to discern 
the impact that the change management program 

has on key individuals. 

https://praxie
.com/change

-
managemen

t-impact-
analysis-

online-tools-
templates/ 

YES 

Infotech 

In order to lead your staff members through 
change, you must understand the level of impact 

the change will have on them. Use this tool to 
answer key questions that will inform your people 
change management decisions during the change 

process. This tool will provide you with staff 

https://www.i
nfotech.com/
research/ch

ange-
impact-

assessment-

YES 

https://ktern.com/article/release-management-ktern-simulation-bot/
https://ktern.com/article/release-management-ktern-simulation-bot/
https://ktern.com/article/release-management-ktern-simulation-bot/
https://ktern.com/article/release-management-ktern-simulation-bot/
https://ktern.com/article/release-management-ktern-simulation-bot/
https://ktern.com/article/release-management-ktern-simulation-bot/
https://ktern.com/article/release-management-ktern-simulation-bot/
https://www.airiodion.com/best-assessment-tool/
https://www.airiodion.com/best-assessment-tool/
https://www.airiodion.com/best-assessment-tool/
https://www.airiodion.com/best-assessment-tool/
https://www.airiodion.com/best-assessment-tool/
https://www.youtube.com/watch?v=lESuWG_nxzU&ab_channel=AGSCorp
https://www.youtube.com/watch?v=lESuWG_nxzU&ab_channel=AGSCorp
https://www.youtube.com/watch?v=lESuWG_nxzU&ab_channel=AGSCorp
https://www.youtube.com/watch?v=lESuWG_nxzU&ab_channel=AGSCorp
https://www.youtube.com/watch?v=lESuWG_nxzU&ab_channel=AGSCorp
https://www.youtube.com/watch?v=lESuWG_nxzU&ab_channel=AGSCorp
https://www.youtube.com/watch?v=lESuWG_nxzU&ab_channel=AGSCorp
https://docs.oracle.com/cd/E92519_02/pt856pbr3/eng/pt/tcia.html
https://docs.oracle.com/cd/E92519_02/pt856pbr3/eng/pt/tcia.html
https://docs.oracle.com/cd/E92519_02/pt856pbr3/eng/pt/tcia.html
https://docs.oracle.com/cd/E92519_02/pt856pbr3/eng/pt/tcia.html
https://docs.oracle.com/cd/E92519_02/pt856pbr3/eng/pt/tcia.html
https://docs.oracle.com/cd/E92519_02/pt856pbr3/eng/pt/tcia.html
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://praxie.com/change-management-impact-analysis-online-tools-templates/
https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal
https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal
https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal
https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal
https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal
https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal
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Tool Name Description Link(s) 
Demo 

Available 

impact assessment, risk points analysis and 
recommendations for managers. 

tool#unlock-
modal 

Change 
Method 

The Change Impact Assessment Framework tool 
provides a framework for examining the detailed 
impacts that will arise from the change program.  

Begin by documenting any headline process 
changes identified during the Define Future State 

process, make an initial classification of the 
changes required and build out the detail as you 

gather more and more information through 
surveys, interviews, workshops and even 

observation. 

https://www.
changemeth
od.com/chan
ge-impact-

assessment-
framework/ 

NO 

WhatFix 

Navigating through organizational change is a 
multi-step process. Whatfix helps you scale 

enterprise-wide changes, improve user 
engagement, and drive user adoption. 

https://whatfi
x.com/soluti
ons/change-
managemen

t/ 

YES 

 

2.6.9. Findings and Future Scope 

 

• To verify validity of trace links generated by IR, some studies recommend training 

machine learning classification models. Also, several researchers have stated benefits 

of deep learning-based approaches against IR-based approaches. Mostly, the former 

can learn unstructured data of any format such as correlations among design and 

requirement documents [58].  

 

• It is spotted that the relation of CIA parameters and existing metrics is over-studied. 

Instead of empirically exploring the correlation with old metrics, researchers should 

propose accurate, direct and novel indicators [54].  

 

• The knowledge gap between CIA tools used by academia and CIA tools used by 

industry should be filled with a bridge. Creating a roadmap beforehand can help tool 

planning, development and future plans of the tool [57].  

 

• The outcome of usability inspection and literature review have exposed many fruitful 

fields of future work. Full usability analysis combined with informal usability inspection 

can be conducted to determine developers’ needs [57].  

 

• The measurement of impact needs to be researched deeper. A new technique can be 

discovered which has a reliable and helpful metric. Developers can save analysis time 

with a metric that helps them to decide whether they should implement the changeset 

[57].  

 

• There is a belief that the CIA is crucial and should be done. However, there is little 

evidence about which aspect of software development is affected by the CIA [54].  

https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal
https://www.infotech.com/research/change-impact-assessment-tool#unlock-modal
https://www.changemethod.com/change-impact-assessment-framework/
https://www.changemethod.com/change-impact-assessment-framework/
https://www.changemethod.com/change-impact-assessment-framework/
https://www.changemethod.com/change-impact-assessment-framework/
https://www.changemethod.com/change-impact-assessment-framework/
https://www.changemethod.com/change-impact-assessment-framework/
https://whatfix.com/solutions/change-management/
https://whatfix.com/solutions/change-management/
https://whatfix.com/solutions/change-management/
https://whatfix.com/solutions/change-management/
https://whatfix.com/solutions/change-management/
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• It is noted that there is not any change impact analysis API library, even though there 

are plenty of CIA tools. Implemented CIA algorithms in tools can be repackaged in 

open-source API so that industry can reach them easily [57].  

 

Software change impact analysis (CIA) is a technique used to identify the potential effects 

caused by software changes, which plays an important role in software development and 

maintenance. There are many automated tools that apply Change Impact Analysis 

available. These tools mainly use traceability-based CIA or dependency-based CIA. 

Dependency based CIA techniques can be divided as static analysis, dynamic analysis or 

combination of them while traceability-based CIA has 2 major types, horizontal traceability 

and vertical traceability. We presented studies and challenges for both CIA types. Also, we 

provided a comparison table for academic based tools with functional metrics and a list of 

commercial tools to emphasize the status of CIA in industry. Then, we outlined our findings 

and future scope. Our findings show that CIA research should be broadened with new 

perspectives and metrics so that the impact of a change can be determined 

comprehensively. To conclude, CIA is still a popular research topic which has many active 

researchers and practitioners. It has a great potential to be evolved further with different 

approaches. 
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3. Key Innovation Areas 

 

 
Figure 7 WP4 Dependencies with SmartDelta Methodology 

In this work package, we have three main innovation areas which belong to the recommend 

and predict module of the SmartDelta methodology as shown in Figure 7. They are based on 

the quality assurance input from Work Package 3. In the following, we discuss each of the 

innovation areas along with the projects that the SmartDelta project contributed so far. 

 

A. Novel ML-Based Anomaly and Threat Detection Methods  

 

The development and deployment of machine learning-based methods have transformed 

anomaly and threat detection across various domains. These approaches have 

significantly enhanced the ability to detect anomalies, localize errors, and prioritize threats 

in complex systems, including micro-service architectures, cybersecurity environments, 

and telemetric data applications. By employing both supervised and unsupervised models, 

these methods achieve significant accuracy, scalability, and adaptability, enabling 

proactive responses to potential threats. The integration of these techniques into live 

environments demonstrates their robustness and readiness for real-world challenges, 

marking a large step forward in operational security and reliability. The related projects are 

as follows:  

 

• Prediction of localization of anomalies and errors using ML methods in micro-

service-based architecture (NetRD) 

 

• Anomaly detection and prioritizing cybersecurity offenses by utilizing a diverse 

set of supervised and unsupervised models (Ontario Tech, Glasshouse 

Systems)     

 

• Anomaly detection for telemetric data (Hoxhunt) 

 

B. Automatic Code Analysis and Change Impact Analysis Approaches 

 

Automated tools for code analysis and change impact evaluation have contributed to 

advancements in software development practices. These approaches have addressed 
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challenges in knowledge sharing, fault prediction, and technical debt management, 

enabling teams to focus on high-impact tasks. By automating tedious processes like 

metrics collection and analysis, these methods reduce manual effort, increase productivity,  

and ensure the scalability of modern software systems. The achievements in this area have 

not only improved code maintainability but also facilitated better decision-making. The 

related projects are as follows: 

 

• Improved knowledge sharing among developers using automatic metrics collection 

from version control systems for impact analysis (ERSTE, DAKIK, Kuveyt Turk)  

 

• Automatic collection of code analysis metrics of cloud-based software and faults 

predictions (Ontario Tech, Team Eagle) 

 

• Automatic code analysis for ease of software maintenance (University of Innsbruck 

and cc.com) 

 

• Automatic analysis of technical debts (Cape of good code, Vaadin) 

 

• Analyze software quality trends based on issues and schedule the issues to find 

the balance between focussing on improving quality versus adding new features 

(FOKUS) 

 

C.  Similarity Analysis Approaches and Recommendations 

 

The advancements in similarity analysis and recommendation techniques represent an 

advancement in optimizing software systems. By implementing graph-based methods, 

hierarchical modularization, and machine learning-driven insights, these approaches 

enable developers to uncover patterns and produce actionable recommendations 

efficiently. The ability to identify similarities and address issues proactively has streamlined 

development workflows, improved modularity, and fostered a deeper understanding of 

system behavior. The achievements in this domain have laid the groundwork for more 

intelligent and adaptive software systems, promoting innovation and reducing complexity 

in software engineering processes. The related projects are as follows: 

 

• Graph based similarity analysis and recommendations (TWT, Software AG, 

Vaadin) 

 

• Similarity analysis of State Machines using hierarchical modularization (TWT, 

Akkodis) 

 

• ML-based methods to identify requirements from large data repository and 

generate recommendations (RISE, Alstom) 

 

• Software requirements and issues analysis using Natural Language Processing 

and Continual Learning (IFAK, Software AG)   
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4. Contributions to the State-of-the-art 

4.1. Novel ML-Based Anomaly Detection Methods 

4.1.1. Prediction of localization of anomalies and errors using ML methods in micro-service-based 

architecture (NetRD) 

 

Synopsis:  

 

In microservice platforms with high number of users and heavy traffic, it is necessary 

to monitor the system, take quick action against errors and ensure the 

maintainability of the system. However, debugging on these platforms can take a 

long time. This difficulty arises from the need of understanding the behavior of 

microservices and detecting their interactions. In the first phase of this study, which 

aims to increase the efficiency of DevOps engineers on the work/time unit, it has 

been observed that providing microservice flows and interactions saves operation 

teams a significant amount of time during debugging. Accordingly, the study 

focused on microservice interactions and anomaly detection. First, different 

machine learning-based models predicting microservice interactions have been 

developed and their performances compared. In these models, log patterns are 

extracted on microservice log data and the interaction map of the mentioned 

microservice is created by estimating the previous and next microservices that the 

current microservice interacts with at a certain moment. In the next step, anomalous 

data were injected into the microservice logs, models were developed to detect 

these data and their performances were compared. In the experiments, successful 

estimation results were obtained that can contribute positively to the debugging 

process.  

 

Related works: 

 

There are many works in the literature that address fault analysis and anomaly 

detection. In this section, we provide a brief review of recent studies in the existing 

literature. 

 

X. Zhou et al. [NR1] conducted an industrial survey of typical faults encountered in 

microservice systems, current debugging methods used in industry, and challenges 

faced by developers. According to this study, monitoring and visualization analysis 

techniques are methods that developers use to find various types of errors involving 

microservice interactions. 

  

Giamattei et al. [NR2] present a systematic study of 71 monitoring tools for DevOps 

and microservices. The study follows three main phases: search and selection, data 

extraction, and synthesis. The tools are categorized according to 26 parameters, 

including general characteristics, monitored aspects, and implementation details. 

The study includes a comprehensive map of the monitoring tools landscape, a 

reusable classification framework, and discussions on implications for researchers 
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and practitioners. In particular, the map can be used to understand tool 

characteristics, identify gaps and make informed decisions in the context of DevOps 

and microservice monitoring.  

  

Wang et al. [NR3] conducted a survey study on localization and replication of 

software bugs. In this survey study, the authors discuss the research questions 

related to the problems studied, the research methodologies used, and the findings 

of previous research. They analyzed 134 papers published between 2011 and 2021 

and investigated defect localization approaches. 

  

Zhou et al. [NR4] conducted an industrial survey and an empirical study to 

investigate fault analysis and debugging in complex microservice systems. The 

survey reveals the challenges developers face in microservices debugging and 

shows the need for improved techniques. The empirical study evaluates the 

effectiveness of current industrial debugging practices and shows that appropriate 

tracing and visualization techniques improve microservice debugging. The findings 

highlight the importance of intelligent trace analysis and visualization and suggest 

potential directions for future research. The study presents a survey on industrial 

microservice systems, a benchmark for microservice failure analysis, and insights 

into improving microservice debugging with advanced tracing and visualization 

methods. 

  

Yu et al. [NR5] investigate the efficiency and effectiveness of machine learning 

algorithms such as K-nearest neighbor (KNN) and deep learning methods such as 

convolutional neural network (CNN) in log anomaly detection considering their 

computational cost. The study on five general log anomaly detection datasets 

reveals that basic algorithms such as KNN outperform DL methods in terms of both 

time efficiency and accuracy. This result is driven by log preprocessing strategies, 

the simplicity of available log benchmarks, and the nature of binary classification in 

log anomaly detection. Based on the findings, the authors recommend critically 

analyzing datasets and research tasks before opting for computationally expensive 

DL methods in log anomaly detection and exploring simpler approaches as a basis 

for software engineering tasks. 

  

Yu et al. [NR6] introduce the Nezha approach, which offers an innovative root cause 

analysis (RCA) for large-scale microservice systems. Their aim is to address the 

limitations of existing RCA methods, such as poor root cause interpretation and 

underutilization of data. Nezha combines multimodal observability data, including 

metrics, traces and logs, and transforms them into a unified event representation to 

create event graphs. It focuses on obtaining detailed and interpretable RCA by 

comparing error-free and error-exposed stages, identifying root causes at the code 

region and source type level. They tested the approach through empirical 

evaluations on two widely used microservice applications and observed its 

performance. The study shows that Nezha improves the observability of two 

microservice applications, is successful in anomaly detection, and contributes to 

RCA on multimodal data. 
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Methodology: 

 

CPaaS Platform Worked On: 

CPaaS, a telecommunications platform with a high number of microservices, 

developed in a technology company, operating in 5 different data centers located in 

4 different continents, is a software platform that provides communication services 

to users through a scalable, microservice architecture-based platform by making 

use of PaaS, which is one of the popular cloud computing models. On the other 

hand, it can also offer VoIP (Voice over Internet Protocol) APIs on the same platform 

so that companies can use them in line with their own needs. 

 

Debugging and problem addressing process varies according to the components in 

the CPaaS platform, which contains a large number of microservices and consists 

of many different components. The most difficult errors to address for operations 

teams are in the fields Routing and Services and are reported directly from user 

scenarios as they include service functions. The main reason for the challenge here 

is the need to detect microservice interactions. For example, for debugging process 

in a basic call scenario, all interacting microservices and their behaviours must be 

known and understood. This creates a time handicap for a solution with a high 

number of microservices. On the other hand, it has been observed that the time 

required for troubleshooting user scenarios is related to knowing the relationship 

between the scenario and microservices. 

 

Solution Stages: 

 

In the first phase, different machine learning algorithms were used to estimate, 

interactions between microservices and model performances were compared. The 

experiments were carried out within the framework of data belonging to multiple 

scenarios, but performance comparison includes the results for both single and 

multiple scenarios results. 

  

In the second phase, anomaly detection studies were performed. The anomalies 

injected into the system were manually labelled and the problem was transformed 

into a classification problem. Classification was made with different algorithms on 

manually labelled data and model performances were compared. On the other 

hand, unsupervised labelling process was performed with different data 

combinations created considering feature importance test results, and the 

performance of this process against actual values was observed. At the end of this 

process, the labelling process with the unsupervised method gave almost real 

results and it was observed that the effort to be applied for manual labelling 

processes could be eliminated. 

 

Results: 

 

Microservice Interactions Prediction 

The k-fold cross-validation technique was used in the performance analysis of the 

interaction prediction models between microservices, and tests were made for the 
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value of k = 5. The performance metrics were calculated separately for each model 

during the experiments. The average accuracy values obtained as the mean of three 

models are given in Table I. The success of estimating “Previous Hop” vary between 

95-99% whereas the average success in evaluating “Next Hop” is in the range of 

94-99%. Among the tested algorithms, the highest success was achieved with the 

models created by the MLP algorithm, with 99% for both “Previous Hop” and “Next 

Hop” predictions. 

 
Table 6: Microservice Interactions Prediction Experimental Results 

 

Anomaly Detection and Prediction 

In the performance analysis of the anomaly prediction models in manually labelled 

data, the tests were repeated for each of the algorithm. There are three models 

(generic service, brokers, and adapters) created and evaluated by each algorithm. 

The average accuracy values obtained are given in Table 7. 

 

 
Table 7: Accuracy Rates of Anomaly Prediction in Manually Labelled Data Experiments 

 

Table 7 shows that the highest success was obtained with the Decision Tree 

algorithm, and the average percentage of success achieved is 93%. However, 

despite the high success rates achieved in the experiments, 83% of the anomaly 

cases were correctly predicted at most. This shows that, in fact, normal situations 

were predicted more accurately, and thus model performance metrics were 

positively affected. This is because the data set mainly contains normal data rather 

than anomalies and unstable data sets are often encountered in the industry. 

  

In the second phase of the anomaly detection experiments, it was aimed to 

automatically detect and label anomalies. Firstly, a ranking list from highest to 

lowest value score was obtained via feature importance test. In this respect, the 

features with the most important degrees for determining the anomaly class were 

used as input data with different combinations. Here, the highest scored four 

features were used to create double, triple, quadruple in combinations. Also, the 

last combination includes all the features except the highest one. Afterwards, 

anomalies were automatically detected and labelled in these data using the 
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Isolation Forest algorithm. The average accuracy values obtained for each 

combination are given in Table III. 

 

 
Table 8: Accuracy Rates of Anomaly Detection with Unsupervised Methods Experiments 

 

The highest success in anomaly detection was achieved for the quadruple data 

combinations with the highest significance. The accuracy of the predictions and, 

accordingly, the performance metrics were calculated by comparing them with the 

manually labelled actual anomaly values. At least 95% of anomalies were correctly 

predicted in these models with an average success rate of 93%. The results show 

that the Isolation Forest method has obtained results that are very close to the 

manually labelled actual values for the detection of anomalies. Only 5% of injected 

anomalies were labelled as normal status. Such a small loss allows Isolation Forest 

to be preferred as an automatic anomaly detection and tagging method, eliminating 

such manual labelling operations. 

 

 
Table 9: Accuracy Rates of Anomaly Prediction in Unsupervised Labelled Data Experiments for 

Quadruple Combined Data (IF_4)} 

 

In the anomaly detection in unsupervised labelled data step, the same supervised 

classification algorithms were used for evaluation with the same input data, but the 

targets labelled by the Isolation Forest were used to be predicted. Since Isolation 

Forest models show the most successful results when labelling anomalies in the 

quadruple combination data, Table IV shows the average success values of the 

estimation results using only this target column. According to the results of these 

experiments, the highest performance was demonstrated by the Decision Tree 

algorithm. The best degree of success was achieved with a combination of four 

data. The percentage of success in these experiments ranged between 85% and 

93%, and almost the same success rate was achieved with manually labelled data. 

 

Summary: 

 

For CPaaS, a microservice architecture telecommunications platform with a high 

number of users and heavy traffic, the error addressing process depends on the 

system components. In the examinations made, it has been observed that the 
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operation teams spend the most time to eliminate the errors experienced in user 

scenarios, pointing to the routing and service components. On the other hand, it 

was concluded that knowing the interaction between microservices shortens the 

error recovery times. 

  

This study, which aims to increase the efficiency of the operation teams on the 

work/time unit and to enable the new members of the operation team, especially 

newly graduated engineers with no experience in the industry, to adapt to the 

debugging processes faster, is based on the aforementioned inference. The study 

focuses on prediction of interactions between microservices and detecting 

anomalies on the CPaaS platforms’ microservice system. 

 

Note: 

More detailed information can be found in the following publications. 

1. Interaction Prediction and Anomaly Detection in a Microservices-based 

Telecommunication Platform  

2. Microservice Interaction Prediction in Communication Platform as a Service  
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4.1.2. Anomaly detection and prioritizing cybersecurity offenses by utilizing a diverse 

set of supervised and unsupervised models (Ontario Tech, Glasshouse 

Systems) 

 

Synopsis: 

 

This section explores the development of Machine Learning (ML) based anomaly 

detection and offense prioritization tool inside a Security Information and Event 

Management (SIEM) environment. SIEM solutions aggregate data from multiple 

sources, enabling analysts to monitor and detect threat patterns, respond to 

incidents, and manage security effectively. Our application, specifically designed 

for the QRadar SIEM platform, integrates ML models to enhance both anomaly 

detection and offense prioritization. 

For anomaly detection, the application uses a time-and-space-efficient data 

extraction process with QRadar's Ariel Query Language (AQL) to manage large 

data volumes.  ML models like Isolation Forest (iForest) and Local Outlier Factor 

(LOF) are selected for their efficiency in real-time SEIM environments. Point 

adjustment further refines anomaly detection by identifying anomaly sequences, 

allowing improved detection. 

While anomaly detection helps the analyst to identify potential offense, a 

probabilistic ML approach is also employed that assigns impact scores to detected 

offenses. Probabilistic ML Models such as Cluster-based Outlier Probability 

(COPOD), calculate prediction probabilities, producing a prioritization list that 

guides SOC analysts in focusing on high-risk events. Evaluated using metrics such 

as Mean Time to Detect (MTTD) and Mean Time to Resolve (MTTR), this 

prioritization framework effectively reduces response time, streamlines analyst 

workflows, and enhances SOC efficiency. 

This work, a collaboration between Ontario Tech University and Glasshouse 

Systems, demonstrates how advanced ML techniques can be integrated into SIEM 

applications to improve cybersecurity operations through accurate anomaly 

detection and offense prioritization. 

 

Related works: 

 

The integration of ML for cybersecurity anomaly detection has recently got a lot of 

attention, focusing on the application of both supervised and unsupervised 

techniques. Supervised models like Support Vector Machines (SVM) and Random 

Forests have been widely adopted for their accuracy in known attack scenarios 

[GHS1]. Meanwhile, unsupervised approaches such as k-means clustering and 

Autoencoders are effective for identifying new and emerging threats by analysing 

patterns in data [GHS2] [GHS3]. Hossain et al. (2021) developed an Automatic 

Event Categorizer for SIEM that utilizes ML to categorize events within a SOC 

environment, aiming to streamline alert management and reduce manual 

categorization efforts [GHS4]. This approach demonstrates how machine learning 

can improve SOC workflows by filtering and categorizing high-volume alerts, which 

is aligned with our goal of prioritizing cybersecurity offenses based on anomaly 
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scores. Time-series anomaly detection techniques, as discussed by Mejri et al. 

[GHS5], provide foundational methods, yet the application within real-time SIEM 

settings is still developing. However, utilizing ML for prioritizing offenses and 

detecting anomalies of event per second (EPS) in real-time is less explored. This 

work addresses the gap by implementing solutions that optimizes both detection 

and prioritization within a live SIEM application. 

 

Methodology: 

 

First, to detect anomaly, our tool employs a series of steps as shown in Figure 9 

Upper Left) to ensure efficient and accurate identification of unusual patterns in time 

series data. The methodology comprises: 

 

 
 

Figure 9: A high-level visual overview of our proposed framework, showing the key steps in our pipeline. 

 

1. Time-and-Space-Efficient Data Extraction: Data is collected from a 

production environment using QRadar’s Ariel Query Language (AQL). Given the 

large volume of log data, queries are optimized to reduce time and space 

complexity. Aggregating data into 1-minute intervals helps manage the volume 

while retaining meaningful insights. 

2. Feature Extraction and Data Pre-processing: Data from multiple log sources 

is processed, including separating log sources and applying noise reduction 

techniques. Events are aggregated using a Simple Moving Average (SMA) to 

smooth out noise, and sub-sequencing is applied to identify collective anomalies 

over time, rather than isolated points. 
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3. Lightweight Model Selection: The framework uses classical machine learning 

models for interpretability, essential for real-world deployment in SOC 

environments. Key models include Isolation Forest (iForest) for anomaly 

detection based on isolation trees and Local Outlier Factor (LOF) for detecting 

density-based anomalies. 

4. Point Adjustment for Anomaly Detection: Post-processing involves point 

adjustment, a technique that focuses on detecting the presence of anomalies 

within sequences rather than isolated events. This adjustment prioritizes quick 

anomaly flagging over precise duration measurement, aiding analysts in faster 

threat identification. 

5. Hyper-parameter Tuning and Active Learning: To optimize the models, an 

exhaustive grid search tunes hyper-parameters based on F1 scores. Active 

learning is employed, with feedback from analysts iteratively improving the 

model’s performance. The most relevant parameters from our search: 

o Isolation Forest - contamination=0.03, n_estimators=300, 

max_samples=300  

o LOF - contamination=0.03, n_neighbors=10000  

o Sub-sequencing - window_length=45, stride=22 (50%)  

o SMA - window_length=20 

 

Then we further collect detected offenses to implement our offense prioritization 

aspect of the tool. as shown in Figure 9 Upper Right) depicts the automatic offense 

prioritization system. As mentioned, this system is explicitly designed for QRadar 

SIEM and utilizes the training data from QRadar. 

 

1. Data Collection: Approximately five million events were collected from QRadar, 

covering diverse attributes like event names, low-level categories, timestamps, 

and network data. This dataset was enhanced through API calls and AQL 

queries to retrieve accurate, comprehensive data. 

2. Feature Collection and Selection: Features critical to detecting and prioritizing 

offenses were gathered, including attributes like event names, severity, 

credibility, usernames, and IP addresses. These features allow for a holistic 

analysis of each offense's potential impact. 

3. Probabilistic ML Models: A suite of probabilistic models, such as Angle-Based 

Outlier Detection (ABOD), Cluster-based Outlier Probability (COPOD), and 

Stochastic Outlier Selection (SOS), were used. These models calculate 

prediction probabilities for offenses, enabling nuanced classification of potential 

threats. 

4. Automated Offense Prioritization: Offenses are assigned scores based on 

model-generated probabilities and QRadar-calculated magnitudes. The 

resulting impact score prioritizes offenses by severity, allowing SOC analysts to 

focus on the highest-risk events. 

5. Experimental Evaluation: Offenses were evaluated using metrics like Mean 

Time to Detect (MTTD) and Mean Time to Resolve (MTTR). The model 

performance was compared with baseline values to assess its effectiveness in 

real-time threat response. 
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Results: 

 

Our tool demonstrated notable performance across eight datasets from a production 

SIEM environment, evaluated primarily through F1 scores to balance precision and 

recall. In Table 10, P, R, and F1 represent Precision, Recall, and F1 score 

respectively. For each metric, the top row represents the score with no point-

adjustment applied, and the bottom row represents the score with point-adjustment 

applied. The cells separated on the right side of the table represent the averages 

across all datasets. Bold values represent the best performing model for each 

dataset. The separated cells on the bottom represent the averages performance of 

the tested models across each dataset.  

 

  
Table 10: Anomaly detection tool performance 

- When paired with point adjustment and sub-sequencing techniques, iForest 

achieved the highest F1 scores across most datasets. This model proved highly 

effective in detecting diverse anomaly patterns within the data. 

- LOF performed well in identifying outliers in high-density datasets, leveraging 

local density deviations. Although slightly outperformed by Isolation Forest in 

some scenarios, LOF remained a reliable model for anomaly detection. 

- The tool achieved an average F1 score of 87.24% with iForest, indicating its 

ability to detect true anomalies accurately while minimizing false positives and 

negatives. LOF also demonstrated competitive precision and recall values, 

especially in data-rich event streams. 

 

On the hand, when prioritizing offenses our tool demonstrated significant 

improvements in managing high-volume security alerts within the QRadar SIEM 

environment In Table11, the "Offense ID" uniquely identifies each offense. The 

"Average Prediction Probability" reflects the output from the ML models, while the 

"SOC Rating" is the severity level assigned by SOC analysts. The comparison 
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between the ML models’ prediction probabilities and SOC ratings sheds light on 

how likely offenses are to be true positives. For example, Offense 1169 has a high 

prediction probability of 0.95, aligning with its "Critical" SOC rating, suggesting a 

strong likelihood of it being a true positive. However, Offense 1212 also has a high 

prediction probability of 0.95, despite a "Low" SOC rating, showing cases where ML 

models predict high probabilities but differ from analysts’ severity assessments due 

to additional context. 

 

 
Table 11: Comparison of ML Model Scores and SOC Ratings for Offenses 

 
Table 12: Comparison of Impact Score and SOC Ratings for Offenses 

 

Table 12 compares impact scores (representing the potential severity of offenses) 

with SOC ratings, revealing further insights. Different ML models generate varying 

impact scores for the same offense, reflecting differing assessments of severity. For 

example, Offense 1171 has a low average impact score of 0.6814 across models 

but is assigned a "High" SOC rating. This discrepancy suggests that while the 

models may indicate a lower severity, analysts consider other contextual factors 

that raise the offense’s perceived severity level. 

 

Summary: 

 

We have outlined the development of an anomaly detection and offense 

prioritization tool in the QRadar SIEM environment to improve SOC operations. Our 

tool effectively identifies unusual patterns in data, while the offense prioritization 

system assigns impact scores to prioritize high-risk threats. Key findings show that 

these tools reduce detection and response times, enhance alignment with SOC 

analyst assessments, and demonstrate how ML-based analysis can complement 

human expertise. 
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4.1.3. Anomaly detection for telemetric data (Hoxhunt) 

 

Synopsis: 

 

This section explores the development of a machine learning-based anomaly 

detection tool designed to monitor microservices in a Software as a Service (SaaS) 

environment. Microservices, characterized by their modular and distributed nature, 

require robust observability to detect and resolve anomalies that could affect system 

performance, security, or privacy. Our application integrates telemetry data 

collection using OpenTelemetry, provides a pluggable machine learning model 

infrastructure which initially employs unsupervised machine learning models—K-

means clustering and Autoencoders—to identify anomalies, but allow for more 

sophisticated models to be inserted. Finally, it provides actionable insights via a 

visualization dashboard. 

 

The tool aggregates telemetry data at the service handler and hour levels, enabling 

it to process critical metrics such as error messages, latency, request counts, error 

rates, and availability. These metrics are fed into the given machine learning models 

that detect the anomalies. A visualization interface highlights anomalies, aiding 

developers and support teams in promptly identifying and remediating potential 

issues. 

 

The toolset is aimed to improve the detection of anomalies in microservices, 

enhancing operational reliability and efficiency. 

 

Related Works: 

 

Existing research on anomaly detection in distributed systems often relies on 

supervised learning methods that require labelled data. For instance, Zhou et al. 

[HH4] applied supervised models to telemetry data, achieving high detection 
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accuracy. However, supervised approaches are impractical in dynamic, real-time 

environments due to the lack of labelled anomalies. 

 

Unsupervised methods, such as K-means clustering and Autoencoders, have 

gained traction for their ability to identify patterns without labelled datasets. 

Chandola et al.  [HH1] emphasized the challenges of anomaly detection, such as 

high false-positive rates and the heterogeneity of anomalies, which unsupervised 

models aim to address. Previous studies like those by Meng et al.  [HH2] and Samir 

and Pahl [HH3] demonstrated the utility of machine learning in identifying anomalies 

through performance metrics and trace analysis, but often involved anomaly 

injection, a method unsuitable for production systems. 

 

The tool research builds on these findings, focusing on practical implementations of 

unsupervised models in a live SaaS environment, leveraging telemetry data 

collected through OpenTelemetry. 

 

Methodology: 

 

The development of the anomaly detection tool involved the following high-level 

steps: 

1. Telemetry Data Collection: 

1.1. Data was gathered using OpenTelemetry, capturing logs, traces, and 

metrics from the company’s microservices. 

1.2. Relevant metrics were identified, including latency, request counts, 

errors, availability, and time. 

2. Data Aggregation and Preprocessing: 

2.1. Data was aggregated at the service handler and hour levels to provide 

actionable insights and reduce noise. 

2.2. Service handlers generating excessive noise were excluded to 

improve detection accuracy. 

3. Model Implementation: 

3.1. K-means clustering: Utilized to group data points and detect outliers.  

3.2. Autoencoder: A neural network model trained to minimize 

reconstruction errors, flagging deviations as anomalies. 

4. Visualization: 

4.1.  Dashboards were developed using Apache Superset, displaying 

visualizations including heatmaps, word clouds, and detailed tables for 

detected anomalies. 

5. Evaluation: 

5.1. Qualitative feedback from the team and quantitative analysis of past 

incidents were used as main metrics assess the tool’s performance in 

facilitating a more rapid iterative process 

 

Results: 

 

The anomaly detection tool was evaluated using both qualitative and quantitative 

methods: 
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1. Model Performance: 

1.1. K-means achieved an initial detection accuracy of 57.1%, 

outperforming the Autoencoder’s 28.6% 

1.2. Both models detected different types of anomalies, indicating 

complementarity 

2. Efficiency: 

2.1. Handler-level aggregation significantly reduced noise compared to 

trace-level detection. 

2.2. The models demonstrated robustness in identifying anomalies in a 

dynamic environment. 

3. Actionability: 

3.1. The visualization dashboard provided clear and actionable insights, 

augmenting the capabilities of the development and support teams to 

locate and investigate anomalies efficiently. 

 

Summary: 

 

By combining telemetry data collection, unsupervised learning models, and a user-

friendly visualization interface, the telemetry anomaly analyzer tool addresses 

critical challenges in monitoring distributed systems in a SaaS environment. While 

the suite of tools is designed for a specific use case, the methods and findings can 

be generalized to other contexts, highlighting the potential of unsupervised machine 

learning in improving software observability. Future work includes enhancing model 

robustness, exploring additional algorithms, and scaling the solution for broader 

applications. 
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4.2. Automatic Code Analysis and Change Impact Analysis Approaches 

4.2.1. Improved knowledge sharing among developers using automatic metrics 

collection from version control systems for impact analysis (ERSTE, DAKIK, 

Kuveyt Turk, Cape of Good Code) 

 

Synopsis: 

 

This section investigates the use of automatic code analysis and change impact 

analysis as a mechanism to facilitate knowledge sharing among developers by 

leveraging metrics automatically collected from version control systems (VCS). The 

research focuses on designing an integrated toolchain that collects, analyzes, and 

visualizes code metrics, such as knowledge sharing risks, churn rates, commit 

frequencies, code complexity, and module dependencies. This tool provides 

actionable insights for understanding the impact of code changes on software 

quality, team productivity, and project timelines. The goal is to empower 

development teams to make informed decisions while maintaining high code quality 

and team coherence. 

  

The approach uses automated techniques to extract metrics from VCS repositories, 

combined with tools to parse code in code entity level such as classes and 

functions. A visualization dashboard enables developers to identify high-risk 

modules, track code evolution, and understand the broader implications of their 

contributions. This framework is designed to enhance collaboration, minimize 

technical debt, and improve knowledge transfer within software teams. 

 

Related works: 

 

Research in automated code analysis and change impact analysis has focused on 

improving software quality through static and dynamic analyses. Notable studies by 

Mockus and Weiss [TURK1] introduced the concept of mining version histories to 

identify defect-prone modules. Similarly, Hassan [TURK2] proposed leveraging 

historical metrics from VCS to predict maintenance effort and software reliability. 

These works established the foundation for using data-driven techniques to analyze 

software artifacts. 

  

Recent advancements include tools like CodeScene and SonarQube, which analyze 

codebase health and identify hotspots but often lack integration with predictive 

models or actionable insights tailored to change impact. Studies by Gousios et al.  

[TURK3] emphasized the importance of real-time metrics for pull request evaluation, 

while Zimmermann et al. [TURK4]  explored coupling metrics and their role in 

change propagation. 

  

DETANGLE is another recent effort focusing on knowledge distribution within teams 

through collaborative tools that emphasize shared understanding of code changes. 
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Their platform provides mechanisms for identifying knowledge gaps, distributing 

expertise across teams. 

  

This research builds on these efforts by incorporating automated metrics collection, 

predictive analysis, and visualization tailored for knowledge sharing and team 

productivity. By focusing on the social and technical dimensions of code changes, 

this work bridges the gap between static analysis tools and collaborative 

development needs. 

 

Methodology: 

 

The proposed methodology for automatic code analysis and change impact analysis 

comprises the following steps: 

  

1-    Data Collection: 

-  Automatically collect metrics from VCS (e.g., Git), focusing on commit histories, 

authorship, code churn, file dependencies, and test coverage. 

-  Extract additional metadata, such as timestamps, branch information, and merge 

histories, to contextualize changes. 

-   Extract of code entities (both classes and functions) from the source files, as well 

as their associated callee and caller relationships with other code entities, is 

achieved using a specialized tool, Understand, provided by SciTools 

-   Collect PRs and reviewers of the PRs 

  

2-    Data Preprocessing: 

  

-  Normalize and aggregate metrics at the module and project levels to reduce noise 

and ensure consistency. 

- Apply filtering to exclude non-informative commits (e.g., formatting changes or 

comments). 

-  Establish associations between commits and user stories through various means, 

including analyzing commit messages, pull request metadata, and linked issue 

references. 

-  Map reviewers to the commits they reviewed via pull requests and subsequently 

link them to the corresponding files. This mapping supports knowledge distribution 

by providing insights into the collaborative ownership of code. 

- Resolve discrepancies in developer records caused by Git's reliance on 

environment-provided email addresses, consolidating entries for the same 

individual across different aliases. This is executed utilizing an internally developed 

module known as 'Similar Contributor Matching.' This module scrutinizes the 

username portion of every contributor's email address (preceding the @ symbol), 

in addition to the person's name. It correlates these elements across the totality of 

project contributors, thus detecting any overt similarities. These entities, having 

surpassed a predetermined threshold of similarity, are then displayed through our 

User Interface. Prior to the commencement of the analysis, these findings are 

matched and consolidated for improved data harmonization and precision. 
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3-    Visualization and Reporting: 

  

- Develop dashboards that display code health, hotspots, and dependency maps.  

- Provide insights into knowledge silos and developer collaboration patterns to 

highlight areas needing improved communication. 

  

4-    Evaluation: 

  

-  Validate the approach using historical project data and feedback from 

development teams. 

 

Results: 

 

By leveraging the integrated toolchain consisting of automated metrics collection, 

predictive analysis, and visualization, significant improvements in knowledge 

sharing among developers were realized. This research's implementation in Kuveyt 

Turk and Vaadin provided key insights: 

  

Knowledge Transfer Efficiency: 

The implementation identified code areas with elevated risk values and low 

cohesion indicative of knowledge silos. Prioritizing these areas for information 

sharing resulted in improved communication and decreased knowledge gaps within 

the team. 

 

 
Figure 10: Knowledge Sharing Network Diagram 

 

Aided Decision Making: 
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Metrics such as churn rate and commit frequency provided insights into the most 

volatile areas of the codebase, emphasizing the need for process improvements. 

  

Visualizations and Informed Decisions: 

The visualization dashboard enabled developers to track code evolution and 

understand the broader implications of their code contributions. These graphical 

displays made it easier for developers to identify high-risk modules, effectively 

mitigating potential future issues. 

 

 
  

Figure 11: Team Healthiness tables and bubble charts 

 
Figure 12: Knowledge Risks and Team Turnover dashboard 

 

Data Harmonization: 
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The 'Similar Contributor Matching' module established connections between 

developers' records, thus creating a cohesive and holistic view for improved 

decision making. This process mitigated discrepancies caused by Git's reliance on 

environment-supplied email addresses, indicating how automation significantly 

enhances data accuracy. 

 
Figure 13: Matched contributors of open source Django project 

 

Summary: 

 

This research has proven its value in enhancing knowledge sharing among 

developers in a software team environment using automatic code analysis and 

change impact analysis. The implementation of this research in Kuveyt Turk 

significantly transformed their development process. 

  

Key outcomes realized include: 

  

Improved Knowledge Transfer: The research pinpointed areas with high knowledge 

sharing risks allowing developers to focus their efforts on these specific areas.  

 

Data Harmonization: By effectively leveraging the 'Similar Contributor Matching' 

module, the system was able to align entries of the same individual across different 

aliases, providing a holistic view of individual contributions. 
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Enhanced Decision-Making: The implementation of visualization dashboards 

enabled developers to understand the broader implications of their code 

contributions, leading to more informed decisions. 

  

This research's integration into intra-team knowledge sharing has demonstrated its 

ability to drive meaningful improvements in software quality and team coherence. It 

bridges the gap between static analysis tools and collaborative development needs, 

positioning it as a valuable tool for developers working on complex projects.  
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4.2.2. Automatic collection of code analysis metrics of cloud-based software and 

faults predictions (Ontario Tech, Team Eagle) 

 

Synopsis: 

 

Given the intricate composition and complex nature of airfield operations software, 

it is paramount to ensure sufficient software quality throughout its entire 

development life cycle. We have developed an automated solution for SQA metrics 

acquisition and the analysis of quality-related data for a real-world airfield software 

system. The end goal of this endeavour is to facilitate an end-to-end framework, 

composed of distinct tools and pipelines, to automate the extraction of software 

quality metrics from an airfield software system, analyze the historical metrics data 

over time, and perform predictive analysis using machine-learning approaches.  

 

Related works: 

 

The Automated Metrics Acquisition Framework comprises a selection of distinct 

tools, each of which is responsible for separate functionality. The technologies used 

are summarized below. 



Deliverable 4.5 

 © 2024 SmartDelta Consortium Page 64 of 117 

 

SonarQube Community Edition (open source) SonarQube source continuous 

inspection platform for software source code [TE1]. SonarQube provides the 

capability to perform automatic code reviews to detect bugs, code smells, and 

security vulnerabilities in numerous programming languages [TE1]. SonarQube can 

perform static code analysis and offers various metrics to help developers improve 

the quality of their code [TE1]. In this framework, SonarQube is used for collecting 

quality-related metrics from the project repository using static-analysis principles. 

The metrics being collected are related to bugs, code smells, code vulnerabilities, 

and security hotspots. 

Azure Repos Azure Repos is a version control service provided by Microsoft Azure, 

designed to help development teams manage and track changes to their source 

code [2]. Azure Repos is integrated with other Azure DevOps services, providing a 

comprehensive solution for the entire development life cycle [TE2]. The reason for 

adopting the Azure DevOps tool suite is because the target software system utilizes 

Azure's DevOps services, and the source code resides in an Azure Repos cloud 

repository. 

Azure VM Azure Virtual Machines (VMs) are on-demand, scalable computing 

resources provided by Microsoft Azure [TE3]. These VMs run in the cloud and allow 

users to deploy and manage virtualized Windows or Linux servers [TE3]. In the 

context of this framework, an Azure VM is used for hosting a SonarQube instance 

and executing data extraction and logging scripts. 

Azure Pipelines Azure Pipelines is a cloud-based continuous integration and 

continuous delivery (CI/CD) service provided by Microsoft Azure [TE4]. It enables 

developers to automate the building, testing, and deployment of applications [TE4]. 

In this framework, it is used to facilitate the end-to-end process when triggered by 

repository changes or a scheduled trigger. 

 

 

Methodology:  

 

This section introduces a comprehensive system model that serves as a conceptual 

framework for understanding the solution being developed. This system model 

visually represents the major components, relationships, and processes of the 

system. 

 

 
Figure 14: System Model 
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The system model comprises three principal components: the automated metrics 

acquisition framework (AMAF), the data processing and logging pipeline (DPLP), 

and the machine learning-enabled quality analysis framework (MLQAF). Each of 

these components operates autonomously, exists in isolation, and engages in data 

communication following a controlled flow delineated by the relationships shown in 

Figure 1. The repository housing the source code of the target software serves as 

the input of the system, with the system generating historical data logs and machine 

learning predictions as its output artifacts. 

 

Automated Metrics Acquisition Framework 

The source code of the target software system resides within an external, cloud-

hosted repository, where the AMAF accesses this repository through secure tokens 

employed for authentication and communication. The AMAF constitutes a set of 

distinct and autonomous tools, as detailed in the subsequent sections. For the 

system model, the AMAF is treated as a singular component from the scope of the 

overarching system. The architecture supporting the Automated Metrics Acquisition 

Framework can be seen on Figure 2. 

 

 
Figure 15: AMAF Architecture 

 

Data Processing and Logging Pipeline 

The DPLP functions as an independent tool, comprising a collection of scripts 

designed to process the raw data produced by the AMAF. This pipeline 

systematically generates refined and organized metrics, culminating in historical 

data intended for subsequent analysis. Alternatively, historical data logs can be 

treated as standalone output artifacts. 

Machine Learning-enabled Quality Analysis Framework 
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The MLQAF employs historical data logs as input and deploys machine learning 

models to be designated and trained on a selected series of data. This automated 

process features preconfigured parameters for the models, ensuring consistency in 

both input and output dimensions. Currently, the MLQAF produces quality trends or 

classification predictions as output artifacts. The MLQAF currently consists of four 

predictive models and one generative model. The models used were as follows: 

Predictive Models, Linear Regression, Logistic Regression, Decision Tree 

Regression, Isolation Forest, Generative Adversarial Network (GAN). The 3 

regression models are used making quality trend predictions based on historical 

data, the isolation forest model is used to perform anomaly detection on API testing 

results, and the generative adversarial network (GAN) is used for producing 

significantly larger datasets to assess the long-term feasibility of the various 

models. 

 

Results: 

 

The versatility of the Machine-learning-enabled Quality Analysis Framework 

(MLQAF) opens avenues for diverse applications in software quality assurance. 

This section explores a collection of sample use cases (UCs) that showcase the 

adaptability and effectiveness of the MLQAF in addressing various challenges 

within the software development lifecycle. 

 

UC 1: Quality Trend Analysis 

The MLQAF serves as a powerful tool for conducting in-depth quality trend analysis, 

allowing developers to gain valuable insights into the evolution of software quality 

metrics over time. By leveraging historical data, the MLQAF predicts future quality 

trends, allowing teams to proactively address potential issues and optimize software 

quality throughout the development cycle. 

 

UC 2: Anomaly Detection on API Response Times 

All methods of assessing the airfield software’s quality thus far have been focused 

on static analysis techniques. Work is currently being done to extend the system to 

also include run time performance metrics, the first selected being response times 

made to API endpoints on the airfield software's back-end business logic. 

Performing anomaly detection on the API response times consists of a two-step 

process, performing the API tests themselves, and applying an anomaly detection 

model on the logged data.  

 

UC 3: Assessment of Model Feasibility 

As mentioned previously, the notion of a generative adversarial network (GAN) was 

applied in this system to assess the long-term feasibility of various prediction 

models. This is done by substantially increasing the input data pool sizes for the 

training of models substantially and observing the effects on prediction accuracy.  

 

Found below are some sample results from a quality trend analysis performed using 

a series of metrics collected from Team Eagle’s airfield software. 
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Figure 16: Developer Effort to Resolve All Bugs (Logistic Regression n) 

 

 
 

Figure 17: Sample Anomaly Detection Results (Isolation Forest) 
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Figure 18: Average Hotspot Vulnerabilities with Additional GAN-generated Data (Logistic Regression) 

 

Summary: 

The Automated Metrics Acquisition Framework, leveraging tools like SonarQube, 

Azure Repos, and Pipelines, automates the extraction of software quality metrics 

from the airfield software system. The Data Processing and Logging Pipeline 

consists of intermediary procedures which process the data, visualizes metrics, and 

facilitates quality trend analysis. The Machine Learning-enabled Quality Analysis 

Framework utilizes various machine learning models, including linear regression, 

logistic regression, decision tree regression, and isolation forest, to predict, classify, 

and analyze quality trends. Additionally, a Generative Adversarial Network (GAN) 

is employed to assess the long-term feasibility of predictive models by augmenting 

input datasets. The sample results demonstrate the effectiveness of the system, 

showcasing predictions made by different regression models and the impact of 

increase input data pools using GAN-generated data. Anomaly detection has been 

applied on API response times using the isolation forest model, providing insights 

into deviations from expected behavior.  

In conclusion, the solution in development offers a comprehensive approach to automate 

SQA processes, enhance data-driven decision-making, and improve the overall quality of 

software systems, such as Team Eagle Ltd.'s airfield software. Future work include s 

refining models, experimenting with additional models, further incorporating run-time 

metrics, and extending the system's capabilities to further advance automated 

software quality assurance. 
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4.2.3. Automatic analysis of technical debts (Cape of Good Code, Vaadin) 

 

Synopsis:  

 

This section focuses on the DETANGLE Analysis Suite, a part of the broader 

SmartDelta Quality Optimization and Recommendation Methodology. It offers 

automated quality assurance tailored for incremental industrial software 

development, focusing on the detection and management of different types of 

technical debt. 

 

DETANGLE computes Key Performance Indicators (KPIs) such as Maintenance 

Effort, Feature Effort, Feature Effort Effectiveness to evaluate them as symptoms 

of Technical Debt. Additionally, it provides architecture health factor metrics like 

Feature Debt and Contributor Friction. It enables development teams to monitor 

software quality trends, identify architectural hotspots (by correlating KPIs and 

health factors), and prioritize refactoring efforts. By integrating data from code 

repositories, issue trackers, testing and DevOps tools, DETANGLE provides a 

comprehensive analysis of development activities, facilitating informed decisions on 

cost-effective quality enhancements. 

 

Within SmartDelta's framework, DETANGLE contributes to software quality trend 

analysis and prediction by quantifying and visualizing the impact of technical debt 

on modularity, maintainability, and extensibility. Its application to the Vaadin Flow 

framework has demonstrated its effectiveness in identifying architectural 

bottlenecks and guiding refactoring decisions, supporting long-term quality 

improvement. 

 

Related Work: 

 

Technical debt management is a widely researched area in software engineering. 

Existing tools, such as SonarQube, provide static code analysis to identify code 

smells, duplication, and complexity [VD1]. While such tools effectively highlight 

issues, they often lack the ability to predict trends or provide actionable 

recommendations for addressing architectural and modular challenges. 

 

In the context of the SmartDelta project, DETANGLE has been applied to analyze 

software quality trends and identify architectural hotspots. Its ability to quantify and 

visualize the impact of technical debt on modularity and maintainability extends 

https://learn.microsoft.com/en-us/azure/virtual-machines/overview
https://learn.microsoft.com/en-us/azure/virtual-machines/overview
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
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beyond traditional approaches, offering targeted recommendations for improving 

code quality on architecture and design level. DETANGLE further integrates test 

coverage and review activity data into its analysis, thus including process quality 

into its comprehensive evaluation of the interplay between the symptoms and root 

causes of technical debt [VD2]. 

 

During its evaluation on the Vaadin Flow framework, DETANGLE identified critical 

areas requiring refactoring and offered actionable insights to guide design 

improvements. By addressing gaps in traditional analysis tools, DETANGLE has 

proven effective in supporting long-term quality improvements and fostering 

informed decision-making in incremental industrial software development [VD3]. 

 

Methodology: 

 

The DETANGLE Analysis Suite employs a comprehensive, data-driven 

methodology to analyze technical debt, architecture health, and team collaboration 

in software systems. Its approach integrates various data sources and computes a 

wide range of metrics, providing actionable insights into software quality and 

maintainability. 

 

• Data Integration 

o DETANGLE gathers data from development tools to capture a 

comprehensive view of code changes, issue resolutions, and testing 

activities. Examples include repositories for tracking modifications, issue 

tracking systems for development activities, and optional inputs like code 

quality or testing frameworks for detailed insights. This integration 

ensures a holistic understanding of both technical and collaborative 

aspects of software projects. 

• Technical Debt KPIs and Health Factor Metrics 

o DETANGLE calculates metrics across multiple categories to provide an 

overall view of software quality: 

▪ Effort KPIs: Maintenance Effort %, Primary Effort %, Primary 

Effort Effectiveness, and Maintenance Effort Ineffectiveness. 

▪ Architecture Health: Metrics such as the Feature Debt Index 

(Primary/Feature Debt Index), Contributor Friction Index, Defect 

Density, and Defect Impact assess modularity, maintainability, 

and extensibility. 

▪ Code Health: Derived from tools like SonarQube, these include 

complexity, duplicated lines, maintainability, reliability, and 

security findings. 

▪ Technical Debt Effort Prediction: Provides estimates for 

addressing code- (integrating the prediction from tools like 

SonarQube) and architecture-related debt. 

• Team Collaboration Metrics 

o DETANGLE evaluates team health and collaboration through: 
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▪ Team KPIs: Metrics like Team Fluctuation/Turnover and Team 

Effectiveness assess productivity and knowledge retention. 

▪ Team Health Factors: Bus Factor Knowledge Islands, Knowledge 

Balances, Coordination, and Healthiness highlight areas for team 

improvement and risk mitigation. 

• Visualization 

o DETANGLE generates detailed visualizations, including: 

▪ Network Graphs: Show dependencies and coupling at feature and 

contributor levels. 

▪ Architecture Dashboards: Provide insights into modularity 

challenges and architectural health. 

▪ Collaboration Visuals: Help teams identify risks in knowledge 

sharing and collaboration. These tools enable root cause analysis 

and help prioritize targeted refactoring and team interventions. 

• Cost/Benefit Analysis 

o DETANGLE predicts the effort required to remediate technical debt and 

measures the potential benefits (like reduced maintenance effort or 

higher feature effort effectiveness), enabling cost/benefit analyses for 

informed decision-making. This allows teams to balance short-term fixes 

against sustainable long-term improvements. 

• Trend Analysis 

o DETANGLE tracks changes in metrics over time to identify trends in 

software quality and team collaboration. This historical perspective helps 

teams proactively manage technical debt and maintain consistent 

software health. 

 

Results: 

 

The DETANGLE Analysis Suite was applied to the Vaadin Flow framework to 

identify technical debt hotspots and provide actionable recommendations for legacy 

code refactoring. Key findings are outlined below: 

 

• Architectural Hotspots 

o DETANGLE identified specific areas in the flow-server/frontend module 

with elevated Feature Debt Index values, highlighting strong feature 

coupling and low cohesion. These hotspots were prioritized for 

refactoring to improve modularity and reduce unintended side effects 

during new feature development. 

o Metrics such as Defect Density and Defect Impact pinpointed files and 

folders most susceptible to recurring bugs and follow-up issues, 

emphasizing the need for architectural improvements. 

• Refactoring Recommendations 

o Using network graphs and modularity analysis, DETANGLE provided 

detailed insights into problematic areas of the codebase. 

Recommendations included: 

▪ Splitting complex source files to improve cohesion. 
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▪ Extracting and reorganizing code into new, more modular 

components. 

▪ Addressing feature and contributor coupling to enhance 

architectural extensibility. 

o These recommendations enabled the Vaadin team to focus their efforts 

on refactoring high-impact areas of legacy code. 

• Visualizations and Root Cause Analysis 

o DETANGLE’s architecture dashboards and network graphs facilitated a 

clear understanding of feature and contributor dependencies. These 

visualizations were useful in identifying the root causes of technical debt 

and planning refactoring strategies. 

• Impact on Legacy Code Refactoring 

o DETANGLE supported the Vaadin team in identifying and addressing 

technical debt in legacy modules, ensuring that the codebase became 

more modular and maintainable. By focusing on architectural hotspots, 

the team reduced risks associated with feature development and 

maintenance in the refactored areas. 

 

Summary: 

 

The DETANGLE Analysis Suite has proven its value as a tool for identifying and 

managing technical debt, specifically in the context of legacy code refactoring. Its 

application to the Vaadin Flow framework, as part of the SmartDelta Quality 

Optimization and Recommendation Methodology, provided actionable insights into 

architectural hotspots and guided effective refactoring efforts. 

 

Key outcomes include: 

 

• Identification of Architectural Hotspots: DETANGLE pinpointed modules with 

high Feature Debt Index values and elevated defect density, helping the Vaadin 

team focus on critical areas for legacy code refactoring. 

• Targeted Refactoring Recommendations: The tool delivered recommendations, 

such as modularizing tightly coupled code, splitting complex, low-cohesion files 

to improve code maintainability and extensibility. 

• Enhanced Decision-Making: DETANGLE’s visualizations, including network 

graphs and architecture dashboards, enabled the team to conduct root cause 

analysis and prioritize high-impact improvements. 

 

DETANGLE’s structured methodology, combining effort-based KPIs, architectural 

health metrics, and actionable recommendations, ensured that the Vaadin team 

could address legacy code challenges effectively. By focusing on technical debt 

hotspots, the tool supported incremental improvements in modularity and 

maintainability, aligning with the broader goals of SmartDelta. 

 

Through its integration into the project, DETANGLE has demonstrated its ability to 

drive meaningful improvements in software quality, particularly in complex, legacy 
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codebases. This positions it as a critical tool for managing technical debt in industrial 

software systems. 

 

Reference: 

 

[VD1] “Code quality tool & secure analysis with SonarQube,” Clean Code: Writing 

Clear, Readable, Understandable & Reliable Quality Code, 

https://www.sonarsource.com/products/sonarqube/ 

 

[VD2] “Technical debt - why the term causes more confusion than clarity and how 

to do it better!” 

https://capeofgoodcode.com/hubfs/Downloads/Technische%20Schulden/CoGC_W

hitepaper_Tech_Debt_Analysis_with_DETANGLE%C2%AE.pdf 

 

[VD3] “The Vaadin Flow Web Framework - On the Highway to a New Quality Level”,  

https://capeofgoodcode.com/en/knowledge/architecture-quality-trends-vaadin-

flow-webframework 

 

4.2.4. Automatic code analysis for historical code analysis and quality assessment 

(University of Innsbruck and cc.com) 

Synopsis:  

 

One of the widely used code analysis tools is SonarQube. However, SonarQube 

has some limitations in historical code analysis:  

 

1. SonarQube and possible plugins update over time so that the quality 

measurement approaches could change. That means, for your analysis, if you 

update SonarQube or plugins, the comparability of your code artifacts suffers.    

 

2. Consider whether you take over a system or have a long-term project that 

expects a SonarQube integration. How can you analyze the history of the related 

project? SonarQube focuses on the integration of "current" commits.    

 

3. Maybe you only want to regard a specific time range of commits, analysis 

commits of (a) specific person(s) or a particular branch. 

 

4. Additionally, we identified that it would be advantageous to evaluate the quality 

of other projects to establish a comparative benchmark. This approach allows 

for a more objective assessment by providing context and reference points, 

helping to identify relative strengths and areas for improvement in an evaluated 

project. 

 

A tool named SoHist was developed to overcome these limitations and enhance 

functionalities for historical analysis. Consequently, points 1. – 3. were addressed 

in WP3, while point 4. in SoHist v2 was the primary focus of WP4, which is 

addressed further here. 

https://www.sonarsource.com/products/sonarqube/
https://capeofgoodcode.com/hubfs/Downloads/Technische%20Schulden/CoGC_Whitepaper_Tech_Debt_Analysis_with_DETANGLE%C2%AE.pdf
https://capeofgoodcode.com/hubfs/Downloads/Technische%20Schulden/CoGC_Whitepaper_Tech_Debt_Analysis_with_DETANGLE%C2%AE.pdf
https://capeofgoodcode.com/en/knowledge/architecture-quality-trends-vaadin-flow-webframework
https://capeofgoodcode.com/en/knowledge/architecture-quality-trends-vaadin-flow-webframework
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Methodology:  

 

Therefore, we conducted Exploratory Data Analysis (EDA). We followed the data 

analysis steps outlined by Tufféry [cc1] and adhered to the data analysis guidelines 

from the Empirical Standards for Software Engineering [cc2] to ensure rigorous 

practices. The overall process is displayed in the above figure.  

 

 
Figure 19: Code Analysis Methodology 

 

For the data mining done in June 2024, we selected SonarCloud, due to its open 

structure and popularity. SonarCloud provides several metrics on code quality for 

individual commits on the main branch. In total, 44 960 projects with more than 1000 

Lines of Code (LOC) were publicly available. Additionally, we utilized GitHub to 

obtain relevant information that was not available on SonarCloud. Consequently, 

only SonarCloud projects that were on GitHub, identified using the difflib6 library, 

were included in the analysis. All other projects were excluded. 

 

Based on the data mining, we have selected 28 574 distinct projects, which 

consisted of a range of metrics. Table 13 describes selected metrics and provides 

descriptions relevant to the rest of the paper. In the table, some software quality 

metrics include a highlighted [R] to denote that we also use their densities, 

calculated by dividing the metric by the project’s LOC. This adjustment allows for a 

more effective comparison of projects independent of their size. Otherwise, we have 

observed a significant impact of LOC on other metrics, consistent with findings from 

previous studies [cc3, cc4]. 

 

Table 13: Bug and Code Smell Descriptions 

 Name Description [C=Count,% =Percentage,B=Boolean] 

V
io

la
ti
o
n
s
 

Bug [R] A concert coding mistake that can lead to an 
erroror 
unexpected behavior at runtime [C]. 

Code Smell [R] Refers to any issue that makes code confusing and 
hard maintain. They do not necessarily lead to errors 
[C]. 

Vulnerability [R] A weakness that can be exploited to compromise 
security [C]. 

C
o
m

p
le

x
. 

Cyclomatic Complexity 
[R] 

Counts independent paths through the code, 
indicating testing complexity [%]. 
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Cognitive Complexity 
[R] 

A qualification of how difficult it is to understand 
code 
(SonarQube developed metric )[%]. 

T
e

s
t 
C

o
v
. 

Line Coverage Indicates the percentage of lines of code that have 
been executed during testing [%]. 

Branch Coverage Measures the percentage of branches or decision 
points in the code that have been executed during 
testing. 

Coverage SonarQube´s own test coverage [%]. 

D
u
p
. 

Duplicated Lines [R] Number of lines of code that have an identical code line 
[C]. 

Duplicated Blocks [R] Number of blocks of code that have identical code lines 
[C]. 

P
ro

je
c
t 

Lines of Code (LOC) Count of lines of programming code in all files [C]. 

Languages Project´s programming languages and theirLOC [Array 
of Language with LOC]. 

Committers Total number of contributors via commits [C]. 

Commits Total count of individual changes made on a repository 
[C]. 

Repository Stars Reflects the popularity (user likes) by the community 
[C]. 

Is not Forked Outlines if have project emerged from another one [B]. 

 

   

Nevertheless, the 28 574 projects may present limitations concerning the overall 

validity of the assumptions made. Consequently, we established a series of 

Inclusion Criteria to filter and select projects based on defined relevance and 

quality standards, outlined in the following Table 14. 

 
Table 14: Counts of Issues Across Different Software Projects 

No
. 

Criteria and Description #Proj. 

I1 At least 1000 LOC. 44 960 

I2 Publicly available on GitHub. 28 574 

I3 Is not forked from another project. 22 104 

I4 More than 100 GitHub commits. 10 893 

I5 More than 4 GitHub committers. 7 154 

I6 More than 10 GitHub repository stars. 2 844 

I7 At least 10 complete SonarCloud analyses. 2 007 

 

For the data analysis of research objectives, we utilized Jupyter Notebook along 

with Pandas for data manipulation, Seaborn and Matplotlib for visualization, and 

Scipy and Statsmodel for statistical tests and analyses. After aggregating and 

cleaning the data, we examined each metric, following Tufféry [cc1]. We analyzed 

the distribution of the data and tested for normality and skewness using Q-Q plots 

as well as D’Agostino and Pearson’s normality test (univariant analysis). Our 

findings indicate that each quality metric is not normally distributed. Given this 

nonnormality, we employed non-parametric approaches. To address the second 

research objective (bivariant analysis), we selected Spearman rank correlation 

to calculate the correlation between two metrics, such as Cyclomatic Complexity 
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Density and Bug Density. By comparing these attributes and calculating a score 

within the range of -1 to +1, we aimed to gain insights into their relationship of 

different software quality metrics. This correlation approach remains robust even 

when dealing with skewed variables or extreme values. 

 

Results: 

 

Distribution Analysis of Software Quality Metrics 

 

On the first chart of Fig. 20, we show the distribution of the three Test Coverage 

metrics. Each of these has a median coverage of at least 65%. If we consider 

80% of the projects with the highest Line Coverage, we have at least 52.5%. 

 

Regarding Complexity, we distinguish between Cyclomatic Complexity and 

Cognitive Complexity. In an initial attempt at chart visualization, considering only 

the latest analysis, we observed a peak at zero for Cognitive Complexity Density. 

This anomaly can be attributed to a known defect in SonarSource, as 

documented in the issue report7. Consequently, for projects containing 

JavaScript and TypeScript code, we used only the most recent analysis 

conducted before the release of SonarCloud version 10. Additional ly, it can be 

observed that Cognitive Complexity Density is shifted to the left relative to Cyclic 

Complexity Density. 
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Figure 20: Distribution Analysis of Software Quality Metrics 

 

We also examined the distribution of Violations: Bugs, Code Smells, and 

Vulnerabilities. For every 1000 LOC, Code Smells are the most prevalent, occur- 

ring at a rate of 16 per 1000. This could be explained by the fact that most Sonar 

Rules pertain to Code Smells, and the urgency of addressing them is relatively 

low. In contrast, Bugs and Vulnerabilities are less common. To be precise, 81% 

of projects report zero Vulnerabilities, and 45% of projects show no Bugs in their 

most recent analysis. 

 

Next, we closely examined the Duplication densities at both the line and block 

levels. The distributions appear to be almost identical in shape. On average, a 

Duplicated Block contains 22 LOC. 

 

Lastly, we looked at the Comment Line density. On average, the median shows 

that 120 lines of comments are used to document every 1000 LOC. 
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Objective 2: Correlation among Software Quality Metrics 

 

 
Figure 21: Correlation among Software Quality Metrics 

 

Based on the results of Spearman’s correlation analysis of the software quality 

metrics, specific p-values exceed the p > 0.05 threshold and are highlighted with a red 

box in the correlation matrix of Fig. 21. Notably, Cyclomatic Complexity and 

Comment Lines Density frequently exhibit non-significant correlations. All other 

metrics have p-values below 0.05, permitting further exploration of their 

correlations using other annotation boxes. 

 

First, for Test Coverage, we consider Line Coverage, Branch Coverage, and 

Coverage. The correlation between these coverage metrics and issue metrics (Bugs, 

Vulnerabilities, Code Smells Density) is negatively weak. Also, the coefficients for 

duplication densities per line and block fall within the range of -0.19 < ρ < -0.40, 

indicating a weak negative correlation. 

 

Additionally, we observe that (Cognitive) Complexity has a weak positive 

correlation with metrics: Violations, Comment Lines, and Code Duplication. 

Additionally, there is a moderate positive correlation with Code Smells. This is 

obvious because a Sonar Rule flags high complexity as a Code Smell within the 

code. As already outlined, Cyclic Complexity often has p > 0.05; however, if not, it 

has a similar correlation behavior as Cognitive Complexity. 

 

Similarly, within the green box, the Duplicated Code shows a nearly moderate 

correlation to code smells for the same reason. In contrast, Bugs and 

Vulnerabilities exhibit only a very weak correlation with Duplicated Code.  

 

Considering the correlations within the Categories of Metrics shown in Fig. 3, 

we observe the following: 

• Test Coverage ↔ Coverage ↔ Line Coverage: Strong 

• Duplicated Blocks Density ↔ Duplicated Lines Density: Strong 

• Cyclomatic Complexity Density ↔ Cognitive Complexity Density: 

• Moderate 
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• Bug Density ↔ Code Smells Density ↔ Vulnerability Density: Weak 

 

           Summary and Usage for SoHist v2:  

 

With this data, users can benchmark their project's quality metrics against a large set of 

comparable projects, considering various programming languages and selected quality 

criteria. A chart visualizes the distribution of these metrics across other projects, yielding 

insights into metrics like Test Coverage, Code Smell Density, and more. An example of Code 

Complexity is given in Fig. 22.  

 

 
Figure 22: Usage for SoHist v2 
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4.2.5. Analyze software quality trends based on issues and schedule the issues to 

find the balance between focussing on improving quality versus adding new 

features (FOKUS) 

 

Synopsis: 

 

This section describes the methods and tools for assessing the health of a software 

product under continuous development by looking manly at the upcoming issues 

and the reactions these provoke. Machine learning is used both for adding useful 

information to individual issues (e.g. classification, criticality, related code) as well 

as for time series analysis manly about changing frequencies eventually allowing to 

predict expected issue volumes for the future. Especially the development of the 

response time to issues is a good indicator for the overall health of a software 

system. The scheduling of issues should try to keep the response time in a 

reasonable corridor – i.e. postpend adding new features if fixing bugs tends to take 

longer and longer already. 

 

Related works: 

 

Our tool for unifying an enriching the issues is closely related to "CatIss: An 

Intelligent Tool for Categorizing Issues Reports using Transformers" [FOKUS1]. 

CatIss is a tool for categorizing GitHub issue reports using transformer-based 

models. By leveraging RoBERTa, a transformer known for its strong performance 

in NLP tasks, CatIss effectively automates the classification of issues into 

categories like bug, enhancement, and support. This work establishes a significant 

step forward in issue classification, as previous approaches relied primarily on 

traditional machine learning models, which often struggled to capture the contextual 

nuances in unstructured text. The model fine-tuning in CatIss adapts the 

transformer to domain-specific data, enhancing classification accuracy. The paper 

[FOKUS 1] provides a framework and model upon which our tool builds, with 

adaptations and extensions to improve functionality and applicability for specific 

repositories. Our work extends CatIss specifically by integrating an updated data 

processing pipeline, fine-tuning strategies, and configurable label management, 

allowing our tool to better serve the needs of ongoing software development 

projects. 

For identifying and filtering out duplicate issues with machine learning there is a 

long research tradition. In [FOKUS 2] dating back to 2017 for instance, using 

Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) 

already resulted in high accuracy. More recently, for instance in [FOKUS 3] an 

approach for unsupervised learning is proposed. 

Decision trees are used in [FOKUS 4] to assess the severity and priority of new 

bugs and the approach allows detecting and forecasting faults. 

 

 

Methodology: 
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Our method for an intelligent and software “health” oriented issue management 

consists of three major steps: 

1. unifying, enriching and filtering the issue data 

2. analyze the issue trends 

3. make assumptions about the expected soon incoming issues and schedule the 

actual new issues with the goal to keep the average response time within certain 

limits 

The first step is required since issues created by human beings will most likely not 

all have a comparable amount of amount, structure and quality of information. Even 

with predefined input forms and input assistant systems some fields will not be 

proper filled for many issues. Potential causes are that issuers do not have the 

required knowledge to provide the data they are asked for or that they are do not 

care, assuming that the textual description will be enough. Fortunately, with the help 

of machine learning and particularly with natural language processing, it becomes 

doable to automatically generate missing data. Within the SmartDelta project, such 

methods and tools for classifying different kinds of issues, for assessing their 

criticality and for identifying related code artefacts are developed. Identifying and 

filtering out potential duplicate issues is also crucial for any quantitative issue trend 

analysis. Applying methods and tools such es those developed in the SmartDelta 

project to get rid of duplicates concludes the first step. 

 

For the actual issue trend analysis (step two), we focus on the available response 

times to already closed issues. There are at least five different time values between 

which the timespans are worth considering: The time when the issue is created, the 

time when the issue is assigned to someone who can eventually solve the issue, 

the time of the first response to the issuer, the time when the discussion of the issue 

in order to understand it ends and then the time when the issue is completed either 

by providing a solution or by concluding that no change is going to happen for that 

issue. Of course, not all issues have a discussion before solving them starts. 

However, if there is a discussion, then the timespan for that discussion is eventually 

not entirely a developer response time since it might include waiting for some 

clarification by the issuer to communicate what he really wants. Those waiting times 

must be subtracted. And dividing the discussion time by the number of clarification 

cycles yields the average discussion response time. The timespan for implementing 

a solution also needs to be corrected based on the amount of work required to make 

the solution. Dividing the implementation time by the number of lines of code altered 

already gives a simple correction, but more sophisticated approaches are 

applicable, too.  The development of the average response timespan values for fine 

grained groups of issues – especially for issues of the same kind and criticality – 

reflects the overall software quality trend because it is exactly what the customers 

experience. In contrast to just looking at the development of the total number of 

open issues for instance, our method considers eventually changing capacities for 

managing the issues. If a software system massively grows and therefore more and 

more people are working on it, for instance, then an increasing number of open 

issues is expected and not necessarily a sign for a quality decline since there are 

also more developers dealing with the issues. The response timespans do reflect 
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altering capacities and capabilities – as long as the timespan lengths do not get out 

of control, it is fine for the customers. 

Visualizing software quality trends graphically using the development of issue 

response timestamps might already be valuable, but there is more that can be done 

to support the strategic issue and more general software development 

management. In step three we try to predict how many issues of a certain kind and 

criticality are expected in the near future and how that will most likely affect the 

average lengths response timespans. The idea is to early recognize potential 

upcoming overloads before the customer support actually suffers from worse 

feedback and painfully slow fixes for their issues. If response times tend to increase 

too much or if higher issue frequencies are prognosed, the management is advised 

to consider focussing on improving the quality of the software with the already 

implemented features instead of increasing the complexity by adding additional 

stuff. 

 

Results: 

 

For unifying and enriching issues, we developed an issue classification tool using 

RoBERTa, a transformer known for its strong performance in NLP tasks. The tool 

provides a sophisticated data processing pipeline, fine-tuning strategies, and 

configurable label management. Here are some results for the two GitHub 

repositories vaadin/flow and grafana/grafana: 

 

 
Figure 23: Results for grafana/grafana without fine-tuning 
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Figure 24: Results for grafana/grafana with fine-tuning 

 
Figure 25: 3 Results for vaadin/flow without fine-tuning 

 
Figure 26: Results for vaadin/flow with fine-tuning 
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Our tool for visualizing the development of the average response times (step two) 

takes advantage of the enriched issue data by using it for focussing on comparable 

issues. 

 

 

 
Figure 27: Commit Frequency, Average Commit Size and Bug Issue Count Over Time for the vaadin/flow 

repository with a log scale for average commit size 

Time series prediction for the expected upcoming issues is notoriously difficult. First 

of all, it requires a large number of issues over a long period of time for learning. 

Additionally, for good results it will probably be necessary to take changes of the 

code base and in the developer community into account. We are still trying to figure 

out how to make accurate forecasts and the work will be continued beyond the 

SmartDelta project. Nonetheless, our response time analysis of only the real 

existing issues can already give sound guidance for prioritizing bug fixes over 

feature requests and thereby help to improve the scheduling of issues. 

 

Summary: 

 

With our approach, just by carefully analysing the responses to issues it is possible 

to show software quality trends in a continuous development process. Furthermore, 

it is possible to guide the issue scheduling so that the average response times will 

stay within acceptable limits by recommending when it is appropriate to add new 

features and when it is better to focus on improving the quality of the already 

implemented stuff. 
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4.3. ML-Based Similarity Analysis Approaches and Recommendations 

4.3.1. Similarity analysis of State Machines using hierarchical modularization (TWT, 

Akkodis) 

 

Synopsis: 

 

A State Machine (SM) is a behaviour model of a system. It consists of a finite number 

of states and transitions and is also called Finite-State Machine (FSM). Starting from 

specific state and a given input, the machine performs transitions resulting in outputs 

[TWT1]. In our case, we are considering state machines that are following defined ISO 

standards (like the ISO 15118-20).  

A comparison between states machines is necessary, for example to track the evolution 

over time of specific requirements of norms or to recognise possible reuse 

opportunities. Manually analysing State Machines is a time-consuming task, especially 

comparing one State Machine against numerous others is hence hardly possible. GSR 

as a tool streamlines this process, particularly when the State Machines adhere to 

specific logic, such as transitions defined by ISO standards. By leveraging background 

knowledge, our tool saves time and enhances the quality of the analysis. This makes it 

possible to compare a state machine to numerous other State Machines from a large 

database to find and recommend similar or comparable State machines. 

 

Related works: 

 

The idea of model checking as an automatic verification technique has already been 

around since the early 80’s with Clarke’s and Emerson’s work [TWT 2]. Model checking 

serves as a powerful method for evaluating a finite state system's description in relation 

to its formal specification, systematically identifying potential errors [TWT 3]. 

There are different methods to compare two models. One that gained a lot of traction 

due to its high flexibility is the Graph Edit Distance (GED) method. GED is a method 

that measures the similarity between two graphs based on the amount of distortion 

required to convert a graph into another one. This method enables a selection process 

for the cost model within a specific application of graph edit distance. Additionally, the 
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precise calculation of graph edit distance may utilize various algorithms, such as a tree 

search algorithm [TWT 4]. 

 

Methodology: 

 

Given a state machine as input, the tool searches for the most similar State machine 

in each database. It is assumed that the states of all state machines are the parts 

of a fixed ISO norm. The methodology consists of the following steps:  

 

1. Hierarchical labelling of the state space: The parts of the ISO norm are labelled 

hierarchically based on their contents. This grouping of states is also called 

modularization. Different layers can be defined here for a more precise partitioning 

of the State Machine. This step must be done only once. 

 

2. Comparison of State Machines: Iteratively, the tool compares the input state 

machine to every state machine in the database: 
 

a. Hierarchical Modularization: Based on the labelling of the ISO norm, the 

state machines are decomposed in hierarchical modules. Through this step, 

a comparison on module level is possible. Such a comparison enables a 

more industry driven similarity analysis for the whole State Machine, as 

changes on specific parts can be focused on. 

 

b. Identification of matching modules: Based on the hierarchical 

modularization, the corresponding modules of the two state machines are 

matched throughout the layers. 

 

c. Comparison of modules: Starting with the modules in the lowest layer, the 

modules of the state machines are compared using the graph edit distance 

and the states of the modules are mapped. After a module has been 

compared, all the states and transitions that are part of it are collapsed into 

one state. This process is repeated till all the modules have been compared. 

 

d. Determination of the Similarity: Recursively, the similarity values of all 

modules are determined via graph edit distance. The similarity values 

depend on the type of deviations between the state machines. 6 types are 

covered: Addition/Removal of an edge, Addition/Removal of a state, 

Relabelling of a state or edge. Each type has a different weight of influence 

on the similarity analysis that can be customized. 

 

e. Determination of the Deltas: Using the state mappings between the 

corresponding modules, the nodes of the state machines are mapped as 

well as the transitions. This results in a mapping, also called “delta paths”, 

describing the differences between the two state machines. 

 

f. Data storage: The output of the analysis, also called the delta paths, is then 

stored in a JSON format. The output contains the definition of the State 
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Machines, the modularization, the similarity values for each module and the 

delta paths. 

 

Results: 

 

When analysing such tools in an industry context there are two main parameters that 

we focus on: process speed-up and accuracy. 

Speed-up: 

 

Time saving is a major focus point for industries. Manually comparing two state 

machines is a time-consuming process that can take between minutes and hours, 

depending on the complexity of the state machines. The required time rises 

exponentially with the complexity. 

The GRS tool is able to compare states machines in the range of seconds depending 

on their complexity. 

 

Figure 28: Evolution of comparison time depending on the state machine size 

As shown in the graph above, a comparison between “small” (less than 10 states) 

 state machines take 1.43 seconds. For “medium” (less than 20 states) state  

 machines, the comparison takes 1.85 seconds. For “large” (above 20 states) state 

 machines, the time goes up to 5.51 seconds. This shows a significant speed-up 

 compared to a manual comparison. 

With this, a comparison on a whole database can be performed in a few hours instead 

of multiple days if done manually, depending on the size of the database. 

 

Accuracy: 
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To measure the capacity of the tool to find all the differences between two State 

Machines, we performed a test in which we tracked the reliability of the generated delta 

paths during the analysis. 

For this we took a base state machine, that we will call “base_example”, and randomly 

generated 5 sets of 10.000 variations of the state machine. The number and type of 

modifications is randomly chosen for each variation. For the number of modifications, 

it is defined between 0 and 3 and for the types it chooses between all the 6 types of 

modifications mentioned in the methodology section above. The “base_example” taken 

here is a state machine containing 18 states and 53 transitions and can be classified 

as having a medium complexity. 

In the first step the 10.000 variations are compared with the “base_example” and the 

delta paths are computed. For every variation, the computed delta path is applied to 

the “base_example” and it is checked if the resulting state machine is identical to the 

tested variation. 

The below shows the success rate of going from one state machine to the other based 

on the computed delta paths. 

Table 15: Success rate of finding the correct delta paths 

Set Set 1 Set 2 Set 3 Set 4 Set 5 

Success rate [%] 91,04 91,46 91,22 91,20 91,31 

In each set a success rate of above 90% was achieved. 

 

Summary: 

The GSR tool enables a fast and efficient comparison of a state machine against 

numerous other State Machines from a large database, a task that would otherwise be 

impractical and highly labour-intensive when done manually. Additionally, it allows for 

focused comparisons on specific regions or functionalities. This is done by partitioning 

the State machines into modules based on the clustering and comparing those modules 

via graph edit distance. Based on the module similarities, a similarity of the state 

machines is computed. Moreover, deltas between the State machines are determined 

and returned on demand.   

Initial tests indicate that the differences between the state machines are accurately 

detected and changes in state machines are allocated in correct regions of the state 

machines. However, the detailed evaluation is still pending. 
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4.3.2. Graph based similarity analysis and recommendations (TWT, Software AG, 

Vaadin) 

 

Synopsis: 

 

The rapid digitalization has led to increasingly complex software systems. Managing 

this complexity poses significant challenges for developers, particularly in tasks 

such as maintenance, code reuse across different projects, and adherence to 

regulatory requirements. To address these challenges and accelerate software 

development cycles, a novel tool called Code Similarity Investigator (CSI) has been 

developed. CSI utilizes graph-based code similarity analysis to automate code 

reuse suggestions, streamline API replacements, enhance code refactoring 

processes, and prioritize test cases, thereby reducing the time developers spend 

on repetitive and mundane tasks. 

 

Related works: 

 

Efficiently handling large and complex codebases has been a longstanding 

challenge in software engineering. Traditional methods for detecting code 

similarities often rely on clone detection techniques, which compare code based on 

syntactic patterns. Tools like CCFinder [AG1] and JPlag [AG2] have been used for 

plagiarism detection and clone analysis by identifying exact or near-exact code 

duplicates. However, these methods are typically limited to specific programming 

languages and may not effectively capture semantic similarities. 

Recent research has shifted towards semantic code analysis using graph-based 

representations. Code Property Graphs (CPGs) have emerged as a powerful tool, 

combining Abstract Syntax Trees (ASTs), Control Flow Graphs (CFGs), and 

Program Dependency Graphs (PDGs) into a unified model. This rich representation 

enables more nuanced analysis of code semantics. Studies like Suneja et al.  [AG3] 

have leveraged CPGs for vulnerability detection by identifying patterns in code 

graphs. 

Machine learning approaches, including Graph Neural Networks (GNNs), have also 

been explored to learn embeddings of code graphs for similarity detection. Works 

such as DeepSim [AG4] encode control and data flow into high-dimensional feature 

vectors to measure functional code similarity. However, these methods often face 

challenges related to computational complexity and the availability of large, 

annotated datasets for training. 

 

Methodology: 

https://doi.org/10.1007/978-3-319-27252-8_2
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CSI focuses on leveraging graph-based models to identify code similarities within 

large codebases. The methodology comprises several key steps: 

 

1. Code Representation Using Code Property Graphs (CPGs): Source code is 

transformed into CPGs using tools like Joern. CPGs integrate syntactic and 

semantic information by combining ASTs, CFGs, and PDGs, providing a 

comprehensive representation of the code structure and behaviour. 

2. Subgraph Extraction: Relevant subgraphs are extracted from the full CPGs to 

focus on specific code sections, such as methods or classes. Selecting 

appropriate subgraphs is crucial to balance detail and computational efficiency. 

Subgraphs that are too large may introduce unnecessary complexity and hinder 

performance, while overly small subgraphs may lack sufficient context. 

3. Graph Similarity Measurement with Graph Edit Distance (GED): The core of the 

similarity analysis relies on computing the GED between code subgraphs. GED 

measures the minimal number of edit operations required to transform one 

graph into another, where edit operations include adding, deleting, or 

substituting nodes and edges [AG5]. By quantifying these differences, GED 

provides a customizable way to assess the similarity between code sections 

through application specific costs for each operation. 

4. Due to the NP-hard nature of exact GED computation, approximate algorithms 

are employed to make the process tractable for large graphs. These 

approximations aim to balance accuracy and computational efficiency, allowing 

the methodology to scale to real-world codebases. 

5. Similarity Classification: Based on close collaboration with Software AG and 

Vaadin, the Code Similarity Investigator (CSI) labels the similarity into four 

classes: 

• None: No similarity detected. 

• Low: Minor similarities that may not warrant action. 

• Medium: Moderate similarities suggesting potential for code reuse or 

refactoring. 

• High: Significant similarities indicating strong candidates for code reuse, 

refactoring, or applying similar fixes. 

 

 

 

Results: 

 

Preliminary tests of the Code Similarity Investigator (CSI) were conducted using 

data provided by Vaadin, based on their open-source web application development 

platform. A total of 29 code pairs were evaluated to compare the automated 

similarity assessments generated by CSI with manual assessments conducted by 

developers at Vaadin. 

The similarity levels were categorized into four classes: None, Low, Medium, and 

High. Each code pair received an assessment from both the automated tool and the 

manual evaluation. 
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To quantify the agreement between the two assessments, we calculated the 

difference between the two similarity assessments based on the following mapping: 

None = 1, Low = 2, Medium = 3, High = 4. This indicates how closely the tool 

matches human judgment. 

 

The results are summarized as follows: 

• Exact Match (Difference of 0): 18 out of 29 code pairs (62%) 

• Close Agreement (Difference of 1): 9 out of 29 code pairs (31%) 

• Significant Disagreement (Difference of 2): 2 out of 29 code pairs (7%) 

• Completely Off (Difference of 3): 0 out of 29 code pairs (0%) 

 

These preliminary results demonstrate that CSI aligns closely with expert 

evaluations, with 93% of cases showing exact matches or close agreements. CSI 

can furthermore be finetuned for a certain use case, which was not done for these 

preliminary tests and can further improve its performance. 

 

Summary: 

 

The Code Similarity Investigator (CSI) offers a promising solution to the challenges 

posed by complex and evolving software systems. By modelling code as CPGs and 

utilizing GED for similarity measurement, CSI automates tedious tasks, ensures 

consistency across projects, and reduces development time. Future work will focus 

on extensive validation across larger and more diverse codebases, optimization of 

the GED approximation algorithms, and exploration of machine learning techniques 

to enhance the accuracy and scalability of the methodology. 
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4.3.3. ML-based methods to identify requirements from large data repository and 

generate recommendations (RISE, Alstom) 

 

Synopsis: 

 

Requirements are often mixed with supporting information, contractual obligations, 

and other customer-supplied documents. This makes it harder to analyze and 

understand customers’ wishes and perceptions of the end system, especially in the 

process of responding to a call for tender in a project-based industry. Therefore, it 

is essential and a prerequisite to software development to extract technical 

specifications from customer-supplied documents such as tender documents. The 

identified technical specifications can be used as a base for other downstream 

activities, such as feasibility analysis, requirements quality assurance, and 

requirements allocation for development and verification. Manual requirements 

extraction from large documents is a resource-intensive and experience-dependent 

process and is subject to human fatigue [RISE1]. In addition, it is not scalable and 

could add additional delays to the project procurement process in the already very 

competitive bidding processes. 

 

Related works: 

 

Literature has been focusing on distinguishing requirements from other information 

using machine learning. Like our use case, Winkler et al. [RISE2] propose a deep 

learning (DL) classifier based on Convolution Neural Networks (CNNs) to identify 

requirements from additional material stored in IBM DOORS. Falkner et al. [RISE3] 

propose a Naive Bayes (NB) classifier---trained on unique words---to identify 

requirements from Request of Proposal (RFP) documents within the railway safety 

domain. Furthermore, Abualhaija et al. [RISE4] proposes an automated ML-based 

approach to demarcate requirements in textual specifications by considering one 

sentence as a unit of classification. They empirically evaluate ML classifiers on the 

industrial dataset consisting of 12 documents. In addition, Sainani et al. [RISE5] 

defines a two-step methodology to first extract requirements from 20 Software 

Engineering (SE) contracts and then allocate them to their specific types. For 

identification and extraction of requirements, Bi-LSTM yields the best results 

compared to ML algorithms. To allocate identified requirements in sub-classes, 

BERT (Bi-directional Encoder Representations from Transformers) performed 

better in terms of F-1 score. 

 

Methodology: 

 

We proposed two approaches, requirements identifier (REQ-I) [RISE 6] and 

requirements allocator (REQA) [RISE7] to support the project bidding and feasibility 

phase for one use-case provider in SmartDelta. The REQ-I approach enable faster 

and more automated requirements extraction and identification from tender 

documents for later analysis, feasibility and implementation. On the other hand, the 

REQA approach is meant to smartly recommend various teams for the identified 
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requirements, for implementation and verification. We briefly introduce the 

approaches, their evaluation setup and the obtained results from the evaluation, as 

follows. 

 

1) REQ-I 

  

Figure 29: REQ-I Approach: Approach for requirements extraction and identification 

The REQ-I approach takes new tender documents as input and produces a PDF file 

with highlighted requirements. The approach first parses the text of the PDF files 

using optical character recognition (OCR) and then applies a fine-tuned version of 

the BERT model to classify the text into requirements or non-requirements. Below, 

we detail the evaluation setup used to evaluate the approach and obtain the results. 

We focused the evaluation on the effectiveness of the requirements identification 

process. To achieve this, we considered five already annotated tender documents 

from Alstom. These five documents were annotated by experts, and requirements 

among the documents were identified. In addition, to allow replication, we also 

considered a public dataset. 

 

Figure 30: REQ-I Data: Considered data from REQ-I evaluation 

As shown in Figure REQ-I Data, in the industrial data, around 1680 requirements 

were identified by experts, while the rest of the 1293 text chunks were considered 

to be additional supporting information. We use five-fold validation to avoid model 

overfitting and enable generalizability of the results. On average 2378 textual chunk 

were considered across the five folds for training various classifiers for requirements 

identification. 
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Considered classifiers included traditional classifiers, deep language models, and 

few-shot classifiers. For traditional classifier, we feed term-frequency inverse 

document frequency (TF-IDF) based vectors to the classifiers Support Vector 

Machines (SVM), Logistic Regression (LR), Decision Tree (DT), Random Forest 

(RF), and Naïve Bayes (NB). For a fair comparison and tuning, we applied random 

multi-search optimization to select the optimal hyperparameters. SVM and LR 

achieved better results on evaluation metrics when trained with normalized and 

reduced TF-IDF vectors using PCA. However, the rest of the ML pipelines---RF, DT, 

and NB---performed better with normalized TF-IDF vectors without PCA-based 

dimensionality reduction. In addition, we also consider a baseline random pipeline 

(W. Rand.) that classifies input as a requirement or not based on their frequency 

distribution in the dataset. 

For deep language model-based classifiers, we considered the seminal GLoVE and 

FastText based embedding for the LSTM classifier. We considered the REQ-I 

approach based on BERT uncased model and few other variants of the approach 

SciBERT, RoBERTa, XLMRoBERTa (XRBERT), DistilBERT (DisBERT), and 

XLNet. 

Finally, for few-shot classifiers, we considered MiniLM and S-BERT-based 

classifiers with only 10% and 20% of the data to evaluate their performance of “few” 

shot classification. 

As typical in the NLP domain, pre-processing of the input text might impact 

classification performance. Therefore, we also consider the datasets both with 

(pipeline with names starting with “p”) and without pre-processing. 

We use the standard evaluation metrics for text classification, as follows:  

- Accuracy (A) is the ratio of the number of correct predictions and the total predictions. 

- Precision (Prec. Or P) is the ratio of correct positive predictions and the total number 

of positive predictions.  

- Recall (Rec. Or R) quantifies the number of correct positive predictions from all possible 

positive predictions. 

- F1 score (F1) is the harmonic mean of precision and recall.  

We report the macro and weighted average across the fold for all our evaluation 

metrics in the results section. 

 

 

2) REQA 

After requirements are identified and agreed upon, it is essential to allocate those 

requirements to the right teams for implementation and verification. In this regard, 

we also proposed the REQA approach for smart requirements allocation to teams. 

The approach uses both traditional and state-of-the-art machine learning 

approaches to achieve this in an explainable manner. The REQA approach is 

composed of two main modules, Assigner and Augmenter, as shown in the following 

Figure. The Assigner module is responsible for generating a representation for the 

input requirement and for suggesting a possible allocation based on the results of 

a classification algorithm. Given a requirement, the Assigner outputs a list of 

potential allocation classes, ranked by likelihood. 



Deliverable 4.5 

 © 2024 SmartDelta Consortium Page 95 of 117 

 

 

Figure 31: REQA Approach: Approach for requirements allocation 

 

Only the most probable class is shown to the user, while the ranked list will be used 

by the Augmenter. The Augmenter module produces additional information to 

complement the predictions generated by the Assigner. This additional information 

helps in providing the most likely classes derived from lexical similarity-based 

measurements. The Augmenter searches for the most similar requirements in the 

training set used to train the Assigner. Then, it checks whether the classes produced 

by the Assigner match the classes with the most similar requirements identified 

based on lexical features. This can be regarded as a complementary channel to 

better inform the requirements analyst in deciding the allocation.  Below we detail 

the evaluation methodology of the REQA approach. 

The REQA tool for requirements allocation to teams was evaluated on 1680 

requirements that were already allocated to various teams at Alstom. As shown in 

Figure REQA Data, the requirements were allocated to 15 different teams at the 

company responsible for developing various sub-systems. We use five-fold 

validation to avoid model overfitting and enable generalizability of the results. On 

average 1344 requirements were considered across the five folds for training 

various classifiers for requirements allocation. 

 

Considered classifiers for comparison included traditional classifiers and classifiers 

based on deep language models. For traditional classifiers, we feed term-frequency 

inverse document frequency (TF-IDF) based vectors to the classifiers like the setup 

for REQ-I but instead of Naïve Bayes we use the multi-class version (MNB).  In 

addition, we also consider a baseline random pipeline (W. Rand.) that classifies 

input as a requirement or not based on their frequency distribution in the dataset.  

For deep language model-based classifiers, we considered the seminal FastText 

based embedding for the LSTM classifier. We considered the REQA approach 

based on SciBERT model and few other variants of the approach BERT base, and 

RoBERTA. 

We use the same evaluation metrics as of REQ-I. 
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Figure 32: REQA Data: Considered data for REQA evaluation 

 

Results: 

1) REQ-I: The requirement identification part of the toolchain uses the BERT large 

language model for identifying requirements in tender documents with an average 

accuracy of 82%. The toolchain also allows checking the quality of the extracted 

technical specifications from the tender documents. Particularly, VARA+ compute 

metrics, such as Automated Readability Index, Complexity, and subjectivity to allow 

quality assessment of the extracted requirements. We evaluated various binary 

classifiers for our requirements identification sub-tool to select the best one for the 

pipeline. As shown in Figure ReqIdentifier, we evaluate weighted random (W. 

Rand.), Support Vector Machine (SVM), multinomial Naive bayes (NMB), Decision 

trees (DT), Logistic Regression (LR), Random Forest (RF), BERT and its variants, 

and LSTM and its variants. We achieve an average accuracy of 82% in 

requirements identification in large tender documents with the BERT language 

model. Results also show that the BERT-based requirements identification 

approach performs the best in terms of precision (P), recall (R) and their harmonic 

mean (F1 score) with an average accuracy of 82%. 
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Figure 33: ReqIndentifier: Evaluation results REQ-I 

 

2) REQA: As a railway vehicle typically consists of more than 20 sub-systems, once 

the requirements are extracted, they must be allocated to various teams responsible 

for the development and testing of those sub-systems. In this regard, the VARA+ 

toolchain provides the REQA approach for the allocation of requirements to various 

teams. The approach combines large language models with case-based 

recommender systems to assign requirements to teams (and generate useful 

explanations for the allocation to enable a well-informed allocation decision. 
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Figure 34: REQAev: Evaluation with various pipelines for REQA 

As shown in Figure REQAev, we evaluate various classifiers for the REQA approach 

on Alstom’s use case. In particular, we evaluate weighted random (W. Rand.), 

Support Vector Machine (SVM), multinomial naive bayes (NMB), Decision trees 

(DT), Logistic Regression (LR), Random Forest (RF), BERT and its variants, and 

LSTM. Results show that BERT-based REQA approach performs the best in terms 

of precision (P), recall (R) and their harmonic mean (F1 score) with an average 

accuracy of 68%. 

 

Summary: 

 

In summary, with REQ-I it is possible to identify and extract technical requirements 

from large tender documents. The approach also makes the process more 

automated and less dependent on human expertise. On the other hand, we also 

support the allocation of the identified requirements with our REQA tool for smart 

allocation to teams within company for implementation and verification. 
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4.3.4. Automatic issue labeling and similarity analysis using advanced natural 

language processing (IFAK, Software AG)   

 

Synopsis: 

 

Efficient management of software requirements and issues is a cornerstone of 

successful software development. In a productive development environment, 

several dozen or hundreds of new or adapted requirements or bug reports may 

appear per day and must be processed manually. An established way to process 

issues in a structured manner is to assign labels or tags so that they can be 

processed more quickly and in a more targeted manner. However, this involves a 

lot of manual work, reading the texts and discussing them if necessary. It requires 

expert knowledge, is very time-consuming and error prone. Classification of 

software requirements and issues is helpful for many purposes, such as 

prioritization in processing (e.g. less time for solving security-relevant issues), 

assigning specific people/teams for design, implementation and testing, creating 

specific test cases (e.g. performance testing) and supporting bug fixing (e.g. using 

knowledge from former bug fixes). 

 

Another critical challenge in issue management is the risk posed by duplicates and 

strongly related issues. These occur when multiple users report the same or closely 

connected problems using slightly different descriptions or terminology. Such issues 

often appear not only within the same product but also across different versions, 

variants, or even entirely separate products, further complicating their detection. In 

fully manual processes, such connections are often overlooked, leading to 

inefficiencies where teams unknowingly address the same problem multiple times 

or fail to consider interlinked issues holistically. Identifying related issues can 
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significantly reduce redundancy, allowing teams to resolve multiple instances of a 

problem simultaneously. Additionally, uncovering interlinked problems helps 

address root causes comprehensively, improving system stability and reducing 

recurring errors. By streamlining issue management, organizations can enhance 

efficiency, accelerate resolution times, and deliver more reliable software.  

 

Related works: 

 

Requirements classification is an evolving research area where state-of-the-art 

natural language processing (NLP) techniques have not yet been fully exploited. 

Much of the existing work relies on traditional machine learning approaches or 

keyword-based methods due to limited dataset access, with models like Support 

Vector Machines (SVM) and Naive Bayes being commonly used [IFAK1]. Text 

vectorization techniques like TF-IDF are often used to convert requirement text into 

a format suitable for these models [IFAK 2]. Recent advancements have introduced 

deep learning models such as Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), including bidirectional LSTMs and GRUs, to 

enhance classification performance [IFAK 3]. However, many studies face 

challenges such as data scarcity and imbalanced datasets, often limiting 

classification to functional and non-functional requirements without delving into 

subcategories. The lack of standardized definitions for requirements fur ther 

complicates classification, as the same text can be interpreted differently depending 

on its context. Few studies have explored alternative learning methods, with active 

learning, transfer learning [IFAK 4], and zero-shot learning [IFAK 5] offering 

promising directions for better handling limited data. In this context, the so-called 

"catastrophic forgetting" is the well-known Achilles' heel of deep neural networks, 

that the knowledge learned from previous tasks is forgotten when the networks are 

retrained to adapt to new tasks. 

 

A similar situation can be seen with Duplicate Bug Report Detection. This research 

area of identifying duplicate bug reports involves various natural language 

processing methods. Current approaches are either statistical methods based on 

words or Machine Learning/Deep Learning models based on syntactic information. 

For example, BM25 is a traditional information retrieval method that relies on textual 

and categorical features, while Siamese Pair employs deep learning with LSTM and 

CNN to encode textual and categorical data separately. Ranking bug reports for 

duplicates is preferred over classification in real-world scenarios, as it reflects 

practical usage more accurately. Traditional classification settings often 

overestimate performance due to unrealistic assumptions about candidate pairs.  

[IFAK 6] 

 

Methodology: 

 

Within the project SmartDelta, IFAK has developed two tools for Automatic Issue 

Labeling (AILA) and Automatic Issue Similarity Analysis (AISA). 

  

AILA – Automatic Issue Labeling Tool: 
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We developed solutions leveraging three primary learning techniques to address the 

challenges of incremental requirements classification: 

Transfer Learning: We utilized knowledge from pre-trained models like BERT and 

fine-tuned them on domain-specific tasks. This approach allowed our model to 

generalize effectively with limited labeled data across diverse domains. 

Multi-Task Learning (MTL): We trained models on multiple tasks concurrently, sharing 

representations to improve performance across related tasks. Our implementation 

included hard and soft parameter sharing to enhance data efficiency and minimize 

overfitting. 

Continual Learning (CL): We adopted a sequential learning process, enabling the 

model to retain knowledge from previous tasks while adapting to new tasks. 

Techniques such as experience replay, elastic weight consolidation, and adapter 

modules were used to mitigate catastrophic forgetting. 

Additionally, we addressed the issue of class imbalance through data augmentation 

methods like synonym replacement and back-translation, generating synthetic data for 

underrepresented classes. Class weighting schemes, including normalized and log-

transformed weights, were employed to balance the influence of minority and majority 

classes during training. Our architecture was based on a BERT model with multiple 

classification heads tailored to specific tasks, such as security and other non-functional 

categories. By treating each dataset as a new task, we ensured adaptability to 

incremental data streams. We have applied recent continual lifelong learning methods 

to accumulate past knowledge and use it for future learning and knowledge reasoning. 

In this way, the model learns better with little data for incrementally growing datasets.  

  

AISA – Automatic Issue Similarity Analysis Tool: 

We developed an issue similarity analysis approach using advanced language models, 

specifically SentenceBERT, to provide a semantic approach for identifying related 

issues. The method leverages ChromaDB as a vector database to store semantic 

embeddings, ensuring scalability and efficiency for large datasets. Vector embeddings 

for a large database of historical issues are generated, which supports multiple 

sentence-transformer models. Querying for similar issues is conducted, where the top 

k most similar results can be retrieved. Cosine similarity is used as the metric to rank 

the similarity between issues. To enhance processing speed, we use the HNSW 

(Hierarchical Navigable Small World) algorithm, which reduces the computational load 

by narrowing down the comparison set intelligently. Before analysis, we apply manual 

pre-filtering to exclude non-relevant issues, optimizing the process and ensuring faster, 

more accurate results. 

To improve interpretability, results can be visualized in a user interface, highlighting the 

most common words between two issues using the KeyBERT library. This enables 

clear identification of semantic overlaps between related issues. 
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Figure 35: Automatic Issue Similarity Analysis pipeline 

Results: 

 

As a first step, IFAK has experimentally evaluated the two tools for Automatic Issue 

Labeling (AILA) and Automatic Issue Similarity Analysis (AISA) on publicly available 

data. In a second step, Software AG has thoroughly evaluated both tools for their use 

case, particularly with regard to security-related issues and recommendations for 

possible reuse. 

  

AILA – Automatic Issue Labeling Tool: 

In our experimental evaluation, we assessed the performance of various learning 

techniques for incremental requirements classification. We utilized five public datasets 

representing different software domains, such as security and web development, to 

ensure diversity in classification tasks (SecReq, CWE, Slankas, PURE, PROMISE). 

Our experiments involved splitting the datasets into training and testing sets, applying 

data augmentation techniques, and employing class weighting to address data 

imbalance. We focused on both macro and weighted F1 scores to evaluate the 

accuracy of classifications for both minority and majority classes. 

We implemented and compared single-task learning, transfer learning, multi-task 

learning, and three variations of continual learning: experience replay, elastic weight 

consolidation, and adapter modules. Continual learning with experience replay 

emerged as the most effective approach, achieving the highest weighted F1 scores 

and the lowest forgetting measures, demonstrating robust retention of prior knowledge 

while adapting to new tasks. In contrast, single-task learning yielded the lowest scores, 

underscoring the limitations of isolated task training. 
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Table 16: Automatic Issue Labeling using different ML techniques for security-related requirements 

 

Software AG evaluated the tool initially using publicly available GitHub issues. The 

initial model, trained on a small dataset of GitHub issues, demonstrated promising 

results with an accuracy of approximately 80% in predicting whether issues were 

security-relevant. This phase highlighted the model’s ability to transfer learning, 

leveraging pre-trained knowledge from similar tasks. However, the dataset differences 

between GitHub and Software AG's internal data prompted additional fine-tuning. We 

conducted multiple fine-tuning experiments using internal datasets annotated with 

reliable security labels. Fine-tuning the GitHub model on the smaller SAG dataset 

improved accuracy slightly to around 83%, though false positives remained a challenge 

due to differences in style and content between the datasets. A subsequent experiment 

pre-finetuned the model on a much larger dataset of Software AG issues with uncertain 

labels before fine-tuning on reliable ground truth data. This approach showed a very 

high accuracy of 98.4% on the large data set. However, the uncertain quality of the 

labels probably increased these results. 

  

AISA – Automatic Issue Similarity Analysis Tool: 

We conducted an experimental evaluation with publicly available datasets such as 

Microsoft Visual Studio Code with information of issue duplicates. We have compared 

traditional statistical methods such as TF-IDF and advanced language models such as 

Sentence-BERT. The results showed that even simple word-based statistical methods 

can achieve good performance. However, the use of language models provided a slight 
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improvement in accuracy, and further gains were achieved through careful 

preprocessing of the issues. 

Despite these improvements, a similarity-based approach cannot detect all duplicates, 

as some are expressed in entirely different ways. There is an inherent trade-off 

between increasing the detection rate and the effort required to review more issue 

pairs. For instance, recommending only the top result (k=1) correctly identifies the 

duplicate in 32% of cases. Expanding to the top two recommendations (k=2) increases 

the success rate to 37% but doubles the number of issue pairs to review. When 

providing the top five recommendations (k=5), the duplicate is included in 44% of 

cases, illustrating the balance between accuracy and efficiency in duplicate detection. 

  

  
Table 17: Automatic Issue Similarity Analysis using different ML techniques 

 

The tool was rigorously evaluated at Software AG, where a team conducted a manual 

review of many issue pairs, refining the filtering process to ensure that irrelevant issues 

are excluded from the similarity analysis. This refinement process has proven essential, 

revealing a consistent number of relevant duplicate issues that can be further leveraged 

to improve software quality and reduce technical debt.  

  

Summary: 

The Automatic Issue Labeling Tool (AILA) helps development and test teams prioritize 

requirements and monitor software quality by automatically classifying non-functional 

properties, such as security relevance. This automation streamlines processes, 

enabling teams to focus on critical tasks while maintaining high-quality standards. The 

tool also aligns with the SmartDelta Methodology by linking historical issues to current 

requirements, providing insights across software versions. 

The Automatic Issue Similarity Analysis Tool (AISA) identifies and connects related 

issues from past and current code commits, uncovering patterns, reoccurring problems, 

and reusable fixes. By leveraging historical data, it helps teams proactively manage 

software stability and improve development efficiency. Both tools support smoother 

development cycles, better management of technical debt, and enhanced software 

quality, and are planned for release as Open Source solutions. 
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4.3.5. LLM-based indexing for advanced semantic artefacts search in corpus-based 

reuse use case (Akkodis) 

 

Synopsis: 

 

This section explores the implementation of Large Language Model (LLM)-based 

indexing techniques to enhance semantic search capabilities for artifacts in a 

corpus-based reuse context. By leveraging advanced natural language processing 

and embedding models, the proposed approach aims to improve the retrieval of 

relevant artifacts—such as requirements, models, and code—thereby facilitating 

more efficient reuse and modification of existing resources. 

 

Related Works: 

 

The use of retrievers in Retrieval-Augmented Generation (RAG) pipelines presents 

numerous opportunities for improvement and optimization, spanning from the 

indexing phase to the augmentation phase. Various techniques can be applied at 

each step to enhance document parsing, indexing, storage, retrieval processes, and 

prompt augmentation using retrieved data, culminating in multi-stage and multi-

agent answer distillation. Many RAG optimization methods focus on refining the 

retrieval process and the execution of prompts using the retrieved data [AKK1] 

[AKK2]. 

In the context of software artifact retrieval, the data differs significantly from natural 

language documents, introducing new challenges. For instance, [AKK3] explores 

the use of LLM-based metadata for filtering during the retrieval process. However, 

the generation of LLM-supported metadata for optimized indexing of software 

artifacts remains a largely unexplored area. 

 

Methodology: 

 

The proposed methodology involves the following steps: 



Deliverable 4.5 

 © 2024 SmartDelta Consortium Page 106 of 117 

 

1. Data Collection: Gather a diverse corpus of artifacts, including requirements, 

models, and code files. 

2. LLM Integration: Employ a Large Language Model to generate a set of 

descriptive labels and comprehensive descriptions for each artifact. This 

enhances the metadata associated with the artifacts, making them more 

searchable and contextually relevant. This step brings all types of artifacts into 

a common space, which would not be achieved during embedding calculation 

due to the different characteristics of each artifact type. 

3. Embedding Generation: Utilize embedding models to create a dense embedding 

vector for each artifact. This process transforms the artifacts into a numerical 

format that captures their semantic meaning. 

4. Data Storage: Store all artifacts, along with their embedding vectors and 

generated metadata, in a PostgreSQL database. This database supports full -

text search capabilities using tsvector and tsquery. 

5. Search Implementation: Develop a user interface that supports both keyword-

based and full-text semantic searches, enabling users to input queries in natural 

language or as specific keywords. 

 

Results: 

Results indicate that using direct embedding vector calculations for artifacts 

presents two main challenges: 

Embedding models often lack a robust understanding of certain technical input data 

and file formats, leading to imprecise semantic representations. 

Different file formats (natural language for requirements, specific formats for 

encoding UML state machines as models, and C++ code) result in varied 

representations in the embedding space, making it difficult for a single query to 

retrieve all relevant types of artifacts/files. 

By using label lists and descriptions generated by an LLM, a shared language is 

introduced, allowing for the creation of a unified embedding space for all types of 

artifacts. Initial results are showing that the different artifacts are distributed and not 

separated in the space. This can be seen in Figure 5, where the distribution of labels 

is visualized by applying TD-IDF as a vectorizer, K-means for clustering, and PCA 

to bring data to a 2-dimensional space. 

Figure 5 Visualization of artifact distribution in 2-dimensional space showing no 

separation of file types 
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Figure 36: Visualization of artefact distribution in 2-dim space showing no separation of file types 

 

The search results, while filtering and re-ranking the results from multi-stream 

retrievers (vector search, full-text, BM25, etc.), present many opportunities for 

further improvement. Thus, additional research and detailed evaluation are needed 

to stabilize and optimize search results across various software repositories.  

The search results can reveal related file artifacts; however, this is not a 

recommendation for any kind of changes. It is up to the human user to assess these 

results, decide whether to use them as a basis for software changes, or provide this 

context to any AI-based software agent. 

 

Summary: 

In summary, the integration of LLM-based indexing for semantic artifact search 

represents a promising advancement in the field of corpus-based reuse. By 

enabling more context-aware and nuanced searches, this approach not only 

enhances the efficiency of artifact retrieval but also supports better decision-making 

in software development processes. Future work will focus on further refining the 

model and exploring additional applications of LLMs in software engineering 

contexts. 
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4.3.6. Predicting commercial charging station energy usage (eCamion and 

OntarioTechU) 

Synopsis:  

 

This section explores the implementation of Random Forest Regressor- based 

machine learning model to predict the hourly energy usage by a commercial 

charging station. Predicting the magnitude of energy used and the predicted peak 

usage hours bring additional values to charging station management and analysis.  

 

Related works: 

 

The charging station load prediction can be predicted using two data sources, using 

the customer profiles or through the station measurement. In Majidpour et al. [EC1], 

the two data sources were compared for their relation to load prediction accuracy 

using four different machine learning models (TWDP-NN, MPSF, SVR and RF), 

revealing that the datasets have no significant difference and viable for predictions. 

Using an application protocol Open Charge Point Protocol (OCPP) to collect station 

measurements from multiple charging stations, Renata et al. [EC2] predicted the 

daily energy use of commercial charging stations in Indonesia. Using features 

extracted from the charging records, the team compared four different machine 

learning models (RF, SVR, XGBoost and MLP) and evaluated them. Using the K-

fold cross validation for evaluation, the result showed that Multilayer Perceptron 

(MLP) method had, and Random Forest Regression (RF) yielded the highest R2 

and lowest error values respectively. 

 

Methodology: 

1. Data collection: Historical data of charging station transactions and meter values  

2. Development of OCPP compliant systems: OCPP compliant charging station 

and Charging Station Management System (CSMS) are developed and 

implemented functionalities are tested using OCPP Compliance Testing Tool 

3. Training and Prediction: Features are analyzed and extracted from the charging 

station transaction and meter value data. Due to lacking historical OCPP data 

collected, historical data was provided by eCamion for model training.  

4. Model selection: Compare and evaluate the prediction from different machine 

learning models 

5. Visualization: The predicted energy load is displayed on management 

dashboard, along with other real-time charging station readings from the OCPP 

for charging station analysis 
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Figure 37: Overview of the approach to data collection and prediction 

 

Results: 

 

During the feature extraction stage, it was discovered that the selecting the hourly 

interval had influence over model accuracy. The hourly interval was therefore 

selected to maximize the model’s accuracy while providing useful and relevant data 

for management.  

 

Based on the transaction records from multiple charging stations, charging stations can 

have different charging patterns based on variety of different factors including location 

and customer behaviours. Due to the difficulties of capturing factors outside of reporting 

functionalities of OCPP, the training data was added a label to classify the charging 

pattern based on time, which was found to increase accuracy of the models. 

 

For model selection, four machine learning models, Random Forest, SVM, LSTM 

and Prophet were used to compare and their outcomes evaluated, where Random 

Forest Regression was found to yield highest accuracy. 

 

 

 

 

Table 16: Models tested for energy load prediction and their evaluation of rolling cross validation 

  MAE RMSE R2 

Random Forest 
Regression 

0.0101 0.0134 0.3278 

SVR 0.0509 0.0537 -10.5937 

LSTM 0.0342 0.0455 0.09445 

Prophet 0.005 0.0666 0.0636  
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Figure 38: Example of prediction cycle made using Random Forest Regression during cross-validation 

process 

 

Summary: 

 

Using historical charging station’s measurement data, energy consumption of a 

charging station can be predicted by the selected hourly interval. To increase the 

accuracy of the model, additional features were engineered including labels based 

on charging pattern.  

 

The outcome of the prediction system adds additional insight for the management 

and lays ground for potential work for cost-saving solutions. Using the historical 

charging station’s measurements. 
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5. Tools/Technologies Developed in WP4 

SoHist is an open-source tool developed by the University of Innsbruck and c.c.com to 

manage technical debt through retrospective code analysis. It extends SonarQube by 

providing historical insights into technical debt evolution, offering comprehensive GIT history 

quality analysis and visualizations. Developers can analyze the long-term impact of their 

decisions on maintenance costs and risks. 

The EPS Cybersecurity Anomaly Detector, created by Glasshouse Systems and Ontario 

Tech University, integrates with QRadar to identify network anomalies using unsupervised 
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machine learning models. By analyzing event-per-second (EPS) data, this closed-source tool 

provides graphical visualizations of anomalies to enhance the efficiency of SOC operations. 

The Offense Prioritization App, also developed by Glasshouse Systems and Ontario Tech 

University, leverages machine learning to prioritize critical security threats. Integrated with 

SIEM solutions, it ranks offenses based on risk levels, enabling SOC analysts to address high-

priority issues more effectively. 

INIMASU, an open-source tool by Fraunhofer FOKUS, supports intelligent issue management 

by optimizing scheduling and classification. It processes data from Git repositories and 

configuration files to produce management reports and predictions, aiding in decision-making 

and resource allocation. 

ReqIdentifier simplifies requirement identification in large tender documents using machine 

learning classifiers. This partially open-source tool processes PDF or CSV files, highlighting 

requirements for better scalability and accuracy in bidding processes. 

DIA4M, an open-source tool by NetRD, focuses on detecting faults and anomalies in 

microservice interactions. By processing logs from CSV or ElasticSearch, it generates 

visualized reports to aid DevOps engineers in quality assurance and fault detection. 

YATAP, a licensed tool by Erste, performs comprehensive change impact analysis by 

integrating data from Jira, GitHub, SonarQube, and other sources. It outputs data in 

ElasticSearch or PostgreSQL formats to help assess the effects of changes on systems. 

AILA, developed by IFAK and Software AG, automates issue labeling using fine-tuned BERT 

models. This planned open-source tool classifies requirements or issues based on 

descriptions, aiding in prioritization and team assignments. 

AISA, developed by IFAK and Software AG, automates issue similarity analysis using 

language models such as Sentence-BERT. This planned open-source tool provides similar 

requirements or issues based on descriptions, aiding in code and test reuse recommendations. 

VARA+, a closed-source tool by RISE, automates asset reuse analysis and assesses 

requirements quality. By analyzing CSV files, it predicts reusable assets and computes metrics 

to enhance efficiency in software projects. 

SmartTrace, a closed-source tool by Akkodis Research, enables semantic searches to locate 

and analyze reusable artifacts. By processing natural language or keyword queries, it provides 

a list of related artifacts for better reuse and efficiency. 

ReqAllocator (REQA) automates requirements allocation and classification using machine 

learning and deep learning techniques. This closed-source tool processes CSV files to 

recommend allocations and augmentations, facilitating efficient team assignments. 

RADICLE, a closed-source tool by RISE, leverages LLMs to detect ambiguities in 

requirements and provide rational explanations. It processes CSV files to identify ambiguous 

requirements and their rationale, improving clarity and quality. 
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Telemetry Anomaly Analyzer by Hoxhunt detects telemetry anomalies in distributed systems 

using OpenTelemetry-compatible data. This closed-source tool generates anomaly heatmaps 

and dashboards, enabling efficient monitoring and troubleshooting. 

RAG-based QA Chatbot uses retrieval-augmented generation and LLMs to answer 

requirement-related queries. This closed-source tool processes text-based inputs and 

produces comprehensive answers, aiding engineers in understanding software releases. 

DETANGLE, by Cape of Good Code, provides dashboards and visualizations to analyze 

technical debt and its impact. This closed-source tool processes data from issue trackers, code 

repositories, and test coverage reports to support root cause analysis and quality 

improvements. 

Modernization Toolkit by Vaadin analyzes Java code for compatibility with Vaadin and 

applies transformations to update source code. This closed-source tool generates summaries 

of transformation coverage and transformed code for efficient modernization. 

SONATA leverages ontologies and knowledge graphs to recommend test cases for new code. 

This closed-source tool processes code repositories and outputs tailored test case 

recommendations, improving software quality management. 

Code Similarity Investigator (CSI), by TWT, provides automated code reuse suggestions 

using Code Property Graphs. It processes source code to identify similar sections and 

suggests improvements, enhancing efficiency and maintainability. 

Graph Similarity Recommender (GSR) compares state machines to identify similarities and 

recommend comparable ones. This closed-source tool processes state machine data and 

outputs similarity values and delta paths to streamline analysis. 

Team Eagle QA Tool analyzes software quality metrics for cloud-based software hosted on 

Microsoft Azure. This closed-source tool provides quality assurance metrics to help engineers 

monitor and improve software quality. 

ReqIdentifier (RADICLE) uses LLMs to detect ambiguous requirements in CSV files, 

providing classifications and rationales. This planned open-source tool improves requirements 

clarity and supports quality assurance efforts. 

These tools collectively address critical challenges in software engineering, offering innovative 

solutions to improve quality, efficiency, and maintainability across various domains. 

6. Conclusions 

This report highlights the significant contributions made in Work Package 4, focusing on 

advancing the state of the art in software quality trend analysis and prediction, similarity 

analysis and reuse recommendation, and change impact analysis and prediction. Key 

achievements include the development of novel machine learning methodologies for 

identifying and analysing quality trends, enabling predictive insights across various 

domains. These methodologies have enabled automated detection of quality 

improvements and degradations, streamlining continuous engineering workflows. 
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In the area of anomaly detection and offense prioritization, advanced ML techniques were 

employed to identify anomalies in complex systems and prioritize cybersecurity threats 

effectively. These solutions have demonstrated significant improvements in operational 

stability, reducing detection and response times, and ensuring the robustness of live 

systems in domains such as micro-service architectures and telemetric data analysis. In 

similarity analysis and reuse recommendation, innovative graph-based and ML-driven 

techniques were developed to identify reusable components and design artifacts, 

significantly enhancing efficiency in software evolution. Additionally, the work package 

introduced advanced change impact analysis tools that predict and evaluate the effects of 

software changes, providing actionable recommendations for maintaining and improving 

system quality. 

 

These contributions collectively establish a strong foundation for improving software quality 

across industrial domains, offering scalable, intelligent solutions that address critical 

challenges in modern software engineering. The methodologies and tools developed in this 

work package pave the way for further innovation and integration into diverse software 

development environments. 
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