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Summary 
 

This document defines the use cases for the ENTA (Encrypted Network Traffic Analysis) project and 

analyzes the state-of-art solutions associated with the use cases. For each use case, its scope, a brief 

summary of the present state of existing solution, and proposed solutions are described. Specifically, 

the first use case is about encrypted network application visibility and the second use case is about IoT 

device discovery and rogue IoT device detection. Next, the state-of-the-art for each use case is 

surveyed.  

Moreover, a list of references, a list of acronyms, Appendix A summarizing existing application 

detection solutions in two tables and Appendix B describing cyber-attacks involving and affecting IoT 

devices are provided.  
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1. Introduction 

This document defines the use cases for the ENTA (Encrypted Network Traffic Analysis) project and 

analyzes the state-of-art solutions associated with the use cases. For each use case, its scope, a brief 

summary of the present state of existing solution, and proposed solutions are described in detail in 

Section 2. Specifically, Section 2.1 describes the first use case which is about encrypted network 

application visibility and Section 2.2 describes the second use case is about IoT device discovery and 

rogue IoT device detection. Moreover, Section Error! Reference source not found. presents in more 

detail the state-of-the-art for each use case. That is, Section Error! Reference source not found. 

provides for that of application visibility use case and Section Error! Reference source not found. for 

that of IoT device discovery and rogue IoT device detection. 

A list of references is provided in Section Error! Reference source not found. and a list of acronyms in 

Section Error! Reference source not found.. Finally, Appendix A (Section 6) contains two summary 

tables of application detection solutions and Appendix B (Section 7) describes cyber-attacks involving 

and affecting IoT devices.  

2. Use case definition 

For defining the use cases for the project, we consider the following aspects: 

• Scope: here, we define the objectives we want to achieve in the use case. 

• Existing solutions: here, we describe briefly current solutions for each use case, technologies 

they use, etc. 

• Solution: here, we will define how Artificial Intelligence will be leveraged in the solution, 

defining the inputs and the outputs, and listing relevant KPI’s 

2.1. Application visibility use case 

2.1.1. Scope 

Increased levels of data encryption pose challenges to IT organizations that are responsible managing 

and securing a network. Analysts need to know the Internet applications being carried by their 

network. The use of encrypted traffic carrying Internet applications impedes their ability to perform 

network planning as well. Also, encrypted traffic poses a challenge for Law Enforcement Agencies (LEA) 

and Intelligence organization. Regular network probes that rely on Deep Packet Inspection are less 

accurate and so they fail to classify. Thus, one of the Use Case of ENTA addresses this issue by providing 

application-level detection and visibility of encrypted traffic.  

Three possible levels for application detection can be defined: 

The first level of application detection is the identification of an application as belonging to one of the 

following categories: video streaming, audio streaming, audio chat, text messaging, gaming, file 

transfer, etc. Academic research in this area is mature and a number of researchers have shown that 

encrypted applications can be detected and classified to various categories based on temporal and 

spatial traffic characteristics. For example, [Auld-2007] proposes a Bayesian trained neural network 
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that classifies ten categories of traffic flows, based on header-derived statistics and no port or host (IP 

address) information, with up to 99% accuracy for data trained and tested on the same day, and 95% 

accuracy for data trained and tested eight months apart. 

The second level is the identification of a specific application such as being a Netflix, YouTube, 

DailyMotion, Spotify, WhatsApp, or Zoom application. For examples, Taylor et al profile 110 of the 

most popular apps in the Google Play Store and are able to re-identify them with more than 99% 

accuracy in [Taylor-2016] and up to 96% accuracy in [Taylor-2018]. Deep Learning based encrypted 

application detection have also been explored in recent years. Academic researchers have reported 

high accuracy of application detection. For example [Akbari-2021a] have used a combination of CNN 

and LSTM to illustrate that service level as well as application classification can be achieved with more 

than 90% accuracy.  

The third level is the inference of the intent/activity occurring during an application uptime. This is a 

difficult problem to address, particularly due to the lack of availability of labeled dataset for model 

training.  For examples, [Aiolli-2019] identifies user activities on smartphone-based Bitcoin wallet apps 

and [Yan-2018] distinguishes red packets and fund transfer activities. Ability to predict a language or 

specific words in a VoIP conversation can be considered. [Pathmaperuma-2022] showed that using 

deep learning, activities on various social media applications (e.g., Facebook, Instagram, Skype, 

WhatsApp and Messenger) can be identified with reasonably high accuracy. Although inferring the 

presence of malware or cyber-attacks also belong to the third level of application visibility, this aspect 

of cybersecurity visibility is out of scope of the present use case scenario. 

To demonstrate the proposed ENTA solution in a realistic manner, the use case to demonstrate the 

Internet application detection will consider only the second (application detection) and the third level 

(intent/activity) of application visibilities described above.  

2.1.2. Present State of Encrypted Application Detection 

A detail survey of all three levels of encrypted application detection is presented in Section Error! 

Reference source not found.. A significant amount of academic research and exploration of the 

problem have been reported by researchers. Both Machine learning and deep learning-based solutions 

are presented with a high accuracy of detection capabilities. However, it is not clear if results are 

generic i.e., similar performance numbers can be achieved on any dataset.  There are two issues: First, 

many of these test datasets are not publicly available and second, most authors train and test on same 

dataset. The first issue prevents others from reproducing and experimenting with proposed 

techniques. All these datasets should be publicly available. The second issue should be addressed by 

separating train and test datasets. Achieving high accuracy under this condition can be a challenge. In 

addition, very few researchers have addressed application detection in real-time (or near real-time).  

2.1.3. Proposed Solution 

The benefits are as follows: 

• The solution will be generalized, scalable and near real-time. Models created on a training 

dataset will be able to classify traffic from various networks.  
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• Knowing the user activities with respect to applications helps IT managers understand the 

application usage and LEA personnel takes appropriate action.  

• Although the number of applications per category may be limited, the procedure that leads to 

each of the above solutions will be applicable to more applications per category and to other 

unexplored categories. 

The expected improved KPIs are: 

• F1 score: Greater than 95% 

• Number of application traffic categories: 10 encrypted applications 

• Speed of classification: More than 10 Gbps 

For the use case, the following categories of traffic (first level traffic from the visibility perspective) 

types are selected for which their second and third levels of visibility will be investigated. 

1. Social Networking 

2. Video Streaming 

3. Audio Streaming 

4. Live Streaming 

5. Chat 

6. Download 

7. Games 

8. Mail 

9. Search 

10. Web 

 

For each of the traffic categories, five or more application-level (second level traffic from the visibility 

perspective) traffic are selected. These classifications of applications are organized as in the table 

below. 

Table 1:  Applications and Categories 

Categories Applications 
Social Networking Facebook, Instagram, Twitter, Messenger, Tiktok 

Video Streaming YouTube, Netflix, Bilibili, Dailymotion, Facebook TV, 
Prime Video, HBO 

Audio Streaming Spotify, SoundCloud, QQ Music, Deezer, YouTube Music, Apple 
Music, Amazon Music 

Live Streaming Twitch, Facebook live,  

Chat Facebook Messenger, Snapchat, WhatsApp, WeChat, 
GoogleChatSkype, Telegram, Viber, Discord 

Download GooglePlay, AppleDownload, SCP, SFTP, Skype FTP, WhatsApp 
FTP, Dropbox, GoogleDrive 

Games Minecraft, Fortnite, Grand theft Auto Online, League of Legends, 
Valorant 
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Mail Gmail, Hotmail, Yahoomail, Outlook 

Search Google, Amazon, Yahoo!, Bing, DuckDuckGo, AoL, Baidu, 
Ask.com, Yandex, Ecosia 

Web Google Chrome, Mozilla Firefox, Opera Web Browser, Microsoft 
Edge 

 

 

Identification of user activities on Social Networking will be of interest. Some of these examples are: 

• Upload a video 

• Watch a video 

• Send/receive a voice message 

• Send/receive a short text mail 

• Send/receive an image on a mail  

• Various actions on Facebook, Instagram, WhatsApp, Messenger 

• Like/dislike an image/video/comment 

• Send/receive a location info 

• Send/receive contact info 

• Download a file/book/image/video/web page 

2.2. IoT use case 

2.2.1. Scope 

IoT technologies are becoming more and more popular, being implemented in more diverse scenarios 
and at larger scales. Devices that compose a network might be setup to cover large areas of land, 
positioned in hard-to-access locations or remote places.  
 
Periodic interferences, signal loss, and general wear and tear can affect the IoT devices and this in turn 
will be visible in the pattern of the data packages that are being periodically sent. Depending on the 
application, the structure of the packages themselves might change depending on the state of the 
devices.  
 
Such behavior might either be ignored, offering a possible “cover” for malicious parties who wish to 
infiltrate the network or be wrongfully flagged as a totally compromised system by an overzealous 
assessment tool.  
 
Moreover, encrypted traffic generated by IoT devices presents traffic type and content visibility 

challenge. Currently, there aren’t any solution that can detect if an encrypted flow traffic is being 

generated by an IoT device or not, and if this encrypted traffic flow is being used to execute an attack 

by a rogue IoT device. 

In the IoT context described above, the IoT use case will demonstrate the discovery of IoT devices and 

the detection of rogue IoT devices. Firstly, IoT devices will be identified in term of their presence in the 

network and their characteristics such as type, category, and usage. 
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Secondly, an IoT device will be considered rogue if it has been compromised by bad actors and is being 

used to attack the servers inside the company network. An IoT device can become rogue in the 

following manners: 

• When a bad actor adds a new compromised device to the network  

• When a bad actor updates an IoT device software trying to gain control over the device  

Some examples of the detection processes that might indicate an IoT device is being rogue are as 

follows: 

• Detect if an encrypted traffic flow is being generated by an IoT device 

• Detect if a device has been relocated outside the transmission and reception range 

• Detect if a device has been reprogrammed while they are deployed 

• Detect if a device has low battery level 

• Detect if an encrypted traffic flow is being used to execute an attack 

For the purpose of the use case, AI algorithms will be trained and applied on an IoT network composed 
of devices that use MQTT or MQTTS over Wi-Fi, IEEE 802.15.4 and developed standards from 802.15.4 
such as Zigbee. The devices will consist of: 

● Waspmote boards developed by Libelium 
● Meshlium gateways developed by Libelium 
● Raspberry Pi boards 
● Smart home devices 
● Smart office devices 

 

2.2.2. Present State of IoT Challenges 

A detail survey of the current state of the art of IoT solutions with respect to the described use case is 

presented in Section Error! Reference source not found.. Some existing solutions with respect to IoT 

discovery are presented next followed by those with respect to rogue IoT discovery.  

IoT Discovery and Identification 

An IoT device can be recognized at varying levels of granularity, from a device-category to a device-

type, and a specific device-instance. A device-category reflects a general grouping of similar 

functionality devices such as a light bulb. A device-type is a specific device model within a general 

device category such as light bulb and monochrome. Lastly, device-instances distinguish different 

devices belonging to the same device-type. Most existing solutions focus on fingerprinting the device 

categories or types rather than the device instances. Some of these solutions are described next: 

• [Siby-2017] develops IoTScanner as a framework to passively analyze network traffic using 

frame header information during specific examination time windows to distinguish device 

types based on the observed traffic patterns. However, such an approach is prone to 

misclassifying identical device-types that exhibit variations in traffic patterns. 

• [Apthorpe-2017] performs device type fingerprinting by analyzing metadata like IP packet 

headers, TCP packet headers, and send/receive rates instead of packet contents. 

• [Miettinen-2017] proposes IoTSentinel, a framework for fingerprinting and identifying device-

types using many packets header-based features. It provides an average accuracy rate of 50-

100%. However, packet headers are prone to spoofing attacks.  
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• [Bezawada-2018] improves the IoTSentinel approach for profiling device categories and types 

using additional features like TCP window size, entropy, and payload lengths, reporting a mean 

identification rate of 93-99%. These approaches commonly impose high computational cost 

and hence delayed classification time. They require deep packet inspection functionalities or 

specialized hardware accelerators that render them impractical and unscalable for encrypted 

traffic analysis.  

Rogue IoT Detection 

To improve the above solutions and to detect rogue IoT devices, other approaches incorporate 

machine learning/deep learning (ML/DL) to handle raw data and derive latent features automatically 

or seamlessly integrate with feature engineering methods to predict network activities. For example, 

[Riyaz-2018] leverages deep convolutional neural network (CNN) approach to classify wireless devices 

in 2.4-GHz channels and contrast the performance with two other techniques (i.e., SVM and logistic 

regression).  

Other existing approaches aim to monitor devices to detect rogue and malicious activities. They are 

broadly classified into the following three categories: specification-based, statistical-based, and 

anomaly-based. 

Specification-based solutions, such as [Surendar-2016] and [Hamza-2020], monitor and inspect devices 

based on rules that characterize either benign or malicious activities. In this sense, they can be used to 

detect deviations from the benign profile as malicious or pinpoint patterns conforming to the specified 

malicious profile. Similarly, statistical-based solutions such as [Sehatbakhsh-2018] aim to statistically 

model the network and identify devices that operate under abnormal scenarios. 

However, deriving distinctive profiles/features manually is a tedious task, and relying on static profiles 

that does not reflect the dynamic changing of activity patterns or network flow statistics cannot scale 

to the heterogeneity of devices in IoT environments.  

Anomaly-based solutions learn normal behavior from the monitored network traffic and detect 

variations as anomalous activities and potential security vulnerabilities. ML/DL techniques started to 

receive attention for anomaly detection. For example, [Parwez-2017] employs a CNN autoencoder to 

model the normal behavior of the network, without considering anomalous patterns during the 

training, which renders it ineffective against complex attack scenarios and produces many false alarms. 

Although tools for analyzing traffic such as Wireshark exist, they all require manual analysis from 
experts to be effective and as such, there is no generalized tool for solving the proposed issue to our 
knowledge. Most software focuses on establishing the security strengths of a network architecture, 
but these tools fall short when assessing a real-time situation.  
 
Also, there are some tools that can be used for detecting rogue IoT devices, such as Armis or zvelo. 
These tools try to identify the device or monitor the IoT devices, without specifying the underlying 
methods. 
 

2.2.3. Solution for this use case 

We aim to explore how to secure IoT ecosystems against rogue devices by automatically identifying 

and discovering connected devices and pinpointing compromised devices, focusing on encrypted 



12 
 

Use case and State of the Art 
ENTA 

 

 
 
 

network traffic. This will be achieved by leveraging ML/DL techniques to analyze passively collected 

traffic traces and wireless signals, available to network operators and surveillance agents. 

We plan to explore the identification of commercial IoT devices that commonly appear in smart 

home/office environments ranging from smart cameras, speakers, doorbells, lightbulbs, and sensors, 

along with several non-IoT devices such as printers and laptops. We are also interested in considering 

a wide range of prevalent attacks that belong to two main categories: direct and reflection. The 

former includes ARP spoofing, TCP SYN flooding, Fraggle (UDP flooding), and Ping of Death attacks. 

The latter covers SNMP, SSDP, TCP SYN, and Smurf attacks. 

After reviewing existing benchmark datasets, we identified three recent publicly available datasets1 

that align with our choice of IoT devices and attack vectors. The IoT traffic traces [Sivanathan-2018] 

and IoT IPFIX records [Pashamokhtari-2021] datasets are suitable for identifying IoT devices as they 

simulate benign activities, while the IoT benign and attack traces dataset [Hamza-2019] is suitable to 

detect rogue devices launching the attacks mentioned above. 

Our solution will be capable of detecting most of the IoT devices and identifying the rogue IoT devices 
that use encryption, if any exists. In comparison, Armis is capable of just detecting devices in the 
network and check if the device is using encryption or not; and zvelo is just a monitoring tool for the 
devices, which include discovery, identification, and profiling. None of which can detect if a device is 
rogue or not when the IoT traffic is encrypted. 
 
Also, the solution will be able to be applied to most networks as it will not be dependent on the actual 
information that is being transmitted but on the overall behavior of the traffic. This also means that 
encrypted traffic can be analyzed just as effectively as normal traffic.  
 
AI, a key part of our solution, will be trained to extract the most important features of the input and 
it will label the traffic flow between generated or not by an encrypted IoT device, and if the device 
generating the traffic flow is rogue or not. The input will be the packets sent by IoT devices and the 
output will be the label generated to classify the traffic flow. 
 
The data features will be extracted in several layers. For the first layer the inputs of the system will be 
the quantity, frequency, and timing of the information that is being transmitted over the network. This 
data will create a prediction of future behavior for a network which will act as a “profile” of that 
network. Changes that are not predicted will account for a “state change” of the network. This new 
change will be flagged and then reanalyzed with a more complex algorithm which will act as a second 
layer. The flagged event will be sent forward to be assessed by an administrator who can acknowledge 
it as a known issue or investigate further (e.g., send a team to investigate the physical device).  As such, 
the first layer will be able to make a depth 0 decision while the second one will advance that decision 
to depth 1. More details on the KPIs are described next followed by the list of expected improvement 
in KPIs. 
 
The KPIs we considered for this challenge are as follows:  

 

 

1 https://iotanalytics.unsw.edu.au/index  

https://iotanalytics.unsw.edu.au/index
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● Relative computing power to network size and number of devices monitored. With the 
development of AI and the implementation of machine learning algorithms to solve more and 
more problems, the computing power demand is starting to increase, draining more and more 
resources. Efficiency in these types of algorithms is an emerging problem. 

● Successful detection of state changes. As different situations occur that affect IoT devices they 
will be reflected in the network, and we define them as “state changes” for the whole 
architecture.  

● Depth understanding of a state change. A state change indicates that something happened 
within the network, but without knowing what that something is. We define the simple 
detection of the state change as depth 0, distinction between human intervention, 
transmission noise, or nature intervention as depth 1 and finally a more complex 
understanding of what the change means for the data transmitted (e.g., A malicious party has 
compromised a device and requests made by that device can pose a security threat) as depth 
2.  

● Accuracy in depth understanding. By this we define the correct identification of a situation at 
a certain depth level.  

• Relative implementation between encrypted and unencrypted data. The proposed solution 
will analyze encrypted as well as non-encrypted data. The relative implementation indicates 
discrepancies between the 2 situations. For example, if for non-encrypted data we will have 
an accuracy in depth understanding of 50% and for encrypted data 25%, the relative 
implementation will be 0.5, but if in both scenarios the accuracy will be 50% then the relative 
implementation will be 1.  

• Number of automated device detection: Automated IoT discovery is the first step towards 
detection of rogue IoT devices. Most of the devices should be discovered automatically. 
Existing solutions do not auto-discover encrypted IoT devices. 

● Accuracy in rogue device detection: Rogue device detection accuracy is important measure 
for validation of approach developed in this project. The measurement will be performed on 
a testbed with many IoT devices and a few randomly placed rogue devices aiming for 80+% 
accuracy. 

 
The expected improved KPIs are as follows: 

● Number of automated device detection: Discovery of 90% of devices 
● Accuracy in rogue device detection: Accuracy more than 80% 
● Relative computing power to network size and the number of devices monitored: greatly 

decreased.  
● Successful detection of state changes: 95% 
● Depth understanding of a state change: 1 
● Accuracy in depth understanding: 80% 
● Relative implementation between encrypted and unencrypted data: 1 

 

3. State-of-the-art 

This section presents the state-of-the-art solutions with respect to the two ENTA use cases described 

above. Section 3.1 presents those SotA solutions with respect to the application visibility, while 

Section 3.2 with respect to the IoT device detection. 
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3.1. Application visibility 

3.1.1. Introduction 

Before reviewing the state-of-the art of encrypted network traffic analysis (ENTA), we first describe 

the key aspects of ENTA we are pursuing. Various information can be obtained in analysis encrypted 

network traffic. Examples of such information are network protocols used, service categories offered, 

applications supported, and contents exchanged. Network traffic can flow in various types of networks 

such as wireline, wireless, and heterogeneous networks. Here, we will be dealing mainly with protocols 

supporting mobile wireless applications such as Wi-Fi and associated encryption tools. In analyzing 

network traffic, we will be concerned with identifying specific set of applications and inferring their 

activities/intents. Thus, identifying a network traffic as carrying a service category traffic, which we 

considered as 1st-level application detection, such a video streaming, video chat, text chat or audio 

chat, is not our main concern. This is like identifying higher-level applications that can support multiple 

specification applications. Some examples these high-level applications are Facebook, Viber, 

WhatsApp, or Snapchat. Instead, we are interested in identifying at the level of Facebook text chat or 

Facebook video chat. For this type of identification, we call it the 2nd-level application detection. We 

also define a 3rd-level application detection. This is the identification of specific activities/intents 

occurring in a 2nd-level application. 

Thus, in this SotA review of ENTA solutions, we are concerned with the second- and third level of 

mobile application detection/identification/classification. In these solutions, we are interested mainly 

in the Machine Learning and Deep Learning solutions proposed, explored, or evaluated, the input data 

characteristics extracted from the encrypted network traffic carrying the applications and the level 

application detection output. In some cases, the associated pre-processing steps are also described, 

and specific applications are listed. However, we do not describe here the data collection process, the 

training process, the experimental setup and performance results. 

Next, we review the state-of-the-art of second- and third-level application detection solutions in 

Sections 3.1.2 (21 articles) and 3.1.3, (12 articles) respectively. For each of these sections, we consider 

the application set coverage, and the proposed solutions and their input data characteristics. We 

conclude the review by listing non-exhaustively some salient solution features of the reviewed articles. 

3.1.2. State of the art of Second Level Application Detection Solutions 

The articles with second-level of application detection solutions reviewed here are [Aceto-2020], 

[Akbari-2021a, Akbari-2021b], [Alan-2016], [Al-Obaidy-2019], [Alshammari-2011], [Cui-2019], 

[DraperGil-2016], [Hajjar-2015], [Hou-2019], [Khatouni-2019], [Khatouni-2021], [Lotfollahi-2020], 

[Moore-2005], [Muehlstein-2017], [Papadogiannaki-2018], [Taylor-2016], [Taylor-2018], [Wang-

2015], [Wang-2018] and [Zhang-2011] 

Those articles in bolt and italic are described in more detail next while all of the above articles are 

summarized in Table 2. Moreover, the articles in bolt use Deep Learning-based solutions and the rest 

use Machine Learning-based solutions. 
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Application Set Coverage 

In these articles, the number of applications considered ranges from as few as four apps 

[Papadogiannaki-2018] to as many as 1595 apps [Alan-2016]. Most of them are in the tens of apps 

[Aceto-2020, Akbari-2021a, Akbari-2021b, Al-Obaidy-2019, Alshammari-2011, DraperGil-2016, Hajjar-

2015, Hou-2019, Khatouni-2019, Khatouni-2021, Moore-2005, Muehlstein-2017, Wang-2015, Zhang-

2011]. Only [Talyor-2016, Taylor2018] considers apps on the order of 100. 

Most articles consider only apps. However, some consider both services/traffic and apps within 

services [Akbari-2021a, Akbari-2021b, Al-Obaidy-2019, Alshammari-2011, Cui-2019, DraperGil-2016, 

Hou-2019, Lotfollahi-2020, Papadogiannaki-2018] while [Zhang-2011] only considers traffic categories 

such as browsing, chatting, downloading, etc. 

Solutions and Their Input Data Characteristics 

Here, we review solutions and corresponding input data characteristics for the second level application 

detection solutions.  

Most proposed solutions for the second level application detection use Machine Learning (ML) 

techniques. Some are just direct applications of existing ML techniques while others are some 

combinations of existing ML techniques. Some uses Deep Learning (DL) techniques. For the input data 

characteristics, most consider flow features, statistics, and time series of bidirectional traffic flows. 

Next, we describe those ML-based solutions mentioned at the beginning of Section 3.1.2 and their 

corresponding input data characteristics. 

• [Alan-2016] evaluated three existing supervised machine learning methods. The first method 

uses similarity measure (SM) based on the Jaccard’s coefficient on traffic bursts which are 

groups of contiguous incoming or outgoing packets within a TCP connection and are rounded 

to the nearest 32 bytes. The second method uses Gaussian Naïve Bayes (GNB) classifier on 

packet sizes of traffic sample with negative values indicating incoming packet sizes. The third 

method uses Multinomial Naïve Bayes (MNB) classifier using packet sizes as in the second 

method where term frequency – inverse document frequency transformation and 

normalization are applied to feature vectors. The proposed solutions assume the launch time 

traffic characteristics are available, specifically, the packet sizes of apps during their launch 

time. 

• [Al-Obaidy-2019] evaluated four ML based solution to classify social media applications. The 

four ML algorithms are Support Vector Machine (SVM), Naïve Bayesian (NB), C4.5, and Multi-

Layer Perceptron. The inputs to all algorithms consist of 14-tuple bidirectional traffic flow 

features such as flow duration, number of packets, data rate, and the ratio of bytes per packet 

for each flow. 

• [Alshammari-2011] evaluated three machine learning algorithms (AdaBoost, C4.5, and Genetic 

Programming (GP)) to identify Skype and SSH tunnels. The three algorithms use packet header-

based features and flow-based features. 
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• [Khatouni-2021] evaluated two ML-based frameworks, undertook feature engineering for 

optimal features selection, and explored the generality of the solutions in terms of network 

conditions. Thirteen ML algorithms (Random Forest, Decision Tree, Complement Naïve Bayes, 

Multinomial Naïve Bayes, k-Nearest Neighbours, Bernoulli Naïve Bayes, Linear Support Vector 

Machine, Ridge Regression, Nearest Centroid, Support Vector Machine, and Linear Models 

with Stochastic Gradient Descent) are evaluated on NIMs2018, NIMS2019, and PRI2019 

datasets. Varying number of service-based and network-based features are extracted. 

• [Moore-2005] applied a Naïve Bayes estimator to classify applications in the network traffic 

using header-derived discriminator.  

• [Muehlstein-2017] used the Support Vector Machine with Radial Basis Function as the kernel 

function to perform a three-tuple <OS, Browser, Application> classification based on flow 

features and time series. 

• [Papadogiannaki-2018] used a pattern matching-based solution to identify Over-the-Top 

applications and services. 

• [Taylor-2018] used Random Forest classifier on selected flow-based features/statistics to 

identify smartphone applications. Note that ambiguous flows are detected and relabeled to 

enhance the classifier accuracy.  

 

• [Zhang-2011] evaluated two hierarchical ML-solutions (SVM-based and RBFN-based) to 

classify 7 traffic categories using flow statistics of the MAC-layer traffic such as data rate, frame 

size, frame interarrival time, frame size distribution, and number of frames. This solution may 

not be easy to scale. 

Here, we describe those DL-based solutions mentioned at the beginning of Section 3.1.2 and their 

corresponding input data characteristics. 

• [Aceto-2020] summarized a list of articles adopting DL for traffic identification and 

classification. The DL solutions consisting of Deep Neural Network, AutoEncoder, Stacked 

AutoEncoder, 1D-Convolution Neural Network, 2D-Convolutional Neural Network, and Long 

Short-Term Memory. The authors proposed a DL framework that is composed of instance of 

elementary learning layers such as dense (AutoEncoder and Deep Belief Neural Networks), 

convolutional (1-D and 2-D Convolutional Neural Networks), pooling (Max-pooling and 

Average pooling), and recurrent (Long Short-Term Memory and Gated Recurrent Unit) layers. 

The authors evaluated three classifiers. The first is the ML-based state-of-the-art Random 

Forest (Base-ML), taking as input 40 handcrafted input features, namely the best-ranked 

statistics (i.e., min, max, mean, standard deviation, variance, mean absolute deviation, 

skewness, kurtosis, and percentiles) on the basis of the Gini impurity score, calculated on the 

sequences of upstream, downstream, and bidirectional IP packet sizes. The other two are 

different DL-based implementations of their framework. For the first implement, an optimized 

1D-CNN fed with the first N = 784 bytes of L4 payload, being the current DL baseline (Base-

DL). For the second implementation, a Multiple Input Modalities-DL hybrid architecture using 
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both the recommended unbiased input sets, namely the first N = 576 bytes of L4 payload (first 

modality) and four informative fields2 of the first Np = 12 packets (second modality). For the 

first modality, they adopt two ‘‘light” 1D-convolutional layers (16 and 32 filters and rectifier 

activations), each followed by a 1D max-pooling layer, and one dense layer (256 nodes). For 

the second modality, they use a Gated Recurrent Unit (64 nodes) and one dense layer (256 

nodes). Lastly, the intermediate outputs of the two branches are stacked and fed to a shared 

dense layer (128 nodes).  

• [Akbari-2021a, Akbari-2021b] used a multi-set input DL architecture called tripartite neural 

network architecture to classify traffic services and applications. While each input set is 

processed by a separate DL architecture, their respective outputs are processed by a common 

NN to determine the classification outcome. The authors extracted the TLS handshake bytes, 

flow time-series, and standard flow statistics as the three distinct input sets to be fed 

respectively to a CNN-based, LSTM-based, and a fully connected network-based architectures. 

 

• [Hou-2019] developed the SS-Infer (Smart Spying-Infer) architecture which integrates 

multiple traditional neural networks. Convolutional Neural Networks is used to learn the 

spatial dependency features of the encoded data. The CNN output is fed to Long Short-Term 

Memory to learn the temporal dependency features. The combined extracted spatial-

temporal features and the flow features extracted directly from the network traffic are then 

fed to a dense layer and a softmax layer to obtain the final classification. The flow features 

consist of header information and statistical information. The encoded data is the One-Hot 

Encoding of the first 100 bytes, middle 100 bytes and last 100 bytes of a packet data payload, 

considering only those payloads with 300 or more bytes. 

• [Cui-2019] proposed a session-packets-based encrypted network traffic classification model 

using capsule neural networks (CapsNet), called SPCaps. It is basically a One-Dimensional 

Convolution Neural Networks (1D-CNN) feeding on processed and then subsequently encoded 

network traffic features (a 784 byte-matrix of 28*28 size). The initial traffic data consists of 

packets each with its header info, byte length, and the start time. The processed feature data 

considers the location of fixed strings and order between packets and is differentiated in 

terms of pcap-sessions and session-packets. In addition to the 1-D CNN, CNN+LSTM is also 

evaluated to exploit the spatial-temporal features of the encrypted data. SAE is also 

evaluated.  

• [Lotfollahi-2017] proposed “Deep Packet” to classify traffic into service categories and into 

application names using Stacked Autoencoder and Convolutional Neural Network in parallel 

using flow IP header information and the first 1489 bytes of each IP packet.  

 

 

2 IP packet size, direction, inter-arrival time, and TCP window size (set to zero for UDP packets). 
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• [Wang-2018] developed three encrypted network traffic classifiers based on three DL 

schemes, Multi-Layer Perceptron, Stacked Autoencoder, and Convolutional Neural Networks 

using 1480 bytes of each raw input packet after removing Ethernet header, MAC address, 

frame types and other information not useful for classification and padding/truncating to the 

same size.  

3.1.3. State of the art of Third Level Application Detection Solutions 

The articles with third level of application detection solutions reviewed here are [Aiolli-2019], 

[Brissaud-2018], [Brissaud-2019], [Conti-2015], [Conti-2016], [Liu-2019], [Mari-2021], [Park-2016], 

[Pathmaperuma-2020], [Pathmaperuma-2022], [Wright-2010], and [Yan-2018]. 

Those articles in bolt and italic are described in more detail next while all of the above articles are 

summarized in Table 3. Moreover, only [Mari-2021] and [Pathmaperuma-2022] use DL-based 

solutions while the rest use ML-based solutions. 

Coverage of Intents and Activities  

In these articles, the number of activities ranges from as few as four in one application [Yan-2018, 

Mari-2021] to as many as 92 in 8 applications [Pathmaperuma-2022]. Most consider social media 

applications [Conti-2016, Pathmaperuma-2020, Pathmaperuma-2022] while others consider very 

specialized applications [Aiolli-2019] (bitcoin transactions), [Brissaud-2018, Brissaud-2019] (keywords 

association with thumbnails), [Liu-2019] (walking direction), [Park-2016] (KakaoTalk activities), 

[Wright-2010] (phrases in encrypted VoIP conversations) and [Yan-2018] (fund transfers in WeChat 

app). 

Solutions and Their Input Data Characteristics 

Here, we review solutions and corresponding input data characteristics for the third level application 

detection solutions.  

Most proposed solutions for the third level application detection use Machine Learning (ML) 

techniques. Some are just direct applications of existing ML techniques while others are some 

combinations of existing ML techniques. Some uses Deep Learning (DL) techniques. For the input data 

characteristics, most consider flow features, statistics, and time series of bidirectional traffic flows, 

while some consider thumbnail statistics [Brissaud-2018, Brissaud-2019], search keywords [Brissaud-

2018, Brissaud-2019], video frame statistics [Mari-2021], and packet subsequence [Wright-2010]. 

Next, we describe those DL- and ML-based solutions mentioned at the beginning of Section 3.1.3 and 

their corresponding input data characteristics. 

• [Aiolli-2019] developed a four-stage ML-based solutions using either SVM or RF at each stage 

to classify a flow to be a Bitcoin app or not; to classify if it is an Android app or an iOS app; to 

identify the specific apps; and finally, to identify the action taking place. Flows are extracted 

by pre-processing the input traffic and converted into time series. From the time series, 

statistical features are extracted to be training/test sequences. The statistics used are length 

of the series, minimum, maximum, mean, median, mode, variance, skewness, kurtosis, and 

percentile at 25%, 50% and 75%. 
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• [Brissaud-2019] proposed H2Classifier to detect user actions (search keywords) that has been 

observed in previously monitored Web service traffic (requested web content). Assuming the 

thumbnails’ sizes are representative of a searched keyword, the authors leverage the Kernel 

Density Estimation (KDE) to estimate the density function of the sizes to be associated with 

the keyword, creating a signature for the corresponding keyword. H2Classifier is an 

improvement over the KDE-based solution. It leverages the random forest learning technique. 

One forest is used to handle one web service and to predict one class for each monitored 

keyword and one class for all other unknown keywords. The features used by H2Classifier are 

connection statistics, burst information, count of different sizes, and more. 

• [Conti-2016] proposed a framework consisting of two components: the “pre-processor” and 

the “traffic classifier”. The pre-processor filters out the relevant portion of the input traffic and 

converts it to a set of time series: (i) a time series is obtained by considering the bytes 

transported by incoming packets only; (ii) another one is obtained by considering bytes 

transported by outgoing packets only; (iii) a third one is obtained by combining (ordered by 

time) bytes transported by both incoming and outgoing packets. Similar time series are 

grouped into the same cluster. The traffic classifier consists of a hierarchical clustering 

algorithm that composes clusters as one moves up the hierarchy with distance between 

clusters optimized based on the total cost of an optimal warping path as the distance metric, 

and random forest algorithm that locates the different set of clusters associated with different 

user actions.  

• [Liu-2019] explored six machine learning algorithms (Random Forest, Gradient Boosting 

Decision Tree. Decision Tree, Naïve Bayes, Logistic Regression, K-Nearest Neighbors) in their 

ability to identify eight basic activities of daily living from encrypted video surveillance traffic. 

The input feature data is obtained from the processed time-series traffic size data of cameras 

traffic. The initial time-series is processed to remove I frames, and the resulting time series is 

divided into m segments, each containing one action or no action. 

• [Pathmaperuma-2020] evaluated three ML-solutions (Bayes Naïve, Random Forest, J48) in 

their ability to identify 51 in-app activities for three social media applications. The input data 

consists of only 802.11 data frames. The input traffic data is also segmented into various sizes 

to simulate different observation windows and opportunities. The two main features 

considered are frame length measured in bytes and frame inter arrival time measured in 

seconds. Other features consist of frame statistics and directions. 

• [Pathmaperuma-2022] proposed a framework that can fully identify in-app activities based on 

partially observed activity-related encrypted traffic. The framework uses a CNN-based solution 

to convert network traffic flows information into images to identify in-app activities while also 

detect unknow data. Similar to [Pathmaperuma-2020], only 802.11 data frames are used, and 

the input traffic data is also segmented into various sizes of 1, 0.5, 0.2, and 0.1 second. Each 

side channel data consisting of frame length, data length, and inter arrival time forms a vector. 

The vectors from all side channels then form a matrix. After some normalization process such 
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as ensuring it is a Grayscale data of 28x28x1 (784), it becomes suitable for input to the CNN 

classifier.  

• [Yan-2018] proposed a classifier based on Random Forest to distinguish red packet and fund 

transfer transactions from two other popular WeChat activities. Some key processing steps 

consist of time series transformation using packet length, timestamp, and TCP flag; and 

segmenting traffic into bursts, where a burst is defined to be a group of consecutive packets, 

where the inter-arrival time of two consecutive packets is within a predetermined threshold 

time period. The features extracted are overall statistics, packet length, number of TCP 

handshakes, and inbound and outbound statistics. 

3.1.4. Salient Features of Reviewed Solutions 

In this section, we conclude the SotA review, listing non-exhaustively some salient features of the 

reviewed solutions. 

Instead of combining all input data features into a single set, [Akbari-2021a, Akbari-2021b] partitions 

them into three distinct input feature sets each of which is fed to a different DL/ML algorithm. The 

rational here is to exploit optimally the feature sets and enable generalization of classification 

objectives.  

Instead of designing a novel architectural solution, [Aceto-2020] described a framework that can 

handle single or multiple types of input and perform single or multiple task classification such as the 

traffic type and the specific application generating the traffic. 

Instead of identifying activities in social media applications, [Brissaud-2018, Brissaud-2019] identifies 

thumbnails being searched, [Liu-2019] infers activities in video traffic, [Mari-2021] infers walking 

directions in video traffic, [Wright-2010] detects spoken phrases in encrypted Voice over IP 

conversations, and [Yan-2018] infers fund transfers in WeChat. 

Instead of just identifying applications, [Muehlstein-2017] also identifies operating system and 

browser. 

Instead of using typical ML- and DL- based solutions, [Papadogiannaki-2008] uses a pattern language 

to describe packet trains for the purpose of fine-grained identification of application-level events in 

encrypted network traffic. 

[Pathmaperuma-2022] proposes a DL- based solution that can differentiate between known 

(previously trained) and unknown (previously untrained) in-app activities and identify known in-app 

activity type. Moreover, their solution is also robust in handling partially captured traffic data. 

[Taylor-2018] claims their solution can maintain high accuracy of identifying applications even after six 

months of being trained. Moreover, their solution fingerprinting capability persists to varying extents 

across devices and app versions. 
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3.2. IoT device detection 

3.2.1. Introduction 

The objective ENTA pursues with this use case is to be able to detect IoT devices that are connected 

to the corporate networks and have been compromised, causing them to be a threat for the 

corporate security. Also, these devices are known as rogue IoT device. To achieve this objective, we 

are going to analyze the encrypted network stream sent by these devices, detect if these streams are 

generated by IoT devices, and determine if that IoT device has been compromised. 

Thus, in this SotA review of ENTA solutions we are concerned with IoT device detection/classification. 

In these solutions, we are interested mainly in the Machine Learning and Deep Learning proposed 

solutions, specifically those whose input data is encrypted; and the input data extracted characteristics 

is from the network data. Next, we review the state-of-the-art for automatic device detection, that is, 

the discovery of IoT devices and the detection of rogue IoT devices. We conclude the review by listing 

non-exhaustively some salient solution features of the reviewed articles. Moreover, we will describe 

in Appendix B (Section 7) those issues that affect the integrity of IoT devices such as cyberattacks that 

involves IoT devices, cyberattacks that affects E-IoT devices, and commercial IoT monitoring tools.  

3.2.2. Automated Discovery of Encrypted IoT devices and Detection of Rogue IoT devices 

The first part of the SotA is focused on reviewing solutions for detecting IoT devices connected to 

company networks and detecting if the IoT device is compromised and being used to execute attacks 

inside the company network.  

Automated discovery of encrypted IoT devices 

Automatic device discovery and annotation on a large-scale is an open problem in IoT. The 

Acquisitional Rule-based Engine (ARE) is proposed, which generates rules automatically to discover 

and annotate IoT devices without using training data. These rules are built with the help of leveraging 

application-layer response data originating from IoT devices, described in websites for device 

annotations. In the ARE framework, a transaction is a mapping between a unique response and a 

product description. ARE collects the transaction set by extracting relevant terms from response data 

such as search queries to find crawling websites. It uses the association algorithm that generates rules 

for IoT device annotations. So far, the types of IoT devices found were accessible IoT devices, 

compromised IoT devices, hundreds of thousands of cases in which IoT devices are not perfectly 

secured and vulnerable. For more information, see [Feng-2018]. 

The fingerprinting-based discovery was used for operating systems for more than two decades, using 

a set of input data together with a classification function to provide safety of a device in a network. 

The input data has a pair of interrogations and responses that IoT devices use. A classification model 

maps the input data and the class labels using the training data. This method requires a large training 

dataset. So far, no training data has been developed for IoT devices. 

The Banner-grabbing Discovery method is used instead of fingerprinting for IoT device discovery, which 

is suited when dealing with many devices and a lack of training data. First, textual information is 

extracted from application-layer data to label an IoT device. [Antonakakis-2017] used the Nmap 

banner rules to analyze devices from CENSYS and Honeypot online. 
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Fig 1 (a) HTML data is displayed in the online embedded devices. (b) Some appropriate websites describe this device in their 
search engines. 

[Meidan-2017] proposes a method to identify unauthorized types of IoT devices connected to the 

network based on the continuous classification of individual device traffic. To achieve this, over several 

months, traffic data from various IoT devices deployed in a lab is collected and tagged. To make the 

prediction, a model based on Random Forest is used. In this study, a perfect detection of unauthorized 

IoT devices is obtained in the test set. These encouraging results were obtained for televisions, plugs, 

and motion sensors, demonstrating generalizability across specific models and devices. 

[Zahid-2022] proposes using HDNN to identify IoT devices that have been connected to the network, 

classifying network stream between being generated by an IoT device or not. To do this, a dataset of 

almost a million samples is generated, which, after removing the least significant features, is made up 

of 44 features from each sample. This architecture comprises two DNN networks: the first oversees 

identifying whether the device is an IoT device, and the second oversees identifying to which class the 

detected device belongs. The proposed solution can achieve an average precision of 0.9179, surpassing 

some models that have achieved good results, such as Random Forest or Decision Tree Classifier. 

[Yin-2021] proposes creating a system responsible for extracting the essential characteristics of 

network traffic and learning to identify IoT devices. To do this, it uses a model formed by 1) 

convolutional networks in charge of feature extraction and 2) BiLSTM memory modules. This model 

salient feature is the use of a CNN before making the actual prediction, which allow the model to learn 

the spatial and temporal features extracted by the convolutional networks, without involving the 

researcher. For the data to be introduced into the model, it must be previously preprocessed, 

converting the network packets into network flows as shown in the figure below. 
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Fig 2 ETEI architecture. Image source: [Yin-2021] 

[Sivanathan-2018] employs a two-stage hierarchical architecture for their classifier, as depicted in the 

following figure below. The authors feed multi-valued attributes to the Stage-0 classifier as a matrix 

representing a “bag of words”. The matrix contains M rows for the labeled instances and N columns 

for the unique words, where the cells contain the number of occurrences of such unique words in each 

instance. Their work identified 356, 421, and 54 unique words for domain names, remote port 

numbers, and cipher suite strings. Furthermore, they combined all corresponding words for non-IoT 

devices under a column named “others”. Each classifier of Stage-0 generates two outputs: a tentative 

class and a confidence level. These outputs, along with other single-valued quantitative attributes (i.e., 

flow volume, duration, rate, sleep time, DNS, NTP intervals), are fed into a Stage-1 classifier that predict 

the final output (i.e., the device identification with a confidence level). They employed Naive Bayes 

Multinomial for the Stage-0 classifier and Random Forest for the Stage-1 classifier. The authors 

collected a total of 50,378 labeled instances captured from different IoT and non-IoT devices 

generating traffic from either triggered user interactions or autonomously generated activities. The 

captured instances are randomly split as 70% for training and 30% for testing. The proposed solution 

achieved a detection accuracy of 99.88%, with a minimal value of RRSE at 5.06 %. 
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Fig 3 The Architecture of Sivanathan et al. Solution. Image Source: [Sivanathan-2018] 

[Pashamokhtari-2021] takes a different direction to analyze IPFIX records, a legacy flow-based 

telemetry data typically collected from the edge of ISP networks. The proposed analysis was conducted 

on three million records emitted from a testbed of 26 IoT devices, which were parsed into 28 flow-

level features to characterize the network behavior of these devices. In particular, they employed a 

multi-class model leveraging random forest to identify the IoT device types in home networks based 

on the extracted features from their post-NAT IPFIX records. They followed 10-fold cross-validation to 

assess the model accuracy, where the model hits 96% accuracy across all classes. 

 

Fig 4 The Architecture of Pashamokhtari et al. Solution. Image Source: [Pashamokhtari-2021] 

Detection of rogue devices in a network 

Attackers cannot access a legitimate device to capture traffic and find patterns when they want to 

steal sensitive information.  

In recent work, the authors build a system that automatically finds the type of IoT device using machine 

learning (ML) and limiting the communication of exposed devices for reduced damage over the 

network. Because the proposed protocol looks at each device's MAC addresses to find a new device 

that wants to authenticate with the network, there is a risk of accepting spoofed devices. Further, it 
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needs to be discussed the case when a previously authenticated device gets compromised and the 

case when an IoT device re-authenticates each time when it is trying to rejoin the network. [Bremler-

2019]’s team focuses on finding differences between IoT and Non-IoT (NoT) devices by using ML 

classifiers to assign the relevant security policies to the IoT devices. See [Gupta-2022] for more details. 

The Secure Multicontroller SDN Blockchain Model framework has recently been proposed to provide 

reputation and consensus mechanisms. Using the reputation method, the system monitors the rogues 

and adjusts their time of consumption. Upon evaluation, the detection rate of the flow rule injections 

was 100%. Dynamic fading factor adjustment reached the needed detection duration. See [Janani-

2022] for more details. 

[Hamza-2019] proposes a solution that relies on MUD specifications as an RFC standard embraced by 

giant manufacturers such as Google and Cisco. Despite their benefits in providing access control lists 

(ACLs) that allow network operators to regulate the network traffic, they cannot provide robust 

protection against volumetric attacks, such as ARP spoof, TCP SYN flooding, Fraggle, Ping of Death, and 

SSDP/SNMP/TCP/ICMP reflection. Thus, the proposed solution consists of several components: an SDN 

switch, a MUD engine in conjunction with an App on the SDN controller, a MUD collector, and a 

combination of anomaly-based and specification-based threat detectors. These components work in 

harmony to dynamically manage the flow-table rules inside the switch while monitoring the network 

activity of traffic flows for each device. This solution aims to detect if an IoT device is part of a 

volumetric attack and identify the traffic flows involved in the attack. This is achieved by applying 

machine learning techniques to learn the behavioral pattern of MUD rules at two stages: coarse-

grained (per device) and fine-grained (per flow). Then, they leverage the trained model to detect 

attacks exhibiting anomalous deviations from the expected traffic patterns. In other words, the 

anomaly detection is conducted through three steps: 1) feature reduction using Principal Component 

Analysis (PCA); 2) clustering using X-means; and 3) outlier detection using boundary detection and 

Markov Chain. The solution achieved an accuracy of 89.7% of all attacks across all IoT devices. 

[Ullah-2022] identifies the two basic classes of abnormal activity identification in a system or 

application: intrusion and compromised operation. To try to distinguish these classes, it is proposed to 

use FFN. To check the effectiveness of the trained model, tests are carried out with several data sets 

to check its ability to identify intrusions and devices that have been compromised, obtaining an 

average accuracy of 97% between all data sets. This data set includes data from various botnets, where 

the proposed model can identify the various botnets with an accuracy greater than 98%. 

 

3.2.3. Salient features of reviewed documents 

In this section, we conclude the SotA review, listing non-exhaustively some salient features of the 

reviewed solutions. 

[Meidan-2017] proposed to use RF classifier for classifying labeled data obtained from a test set 

formed by smart TV, plugs and motion sensors. 
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[Zahid-2022] proposed to use HDNN with two different models: one for identification of IoT devices 

and another one for classifying the detected device. After cleansing the dataset, 44 features where 

selected. 

[Yin-2021] presents a novel approach due to the use of CNN model to process the dataset and extract 

important features to be fed to the BiLSTM network. The BiLSTM network oversees identifying IoT 

devices receiving as an input the extracted featured by the CNN network. 

[Sivanathan-2018] uses a 2-stage classifier: in the first stage using the bag of word approach to convert 

the data into their numeric representation using NBM; in the second stage the classification occurs 

using RF.  Multiple unique groups were identified for the domain name, port number and cipher suite 

strings. 

[Pashamokhtari-2021] identifies IoT devices using IPFIX records, obtained from edge ISP network. This 

dataset formed 28 flow level characteristics that are fed to a multi-level RF classifier. 

[Ullah-2022] identifies two types of attacks: intrusion and compromised operation. Using FFN, [Ullah-

2022] obtains an accuracy of 97% for all datasets increasing up to 98% when only using botnet 

datasets.  

[Salman-2022] proposes a 4-step process to identify IoT devices and detect abnormal behavior in 

devices connected to the network using RF. 

[Geetha-2022] identifies botnets by extracting features manually and feeding then into a model 

formed by two layers: a BiLSTM layer and a neuron layer in charge of classifying the traffic. 

After researching the current state of art for IoT device detection and rogue IoT device detection, it is 

found that nowadays, there is much scientific work done for detecting IoT devices and classifying them, 

obtaining good results when not using encrypted communications. Also, all commercially available 

tools cannot detect IoT devices or determine if the devices have been compromised when using 

encrypted communications. 
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5. Acronyms 

Acronym Meaning 

1D-CNN One-Dimensional Convolutional Neural Network 

2D-CNN Two-Dimensional Convolutional Neural Network 

ACL Access Control List 

AdaBoost Adaptive Boosting 

AE AutoEncoder 

AI Artificial Intelligence 

ARE Acquisitional Rule-based Engine 

ARP Address Resolution Protocol 

Bi-GRU Bidirectional Gated Recurrent Network 

BiLSTM Bidirectional Long Short-Term Memory 

BNB Bernoulli Naive Bayes  

C4.5 A decision tree-based classification algorithm 

CCTV Closed Circuit Television 

CEC Consumer Electronic Control 

ClaSP Closed Sequential Patterns algorithm 

CNB Complement Naive Bayes  

CNN Convolutional Neural Network 

ConvNet CNN 

DDoS Distributed Denial of Service 

DL Deep Learning 

DNN Deep Neural Network 

DNS Domain Name Server 

DoS Denial of Service 

DRM Digital Right Management 

DT Decision tree  

DTC DT classifier 

DTMC Discrete Time Markov Chain 

E-IoT Enterprise Internet of Things 

ENTA Encrypted Network Traffic Analysis 

EU European Union 

FCNN Fully Connected Neural Network 

FFN Feed Forward Network 

FPM Frequent Pattern Mining 

FTP File Transfer Protocol 

GBDT Gradient Boosting Decision Tree 

GBPS Gigabits per seconds 

GDPR General Data Protection Regulation 

GMM Gaussian Mixture Model 

GNB Gaussian Naïve Bayes 

GP Genetic Programming 

GRU Gated Recurrent Unit 

HC Hierarchical Clustering 

HDMI High-Definition Multimedia Interface 

HDNN Hierarchical Deep Neural Network 
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HMM Hidden Markov Model 

HTTP Hyper Text Transfer Protocol 

ICMP Internet Control Message Protocol 

ID Identification 

IETF Internet Engineering Task Force 

IIoT Industrial Internet of Things 

IoMT Internet of Medical Devices 

IoT Internet of Things 

IP Internet Protocol 

IPFIX IP Flow Information Export 

ISP  Internet Service Provider 

IT Information Technologies 

J48 J48 algorithm is one of the most widely used machine learning algorithms to 
examine the data categorically and continuously. 
(https://medium.com/@nilimakhanna1/j48-classification-c4-5-algorithm-in-a-
nutshell-24c50d20658e)  

KDE Kernel Density Estimation 

KNN K-Nearest Neighbours  

KPI Key Performance Indicator 

LEA Law Enforcement Agencies 

LR Logistic Regression 

LSGD Linear Models with Stochastic Gradient Descent (LSGD). 

LSTM Long Short-Term Memory 

LSVM Linear Support-Vector Machine  

MAC Media Access Control 

ML Machine Learning 

MLP Multi-Layer Perceptron  

MNB Multinomial Naïve Bayes 

MQTT Message Queue Telemetry Transport 

MQTTS Message Queue Telemetry Transport Secure 

MUD Manufacturer Usage Description 

NAT Network Address Translation 

NB Naïve Bayes 

NBM Naïve Bayes Multinomial 

NC Nearest Centroid  

Nmap Network Mapper 

NN Neural Network 

NoT Non-IoT 

NTP Network Time Protocol 

NVR Network Video Recorder 

OS Operating System 

OT Operational Technology 

OTT Over-The-Top  

PCA Principle Component Analysis 

PR Passive-Aggressive  

PTM Packet Train Matching 

RBF Radial Basis Function 

https://medium.com/@nilimakhanna1/j48-classification-c4-5-algorithm-in-a-nutshell-24c50d20658e
https://medium.com/@nilimakhanna1/j48-classification-c4-5-algorithm-in-a-nutshell-24c50d20658e
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RBFN Radial Basis Function Network 

RC-4 Rivest Cipher 4, a stream cipher Ron’s Code 4 

ResNet Residual neural network 

RF Random Forest 

RFC Request for Comments 

RNN Recurrent Neural Network 

RR Classifier using Ridge Regression (RR) 

RRSE Root Relative Squared Error 

SAE Stacked AutoEncoder 

SCM Supervised Category Mapping 

SCP Secure Copy Protocol 

SDN Software Defined Network 

SFTP Secure File Transfer Protocol 

SM Similarity measure using Jaccard’s coefficient 

SMS Short Message Service 

SNMP Simple Network Management Protocol 

SotA State-of-the-Art 

SPCaps Session-packets-based encrypted network traffic classification model using capsule 
neural networks (CapsNet) 

SS Smart Spying 

SSDP Simple Service Discovery Protocol 

SSH Secure Shell 

SVM Support Vector Machine 

TCP Transmission Control Protocol 

TLS Transport Layer Security 

UDP User Datagram Protocol 

VAE Variational Autoencoder 

VoIP Voice over IP 

VPN Virtual Private Network 

WEP Wired equivalent privacy 

Wi-Fi Wireless Fidelity 

WPA Wi-Fi Protected Access 
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6. Appendix A: Summary Tables of Application Detection Solutions 

Appendix A contains tables summarizing the review of the second- and third-level application 

detection solutions. For each table, we indicate the authors of the solutions, the level of application 

detection, the size and type of application set, support for real-time deployment, solution types, traffic 

object, and input data characteristics. 

Note that the acronyms used in this section is spelled out in Section 5. Some entries for the application 

level have appended a + or - sign to indicate that the applications being detected may be considered 

to be more or less than the defined level. The – sign is usually due to the mixing of service and 

application categories, considering high-level applications (e.g., Chat or just Facebook) than just 

specific application (e.g., Facebook Chat). The + sign is usually due to some indication of user activities 

being inferred. Although Table 2 is supposed to list only those of the second-level application 

detection solutions, we include [Cui-2019] because of its DL-based solutions. 

From the tables, few solutions support or describe real-time deployment, except [Zhang-2011] which 

explicitly indicated suitability for real-time deployment. Most solutions use one aggregated set of 

extracted features unlike [Akbari-2021a, Akbari-2021b] which partitions the feature set into three and 

feeds each one to a different algorithm/solution. 

Table 2 Summary of Second-Level Application Detection Solutions. 

Authors 

A
p

p
lic

a
ti

o
n

 L
ev

el
 Application 

Set  
Real-time 
Support 

Classifier Traffic 
Object 

Input Data 

[Aceto-2020] 2nd  Two-app set, 
49-app set, 
and 45-app 
set 

Not 
addressed  

DL (DNN, 
AE, SAE, 
1D-CNN, 
2D-CNN, 
LSTM, bi- 
GRU 

F/BF L4 payload [𝑁 
Bytes] 
𝐾 fields [𝑁𝑝 

packets]  

[Akbari-
2021a, 
Akbari-
2021b] 

2nd+ 8 service 
categories, 5 
Google 
services, 19 
service/app 
classes 

Not 
addressed 

DL+ML 
(LSTM, 
CNN, 
MLP) 

BF Handshake 
headers, flow 
time-series, flow 
statistics, 
respectively for 
each of the 
solution 
component 

[Alan-2016] 2nd  1595 apps Not 
addressed 

ML (SM, 
GNB, 
MNB) 

Bidirectional 
TCP/IP 
headers 

32-64 initial 
packets 

[Al-Obaidy-
2019] 

2nd  5 social 
media sub-
classes 

Not 
addressed 

ML (SVM, 
MLP, NB, 
C4.5) 

BF Flow-based 
features/statistics 
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[Alshammari-
2011] 

 
2nd- 

2 traffic 
tunnel types, 
5 to 11 
services over 
each tunnel  

Not 
addressed 

ML (C4.5, 
AdaBoost
, GP) 

F Flow-based 
features and 
packet header 
feature sets 

[Cui-2019] 1st 12 traffic 
classes with 
one or more 
apps each 

Not 
addressed 

DL 
(SPCaps, 
1D-CNN, 
CNN+LST
M, 
SAE) 

BF Flow-based 
features and 
packet header 
feature sets 

[DraperGil-
2016] 

2nd  14 traffic 
categories of 
7 apps in 
regular and 
VPN sessions 

Not 
addressed 

ML (C4.5, 
KNN) 

BF Flow-based time-
related features 

[Hajjar-2015] 2nd- 18 apps Not 
addressed 

ML 
(GMM, 
DTMC) 

BF Flow-based 
statistics 

[Hou-2019] 2nd+ 7 services 
each of 
which having 
two or more 
apps 

Not 
addressed 

DL (CNN, 
LSTM) 

BF Flow features and 
statistics 

[Khatouni-
2019] 

2nd  11 apps Not 
addressed 

ML (RF, 
DT, CNB, 
MNB, 
KNN, 
BNB, 
LSVM, RR, 
NC, SVM, 
PR, MLP, 
LSGD) 

BF Flow-based 
features 

[Khatouni-
2021] 

2nd  9 apps Not 
addressed 

ML (RF, 
DT, CNB, 
MNB, 
KNN, 
BNB, 
LSVM, RR, 
NC, SVM, 
PR, MLP, 
LSGD) 

BF Service and 
network-based 
features 

[Lotfollahi-
2020] 

2nd+ 18 apps and 
13 traffic 
categories 

Not 
addressed 

DL (CNN, 
SAE) 

F Flow header info 
and first 1489 
bytes of each IP 
packet 

[Moore-
2005] 

2nd- 10 apps 
categories 

Not 
addressed 

ML (NB) F Header derived 
discriminators 
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[Muehlstein-
2017] 

2nd 3 OSes,  
5 Browsers, 8 
apps 

Not 
addressed 

ML (SVM, 
RBF) 

BF Flow features and 
time series, 
Features specific 
to SSL and 
browsers 

[Papadogian
naki-2018] 

2nd+ 4 OTT 
Android apps 
and 3 
services 

Evaluated ML (PTM, 
FPM, 
ClaSP) 

F Flow features and 
statistics 

[Taylor-2016] 2nd 110 apps Support 
online 
mode 

ML (SVM, 
RF) 

F, Burst Flow-based 
features/statistics 

[Taylor-2018] 2nd 110 apps Not 
addressed 

ML (RF 
with 
ambiguity 
eliminatio
n) 

F, Burst Flow-based 
features/statistics 

[Wang-2015] 2nd 13 apps Not 
addressed 

ML (RF) BF Frame Statistics 
(802.11 frames) 

[Wang-2018] 2nd 15 apps Not 
addressed 

DL (MLP, 
SAE, CNN)  

F Flow-based 
features 

[Zhang-2011] 2nd+ 7 traffic 
categories 

Support 
real-time 
deploymen
t 

ML (SVM, 
NN, RBF) 

BF Flow statistics, 
MAC-layer traffic, 

 

Table 3 Summary of Third-Level Application Detection Solutions. 

Authors 

A
p

p
lic

a
ti

o
n

 L
ev

el
 Application 

Set  
Realtime 
Support 

Classifier Traffic 
Object 

Input Data 

[Aiolli-2019] 3rd 9 Bitcoin wallet 
apps up to 7 
activities each 

Not 
addressed 

ML (SVM, RF) BF, 
Burst 

Flow 
statistics, 
time series 

[Brissaud-2018] 3rd 115,500 distinct 
keywords  

Not 
addressed 

ML (KDE) BF Thumbnail-
keyword pairs 

[Brissaud-2019] 3rd User actions 
(keywords) in 5 
web services 

Briefly 
described 
resource 
requirement 

ML (KDE, RF) Flow, 
Burst 

Connection 
statistics, flow 
features and 
statistics, web 
page-
keyword pairs 

[Conti-2015] 3rd User actions in 
3 apps 

Not 
addressed 

ML (HC, RF) BF Flow time 
series 

[Conti-2016] 3rd User actions in 
7 apps 

Not 
addressed 

ML (HC, RF) BF Flow time 
series 
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[Liu-2019] 3rd 8 activities in 
encrypted 
video 
surveillance 
traffic 

Not 
addressed 

ML (RF, 
GBDT, DT, 
NB, LR, KNN) 

F Time series, 
Frequency 
domain 
features and 
traffic rate 
changes 

[Mari-2021] 3rd Walking 
directions in 
real videos 

Simulated DL (CNN-
RNN) 

F Video frame 
statistics 

[Park-2016] 3rd 11 activities of 
KakaoTalk app 

Not 
addressed 

ML (RF) F Flow statistics 

[Pathmaperuma-
2020] 

3rd 51 in-app 
activities for 3 
social media 
apps 

Not 
addressed 

ML (BN, RF, 
J48) 

BF Flow features 
and statistics 
(802.11 
frames) 

[Pathmaperuma-
2022] 

3rd 92 in-app 
activities for 8 
apps 

Not 
addressed 

DL (CNN) F Frame 
features and 
statistics 
(802.11 
frames) 

[Wright-2010] 3rd 2000 phrases in 
encrypted VoIP 
conversations 

Not 
addressed 

ML (HMM) F Sub-
sequences of 
packets to 
phrase 
matching 

[Yan-2018] 3rd Fund transfers 
in WeChat app 

Not 
addressed 

ML (RF) BF Flow statistics 
and time 
series 

 

  



41 
 

Use case and State of the Art 
ENTA 

 

 
 
 

7. Appendix B: Cyber-Attacks Involving and Affecting IoT Devices 

Appendix B describes in subsection 7.1 how IoT devices could be involved unwittingly in cyber-

attacks; in subsection 7.2 how vulnerabilities of communication protocol could affect the integrity of 

IoT devices; and in subsection 7.3 how various software used by IoT devices such as service software, 

monitoring software, and configuration software could affect the maintenance of their security.  

7.1. Cyber-attacks in the IoT environment 

This subsection will review the most common attacks being carried by compromised IoT devices and 

the threat these attacks represent for the company. 

Data exfiltration 

This is about personal data shared or accidentally downloaded or as part of malicious activity. These 

data can be passwords, personal information, or proprietary data. The Internet of Things environment 

consists of many wirelesses connected devices which can be vulnerable to an accidental download of 

sensitive data. Many IoT devices exchange messages from various sources, therefore, being exposed 

to data exfiltration.  

Data exfiltration can take place during Man-in-the-Middle and Sinkhole attacks. At a network level, 

protocol tunneling threats can occur in wireless networks, and any wireless protocol is vulnerable. The 

Mirai attack, in 2017 in which billions of IoT things were affected by a distributed attack to the DynDNS. 

See [Vaccari-2021] for more information. 

Some examples of data exfiltration are unwanted data transmission, sensitive data leaked through 

business email, from secure computers to untrusted third parties or to insecure private systems, as 

plain text in SMS or email, or file attachment. Known targets include email addresses, business 

forecasts, and databases. Within Google cloud infrastructure, Digital Rights Management (DRM) tools 

can secure the files by adding access permissions and encryption. Screenshots with sensitive 

information can be watermarked as in the case of a list of passwords, user IDs etc. This is done with 

dynamic watermarking. See [Google-2022] for more information. 

Distributed Denial of Service 

A distributed DoS or DDoS is about sending a large number of service requests to several targeted 

computers to consume the resources of a network and its computers. Usually, DDoS is launched by 

botnet or zombie computers. To overcome this situation, these attacks were first classified depending 

on their scope and nature. The flooding DDoS attacks were classified depending on network and 

application layers. 

[Salman-2022] analyzes how to identify the type of traffic and the type of devices connected to the 

network using methods based on machine learning to classify and detect malicious traffic. The 

characteristics of the network traffic depending on the device’s specifications, so they propose systems 

based on machine learning and thus extract only characteristics of the type of device and the traffic 

when the device connects to the network for the first time. The proposed model consists of four tasks: 

1) feature extraction, 2) IoT device identification, 3) traffic type identification, and 4) intrusion 

detection. The models studied by [Salman-2022] to solve the proposed problems are Random Forest 
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and learning-based methods, such RNN, ResNet and ConvNet. The results obtained between IoT and 

non-IoT traffic are feasible, where accuracy of 99.93% and F1-score of 0.9985 are achieved with the 

Random Forest model. 

[Geetha-2022] proposes to perform a preliminary analysis to select the most representative features 

of the dataset used to train the model. Such a model uses BiLSTM layers, which allow, once the packets 

have been processed to extract the characteristics indicated by the researchers, to learn both the 

spatial and temporal characteristics of the data used as input. After these layers, two layers of neurons 

are added to the model, allowing the final output to be generated. This model can obtain an accuracy 

of 84.8% to detect attacks from the most well-known botnets. 

7.2. E-IoT communications layer threat model 

Wi-Fi attacks 

Wi-Fi communication has been an active research topic due to its widespread appeal and uses in many 

connected devices. Several Wi-Fi attacks have been documented in various publications, surveys, and 

technical documents. Furthermore, attacks may be affected by installed hardware, firmware, security 

(e.g., WEP, WPA), and implementation. A survey conducted by [Lashkari-2009] revealed flaws in Wi-Fi 

security mechanisms. This work notes that WEP is vulnerable to attacks (e.g., packet forgery, replay 

attacks, de-authentication) and vulnerabilities such as improper key management and RC-4 algorithm 

problems. 

Even with improvements, WPA and WPA2 can be vulnerable to attacks (e.g., brute force attacks). A 

handshake capture attack is a related WPA/WPA2 attack. An attacker can intercept the communication 

handshake and attempt brute force or dictionary attacks on the captured handshake. [Vanhoef-2017] 

propose critical re-installation attacks against WPA/WPA2, in which attackers can force a Wi-Fi 

network to reuse old keys, risking network confidentiality. 

Finally, some flaws in WPA3 have been discovered as a newer security mechanism. As a result, denial-

of-service attacks, connection deprivation attacks, and handshake attacks can jeopardize WPA3 

security. Because many E-IoT devices communicate via Wi-Fi, any Wi-Fi attacks may impede the 

confidentiality, integrity, and availability of E-IoT and E-IoT-integrated components. 

Attacks on the HDMI Protocol 

HDMI is one of the essential video distribution connections, and it contains several protocols that can 

be dangerous to E-IoT systems. [Puche-2019] demonstrated in HDMI-Walk that the CEC protocol could 

be used to gain arbitrary control of CEC-supported device functions. 

The authors specifically demonstrated how CEC could be used with HDMI distributions to attack 

multiple HDMI devices. The HDMI-Walk attacks also demonstrated that an attacker could control 

devices, transfer data, cause DoS conditions, eavesdrop, and otherwise harm HDMI networks via a 

single point of connection or compromised device. The researchers used an HDMI-capable distribution 

to carry out all of the attacks. The first attack used the inserted device to gather information about all 

connected HDMI devices, returning information such as language, model number, power state, and 

running version. Two more attacks demonstrated that CEC could be used for eavesdropping and 

facilitating existing attacks. 
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Finally, two DoS attacks were demonstrated in HDMI-Walk. In the first attack, the attacker device was 

set up to detect televisions turning on via CEC broadcast and shut them down before they started. The 

second DoS attack took advantage of television input change and overwhelmed displays via CEC, 

rendering them inoperable. Furthermore, the HDMI-Walk authors noted that CEC propagation is not 

apparent and difficult to mitigate, resulting in networks that are not visible to the user. The NCC group 

also published relevant work on HDMI sub-protocols that identified CEC-based fuzzing vulnerabilities 

and other viable threats via HDMI. 

7.3. Layers of monitoring and applications 

In this subsection, the different applications and services monitoring IoT devices are reviewed. With 

this analysis, a deeper knowledge about what characteristic ENTA platform needs is obtained. 

Services for IoT Software 

For configuration and maintenance, E-IoT systems make use of several software services. E-IoT uses 

common application services and proprietary tools used by E-IoT vendors, such as Control4’s composer 

and Crestron’s Simpl. The available software services may differ from one system to the next. While 

well-known, documented software services such as File Transfer Protocol (FTP), Secure Shell (SSH), and 

Telnet communication are available in E-IoT systems, E-IoT solutions may also run unknown 

proprietary services. Because many E-IoT systems are closed-source, documentation and details of 

these proprietary services are mostly unavailable. As a result, among the few sources of information 

on these services are online operating manuals and troubleshooting guides. In contrast, well-known 

and frequently used services are easier to locate. 

File transfer, for example, is required for E-IoT tasks such as firmware upgrades, image uploads, and 

vendor software configuration. As a result, FTP is one of the accepted file transfer services, and Secure 

FTP is used for more secure communication. Diagnostics and configuration are other E-IoT 

requirements. Thus, integrators must communicate directly with the E-IoT system. As integrators use 

secure shell clients such as PuTTy to connect to diagnose and configure E-IoT systems and system 

components via services such as Telnet or SSH, secure shell services may be used for diagnostics and 

configuration. 

Monitoring of IoT devices 

Currently, a large set of tools allows monitoring all the equipment that connects to the company 

network, among which are well-known monitoring solutions such as Elasticsearch. These tools rely on 

installing programs that collect data from the devices they monitor and send it for processing. This 

need is complex to satisfy in IoT devices, given the great need for resources that these programs 

require. That is why traditional tools cannot be used to solve the current problem. 

Some tools can be used to monitor the IoT devices. Many companies have and offer information about 

the devices they monitor. 

Nozomi networks is a company that offers various cybersecurity solutions, including tools that are 

specific to IoT devices. Its tools can offer visibility into company networks, automatically performing 

security audits and generating accurate reports on the risks of each device with the help of AI. These 

tools can be classified as active network monitoring tools. These tools do not indicate that they use 
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artificial intelligence for anything other than reporting, nor do they indicate whether they are effective 

in detecting cyberattacks that are being carried out from IoT devices. In addition, it is necessary to 

deploy sensors in all the headquarters of the company to collect the data for later processing in the 

company's cloud. 

Rhebo offers specific cybersecurity solutions for IoT devices that, to be effective, need to be embedded 

in the IoT device itself. Its solution offers the possibility to protect devices from cyberattacks, 

tampering, and error states. This solution can be classified as a network device monitoring and 

observability tool. However, this solution does not explain the methods used to prevent attacks on 

encrypted networks or provide visibility to new devices that may be added to the network. 

Checkpoint has a cybersecurity solution based on continuous monitoring and network segmentation 

that allows you to discover IoT devices connected to the company network and can segment the 

network and block attacks on these devices in real time. For their solution to work, you need to install 

their IoT device agent on the devices where you want full functionality. These tools do not specify what 

methods they use to detect IoT devices and if they are being used to carry out attacks within the 

company network. 

Palo Alto offers an IoT cybersecurity solution that brings visibility, prevention, and zero-trust policies. 

This tool offers the ability to identify and classify IoT, IoMT, OT and IT devices and display up to 50 

unique attributes including the device’s physical location, even if the device has recently connected to 

the company network. It also offers the ability to perform vulnerability scanners on an ongoing basis. 

Although this company offers the ability to detect IoT devices connected to the network, it is not 

specified that they can identify IoT devices that are compromised and being used to carry out attacks. 

Armis is a company that offers security solutions for companies containing IoT, OT, and IT devices. The 

Armis platform can discover all the devices on the network, offering a large amount of information on 

each of the located devices, performing only passive network scanners. The platform can perform 

device security scanners and issue alerts on newly detected devices. Armis does not provide any 

information about the methods used by its platform to identify devices within the network. 

Bastille is a company dedicated to analyzing the radio waves of companies in search of threats, being 

able to scan the frequency range that goes from 60Mhz to 6Ghz and discover all the devices that are 

operating within the range of the enterprise, with the ability to place devices on the office floor plan 

and find out if the device is transmitting information or not. 

Configuration of E-IoT 

Aside from software, the configuration of E-IoT systems can impact on the overall security of the 

system. Some E-IoT users may require remote access to E-IoT system features. Furthermore, remote 

access benefits integrators by allowing them to provide remote technical support, particularly in 

moving installations such as yachts. As a result, E-IoT vendors and integrators allow remote access via 

a variety of methods. While each system’s configuration varies, most E-IoT systems are accessed 

remotely via subscription services, virtual private networks (VPNs), or port forwarding. Some vendors 

provide subscription services, allowing clients and integrators to connect remotely to an E-IoT system 

(e.g., Control4’s 4Sight). 
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VPNs are another popular solution many vendors recommend, allowing users remote access to the E-

IoT network and equipment. As a result, vendors will recommend routers with VPN functionality. 

Finally, because E-IoT devices (e.g., controllers and CCTV NVRs) frequently use ports for control and 

configuration, integrators frequently port forward these devices to enable remote access. 

 


