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1 Glossary

 

AI Artificial Intelligence 

AUC Area under the ROC curve 

BPH Benign Prostatic Hyperplasia  

CBCT Cone Beam Computed Tomography 

CG Central Gland 

CIU Contextual Importance and Utility 

CNN Convolutional Neural Network 

CT Computed Tomography 

DCNN Deep Convolutional Neural Network 

DSA Digital Subtraction Angiography 

DSBN Domain-Specific Bulk Normalization  

DSC Dice Similarity Coefficient 

EDH Extradural Hemorrhage 

FCN Fully Convolutional Network 

GDPR General Data Protection Regulation  

GGG Gleason grade groups  

GNN Graph Neural Network 

ICA Inter Cranial Arteries 

ICH Acute Intracranial Hemorrhage 

LUTS lower urinary tract symptoms  

MR Magnetic Resonance 

MRI Magnetic Resonance Imaging 

MS-Net Multisite Network 

PAE Prostate artery embolization  

PDAC Pancreatic Ductal Adenocarcinoma  

PZ Peripheral Zone 

QoL Quality of Life 

SDH Subdural Hemorrhage 

TURP 
Transurethral resection of the 
prostate  

VGG Visual Geometry Group  

XAI Explainable Artificial Intelligence 
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2 Introduction 

2.1 Aim of the activity 

This deliverable focusses  on improving personalized diagnosis  by Integrating 
all relevant data streams, in particular biomedical images because they have the 
capability to reflect the underlying pathophysiology, into mineable high-
dimensional patient-specific datasets,. Through intelligent analysis of this data, 
using state-of-the-art machine learning techniques  personalized (and precise) 
diagnosisis possible. 
 
In this report the state of the art for the use Artificial Intelligence (AI) techniques 
for personalized diagnosis is reported for different use-cases of the ASSIST 
project. The following sections each discuss the use of AI techniques for a 
specific use-case.  
 
Section 2 discusses the use of deep-learning to segment the prostate and 
surrounding arteries which is important for prostate artery embolization which is 
a minimally invasive treatment option for prostate enlargement.  
 
Section 3 discusses the use of deep convolutional neural networks and 
explainable AI for the automated detection, segmentation and classification of 
intracranial hemorrhage.  
 
Section 4 discusses the importance of tumor segmentation in radiology images 
and the current state of the art deep-learning architectures used in automatic 
brain tumor segmentation.  
 
Section 5 discusses how deep learning  is seen as the best approach to detect 
pulmonary nodules in CT images and how it might also aid in the analysis of 
pathology images of nodule biopsy samples. 
 
Section 6 discusses different deep learning architectures for the segmentation 
of the liver and the pancreas as well as tumors inside these organs. 
 
Finally in Section 7 we will draw some conclusions regarding the use of AI, in 
particular deep learning, in personalized diagnosis in the clinical use-cases of 
the ASSIST project. 
 

2.2 Contributors 

 
Several authors contributed to the production of this document. Each of those authors 
was responsible for one of the clinical use-cases. 
 

Contribution Authors 

Prostate Enlargement Fortearge 
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Intracranial Hemorrhage Innova 

Brain Tumors Linkoping University 

Lung diseases Philips, Thirona 

Hepato Pancreato Biliary Oncology LUMC 

Global editing LUMC 

Reviewing Philips 
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3 Prostate Enlargement 

3.1 Introduction 

Prostate enlargement, also called benign prostatic hyperplasia (BPH), is a benign 
enlargement of the prostate BPH, or the proliferation of glandular and stromal tissue in 
the transition zone of the prostate, can lead to lower urinary tract symptoms (LUTS) 
and bladder outlet obstruction. 
 
The prevalence of LUTS increases with age, and 25% of men over 70 years old have 
moderate to severe LUTS that significantly affect their Quality of Life (QoL). BPH 
affects about 105 million men globally. It usually starts after the age of 40, half of 
males aged 50 or over are affected the incidence of male-pattern baldness increases 
with age. 
 

 

 

Figure 1: Normal vs Enlarged Prostate  (A1, 2014) 

 
There are many different medical and surgical options available for the treatment of 
BPH with LUTS. In patients with moderate to severe LUTS who are not responsive to 
medical management, more invasive treatments may be considered. Transurethral 
resection of the prostate (TURP) and open prostatectomy (OP) are the most effective 
treatments for large prostate glands. However, these procedures have significant 
morbidity rates including retrograde ejaculation, erectile dysfunction, urethral 
strictures, urinary retention, blood transfusion requirements and incontinence in 
patients with existing comorbidities, increasing age and large prostate volume are 
associated with higher complication rates, which limits the eligibility for surgical 
therapies. 
 
Prostate artery embolization (PAE) is a minimally invasive treatment option that has a 
lower risk of urinary incontinence and sexual side effects. The PAE procedure involves 
delivering embolic materials to block the blood vessels supplying the hypertrophied 
transitional zone in the prostate gland. This will reduce the size of the gland and 
prevent it from growing further. In order for PAE treatment to be successful, a 
thorough analysis of the patient should be carried out before the procedure. For the 
procedure to be technically successful, accurate determination of the anatomy of the 
prostate arteries and adequate embolization of the target are required. This procedure 
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should avoid off-target embolization of other tissues, soft tissues of the bladder, 
rectum and penis, and other critical pelvic structures. 
 
When considering PAE the technique is the challenging part requiring experience in 
recognizing prostatic arteries and avoiding non target embolization. As male internal 
iliac anatomy is prone to variations so are prostatic arteries which they can vary in 
origins, number. Besides, usually during treatment, cone beam CT is required 
especially with less experienced operators/angiographers. Many different protocols 
exist among centers for workup before the procedure to recognize and plan treatment 
including pre-operative CT imaging, MR imaging or no pre-imaging at all. 
 
Studies in the field of prostate artery embolization and AI are limited in the literature. 
The important thing in PAE is the detection of the prosthesis artery, so after a study on 
PAE, we will focus on the studies on artery classification and artery identification. 
 
Gurgitano et al. investigated the effect of artificial intelligence on application areas in 
interventional radiology. In their research, they have shown what the use of artificial 
intelligence in various application areas is good for. In the Prostate Artery 
Embolization method used in the treatment of benign Prostate Hyperplasia disease, it 
has been shown that artery detection can be made from 3D CBCT images with 
artificial intelligence application (see Figure 5).  (Gurgitano, 2021) 
 

 

Figure 2: “Automatic 3D detection of prostatic arteries using Cone-Beam CT during Prostatic 
Arterial Embolization”—a CBCT identification of prostatic arteries; b Realization of 3D 
roadmap; c Overlap on fluoroscopic images”  (Gurgitano, 2021) 

They stated that virtual 3D anatomical data can be obtained using augmented reality 
and AI-based CT, CBCT or MRI. It is a combination of real-world 2D visual images 
that create a virtual device trajectory superimposed on visual surface anatomy. 
Theoretically, they explained that accurate navigation can be achieved without the 
need for fluoroscopy.  (Gurgitano, 2021) 

Thanks to the integrated mapping AI software, automatic landmark recognition and 
motion compensation can be activated using reference marks linked by a computer 
algorithm. This system can be applied in lesion targeting/localization, spinal/paraspinal 
injections, arthrograms, tumor ablation, bone biopsies and more recently minimally 
invasive surgical procedures.  (Gurgitano, 2021) 

Chen et al. constructed a comprehensive dataset with 729 Magnetic Resonance 
Angiography scans and proposed a Graph Neural Network (GNN) method to label 
arteries by classifying the types of nodes and edges in an ascribed associative graph. 
Additionally, they developed a hierarchical improvement framework to further refine 
the GNN outputs to incorporate structural and relational information about Intra Cranial 
Arteries (ICA). The GNN developed in the application takes a graph with node and 
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edge properties as input and returns a graph with additional properties for the node 
and edge types as output. In addition to its superior performance compared to the 
methods described in the literature, the study demonstrated robustness and 
generalizability over a variety of challenging anatomical variations.  (Chen) 

Li et al proposed a two-stage vessel classification to improve the performance of 
existing automated methods for retinal image analysis. They adopted a UNet-based 
model, SeqNet, to accurately segment vessels from the background and predict 
vessel type. SeqNet mainly consists of two streams, bottom and top. Upstream is for 
segmentation. IterNet is adopted, which iteratively improves segmentation results with 
smaller UNets after initial segmentation. Adam was used as the optimizer. Two 
popular general datasets, DRIVE and LES-AV were used. It has been experimentally 
shown that the method achieves the most advanced performance on two general 
datasets, including SeqNet and postprocessing.  (Li, 2020) 

As a result of our research, the scarcity of studies using prostate Digital Subtraction 
Angiography (DSA) image has attracted attention. Due to the scarcity of data on our 
research topic, we will benefit from it in our own study by examining different studies 
that may be useful for our project. We hope that the following literature studies will 
guide us in our application, which will be used in the diagnosis and planned treatment 
of Benign Prostate Hyperplasia treatment to be used in the ASSIST project. 

3.2 Prostate Segmentation 

There is no evidence that prostate treatments using DSA imaging techniques can be 
used to treat Benign Prostate Hyperplasia (BPH). For this reason, we looked at the 
studies that were conducted using different imaging techniques. Below, we've listed 
some of the most important research into artificial intelligence that we think will be 
helpful for our own project. 
 
Liu et al. aimed to perform prostate segmentation from heterogeneous multisite MRI 
data. They developed a multisite network (MS-Net) for prostate segmentation. They 
proposed a Domain-Specific Bulk Normalization (DSBN) layer in the network 
backbone to minimize heterogeneity in images. This allowed the network to estimate 
statistics and feature normalization for each region separately. An adapted 2D 
Residual-UNet is adopted as the segmentation network backbone, providing 
remarkable performance in prostate segmentation problem. Experiments by Liu et al. 
show the superiority of the approach. (Liu Q. D., 2020) 
 
Liu et al presented a new shape-sensitive meta-learning scheme to improve model 
generalization in prostate MRI segmentation. The learning scheme is based on 
gradient-based meta-learning by explicitly simulating field shift with virtual meta-
training and meta-testing during training. In this study, it is aimed to improve the meta-
optimization by considering the shortcomings encountered when applying a 
segmentation model to invisible areas, especially the shape compactness and shape 
smoothness of segmentations under simulated area shift. In the experiment, prostate 
T2-weighted MRI from 6 different data sources with distribution shift was used. An 
adapted Mix-residual-UNet has been implemented as the segmentation backbone. 
Due to the large differences in slice thickness between different regions, 2D 
architecture was used. (Liu Q. D.) 
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Gillespie et al have listed the latest technological advances in prostate segmentation 
and provided insight into the field by discussing the limitations and strengths of MR 
prostate segmentation and proposed an optimized 2D U-Net for MR prostate 
segmentation. According to research by Gillespie et al.,  (Gillespie) 
• Yu et al. (2017) improved this by adding residual links to the 3D segmentation 
network that helped improve prostate segmentation. It also used an aggregation 
process instead of aggregation features to the upsampling layer, transforming it into a 
ResNet-U-Net hybrid. 
• To improve the accuracy of prostate segmentation, Zhu et al. (2019b) suggested the 
use of a staggered U-Net. It emerged from the first mesh, segmented the entire 
prostate gland, and the segmented gland was fed into the second mesh to 
compartmentalize the peripheral region. 
• Liu et al. (2019b) proposed a network to segment prostate regions using FCN with a 
feature pyramid attention mechanism. They used a feature pyramid network and a 
simple decoder and a ResNet50 as the backbone of their network to capture features 
at multiple scales. 
 
Gillespie et al. implemented a 2D U-Net architecture using Ranger optimizer Wright 
(2019) and Mish Activation Misra (2020) to segment the prostate from MRI data. We 
analyzed the capability of these minor changes in U-Net configuration and its impact 
on performances in four publicly available datasets, namely Promise 12, Prostate X, 
NIC ISBI 2013 and Decathlon Medical Dataset. Models trained on each data set and a 
combination of all were evaluated in a test set with Dice Similarity Coefficient (DSC). 
DSC scores obtained in separate test sets were calculated for each data set. It is 
observed that the model trained with all data outperforms all other models with higher 
DSC scores. This research provides a new perspective on MR prostate segmentation 
and, importantly, provides standardized experimental settings for researchers to 
evaluate their algorithms.  (Gillespie) 
 
Pellicer-Valero et al propose a fully automated system based on Deep Learning that 
takes prostate mpMRI from a patient with suspected prostate cancer and uses the 
Retina U-Net detection framework to locate, segment and predict the most probable 
Gleason grade groups (GGG) of prostate cancer lesions. In this study, it was 
developed for automatic segmentation of the central gland (CG) and peripheral zone 
(PZ), which are defined as the two main regions of the prostate. Uses 490 mpMRI for 
training/validation and 75 patients for testing from the ProstateX and IVO 
dataset.There is a data preprocessing stage, which consists of the first CNN where the 
images are entered and the second CNN which outputs the first CNN as the CG 
segmentation mask. After preprocessing the data, it was used to train a Retina U-Net 
CNN architecture that allows simultaneous detection, segmentation and classification 
of prostate cancer lesions. The Retina U-Net architecture combines the Retina Net 
detector with U-Net segmentation CNN and is specifically designed for application to 
medical images.  (Pellicer-Valero OJ, 2022) 

3.3 Artery Segmentation 

As we mentioned before, there is no BPH study using DSA imaging technique. To aid 
our study of vessel segmentation, we reviewed a vessel segmentation study using a 
DSA image of brain blood vessels. 
 
Zhang et al have presented a deep learning approach to automatically segment brain 
blood vessels in DSA. In this study, a U-net was used to detect brain blood vessels in 
DSA and tested on real DSA images.  
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In the studies, rotation, translation and scaling were applied to the image data for 
magnification. 
 
 

 

Figure 3: Structure of deep learning network  (Zhang, 2020) 

They used a 12-layer U-net structure to segment DSA images and trace brain blood 
vessels by calculating the probability that each pixel in the original image was part of a 
blood vessel. The structure of the deep learning network is shown in Figure 2. 

 

Figure 4: (a), an original DSA image. (b) manually marked ground truth. (c) Probability map 
given by deep learning network with pixel assigned to blood vessels class. (d) the final result of 

our approach after thresholding the probability map.  (Zhang, 2020) 

Figure 3(a) shows an original DSA image. The hand-marked ground reality is shown in 
Figure 3(b). The segmentation result in the form of probability map given by the trained 
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deep learning network is shown in Figure 3(c). From this example, it has been observed 
that the deep learning network can faithfully segment blood vessels of many different 
sizes, from the large blood vessel in the middle of the image to the small vessels near 
the skull. The final result is shown in Figure 3(d) with the threshold of the probability 
map set to 0.5. The result shown in Figure 3(d) is significantly improved compared to 
Figure 3(c). Figure 4 shows the overlay of the segmentation result on the original image.  
(Zhang, 2020) 

 

Figure 5: The segmentation result is superimposed on the original DSA image.  (Zhang, 2020) 

3.4 Artery Identification 

Identifying the artery for prostate embolization is one of the most important points in 
our use case. For this reason, we aim to research studies that define arteries and to 
benefit from the parts that may be useful in our own project. 
 
Pu et al present a new integrative computed solution to automatically identify and 
differentiate pulmonary arteries and veins shown on lung computed tomography (CT) 
without iodinated contrast agents. They first described the central extrapulmonary 
arteries and veins using a convolutional neural network (CNN) model. They then used 
a computational differential geometry method to automatically identify tubular-like 
structures in the lungs with high density, which we believe are intrapulmonary vessels. 
A dataset of 120 chest CT scans obtained on different subjects using various protocols 
was used to develop, train and test the algorithms. CT scans without iodinated 
contrast agents were randomly selected by the Cancer Imaging Archive (TCIA) Lung 
Image Database Consortium (LIDC) and the Image Database Resource Initiative 
(IDRI) (LIDC-IDRI). The computer algorithm achieved a sensitivity of ∼98% in labelling 
pulmonary artery and vein branches compared with the results of a human expert, 
demonstrating the feasibility of the computerized solution for pulmonary artery/vein 
labelling. (Pu, 2022) 
The scheme developed consisted of four main components (Fig. 2): (1) defining 
extrapulmonary arteries and vessels using a U-Net architecture, (2) defining 
intrapulmonary vessels using a computational differential geometry solution, (3) 
skeletonizing intrapulmonary vessels that guide the tracing of adjacent vessel 
branches, and (4) tracing the skeletons of intrapulmonary vessels to differentiate 
between arteries and veins, starting from the extrapulmonary arteries and veins. (Pu, 
2022) 
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Figure 6: Schematic flow chart to identify pulmonary arteries and veins (Pu, 2022) 

Various U-Net models have been applied and tested to segment the central 
extrapulmonary arteries and veins, including the classic U-Net, R2Unet, Attention U-Net 
and U-Net ++. 

Small vessels are progressively labelled as arteries or veins in the lungs, starting from 
the extrapulmonary veins. Next, the algorithm automatically segmented extrapulmonary 
arteries and veins and correlated strongly with manual segmentation by a radiologist. 
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4 Intracranial hemorrhage 

4.1 Introduction 

Intracranial hemorrhage refers to any bleeding within the intracranial vault, including the 
brain parenchyma and surrounding meningeal spaces (Caceres & Goldstein, 2012). 
Acute intracranial hemorrhage (ICH) is a potentially life-threatening condition that 
requires fast and accurate detection because of its frequently rapid progression during 
the first several hours.  
 
Intracranial hemorrhage (ICH), a subtype of stroke, can be classified into five sub-types 
according to bleeding location: Intraventricular (IVH), Intraparenchymal (IPH), 
Subarachnoid (SAH), Epidural (EDH) and Subdural (SDH). The ICH that occurs within 
the brain tissue is called Intracerebral Hemorrhage (Figure 7). Although ICH are less 
frequent than ischemic stroke, it presents higher mortality rate. The degrees of severity 
and interventions vary with bleeding types (Ye et al., 2019). 
 

 

Figure 7: Sub-types of stroke and hemorrhagic stroke 

 
Classification of ICH and distinguishing it from ischemic stroke is critical due to prompt 
appropriate treatment and mitigate neurological deficit, and mortality. In ischemic 
strokes, therapy with drugs that can break up a clot has to be given within 4.5 hours 
from when symptoms first started if given intravenously. Intravenous tissue-type 
plasminogen activator (IV-tPA) is the gold standard treatment for ischemic stroke. It 
improves outcomes in ischemic stroke but is associated with certain risks such as 
potential bleeding in the brain. Differentiating extradural hemorrhage from subdural 
(SDH) hemorrhage in the head is also important. While extradural hemorrhage is treated 
with expedient evacuation via a craniotomy, SDH has various management strategies 
depending on the size, location and extent of mass effect. 
 

4.2 ICH Diagnosis 

 
Non-contrast Computed Tomography (CT) scan is usually the first imaging method used 
to assess patients with suspected ICH and distinguish ICH from ischemic stroke as it 
can be performed fast and has high sensitivity for hemorrhage. Hemorrhage and its sub-
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types can be recognized on non-contrast CT since blood has slightly higher density 
(Figure 8). CT scans generate a sequence of images using X-ray beams. Depending 
on the amount of tissue X-ray absorbency, brain tissues are captured with different 
intensities. CT scans are displayed using a windowing method. Different features of the 
brain tissues can be displayed in the grayscale image by selecting different window 
parameters. In the CT scan images, the ICH regions appear as hyperdense regions with 
a relatively undefined structure (Hssayeni et al., 2020). However, there are difficulties 
in using CT scan to detect hemorrhages due to their similar appearance with the 
parenchyma and complexity in distinguishing mass effect and edema (Mirza & Gokhale, 
2017). Even highly trained experts may miss subtle life-threatening findings and many 
hospitals do not have trained neuro-radiologists, especially at night and on weekend. 
 
 

 

Figure 8: Non-contrast Computed Tomography scans for ICH sub-types. Note. Reprinted from 
“Clinical usefulness of deep learning-based automated segmentation in intracranial 
hemorrhage”, 29(5), pp.881-895 

 
Interpretation of non-contrast CT images is difficult due to the following challenges: 

- Image noise, artefacts and cerebral parenchyma with similar appearance and 
density make segmentation of ICH challenging 

- Differentiating extradural (EDH) from subdural (SDH) hemorrhage in the head 
can be challenging as SDHs are more common and there are a few 
distinguishing features which are usually reliable 

- Gray scale images are limited by low signal-to-noise, poor contrast, and a high 
incidence of image artifacts. A unique challenge is to identify tiny subtle 
abnormalities in a large 3D volume with near-perfect sensitivity 
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4.3 Deep Neural Networks in ICH detection and classification 

 
Recent advances in deep convolutional neural networks (DCNN) have showed that the 
method has a great potential in automating ICH detection and segmentation and can 
assist junior radiology trainees when experts are not available. DCNNs with their 
capability of self-learning of nonlinear image filters and the self-extraction of relevant 
features are superior to methods that demand complicated engineering feature 
including skull stripping, image registration, and feature extraction from voxel intensity 
and local moment information (Muschelli et al., 2017; Ye et al., 2019). 
 
Lee et al. (2018) proposed a high-performance system for the detection and 
classification of ICH system from small and imbalanced data using ImageNet pretrained 
DCNNs of VGG167, ResNet-508, Inception-v39 and Inception-ResNet-v210. The 
system achieved a performance similar to that of expert radiologists (sensitivity of 98% 
and specificity of 95%). A method based on 3D joint convolutional and recurrent neural 
networks was able to accurately detect ICH and its subtypes (> 0.8 AUC across all 
subtypes) with fast speed (< 30s), suggesting its potential for assisting radiologists and 
physicians in their clinical diagnosis workflow (Ye et al., 2019). Kuo et al. (2019) 
demonstrated that a fully convolutional network trained with 4,396 head CT scans could 
detect ICH with high accuracy (> 0.99 AUC). Cho et al. (2019) reported 80.19% 
precision and 82.15% recall with their cascade deep learning model constructed using 
two convolutional neural networks (CNNs) and dual fully convolutional networks (FCNs). 
Nemcek, Jakubicek and Chmelik (2020) developed CNN based classifiers with a 
designed cascade parallel architecture that enables localization and classification of 
ICHs with average Jaccard coefficient of 53.7%. 
 

4.4 Explainable AI in ICH diagnosis 

 
In most clinical centers, initial interpretations of head CT is usually provided by junior 
radiologists, radiology trainees, or emergency physicians and initial interpretations will 
be reviewed later by senior or more-experienced radiologists. Several studies have 
confirmed that discrepancies exist between the initial and final interpretations and some 
misinterpretations might even cause clinical consequences. Diagnosis process relies on 
the availability of a subspecialty-trained neuroradiologist, and as a result, could be time 
inefficient and even inaccurate, especially in remote areas where specialized care is 
scarce (Patel et al., 2019; Burduja, Ionescu, & Verga, 2020; Unnithan & Mehta, 2022; 
Ye et al., 2019; Hssayeni et al., 2020). Visualizing the model decision and increasing 
interpretability is especially helpful for users with insufficient experience with ICH. 
However, there are a few studies in literature that aims to enhance interpretability of 
ICH detection models. Lee et al. (2018) used an attention map and prediction basis 
retrieved from training data. Alis et al. (2022) implemented a modified version of 
Gradient-based class activation maps, a well-established saliency map generating 
method. 
 
Explainable AI (XAI) aims to to shift the traditional black-box approach to a white-box 
one for greater transparency, interpretability, and explainability. Medical diagnosis and 
treatment selection are responsible for human life and healthcare professionals need to 
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be confident enough to treat a patient as instructed by a black-box model. From 
perspective of healthcare providers “omitting explainability in clinical decision support 
systems poses a threat to core ethical values in medicine and may have detrimental 
consequences for individual and public health” (Amann et al, 2020). XAI is critical not 
only for clinicians but also for patients and for any stakeholder in healthcare. Regulations 
like the European General Data Protection Regulation (GDPR) are making it harder for 
the use of black-box models in healthcare as retraceability of the decisions is now a 
requirement. Explainability is the key to safe, ethical, fair, and trust-able use of AI and a 
key enabler for its deployment in the real world. 
 
There is often a perceived trade-off between the performance of a model and its ability 
to produce explainable predictions (Antoniadi et al, 2021).  Prediction accuracy is 
usually the first requirement of AI systems in medicine and currently AI models in 
healthcare are often developed with only predictive performance. Therefore, the 
majority of the medical XAI literature is devoted to explaining the previously developed 
model. 
 
XAI has a great potential to increase trust and lead to the adoption of deep learning 
methods in medical imaging where explanation is defined as a set of domain features 
such as pixels of an image that contribute to the output decision of the model. Standard 
attribution-based methods and architecture or domain specific techniques are two types 
of broadly used approaches to explain the results of DNNs in medical imaging (Singh, 
Sengupta, & Lakshminarayanan, 2020).  
 
The goal of an attribution method is to determine the contribution of an input feature to 
the target neuron which is usually the output neuron of the correct class for a 
classification problem. The arrangement of the attributions of all the input features in the 
shape of the input sample forms heatmaps known as the attribution maps. The 
attribution methods can be applied on a black box convolutional neural network (CNN) 
without any modification to the underlying architecture making them a convenient yet 
powerful Explainable AI (XAI) tool. 
 
Importance scores, decision rules, decision trees, dependency plots are the most 
common types of explanation families that enable information content can easily 
understandable by end users. Importance scores (aka saliency heatmaps) are perhaps 
the most common type of explanation families. For instance, Lundberg and Lee 
proposed SHAP (SHapley Additive exPlanations), a unified framework for generating 
post-hoc local explanations in the form of additive feature attribution. Local Interpretable 
Model-Agnostic Explanation (LIME) is another well-validated, model-agnostic local XAI 
approach that can provide an explanation for a complex deep learning model in the 
neighborhood of an instance. LIME method can explain each individual prediction by 
investigating contribution of each pixel (Yang, Ye, & Xia, 2022). Gradient weighted class 
activation mapping produces activation maps using the gradients of the target concept 
as it flows to the final convolutional layer but can only be applied to CNNs (Singh, 
Sengupta, & Lakshminarayanan, 2020). 
 
Contextual Importance and Utility (CIU), which does not build any intermediate 
interpretable model like LIME, make it possible explain results of any AI system with any 
level of abstraction using semantics that are independent of the internal mechanism of 
AI system and can provide more expressive and flexible explanations than LIME and 
Shapley values (Främling et al, 2021). The use of CIU for image recognition and 
importance scores are also promising. 
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Performance of these explainable methods vary in terms of their time needed for 
generating explanations. LIME and SHAP need around 11 and 10 seconds per image 
respectively. In comparison to SHAP and IME, the running time of CIU method is about 
8.5 seconds per image (Knapič, Malhi, Saluja, & Främling, 2021). 
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5 Brain tumors 

5.1 Introduction 

Brain tumors compose about 2% of the cancer incidences, affect some 300,000 
subjects globally each year (Leece et al., 2017), with a low survival rate and a high 
morbidity for the patients. Though not being the most prevalent cancer type, brain 
tumors are prone to complicated and challenging treatment procedures that are often 
a combination of surgery, radiotherapy and chemotherapy, where treatment planning 
and follow up of the treatment is highly dependent on radiology images. The best 
treatment for a specific patient depends on if there is one tumor or many small 
metastases, and the size and location of each tumor or metastasis. Furthermore, the 
size of the tumor is required to calculate how much radiation to apply to kill the cancer 
cells. MRI is normally used to obtain this information, and to plan the treatment, as 
MRI provides very good contrast between soft tissue types (and different MR 
sequences provide slightly different information / contrast). It is also necessary to 
segment important risk organs (e.g. the optic nerve) which should not be damaged by 
the radiation, see Figure 9. The treatment plan, i.e. how much radiation to apply to 
different parts of the brain, can be generated manually, through mathematical 
optimization or through machine learning. 

 

Figure 9 Illustration of brain tumor (red, to be killed by radiation) and risk organs (yellow, which 
should receive as little radiation as possible). GTV = gross tumor volume, CTV = clinical target 

volume (CTV). Deep learning can reduce the treatment planning time time substantially, by 
performing automatic segmentation of tumor(s) and risk organs (instead of doing manual time-

consuming segmentations). Image from an open dataset in the cancer imaging archive (see 
references). 
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5.2 Automatic segmentation 

 
To segment tumor(s) and risk organ(s) is currently often performed manually or semi-
automatically by a neuro radiologist, medical physicist or radiation oncologist. Manual 
segmentations can be very time consuming, e.g. 10 – 60 minutes per patient, 
especially for many metastases and risk organs. Automatic brain tumor segmentation 
using deep learning is a very active area of research, as a trained network can 
perform the segmentation in 10 – 30 seconds. The annual BraTS (brain tumor 
segmentation) challenge (Menze et al., 2014, Baid et al., 2021) provides a large 
training dataset (2020: 369 subjects) as well as separate validation and test datasets 
(2020: about 100 subjects each), which has been very important for development in 
this field. See Figure 10 for an example of the MR images available in BraTS, for each 
subject there are also tumor annotations. The segmentation can be performed using a 
single MR modality (e.g. a T1-weighted image, T1W) or by simultaneously showing 
several types of MR images to a multi-channel CNN (e.g. T1W, T1W with gadolinium 
contrast, T2W, FLAIR).  
 

 

Figure 10 .MR images of glioblastoma multiforme taken from the BraTS dataset (Menze et al., 
2014). Images taken with (from left): T1W, T1W Gd contrast, T2W and T2 FLAIR. 

Virtually all participants in the BraTS challenge use some 2D or 3D variant of the 
popular U-Net architecture (Ronneberger et al., 2015). Isensee et al. (2018) 
demonstrated that a well-trained U-net with minor modifications (e.g., region based 
training and a combination of loss functions) together with additional training data 
produces very competitive results indicating that a well-constructed and performed 
training process is at least as important as focusing on novel architectural 
modifications when it comes to segmentation. Myronenko (2018) employed a 3D 
encoder-decoder architecture based on multiple ResNet-like blocks. As a novelty, the 
network is split into two decoding branches at the encoder endpoint output, where one 
of the branches is a regular decoder that produces the three tumor segmentation 
maps, and the other a variational decoder that reconstructs the input volume. This 
variational decoder branch serves as regularization for the shared encoder and is only 
active during training (see Figure 11). 
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Figure 11 The encoder-decoder architecture employed in Myronenko (2018). The top decoder 
branch produces the tumor segmentation maps, while the bottom one reconstructs the input 
volume (mainly acting as regularization, to force the encoder to be good at several tasks). 

 
More recently, segmentation architectures that include some kind of adversarial loss 
function (from generative adversarial networks, GANs) have become more popular 
(e.g. Cirillo et al., 2020), to punish segmentation maps that do not look realistic.  
 
The main clinical challenge is to integrate different segmentation networks into the 
clinical workflow, as many clinics still use manual or semi-automatic segmentation. 
Another challenge is that a network trained on images from one MR scanner will not 
perform as well on images from another scanner, commonly called domain shift.  
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6 Lung diseases 

6.1 Introduction  

 
Lung diseases cover lung cancer, and airway and pleural diseases. 
 
Lung cancer is the leading cause of cancer death. Several countries have introduced 
lung cancer screening programs in order to detect lung cancer earlier, improving the 
probability for curative treatment for patients.  
The lung cancer screening involves a low-dose CT scan of the chest (‘lung screening 
CT’), which is to be checked for presence of suspicious lung nodules. 
 

 
 
The increased volume of lung screening CTs represents an additional workload for the 
radiologist. Automation and AI are considered to help off-load the radiologist and 
reduce ‘missed nodules’ in the lung screening CTs. 
 
Deep learning AI is seen as the best approach to detect nodules(Setio et al. 2017). 
Products with DL based lung nodule detection already are available commercially, for 
example (Veye Lung Nodules, 2021). 
 
Once a suspicious nodule has been detected, typically a biopsy is scheduled to obtain 
tissue from the nodule for pathology. AI is also being considered to assist in analysis 
of the pathology images, with early research results being promising but adoption 
expected to take some time (Sakamoto et al., 2020). 
 
In the next sections, we will give an overview of deep-learning AI approaches for 
nodule detection in lung screening CTs. 
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6.2 Pulmonary Nodule Detection in CT 

 
From 2017 onwards, deep learning approaches using convolutional networks are the 
highest scoring networks in ‘pulmonary nodule detection’ competitions. In Setio et al, 
the DL winner achieved sensitivity 95%, less than 1% false positives. Best solutions 
detecting nodules which were missed by expert readers annotating the original data 
set (Setio et al. 2017) 
 
Riquelme analyses various DL approaches for nodule detection in CT. Among the 
various approaches, 3D convolutional neural networks architectures demonstrated 
their usefulness, as most of the best-performing methods used them (Riquelme 2020). 
Specifically, densely connected networks with wide residual networks along with U-Net 
architecture obtained interesting results. Although 2D approaches are computationally 
less expensive, three-dimensional kernels detect more details about the nodules 
which inherently are a three-dimensional structure.  
 
Some approaches divided the work into two stages: nodule candidate detection, and 
false-positive reduction, whereas others tackle the problem in a single network. Also 
for individual stages, 3D CNN approaches seem superior (although use of different 
datasets makes comparison difficult).  
 

6.3 Digital pathology image analysis for lung 
adenocarcinoma 

 
Microscopic examination of tissue slides is an essential step in cancer diagnosis. 
Hematoxylin and eosin (H&E) stained whole slide imaging (WSI) of tissue slides has 
become a routine clinical procedure, in which high resolution pathology images are 
captured and analysed. The limited capacity of pathology image analysis is a 
bottleneck in digital pathology. 
 
Deep learning has started showing great potential in pathology image analysis task 
such as tumor region identification, prognosis prediction, tumor microenvironment 
characterization, and metastasis detection (see Table 1 below). The application of 
deep learning is still in the research phase.  
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Table 1  A summary of deep learning models for lung cancer pathology image analysis from 
Wang et al. 2019 

 
 
 
Results from simple tasks, such as tumor detection and histology subtype 
classification are generally satisfactory, with an AUC around 0.9, whereas the results 
of more challenging tasks, including mutation and transcription status prediction, are 
less satisfactory with AUC ranging from 0.6 to 0.8. 
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7 Hepato Pancreato Biliary Oncology 

7.1 Introduction 

 
Hepato Pancreato Biliary Oncology deals with malignant or cancerous tumors 
originating in the liver, pancreas, bile-ducts and gallbladder are some of the leading 
causes of cancer related deaths world-wide. 
 
Liver cancer is the third leading cause of cancer death world-wide and pancreatic 
cancer is the fourth leading cause of cancer death in men and women and is projected 
to be the second leading cause within a decade. Early detection and complete 
removal of the tumor while saving as much as possible healthy tissue is important for 
the survival outcome and improved quality of life of the patient.  
 
For the early diagnosis of HPB related cancers, CT and MR scans are the primary 
source of information and therefore automatic segmentation of tumors in CT or MR 
scans is of vital importance. As with most (medical) segmentation challenges 
nowadays deep-learning AI techniques offer the best results.  
 
In the next sections, we will give an overview of what are currently the best deep-
learning AI approaches for the segmentation of HPB related organs and the tumors 
therein. 
 
 

7.2 Liver & Tumor Segmentation 

 
 
In 2021, a study of Fernandez et al by Maastricht University and ASSIST partner 
Quantib, funded by the ITEA3 IMPACT project (project, nr. 17021)  assessed five 
deep-learning architectures for liver and liver tumor segmentation. These models were 
2D-UNet, 3D-UNet, Hybrid-UNet, residual encoder 3D-UNet and 3D-UNet with a 
different normalization of the convolutions.  
 
The models were evaluated on the Liver Tumor Segmentation (LiTS) challenge which 
was organized in conjunction with the IEEE International Symposium on Biomedical 
Imaging 3 (ISBI) 2017 and MICCAI 2017 conferences but is still on going. The LiTS 
2017 dataset contains 201 CT scans (131 for training, 70 for testing) from 7 different 
hospitals and research institutions (Bilic et al, 2019). 
 
In the study the CT scans were first pre-processed by resampling them to a 1 mm3 

isotropic pixel spacing and making sure all scans have the liver in the same position 
inside a fixed (in X and Y directions) size bounding box. 
 
The models were then trained using 5-fold cross-validation. 



 
 

 <Consortium confidential> 01/07/2022 

ASSIST 

ITEA 20044 

WP3 Deliverable D3.1 

Page 30 of 35 

 

 

Figure 12 2D-UNet and Hybrid-UNet  architectures. The annotations indicate the output of the 
data. Source: Fernandez et al. 2021 

 
The 2D-UNet uses two convolutional layers are followed by one MaxPooling 
layer in each of the five levels, where the output of every convolution is normalized 
with batch normalization and ReLU activation function. Zero-padding is used in the 
convolutions and the kernel size and pooling size are 3 x 3 and 2 x 2, 
respectively.  For the 3D-Unet the 2-dimensional operations are replaced with 3-
dimensional ones. 
 
They also tested a hybrid architecture as displayed above. This model, is UNet 
variation handles 3D data in the encoder and 2D data in the decoder. Thus, the model 
uses features from multiple slices to predict a single slice (the center slice). It uses a 
pooling size of 1 × 2 × 2 in every level and additional convolutions in the skip 
connections to reduce the z dimension from the encoder to the decoder.  
 
Based on the 3D-UNet they also examined two additional variations. One model with 
residual connections from the beginning to the end of each level in the encoder and 
the other model where the convolutions where normalized differently.  
 
As can be seen below, the 3D-UNet offered the best performance with the highest 
average dice score and the smallest deviation. 
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Figure 13 Dice score of the different scans from the main architectures. Source: Ferrnandez et 
al. 2021 

 
The authors also further investigated adding different types of enhancements to the 
3D-UNet architecture, namely attention methods, test-time inference and model 
ensemble, and TP/FP classification.  
 
Attention methods try to mitigate the weakness of CNN architectures to capture global 
dependencies due to the locality of convolutional operations the authors further 
investigated adding two different types of self-attention modules, attention gates and 
additive self-attention, to the 3D-UNet architecture (see below). 
 

 

Figure 14 3D-UNet architecture enhanced with gated attention (left) or additive self-attention 
(right). Source: Fernandez et al. 2021 
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Test time inference is the procedure of applying augmentation during inference time 
where the input data is transformed before feeding the network. The inverse 
transformation is applied to the prediction in order to have the same properties 
as the input data. This process can be repeated using different transformations and 
the results averaged along with the prediction of the original image. Alternatively, 
model ensembling uses multiple models trained with different random seeds resulting 
in different versions of the same model. The outputs of the models are then averaged 
to produce a single result. 
  
TP/FP classification uses a second model to classify whether the segmentation of the 
first model, e.g. a tumor, is segmented correctly (true positive or TP) or incorrectly 
(false positive or FP). It works by cropping a bounding box around a segmented 
“tumor” feeding it into a classifier network. 
 

 

Figure 15 TP/FP classifier architecture. source: Fernandez et al. 2021 

 

Table 2 Performance of 3D-UNets with different enhancements. Source: Fernandez et al. 2021 
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As can be seen in the table above the authors concluded that a 3D-UNet with model 
ensemble achieved the best outcome and that averaging multiple models can reduce 
the errors produced by those models.  
 

7.3 Pancreas & Tumor Segmentation 

 
Diagnosis of pancreatic ductal adenocarcinoma (PDAC) diagnosis remains 
challenging because it can be difficult to differentiate them from benign lesions based 
on imaging features alone. Computed Tomography (CT) is currently the tool of choice 
for pre-operative diagnosis and follow-up.  
 
In order to compare approaches it is important to have performance results from 
publically available datasets. For pancreas and pancreatic tumor segmentation, there 
are currently  two publically available datasets available. The medical segmentation 
decathlon dataset containing 281 patients (Antonelli et al. 2021)   and The Cancer 
Imaging Archive (TCIA) Pancreas-CT dataset (Roth et al. 2016) containing 82 
patients. Below, we will briefly discuss two approaches, which were tested, on these 
datasets. 
 
In Liu et al (Liu et al. 2020) a modified Visual Geometry Group (VGG) network 
(Simonyan and Zisserman 2015) trained on data from 220 patients from the National 
Taiwan University Hospital image archive to classify 2D patches of the pancreas into 
cancerous or non-cancerous. 
The model consisted of three convolutional blocks where each block consisted of two 
convolutional layers followed by rectified linear unit as the activation function and 
finally a max-polling layer. In the last convolutional block a flatten node was added at 
the end as well. Finally, at the end of the CNN model three fully connected (dense) 
layers were added. For the loss function, weighted binary cross-entropy was chosen to 
account for the imbalance in the number of malignant and benign patches. Patients 
were classified as having cancer based on the proportion of cancerous patches. 
 
On the combined publically available datasets this deep-learning approach achieved a 
sensitivity of 0.790, specificity of 0.976, accuracy of 0.832, balanced accuracy of 0.883 
and area under the ROC curve of 0.920, all with a 95% confidence interval. 
 
In Alves et al (2022) A fully automatic deep-learning based framework for pancreatic 
ductal adenocarcinoma (PDAC) detection is described which produces tumor 
likelihood heat maps as well as provides segmentation of several surrounding 
anatomical structures such as the pancreatic duct, common bile duct, veins and 
arteries. 
 
The framework was trained on 119 pathology-proven PDAC datasets and 123 non-
PDAC datasets from the Radboud University Medical Center, Nijmegen.  
 
The framework consists of self-configuring 3D nnU-Net’s (Isensee et al. 2021) used to 
segment the pancreas and other anatomical structures. Three nnU-Net’s were trained 
for PDAC detection and localization. The first (nnUnet_T) only segmented the 
tumor(s), the second (nnUnet-TP) segmented both tumor and pancreas and the third 
(nnUnet_MS) segmented the tumor, pancreas and surrounding anatomical structures. 
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The first step of the framework is to down sample the CT images and to create a low-
resolution pancreas segmentation network to obtain a course segmentation, which is 
used to automatically extract the region of interest (ROI). Next, each of the PDAC 
detection nnU-Net’s outputs a voxel-level tumor likelihood map and in the case of 
nnUnet_TP and nnUnet_MS also result in more detailed pancreas segmentation which 
can be used to reduce false positives by masking the tumor likelihood map. 
 
The framework was tested on the combined publically available datasets as well. It 
achieved an area under the ROC curves of 0.872, 0.914 and 0.909 for the 3 networks 
(nnUnet_T, nnUnet_TP and nnUnet_MS) respectively. For tumors less than 2cm in 
size this was 0.831, 0867 and 0.876. 
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8 Conclusions 

The previous sections have given an overview of how AI can be used in the clinical 
use cases of the ASSIST-project. From these descriptions it is clear that although 
there has been quite some research reported in literature, there are still challenges 
remaining for the ASSIST-project, which will be further investigated in work packages 
2 and 3.  
 
Although the clinical use cases differ a lot in terms of disease areas and organs 
involved, the common denominator in the use of AI in the clinical use-cases seems to 
be the use of deep learning neural networks both in 2D and 3D for medical image 
segmentation.   
 
At the time of this writing there don’t seem to be a lot of commercial software solutions 
for the clinical use-cases available but for pulmonary nodule detection in CT there is at 
least one commercial product namely Veye Lung Nodules by Aidence. 
 
 
 
 
 
 
 
 
 
 


