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1 Abbreviations 

AI Artificial intelligence 
CNN Convolutional neural network 
CT Computed tomography 
CTV Clinical target volume 
DICOM Digital imaging and communications in medicine 
EHR Electronic healthcare records 
FL Federated learning 
GDPR General data protection regulation 
GTV Gross tumour volume 
MDL Medical data lake 
MR Magnetic resonance 
MRI Magnetic resonance imaging 
PACS Picture archiving and communication system 
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2 Executive summary  

 
This document introduces federated learning (FL) within medical imaging and presents 
requirements for training deep networks for automatic analysis of medical images 
(e.g., image segmentation, image classification). Throughout the document, the 
concept of FL will be introduced along with a brief description of different FL models, 
and how to implement FL. The main concept of a data lake will also be discussed. 
This document thoroughly discusses the GDPR issues concerning patients' data while 
doing R&D on federated learning. The document also presents how FL can be used 
for different use cases in ASSIST. 
 
 
 
 
 
 
 
 
 
 



 
 

Nishat Raihana <Public> 31/05/2022 

ASSIST 

ITEA 20044 

WP2 Deliverable D2.1 

Page 7 of 33 

 

3 Introduction of medical data lake 

 
A data lake stores current and historical data from one or more systems in its raw form, 
which allows business analysts and data scientists to easily analyze the data. The 
advantage of using a data lake is easy data storage which simplifies raw data. A schema 
is applied afterward to make working with the data easy for business analysts, 
application developers, and data scientists. The Medical Data Lake (MDL) is a secure 
and scalable distributed service for medical images, structured and unstructured data. 
A database stores the current data required to power an application. A data lake stores 
current and historical data for one or more systems in its raw form to analyze the data.  
The basic difference between data lake and a database is that a data lake is a superset 
of a database, where data lake has additional set of API for the stored data as well as 
acting as a data storage. Inovia’s MDL system solution is a microservice based solution 
that not only aims to store medical images but also provides the intelligence and API to 
segment images and machine learning to retrain the module that been used for image 
segmentation. Additionally, it serves as an execution platform for analytics, and is 
optimised for easy training and deployment of AI. During this, it is possible to use open-
source machine learning algorithms/models, as well as the ability to develop proprietary 
algorithms/models. Moreover, the MDL includes the option for data anonymization (for 
GDPR compliance), to allow broader analyses. The aim of ASSIST is to develop a 
medical data lake for storing the data and use the data for training different models and 
implement it in different hospitals.  For FL a data lake provides better flexibility than 
saving the data in a data warehouse or database for training.  
 

3.1 Anonymization 

Research with health data is concerned with the General Data Protection Regulation 
(GDPR), which aims to ensure patients' privacy. A few anonymization techniques will 
be introduced in this section in compliance with GDPR guidelines. 

   
Radiotherapy based cancer treatment requires medical images of patients. Medical 
images can for example be obtained in DICOM or NIFTI format. DICOM images contain 
a lot of information that needs to be removed for anonymization. In every DICOM file, 
the information is embedded in the header, and this information is organized into four 
levels of hierarchy — patient, study, series, and instance.  

· "Patient" is the person receiving the exam  
· "Study" is the imaging procedure being performed, at a specific date and time, 

in the hospital  
· "Series" — Each study consists of multiple series. A series may represent the 

patient being physically scanned numerous times in one study (typical for MRI), 
or it may be virtual, where the patient is scanned once, and that data is 
reconstructed in different ways (typical for CT) 

· "Instance" — every slice of a 3D image is treated as a separate instance. 
"instance" is synonymous with the DICOM file itself in this context. 
To illustrate this hierarchy, Figure 1 shows a few DICOM files from the publicly 

available pancreatic cancer dataset from The Cancer Imaging Archive (TCIA). 
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Figure 1. Example of a DICOM dataset organized by the “Patient”, “Study”, “Series”, 
and “Instance” levels. For a 3D volume, each DICOM file normally represents one 
slice of the volume.  
 
Table 1 shows a printout of the header using PyDicom (a python package which allows 
reading and writing of DICOM files). Here most of the non-relevant information has been 
removed, and some “fake” patient data has been added.  
  

 

Table 1: Printout of a portion of a DICOM header displaying Patient, Series, Study, 
and Instance UIDs and text descriptions.  
 

3.2 Data flow 

Inovia’s MDL will receive DICOM images from hospitals via the API-Gateway Module 
and save it using the ASSIST - Proxy-Service module. Figure 2 shows the process of 
data flowing from hospital to Inovia’s MDL. 

 

Figure 2. An overview of how medical images can flow from a hospital to the MDL. 

 
 
As shown in Figure 2, the ASSIST Proxy-Service is a microservice responsible for 
handling patient data. A microservice is a small independent application that performs 
a highly focused service, the counter model to a huge monolithic application that 
serves many different kinds of requests, Typically a microservice is lightweight and can 
be started in microseconds. For that reason, they are a good choice for handling 
scalability issues, if the load increases on the service(s) just start more services. 
In this microservice Inovia has implemented a Data Anonymizer module which replaces, 
empties, or removes patient's, physician's, and any other information from DICOM files. 
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4 Introduction to Federated Learning 

This section will introduce federated learning, interested readers are referred to 
recently published papers about FL in health care for more information (Rieke et al., 
2020; Antunes et al., 2022; Kairouz et al., 2021; Xu et al., 2021).  

4.1 Why federated learning? 

One could argue that "deep-learning" is the state-of-the-art for machine learning. 
Architectures such as deep CNNs or transformers typically outperform other ML 
methods on several established benchmarks. But these networks have two 
drawbacks; training is costly both in time and computation, and a huge amount of 
training data is required. No element is more essential in machine learning than high 
quality training data, and this is especially true for deep learning. The work involved in 
acquiring, labelling, and preparing training data is daunting. Quantity and quality are 
both important. To collect a large training set is especially difficult in medical imaging, 
as researchers and companies then need to follow more regulations compared to 
other types of data. 
  
Medical data is sensitive and need to be anonymized before inclusion into any training 
set. GDPR regulations restrict this further, and the terms of agreement may prohibit 
sharing of the data. Different hospitals, regions and countries may have different rules 
(see section 8). In short, the creation of large medical image data sets is hard. 
 
Federated learning seems to be the obvious remedy to the data collection problem. 
The hospitals/clinics become nodes/clients in an asynchronous training network 
instead of being simple contributors of raw data. Model updates are shared instead of 
sharing data. This way, the images still become part of the training set, but the data is 
never shared between nodes, see Figure 3. See Figure 4 for a comparison of FL and 
centralized training. 
 
 

 
Figure 3. The main idea in FL is to not store all data in a single large, centralized 
database or data lake, but to instead store for example image data locally at each 
hospital. Instead of sending medical images and other medical data between the 
hospitals, the hospitals send updates, or parameters, of deep learning models. This 
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process is then iterated to convergence. Instead of having one large supercomputer, it 
is with federated learning sufficient if each hospital has a smaller computer. 
 

 
Figure 4. Image and figure text from (Rieke et al., 2020). A comparison of federated 
learning workflows and centralized training. a) FL aggregation server—the typical FL 
workflow in which a federation of training nodes receive the global model, resubmit 
their partially trained models to a central server intermittently for aggregation and then 
continue training on the consensus model that the server returns. b) FL peer to peer—
alternative formulation of FL in which each training node exchanges its partially trained 
models with some or all of its peers and each does its own aggregation. c) Centralised 
training—the general non-FL training workflow in which data acquiring sites donate 
their data to a central Data Lake from which they and others are able to extract data 
for local, independent training. 

4.2 Horizontal and vertical federated learning  

In FL we distinguish between two main cases depending on how the distributed data 
is partitioned. In horizontal FL each participant has the same features but different 
examples (e.g. all have the same type of images but from different patients) and in the 
vertical case, clients can hold different features from the same examples / subjects. An 
example of vertical learning is a bank and an insurance company having different data 
on the same customer. In this project we are mainly concerned with the horizontal 
use-case. 

4.3 Cross-silo vs cross-device FL 

It is also common to distinguish between the cross-silo case and the cross-device 
case. The separation between the two is not precisely defined, but it is related to the 
scale of clients. In the cross-silo case we assume a moderate number of client sites, 
but for each client we assume that is has access to significant hardware and storage 
resources, and a reasonably stable internet connection. The use-cases in ASSIST all 
fall in this category. In the cross-device case the FL architecture needs to target 
millions of connected devices (IoT), and the network and hardware heterogeneity can 
be expected to be a major concern.  
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4.4 The difference between FL and distributed machine 
learning  

While the computation in FL shares many common patters with normal (data parallel) 
distributed machine learning, the infrastructure setting with a significant degree of 
system heterogeneity, and the communication constraints introduced by weak and 
sometimes unreliable network connections (the internet) is a challenge. Most 
importantly, in FL we have no control over the data partitioned amongst clients, i.e. 
computation needs to be robust to non-identically distributed partitions and significant 
unbalance in the size of local datasets. A large body of research is currently 
developed in the wider community addressing these challenges specific to FL, for an 
overview see the review (Kairouz et al, 2019).  

4.5 Algorithms for federated learning  

The most common horizontal FL algorithm for deep learning models is federated 

averaging (FedAvg). It starts with an initial model state that is sent amongst the 

clients, each client trains the model in a certain number of iterations (or epochs) and is 

then sent to a central server where the model weights are averaged to an updated 

model state, the updated state is usually validated on some designated validation data 

set before it is sent back to the clients for e new round of training. The procedure 

continues until the model validation converges or reaches a desired score. The 

algorithm is vulnerable to non-IID data distribution among clients and one way to 

diminish the issue is to shorten the number of local iterations between the averaging 

steps but with an increased communication cost. A large body of work is currently 

pursued in the community to improve details of the basic FedAvg pattern to e.g. 

improve communication efficiency and robustness to corrupted data on clients. In 

particular, modifications of the aggregation function to penalize large deviations in 

averaged gradients between global rounds is a common strategy. 

4.6 Challenges and considerations for local data in relation to 
ASSIST 

Federated learning has its own challenges. Every node (clinic) needs to have the 
capacity to do local training on their local data. If the model is trained with supervised 
learning all local images used in the training need to be labelled correctly and 
consistently to ensure the quality of the training data. The nodes with the least 
processing capacity in the federation set the constraint on how complex the model can 
be. It goes without saying that the communication between the nodes need to be 
protected from intrusion. Big architectural changes in the model may make nodes 
obsolete until they retrieve the updated model architecture. Running the model training 
at a local node need to be user friendly and as automatic as possible. 
 
There are also special constraints for federated learning. The part of the data available 
locally will probably have a local bias and not fulfil the criteria of independent and 
identically distributed data for the full set of data. Model updates sent from the nodes 
will not be synchronized. A node could even become adversarial, sending updates 
that damages the model performance. 
  
A hybrid approach would be to freeze the first layers of the network and having the 
nodes simply inputting the training images to the frozen part of the network and 



 
 

Nishat Raihana <Public> 31/05/2022 

ASSIST 

ITEA 20044 

WP2 Deliverable D2.1 

Page 12 of 33 

 

sending the network output as model updates. The rest of the training is then done 
centralised. The computational load on the node is low, but the amount of data to 
transfer will be high, training cannot adjust the frozen layers, and the centralized 
training site needs a lot of capacity. 
 
Experiments, where a dataset has been partitioned homogeneously and trained with 
federated averaging (FedAvg) settings, have proven to converge to the same 
accuracy as a model trained centralized on the complete dataset. In most real cases, 
there are no guarantees that the data distributions between the clients are 
homogeneous. Typical distributed optimization problems are mentioned in (McMahan 
et al., 2017). In cases where FL is applied, it is not possible to compare model scores 
with a centralized trained model, instead, it is important to show that a federated 
model outperforms models trained locally on each of the clients' databases.  
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5 FL frameworks, network communication and 
privacy 

This section will provide an overview of different existing frameworks for FL, and 
mention pros and cons of each framework. The section will also describe the main 
requirements when it comes to communication between the nodes. Federated learning 
frameworks are distributed computing frameworks that need to be designed with 
scalability and resilience in mind. Implementation might range from centralized client-
server architectures to fully decentralized peer-to-peer systems. FEDn, which is the 
framework developed by Scaleout, implements a hierarchical, or tiered architecture 
where deployments might range from client-server to highly distributed with multiple 
aggregations servers.  

5.1 Notable open-source FL frameworks 

NVIDIA FLARE : Nvidia runtime environment for Federated learning 
( https://nvidia.github.io/NVFlare ) 
 
Pros: 

 Configuration based code 

 Privacy-Preserving Algorithms: Differential privacy 

 Tools for data management 

 Different aggregation algorithms benchmarked with different settings 

 Active development 

 Solid reputation in the open-source community 

 Command line deployment of new applications 

 
Cons: 

 Basic admin management tool 
 
 
Flower : Friendly Federated Learning Framework: (https://flower.dev/) 
 
Pros: 

 Usability: Easy to use 

 ML Framework Agnostic 

 Scalability: Tested with 1000s of client simultaneously 

 Large open source community  
Cons: 

 Less benchmarking details 

 No Differential privacy 
 
PySyft + Grid : (https://github.com/OpenMined/PySyft ) 
 
Pros: 
 

 Decouples private data from model training, using Federated Learning, 
Differential Privacy, and Encrypted Computation 

 One of the first open-source FL frameworks 

 Large open source community  

https://nvidia.github.io/NVFlare
https://flower.dev/
https://github.com/OpenMined/PySyft
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://en.wikipedia.org/wiki/Differential_privacy
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 Differential privacy support 
 
Cons: 

 Latest released version is not working and the framework is going to be 
substantially refactored 

 Not production-grade 
 
 
Scaleout FEDn : (https://github.com/scaleoutsystems/fedn) (Ekmefjord et al., 
2021) 
 
Pros: 

· Hierarchical architecture for efficient model aggregation 
· Scalability: Tested with 1000s of clients simultaneously 
· Open-source framework for federated machine learning 
· Production-grade 
· Integrated user interface to get insights about the training and aggregation 

processes 
· Machine learning framework agnostic 
· Deployment can be done both using Docker containers and Kubernetes 
· Single platform for both cross-device and cross-silo settings 
· Active development 
· Allows both alliance-based and custom compute packages for model training 

 
Cons: 

· No differential privacy / secure aggregation 
· Relatively complex setup due to natively distributed architecture 

5.2 Requirements for network communication  

Depending on the details of the implementation of the messaging, the clients may or 
may not need open ingress ports to participate in the federation. FEDn is designed in 
a way to avoid open ingress ports on clients. In all frameworks however, the 
Central/Aggregator node needs dedicated ports open for communication with the 
clients. 
 
The clients send an update to the Aggregator when they have completed the specified 
number of local iterations (one or a few batch updates up to several full epochs, 
depending on settings). There are no special requirements for the network connecting 
the nodes. However, there must be enough bandwidth to communicate with the 
central node. The required bandwidth depends on how large the deep learning model 
is, e.g. if it contains 100,000 or 100,000,000 trainable parameters, and how often the 
nodes send updates to the Aggregator. Benchmark case studies for both large CNNs 
(natural language processing) and smaller LSTM models (IoT use case) for FEDn can 
be found in (Ekmefjord et al, 2021). 

5.3 Requirements for privacy 

A general challenge in federated learning is to guarantee that sensitive information is 
not communicated between the different nodes, and this is especially important for 
medical data. Differential privacy is a mathematical principle which consists of adding 
a well-defined amount of noise to the weights in the deep learning model to secure the 
privacy while preserving most of the general information from the dataset. The 

https://github.com/scaleoutsystems/fedn
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drawback of this operation is that the performance of the aggregated model is 
reduced. As a concept, differential privacy has a wider scope than federated learning 
and is mainly used for privacy preserving analytics / database queries. It is sometimes 
used as an output privacy enhancing technology in FL where controlled noise is added 
to the weight updates before sending and aggregating them at the server. It is not 
clear to what extent this is important for a given application, and there is a risk that it 
will negatively impact convergence of training. Still, differential privacy is a viable way 
to protect against inference attacks (independent of whether the training is federated 
or not). 

5.4 Data preparation 

It is of importance that the data stored at all clients are pre-processed as similarly as 
possible. Challenges with medical data can be that the MR and CT scanners generate 
images with different appearance (see section 6.1.2). Another problem is that the size 
and resolution of the images can differ between the clients. These issues need to be 
addressed before a federation can be started.  
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6 FL in different ASSIST use cases 

6.1 Brain tumours 

Brain tumours compose about 2% of the cancer incidences, affect some 300,000 
subjects globally each year (Leece et al., 2017), with a low survival rate and a high 
morbidity for the patients. Though not being the most prevalent cancer type, brain 
tumours are prone to complicated and challenging treatment procedures that are often 
a combination of surgery, radiotherapy and chemotherapy, where treatment planning 
and follow up of the treatment is highly dependent on radiology images. The best 
treatment for a specific patient depends on if there is one tumour or many small 
metastases, and the size and location of each tumour or metastasis. Furthermore, the 
size of the tumour is required to calculate how much radiation to apply to kill the 
cancer cells. MRI is normally used to obtain this information, and to plan the treatment, 
as MRI provides very good contrast between soft tissue types (and different MR 
sequences provide slightly different information / contrast). It is also necessary to 
segment important risk organs (e.g. the optic nerve) which should not be damaged by 
the radiation, see Figure 5. The treatment plan, i.e. how much radiation to apply to 
different parts of the brain, can be generated manually, through mathematical 
optimization or through machine learning. 
 

 
Figure 5. Illustration of brain tumour (red, to be killed by radiation) and risk organs 
(yellow, which should receive as little radiation as possible). GTV = gross tumour 
volume, CTV = clinical target volume (CTV). Deep learning can reduce the treatment 
planning time substantially, by performing automatic segmentation of tumour(s) and 
risk organs (instead of doing manual time-consuming segmentations). Image from an 
open dataset in the cancer imaging archive (see references). 
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6.1.1 Federated brain tumour segmentation 

To segment tumour(s) and risk organ(s) is currently often performed manually or semi-
automatically by a neuro radiologist, medical physicist or radiation oncologist. Manual 
segmentations can be very time consuming, e.g. 10 – 60 minutes per patient, 
especially for many metastases and risk organs. To train a segmentation network like 
U-Net (Ronneberger et al., 2015) to perform automatic segmentation, in 10 – 120 
seconds, requires annotated brain tumour images (see Figure 5). In the BraTS 
challenge (Menze et al., 2014) the number of training subjects is about 400, but to 
scan and annotate images from 400 subjects is a lot of work for a small hospital. 
Through federated learning it is sufficient if each hospital provides a smaller number of 
annotated images, see Figure 6.  
 

 
Figure 6. Left: illustration of a privacy-preserving federated learning system used to 
train a brain tumour segmentation network (Li et al., 2019). Right: distribution of 242 
training subjects into 13 federated clients. A challenge in FL is having different 
numbers of subjects (images) in each node, as each node then will complete a training 
epoch very quickly or more slowly. 
 
A general challenge in federated learning is to obtain metrics (e.g. Dice score) that are 
as close as possible to non-federated learning (data-centralised training). This is 
especially true when privacy-preserving algorithms are used, which for example add 
noise to the learned weights. Figure 7 (from Li et al., 2019) shows the obtained 
performance when using FL, compared to non-FL, for different settings of the FL 
training. The obtained performance is sometimes lower compared to data-centralised 
training. Several other researchers have also used FL for brain tumour segmentation 
(Tedeschini et al., 2022; Yi et al., 2020). 
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Figure 7. Comparison of brain tumour segmentation performance (Dice score) on the 
test set with (left): FL vs. non-FL training, and (right): partial model sharing (Li et al., 
2019). A general challenge is to with FL obtain similar performance as non-FL training, 
this is especially true for privacy-preserving algorithms. 
 

6.1.2 Domain shift problem 

A common challenge is that MR images collected at different hospitals / scanners 
have different characteristics (used MR sequence, image intensity, image resolution, 
noise), commonly known as domain shift in medical imaging. A segmentation network 
trained on images from MR scanner / hospital A will therefore in general not perform 
as well for images from MR scanner / hospital B. Deep learning models such as 
CycleGAN (Zhu et al., 2017) can be used for image harmonization (Bashyam et al., 
2022), i.e. to make MR images from different MR scanners look more similar, but it is 
not obvious how to train such models in a federated setting (as each node only stores 
images from one specific MR scanner). Furthermore, the images collected at one 
hospital may originate from patients with a mean age of 40 years, while the mean age 
is 55 years for patients at another hospital. Another challenge is that the annotations 
of tumours and risk organs may be done a bit differently at each hospital, as neuro 
radiologists do not always agree where the tumour border is. 
 

6.1.3 Preliminary FL results for the BraTS dataset 

Scaleout has in the ASSIST project performed some initial experiments on the open 
brain tumour dataset for radiation therapy (BraTS) where the data is split so that each 
partition includes complete sets of subjects. This causes a small non-IID effect on the 
partitions compared to splitting the images at random. The results of the experiments 
showed that the federated setting converged to the same score as the centralized 
model and that none of the local trained models (i.e., models trained on one partition) 
performed as well. This is the behaviour we expect from prior studies on different 
datasets and with different models, see e.g. (Ekmefjord et al, 2021) for additional 
examples and references. 

 

6.1.4 Federated treatment planning 

When the image data has been segmented, the next step in the radiation oncology 
workflow is to create a treatment plan that can be sent to the delivery system for 
treatment delivery. The treatment plan creation is typically a tedious task where the 
treatment planner spends many hours to create a treatment plan fulfilling the clinical 
goals of the treatment such as sufficient dose to the target volume while avoiding 
excessive dose to sensitive structures in the vicinity of the target. Recently, machine 
learning technology has been used to automate the treatment plan generation by 
predicting a dose distribution based on patient geometry and treatment protocol 
(McIntosh et al, 2021). The predicted dose is then used as input to an optimization 
problem to generate a deliverable treatment plan without the need of manual input. 
The model training typically requires data transfer of medical image data and 
treatment data for the selected treatment protocol which is often a time-consuming 
and cumbersome process. Federated learning could help in the model development 
process by enabling data access to multiple clinics without the need of data transfer to 
develop planning models based on data from multiple clinics. Such data may also be 
used for multi-node testing to ensure the trained model works on a variety of patient 
data from different clinics and countries. 
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6.2 Prostate enlargement 

 

6.2.1 Clinical Background and Type of Data  

 
Prostate enlargement, also called Benign prostatic hyperplasia (BPH), is a 
noncancerous increase in size of the prostate gland. (BPH), proliferation of the 
glandular and stromal tissue in the transition zone of the prostate, results in lower 
urinary tract symptoms (LUTS) and bladder outlet obstruction, see Figure 8.  
 

 
 

Figure 8. Normal vs enlarged prostate (see references). 
 

The prevalence increases with age and 25% of men older than 70 years old have 
moderate to severe LUTS that effect their quality of life (QoL). About 105 million men 
are affected by BPH globally. It typically begins after the age of 40. Half of males age 
50 and over are affected. After the age of 80 about 90% of males are affected.  
A wide variety of medical and surgical options are available for the management of 
BPH with LUTS. In patients with moderate to severe LUTS refractory to medical 
management more invasive treatments are considered. Transurethral resection of the 
prostate (TURP) and open prostatectomy (OP) are the gold standard treatment 
methods for prostate glands of 30-80 cm3 and ≥ 80 cm3 respectively. However, these 
procedures have considerable morbidity rates including retrograde ejaculation, erectile 
dysfunction, urethral stricture, urinary retention, transfusion requirement and 
incontinence. Also, in patients with existing comorbidities, increasing age and large 
prostate volume the complication rates are higher and hence the eligibility for surgical 
therapies are limited.       
 
Medical and surgical options are available; however, these procedures have 
considerable morbidity rates. Prostate artery embolization (PAE) has emerged as a 
minimal invasive treatment method which has a lower risk of urinary incontinence and 
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sexual side effects. Clinical and laboratory data and radiological imaging are the 
primary sources in patient preparation. 
 

6.2.2 Benefits & challenges of FL compared to conventional training  

  
A major unsolved challenge with AI in medicine is the ability to generalize results of a 
model trained on data from a single institution. Creating large, centralized collections 
of images from different hospitals raises some problems about patient privacy. 
“Federated Learning” is a good alternative where the algorithm is brought to the data 
(instead of the reverse), consequently it permits institutional collaboration without 
sharing any data. Infrastructure for this consists of a central server sharing parameters 
of AI models trained individually at different sites, with each site sharing the model 
weights (but not patient data) during training. Consequently, FL combines the benefit 
of using different data sources with the need of sensitivity for the privacy of the 
medical data.  
  
On the other side, FL in medicine comes up with some challenges, the major 
challenges for this concept can be listed as below. The all challenges listed here also 
applies to our Prostate Enlargement use case.    
  
Expensive Communication: Communication is a critical bottleneck in federated 
networks, which, coupled with privacy concerns over sending raw data, necessitates 
that data generated on each device remain local. Indeed, federated networks may 
potentially be comprised of a massive number of devices, and communication in the 
network can be slower than local computation. In order to fit a model to data 
generated by the devices in the federated network, it is therefore necessary to develop 
communication-efficient methods that iteratively send small messages or model 
updates as part of the training process, as opposed to sending the entire dataset over 
the network.  
  
Systems Heterogeneity: The storage, computational, and communication capabilities 
of each device in federated networks may differ due to variability in hardware (CPU, 
memory), network connectivity (3G, 4G, 5G, Wi-Fi), and power (battery level). 
Additionally, the network size and systems-related constraints on each device typically 
result in only a small fraction of the devices being active at once. Each device may 
also be unreliable, and it is not uncommon for an active device to drop out at a given 
iteration due to connectivity or energy constraints. In order to cope with this 
challenges, federated learning methods to be developed should anticipate a low 
amount of participation, tolerate heterogeneous hardware, and be robust to dropped 
devices in the network.  
  
Statistical Heterogeneity:  Devices frequently generate and collect data in a non-
identically distributed manner across the network, moreover, the number of data points 
across devices may vary significantly, and there may be an underlying structure 
present that captures the relationship amongst devices and their associated 
distributions. This data generation paradigm violates frequently-used independent and 
identically distributed assumptions in distributed optimization, increases the likelihood 
of stragglers, and may add complexity in terms of modelling, analysis, and evaluation. 
Indeed, although the canonical federated learning problem aims to learn a single 
global model, there exist other alternatives such as simultaneously learning distinct 
local models via multi-task learning frameworks. There is also a close connection in 



 
 

Nishat Raihana <Public> 31/05/2022 

ASSIST 

ITEA 20044 

WP2 Deliverable D2.1 

Page 21 of 33 

 

this regard between leading approaches for federated learning and meta-learning. 
Both the multi-task and meta-learning perspectives enable personalized or device-
specific modelling, which is often a more natural approach to handle the statistical 
heterogeneity of the data.  
  
  
Privacy Concerns: Finally, privacy is often a major concern in federated learning 
applications. Federated learning makes a step towards protecting data generated on 
each device by sharing model updates, e.g., gradient information, instead of the raw 
data. However, communicating model updates throughout the training process can 
nonetheless reveal sensitive information. While recent methods aim to enhance the 
privacy of federated learning using tools such as secure multiparty computation or 
differential privacy, these approaches often provide privacy at the cost of reduced 
model performance or system efficiency. Understanding and balancing these trade-
offs, both theoretically and empirically is a considerable challenge in realizing private 
federated learning systems. 
  
  

6.2.3 Requirements for hardware & network 

Unlike running federal learning algorithms through consumer devices, healthcare 
institutions have relatively powerful computational resources and reliable, higher-
throughput networks enabling training of larger models with many more local training 
steps, and sharing more model information between nodes. These unique 
characteristics of FL in healthcare also bring challenges such as ensuring data 
integrity when communicating by use of redundant nodes, designing secure 
encryption methods to prevent data leakage, or designing appropriate node 
schedulers to make best-use of the distributed computational devices and reduce idle 
time. 
  
The administration of such a federation can be realised in different ways. In some 
situations, which require the most stringent data privacy between parties, training may 
operate via some sort of “honest broker” system, in which a trusted third party acts as 
the intermediary and facilitates access to data. This setup requires an independent 
entity controlling the overall system, which may not always be desirable, since it could 
involve additional cost and procedural viscosity. However, it has the advantage that 
the precise internal mechanisms can be abstracted away from the clients, making the 
system more agile and simpler to update.  
  
In a peer-to-peer system each site interacts directly with some or all of the other 
participants. In other words, there is no gatekeeper function, all protocols must be 
agreed up-front, which requires significant agreement efforts, and changes must be 
made in a synchronised fashion by all parties to avoid problems. Additionally, in a 
trustless-based architecture the platform operator may be cryptographically locked into 
being honest by means of a secure protocol, but this may introduce significant 
computational overheads. 
  
In our study, peer-to-peer administration method will be used in order to reduce 
additional effort for the development of the honest broker system.  
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6.2.4 Requirements of trained network 

  
One of the main challenges for the usage of FL is to harmonize their data in order to 
make them usable for same training infrastructure. In our use case, the main source 
for data is the X-Ray images obtained from one institution, and the synthetic data 
derived from this data by using traditional and contemporary techniques. 
Consequently, there will not be any requirement for the harmonization of data.  
  
On the other hand, in order to prevent any problem about the usage of the synthetic 
data, the data production and enlargement algorithms to be used should be approved. 
Any problem in this phase may lead to inaccurate data sampling. In addition to this, 
the distribution of the segmented data through federal units should also be examined 
with respect to the source of data (original vs. synthetic)    
  
By using the Auto-ML tool which will be developed for the project, we will perform data 
preprocessing, feature engineering, hyperparameter optimization and algorithm 
selection, tasks. With this toolbox, we will also have the opportunity to combine, 
compete and manage different training models. The performance of the models will 
also be compared with respect to the usage of FL and non-FL methods.  
  
  

6.2.5 Similar studies  

In our literature survey, we could not find any study that focuses on the solution for our 
use by using AI either by using federated learning techniques or not. In this section, 
we want to mention three important studies related with our case. Two of these studies 
are about federated learning on medical data sets, and the other one was about the 
prostate segmentation in MR images. 
  
Magnetic Resonance Imaging-based prostate segmentation is an essential task for 
adaptive radiotherapy and for radiomics studies.  In order to prevent the manual 
delineation which is a time-consuming task, Comelli et. al. (2021) suggested three 
deep learning approaches aim is to tackle the fully-automated, real-time, and 3D 
delineation process of the prostate gland on T2-weighted MRI. The first model UNet is 
used in many biomedical image delineation applications, on the other hand ENet and 
ERFNet are mainly applied in self-driving cars to compensate for limited hardware 
availability while still achieving accurate segmentation. They applied these models to a 
limited set of 85 manual prostate segmentations using the k-fold validation strategy 
and the Tversky loss function and they compare their results. According to their 
findings, ENet and UNet are more accurate than ERFNet, with ENet much faster than 
UNet. Specifically, ENet obtains a dice similarity coefficient of 90.89% and a 
segmentation time of about 6s using central processing unit (CPU) hardware to 
simulate real clinical conditions where graphics processing unit (GPU) is not always 
available. They finally concluded that ENet could be efficiently applied for prostate 
delineation even in small image training datasets with potential benefit for patient 
management personalization.   
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Feki et. al (2021) focused on the hottest topic of the world for the last three years and 
try to develop a deep learning approach that can assist radiologists to analyze the vast 
amount of chest X-ray images, which can potentially have a substantial role in 
streamlining and accelerating the diagnosis of COVID-19. In order to cope with 
medical data privacy regulations, they present a collaborative federated learning 
platform which learns without sharing patient data. They investigated several key 
properties and challenges of federated learning setting including the not independent 
and non-identically distributed (non-IID) and unbalanced data distributions that 
naturally arise. They demonstrated that the proposed federated learning framework 
provided competitive results to that of models trained by sharing data, considering two 
different model architectures. They concluded that their study will encourage medical 
institutions to adopt to collaborative process and reap benefits of the rich private data 
in order to rapidly build a powerful model for COVID-19 screening. 
  
Ma et. al (2022) proposed an assisted diagnosis model for cancer patients based on 
federated learning. They implied the importance of the studies about the location of 
cancer recurrence and its influencing factors for the clinical diagnosis and treatment of 
cancer. In terms of data, the factors influencing cancer recurrence and the special 
needs of data samples required by federated learning were comprehensively 
considered. They determined the six first-level impact indicators, and the historical 
case data of cancer patients were collected. Based on the federated learning 
framework combined with convolutional neural network, various physical examination 
indicators of patients were taken as input. The recurrence time and recurrence 
location of patients were used as output to construct an auxiliary diagnostic model, 
and linear regression, support vector regression, Bayesian regression, gradient 
ascending tree and multilayer perceptron neural network algorithm were used 
as comparison algorithms. CNN’s federated prediction model based on improved 
under the condition of the joint modeling and simulation on the five types of cancer 
data accuracy reached more than 90%, the accuracy is better than single modeling 
machine learning tree model and linear model and neural network, the results show 
that auxiliary diagnosis model based on the study of cancer patients in assisted the 
doctor in the diagnosis of patients, As well as effectively provide nutritional programs 
for patients and have application value in prolonging the life of patients, it has certain 
guiding significance in the field of medical cancer rehabilitation. 
  
  
 

6.3 Hepato pancreato biliary oncology 

 
Hepato pancreato biliary oncology deals with malignant or cancerous tumours 
originating in the liver, pancreas, bile-ducts and gallbladder are some of the leading 
causes of cancer related deaths world-wide. 
  
Liver cancer is the third leading cause of cancer death world-wide and pancreatic 
cancer is the fourth leading cause of cancer death in men and women and is projected 
to be the second leading cause within a decade. Early detection and complete 
removal of the tumour while saving as much as possible healthy tissue is important for 
the survival outcome and improved quality of life of the patient.  
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Pancreatic cancer is amongst the leading causes of cancer death in the developed 
world (Pancreatic cancer research fund, 2022), with a 5-year survival rate of 5% 
(American cancer society, 2010). This is largely because patients are asymptomatic 
until late in course of pancreatic cancer or have nonspecific symptoms, delaying 
treatment. 
 
For the early diagnosis of HPB related cancers, CT and MR scans are the primary 
source of information and therefore automatic segmentation of tumours in CT or MR 
scans is of vital importance. As with most (medical) segmentation challenges 
nowadays deep-learning AI techniques offer the best results. CT scans are the most 
common method to diagnose pancreatic cancer because they have a clear contrast of 
the pancreas, with pancreatic tumours being visible as hypointense regions, as shown 
in Figure 9. 
 

 
Figure 9. An example of a pancreatic tumour in a CT volume (Low et al., 2011). 

 
Patient data privacy regulations such as GDPR hamper the sharing of medical data, 
both between hospitals and between hospitals and commercial parties. Although 
clinical sites can develop algorithms using their own patient database, this often 
provides a limited set of data, originating from a single scanner, thereby hampering 
generalizability of the algorithms on other datasets. Commercial parties, such as 
companies developing medical image analysis software, typically do not have large 
datasets at their disposal, and rely on publicly available datasets (for example from 
public segmentation challenges).  
 
Federated learning allows these parties to jointly develop a single model, combining all 
available data, whilst not requiring any private data transfer. FL can therefore result in 
far larger datasets for algorithm development than single institutes can muster on their 
own. In addition, inexperienced centres can leverage on the knowledge of 
experienced partners.  
 
Especially in the case of pancreatic cancer only a relatively small number of cases are 
treated at clinical centres yearly, thereby limiting the amount of data available for a 
single center. If sufficient centres collaborate, federated learning has the potential to 
thoroughly increase the number of cases available for training, therefore improving 
model performance, which is the first step towards improving treatment outcome. One 
of the issues is consolidating the data from different clinical care providers and 
ensuring consistency in labelling, before jointly training a model. 
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6.3.1 Requirements for hardware & network 

One of the main pitfalls of federated learning is that during the aggregation step, data 
(model gradients) should still be communicated outside of the participating center. 
This may not be allowed by strict firewalls that are in use (e.g. at participating 
hospitals). The specific rules of the network pose a restriction on the FL framework 
that can be used, and determines which mode of communication should be used. 
 
Participating centers should have access to their own (or cloud based) hardware, 
allowing for the neural network training for a few generations before aggregation is 
performed.  

6.3.2 Requirements of trained network 

Centers participating in FL model training should harmonize data requirements before 
commencing, ensuring that the same model architecture can be used for all data. In 
addition, results of hyperparameter optimization and implementation of fair data 
sampling strategies should be implemented consistently between centers. Models 
trained using FL should be benchmarked against baseline results (obtained without 
FL) to determine whether the use of additional data improves model performance. It 
should be noted that although FL exposes the model to an increased amount of data, 
data inconsistency may harm model performance on data of a specific origin. 

 
To the best of our knowledge, no literature regarding the use of federated learning for 
developing pancreatic and/or liver tumor segmentation networks is available. For 
recent developments in pancreatic and liver tumor segmentation we refer to 
D3.1(State-of-the-Art of AI techniques used for personalized diagnosis). 
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7 Network and hardware specification and 
configuration for FL in hospitals 

7.1 Hospital networks 

To use FL in a clinical setting each computer (node) needs to be located behind the 
hospital firewall and be connected to the PACS, see Figure 10. The PACS is the heart 
of the imaging activities at every hospital, as it receives images collected from every 
imaging device (MR scanners, CT scanners, etc), and radiologists then look at the 
images through different workstations. A trained AI-model needs to run in the PACS or 
communicate with the PACS. Large hospitals do in general not have a single firewall, 
but several external and internal firewalls who stop, segment and inspect the network 
traffic. To convince legal experts and the local IT at each hospital to configure / open 
the firewall(s) for FL between hospitals is one of the major hurdles for using FL in a 
clinical setting. A more technical hurdle is to make sure that different hospitals can 
communicate with each other, as the network architectures may differ and the 
hospitals need to agree on a protocol for data transfer and data encryption. Here the 
ASSIST partners can get some inspiration from what has already been done with 
federated learning in the United Kingdom (Rieke et al., 2020). 
 
 

 
Figure 10. Overview of an IT system at a hospital, focusing on the PACS which is the 
heart for all imaging activities. The PACS receives images from all imaging modalities 
(CT, MR, ultrasound, etc) and radiologists can then look at the images through 
different workstations. One or several firewalls prevent sensitive data from being 
accessed from outside the hospital. Radiologists working at another hospital can in 
some cases view images in the PACS by logging in through a VPN. 

 

7.2 Combining image data and other clinical data 

It is becoming increasingly common to combine images and clinical data (e.g. sex, 
age, genetic data, diagnostic history, treatment history) from health care records to 
further improve deep learning prediction accuracy (e.g. Huang et al., 2020), and this 
will make federated learning more complicated as each node then needs to access 
image data as well as clinical data for the same patient. Figure 11 shows how 
Linköping university hospital (located in region Östergötland, Sweden) in collaboration 
with CMIV (Center for medical image science and visualization, Linköping university, 
Sweden) envisions how researchers can get access to both types of data for training 
AI algorithms. One challenge with combining different types of data is that the 
anonymization becomes harder. 
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Figure 11. A sketch of the relationship between region Östergötland healthcare 
information platform (storing clinical data from hospitals in Östergötland for health 
care) and the CMIV health data platform (focusing on research and training of AI 
algorithms). Image provided by Håkan Gustafsson at CMIV. 

 

7.3 Required hardware 

The required hardware of each FL node depends on the type and amount of data to 
be used for training the AI model. For clinical data from health care records (e.g. 50 
values per patient), it is normally sufficient to use a strong CPU for the training. For 
image data it is normally required to have one or more graphics cards in each node, 
as a CNN performs many time-consuming convolutions of high-resolution images in 
every training iteration. The required specification of the graphics cards depends on if 
the CNNs work in 2D or in 3D, as 3D CNNs typically require more GPU memory. For 
2D CNNs it may be sufficient if the graphics cards have 8 – 11 GB of memory, while 
3D CNNs may require 24 – 48 GB of memory. 
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8 Legal considerations of FL for medical data 

As methods for FL already exist, which can even guarantee that sensitive data is not 
communicated between the nodes (e.g. Li et al., 2019), one of the major challenges 
for using FL in a clinical setting are the legal aspects. In Sweden this is further 
complicated by the fact that the 21 hospital regions are allowed to have their own legal 
interpretation of the Swedish laws (what is allowed in one hospital region is therefore 
not necessarily allowed in another region, even though the regions are in the same 
country). To combine data from different hospital regions is in Sweden allowed for 
research, after ethical approval, but in general not for clinical work. Recently a legal 
review concluded that the Swedish patient data law needs to be changed to allow for 
general secondary clinical use of health care data (e.g. to combine data from different 
hospitals or hospital regions) (Genomic medicine Sweden, 2022). 
 
In Belgium, the federated learning approach is made more difficult due to the large 
number of hospitals. Furthermore, the hospitals are split in 5 different categories. AZ 
(general hospital), UZ (university hospital), RZ (regional hospital), PZ (psychiatric  
hospital) and UPZ (university psychiatric hospital). Different laws and regulations may 
apply depending on the associated organisation, region or institution (general or 
university), making collaboration using clinical data challenging. Most commonly, data 
is used for research purposes. 
 
The interpretation of GDPR can also differ between countries, and to use FL between 
countries inside and outside the European union can be even more complicated. In 
the United Kingdom, federated learning has already been used between different 
hospitals (Rieke et al., 2020), and a reason for this is that their laws are less restrictive 
compared to other countries. As the regulations can differ between the countries in the 
ASSIST project, we provide a small overview in Table 2. 
 
 
 
 

 Sweden Netherlands Belgium Turkey 

Data 
protection 
regulations 

GDPR GDPR GDPR KVKK (Personal 
Data Protection 
Law) 

Number of 
hospital 
regions / 
organisations / 
hospitals 

21 
hospital 
regions, 
85 
hospitals 

101 regular 
hospitals, 8 
academic 
medical 
centers. 

164 
hospitals, 
some 
collaborate 
under an 
association. 

 

N/A 

Interpretation 
of national 
laws 

Depends 
on 
hospital 
region. 

All hospitals 
have to 
comply with 
the GDPR, 
no 
differences.  

Every 
hospital is 
GDPR 
compliant, 
but 
differences 
apply per 
hospital. 

 

Nationwide 

Combining 
data between 

Allowed 
for 

For 
exchange of 

This is 
covered by 

It is free for 
research reasons 
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hospitals in 
different 
regions / 
organisations 

research 
(after 
ethical 
approval)
, in 
general 
not for 
clinical 
work. 

data, a data 
transfer 
agreement is 
necessary. 
Next to the 
permission of 
the science 
committee 
which also 
determines 
whether an 
approval is 
needed from 
the ethics 
committee or 
not.  
Exchanging 
data for 
clinical work 
depends on 
the care 
relation of 
the 
physician. It 
is only 
allowed 
when it adds 
to the care of 
the patient.   
 

collaborative 
contracts per 
category/regi
on for 
providing 
healthcare 
services, 
physicians 
request and 
send 
identifiable 
data for 
specific 
patients 
amongst 
these regions 
in order to 
provide the 
best quality 
of care, 
anonymized 
data is still 
very 
sensitive, 
only validated 
for a specific 
purpose and 
hospitals still 
see even this 
data as their 
own data. 

 

with the obligation 
of anonymization. 
For other reasons, 
it depends on the 
choice of the 
patient. The 
citizens who have 
an account for E-
Nabiz system 
(National EHR 
system) determine 
their privacy policy 
by selection of 
one of the options 
presented by the 
application. They 
are informed 
about the scope 
and results of their 
selection in detail. 
For the citizens 
they don’t have 
this account the 
principles 
mentioned below 
are applied. · The 
family practitioner 
of the person can 
Access the 
information 
without any time 
limit. · When an 
appointment with 
a physician is 
taken, this 
physician can 
access the EHR 
of the patient 
limited by the date 
of the 
appointment. · Th
e physicians of 
health care 
provider 
organization 
which was applied 
by the patient to 
take medical 
service can 
access the EHR 
of the patient 
limited with 24 
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hours. · When the 
patient is 
hospitalized, the 
physician of the 
hospital can 
access the EHR 
until the discharge 
of the hospital. 

Accessing 
images at 
collected / 
stored at 
hospital A 
from hospital 
B 

Manually 
through 
tele 
radiology, 
or 
through 
external 
review 
(logging 
in to 
PACS at 
hospital 
A). 

Exchange of 
data is 
possible 
when there is 
a data 
transfer 
agreement 
and approval 
of the 
involved 
hospitals and 
if necessary, 
patient 
consent. The 
exchange 
can be done 
by e.g. xNAT 
connections. 
There is not 
a specific 
national 
exchange 
platform for 
this. Direct 
logging into 
the PACS is 
not allowed. 
  

This is covered 
by collaborative 
contracts per 
category/region 
for providing 
healthcare 
services, 
physicians 
request and send 
identifiable data 
for specific 
patients amongst 
these regions in 
order to provide 
the best quality of 
care, anonymized 
data is still very 
sensitive, only 
validated for a 
specific purpose 
and hospitals still 
see even this 
data as their own 
data. 
 

By using the 
TeleRadiology 
system of the 
Ministry of Health 
due to above 
mentioned 
conditions. For 
research goals; 
the other methods 
can be used by 
regarding the 
obligation of 
anonymization. 

 
Table 2. An overview of data protection regulations, number of hospitals, interpretation 
of national laws, and how to combine or access data from different hospitals, for the 
participating countries in the ASSIST project. 
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9 Conclusion 

 
In this document we have presented the main concepts and requirements of FL for 
training deep networks in the domain of medical imaging. Furthermore, we have 
discussed the benefits and challenges of using FL for several of the use cases in the 
ASSIST project. The legal regulations in the different countries in ASSIST have also 
been discussed, as this is an especially important part for FL in the medical domain. 
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