

Exploitable Results by Third Parties
ITEA3 16018 COMPACT

Project details

Project leader: Wolfgang Ecker, Infineon Technologies AG, DE

Email: Wolfgang.Ecker@infineon.com

Website: https://www.edacentrum.de/compact/

mailto:Wolfgang.Ecker@infineon.com
https://www.edacentrum.de/compact/

2

Exploitable Results by Third Parties

16018 COMPACT

Name: MOO Compiler

Input(s) Main feature(s) Output(s)
 Target platform/processor

characteristics.
 Program to be compiled.
 Program characteristics.

 A compiler tool with machine
learning driven optimizations
 Optimizes for energy

consumption, execution time
and code size simultaneously
 Applies optimizations and

optimization sequences
depending on the
characteristics of the input
program.

 Optimized binary code for the
target platform/processor.

Unique Selling Proposition(s): Multi-objective optimizations to better fit a programs binary
code onto a target system with limited resources.
 Optimizes all objectives equitably.
 Includes optimization for energy consumption.
 Targets embedded and IoT platforms.
 Is easy to use by the end user despite of the included machine

learning modules.
 Machine learning components are pre-trained (by the vendor).
 Is pre-trained per target platform.
 Requires only short training time and little training effort.
 No negative impact on compilation time.
 Is based on the popular LLVM open source compiler.

(None of the above items is available in open source compilers.)

Integration constraint(s): Constraint(s):
 MOO (respectively the machine learning components) need to

be retrained if code for a different target platform shall be
generated.
 A sufficient amount of heterogeneous, real world training

samples (i.e. programs) for a specific target platform is required
to achieve good optimization quality and to increase the
accuracy regarding the estimates and predictions of the
machine learning components.

No constraint(s):
 Is available for Windows and Linux host platforms.
 MOO can be used like the classic LLVM compiler it is based on.

3

Exploitable Results by Third Parties

16018 COMPACT

Name: MOO Compiler
 Does not need a change of the work flow for building programs,

performing continuous integrations (CS) or integration into test
cycles, etc.

Intended user(s): Companies and engineers needing to create code for
embedded or IoT targets with (very) limited resources
regarding memory, processor performance, and energy
supply.

Provider: ABIX GmbH and research partners from the Vienna University
of Technology:
 Institute of Computer Technology (ICT)
 Institute of Computer Engineering (ICE) -

Embedded Computing Systems group (ECS)
Contact point: Manfred Kreutzer – ABIX GmbH: mkreutzer@a-bix.com
Condition(s) for reuse: MOO Compiler (commercial product): Commercial license

(details are to be determined)
 MLComp Compiler (research compiler): Research or open

source license (details are to be determined)

4

Exploitable Results by Third Parties

16018 COMPACT

Name: Tooling for Energy Optimization of Embedded Software

Input(s): Main feature(s) Output(s):

 Software source
code

 Platform constraints
 Application

constraints

 Automated workflow of timing and
power analysis

 Automated optimization workflow

 Analysis results
 Optimized source

code

Unique Selling
Proposition(s):

 Designed to be embedded in model-based firmware development with
source code generation

 Can be used standalone or embedded in a workflow with IoT-PML and
Enterprise Architect

 Automation of analysis and optimization tasks in one library
 Future versions will include automated optimization decisions

Integration
constraint(s):

 Python >= 3.8
 Python library: pydantic 1.7.3
 Clang/LLVM 11.0
 CMake >= 3.12
 External analysis tools. Integrated support for Timing-Annotation (EKUT

source level framework), Timing-Annotation+ETISS, External HW-
Measurements with RedPitaya Board

Intended user(s): Embedded SW developers
 Researchers

Provider: Eberhard Karls Universität Tübingen (EKUT)

Contact point: Oliver Bringmann – oliver.bringmann@uni-tuebingen.de
 Michael Kuhn – michael.kuhn@uni-tuebingen.de

Condition(s) for
reuse:

 Case-by-case decision

 Latest update: 2020-12-09

mailto:oliver.bringmann@uni-tuebingen.de
mailto:michael.kuhn@uni-tuebingen.de

5

Exploitable Results by Third Parties

16018 COMPACT

Name: MODELTime

Input(s): Main feature(s) Output(s):

 SW source code
with build
environment or SW
binary code

 HW platform(s) for
benchmarking

 Fast and accurate timing estimations
for the execution time of the input SW
program considering its execution on
the given HW platforms

 Integration in model-based
development flow

 SW execution time
prediction

 Visualization of
timing properties
directly in neoICME

Unique Selling
Proposition(s):

 Fast and accurate timing estimations that are essential in developing
an embedded system (MPSoC support and visualization extension).

 Measurement-based technique that implicitly models the different
hardware resources included in HW processors.

Integration
constraint(s):

 LLVM Compiler Infrastructure 5.0 (or newer)
 Lauterbach TRACE32 tracer
 libboost
 Radare2

Intended user(s): Software developers
 Hardware developers
 Reseach

Provider: FZI Forschungszentrum Informatik

Contact point: Alessandro Cornaglia – cornaglia@fzi.de
 Sebastian Reiter – sreiter@fzi.de

Condition(s) for
reuse:

 Trade secret

 Latest update: 2020-12-07

mailto:cornaglia@fzi.de
mailto:sreiter@fzi.de

6

Exploitable Results by Third Parties

16018 COMPACT

Name: neoICME

Input(s): Main feature(s) Output(s):

 Optional: IP-XACT,
Flattened Device
Tree, C source
code

 Modelling environment for IoT device
software

 Utilization of graph database
 Support for bottom-up and top-down

design flow

 Neo4j graph
database

 Structural C source
code for IoT
software
implementation

Unique Selling
Proposition(s):

 Single source model for IoT software modelling
 Tool support for the IoT-PML-based modelling approach

Integration
constraint(s):

 Neo4j Community Edition (> 3.2.14)
 Supported OS: Linux
 srcML (srcml.org) dependency for C/C++ source code analysis

Intended user(s): Software developers
 Researchers

Provider: FZI Forschungszentrum Informatik

Contact point: Sebastian Reiter – sebastian.reiter@fzi.de

Condition(s) for
reuse:

 Trade secret

 Latest update: 2020-12-07

7

Exploitable Results by Third Parties

16018 COMPACT

Name: Infineon Technologies

Input(s): Main feature(s) Output(s):

Model of the driver and
related hardware

Firmware code generation under
consideration of the HW/SW interface

Optimized firmware
code of the driver
and HAL

Unique Selling
Proposition(s):

 Automatic driver generation to reduce firmware development effort
 Driver optimization towards memory consumption and performance via

AI guided generation of driver variants

Integration
constraint(s):

 Python 3.x
 Python libraries for XML handling
 Mako template Engine
 Infineon proprietary code generation framework Metagen with DSL

generation enhancement
 MetaFirm and associated MetaModels
 Enterprise Architect, SparX Systems
 Kaktus, Tampere University

Intended user(s): Software developers to automate the driver design and implementation
 Architects as contribution to a rapid starting point for system analysis
 Verification engineers as contribution to their testbenches

Provider: Infineon Technologies, Corporate Design Enabling and Services

Contact point: Infineon Technologies, wolfgang.ecker@infineon.com

Condition(s) for
reuse:

 Infineon proprietary

 Latest update: 2020-12-09

8

Exploitable Results by Third Parties

16018 COMPACT

Name: COMPACT-specific adaption layer for crypto lib

Input(s): Main feature(s) Output(s):

 Plaintext
 Ciphertext

 Key agreement
 Authenticated message encryption

 Ciphertext
 Plaintext

Unique Selling
Proposition(s):

 Standard algorithms.
 High-speed implementation with platform-specific optimizations.
 Side-channel protection in theory and practice.

Integration
constraint(s):

 Needs measurement campaign on every target platform.

Intended user(s): Industry customers with expert level knowledge.

Provider: Kasper-Oswald GmbH

Contact point: info@kasper-oswald.de

Condition(s) for
reuse:

 Commercial, based on individual plan

 Latest update: 2020-12-09

9

Exploitable Results by Third Parties

16018 COMPACT

Name: COMPACT-specific adaption layer for crypto lib

Input(s): Main feature(s) Output(s):

 Plaintext
 Ciphertext

 Wraps the implementation of
cryptographic primitives into an easy
to integrate library.

 Supports a very common use case:
secure message exchange between
two parties.

 Abstraction of HW-dependent
features such as write/read to/from
persistence storage (e.g., EEPROM).

 Ciphertext
 Plaintext

Unique Selling
Proposition(s):

 Simple integration, lowers the possibility of error by non-expert
integrator

Integration
constraint(s):

 Requires measured (“certified”) crypto library (see above)

Intended user(s): Industry customers in general

Provider: Kasper-Oswald GmbH

Contact point: info@kasper-oswald.de

Condition(s) for
reuse:

 Commercial, based on individual plan

 Latest update: 2020-12-09

10

Exploitable Results by Third Parties

16018 COMPACT

Name: COMPACT-specific adaption layer for crypto lib

Input(s): Main feature(s) Output(s):

 Pre-compiled
Crypto library

 Hardware platform

 Executes measurement campaign to
assert side-channel related properties
of crypto library on actual hardware

 Statistical data

Unique Selling
Proposition(s):

 Semi-automated framework

Integration
constraint(s):

 Needs adaptation to different platforms
 Requires good understanding of underlying run-time libraries and

possible “quirks” affecting the measurement quality

Intended user(s): INTERNAL

Provider: Kasper-Oswald GmbH

Contact point: info@kasper-oswald.de

Condition(s) for
reuse:

 Commercial, based on individual plan

 Latest update: 2020-12-09

11

Exploitable Results by Third Parties

16018 COMPACT

Name: UML2 API

Input(s): Main feature(s) Output(s):

 UML2 based
models

 API to access UML2 based models
(UML, SysML, BPMN, …)

 Access to that
models using the
API

Unique Selling
Proposition(s):

 API provides the possibility to access model information - modeling-tool-
and repository/dbms-neutral. The implementation of the concrete tool
and repository has to be done e.g. for Matlab Stateflow, Enterprise
Architect, Cameo Systems Modeller, …

Integration
constraint(s):

 Just the API

Intended user(s): Tool Vendors

Provider: SSCE

Contact point: SSCE

Condition(s) for
reuse:

 MIT license

 Latest update: 2020-12-09

12

Exploitable Results by Third Parties

16018 COMPACT

Name: IoT-PML MDG Technologie for Enterprise Architect

Input(s): Main feature(s) Output(s):

 Provides Toolboxes for IoT-PML for
EA

 Wellformed IoT-
PML

Unique Selling
Proposition(s):

 This MDG Technology makes it easy to use IoT-PML

Integration
constraint(s):

 Based on Sparx Systems Enterprise Architect

Intended user(s): Current target group: approx. 100.000 Software, Systems Modeller
using EA already and beyond

Provider: SSCE

Contact point: SSCE (www.sparxsystems.eu/iot)

Condition(s) for
reuse:

 Open Source using MIT license

 Latest update: 2020-12-09

13

Exploitable Results by Third Parties

16018 COMPACT

Name: COMPACT Addin for Enterprise Architect

Input(s): Main feature(s) Output(s):

 Provides Methodoly Support for IoT-
PML and Tool Integration

 Wellformed IoT-
PML

Unique Selling
Proposition(s):

 This Addin supports usage of IoT-PML and provides capability to
integrate analyzer results, code generators and more

Integration
constraint(s):

 Based on Sparx Systems Enterprise Architect

Intended user(s): Current target group: approx. 100.000 Software, Systems Modeller
using EA already and beyond

Provider: SSCE

Contact point: SSCE (www.sparxsystems.eu/iot)

Condition(s) for
reuse:

 Closed Source, but FOC

 Latest update: 2020-12-09

14

Exploitable Results by Third Parties

16018 COMPACT

Name: Kamel

Input(s): Main feature(s) Output(s):

 IP-XACT IEEE-
1685 models

 Kamel python
models

 Python Mako
templates

 Provides modeling template for the
user in form of Kamel Python classes
with methods (Kamel meta-model)

 Model generators (transformations) to
target views

 Kamel API for Intercoupling of above
model inputs and tools (like IP-XACT)
and underlying template-based code
generators

 Kactus2 API for open source IP-
XACT tool interoperability

 Tailorable with
Mako templates.
Suitable target
views are for
example:

 Verilog, VHDL,
SystemVerilog,
SystemC

 SW API for HW
 Documentation of

HW and low-level
SW

 HW development
tool scripts

Unique Selling
Proposition(s):

 Provides means to model and automate majority of the RTL IP
development tasks with light modeling overhead

 Not tied to used modeling platform/language or used target application
programming language.

Integration
constraint(s):

 Python3
 Mako python library (pip install Mako)

Intended user(s): HW Architects, HW developers, Firmware SW developers

Provider: Tampere university (TAU)

Contact point: antti.rautakoura@tuni.fi, esko.pekkarinen@tuni.fi,
timo.hamalainen@tuni.fi

Condition(s) for
reuse:

 Will be published as open source code library

 Latest update: 2020-12-01

mailto:antti.rautakoura@tuni.fi
mailto:esko.pekkarinen@tuni.fi
mailto:timo.hamalainen@tuni.fi

15

Exploitable Results by Third Parties

16018 COMPACT

Name: Methodology for Distributed CNN Inference on IoT Edge Devices

Input(s): Main feature(s) Output(s):

 IoT Nodes
 CNN

 Code Generation of Distributed CNN
Inference Software

 Optimization

 CNN Inference
Software

Unique Selling
Proposition(s):

 First approach for full distributed inference on IoT Edge nodes
 Pools memory resources of all devices in network

Integration
constraint(s):

 Based on larger library, only larger Edge Devices supported
 Experimental, industrial adaption required

Intended user(s): Providers of IoT Sensor Device Networks that want to integrate AI

Provider: Technical University of Munich

Contact point: Daniel Mueller-Gritschneder - daniel.mueller@tum.de

Condition(s) for
reuse:

 Methodology published
 Code not open source

 Latest update: 2020-12-08

16

Exploitable Results by Third Parties

16018 COMPACT

Name: Extendible Translating Instruction Set Simulator (ETISS)

Input(s): Main feature(s) Output(s):

 Embedded SW
 Pipeline Description

 Simulation environment for
Embedded SW (Instruction Set
Simulator)

 Focus: RISC-V processors

 SW profiling
information

Unique Selling
Proposition(s):

 Instruction Set Simulator extendible by timing models
 Advanced SW performance profiling

Integration
constraint(s):

 Out-of-the-box Support for RISC-V
 Other processor ISAs need additional modeling effort

Intended user(s): SoC architects, Embedded SW developers

Provider: Technical University of Munich

Contact point: Daniel Mueller-Gritschneder - daniel.mueller@tum.de

Condition(s) for
reuse:

 ETISS open source available – BSD license
 Github link: https://github.com/VP-Vibes

 Latest update: 2020-12-08

17

Exploitable Results by Third Parties

16018 COMPACT

Name: QEMU Memory Tracer (QMT)

Input(s): Main feature(s) Output(s):

Compiled RISC-V SW
Binary, Tracer
Configuration

Traces and logs memory accesses
(address regions are supplied with
tracer configuration).

Analyzes Stack and Heap Size of RV32

 Log file with
memory access
trace for RV32

Unique Selling
Proposition(s):

 QEMU extension for memory analysis for RV32 processors

Integration
constraint(s):

 Requires QEMU V2.12 (other versions are not tested yet)

Intended user(s): SW Engineers / RV32 SW Developers

Provider: Paderborn University / Heinz Nixdorf Institut

Contact point: Wolfgang Mueller / Circuit and System Design / Heinz Nixdorf Institute

Condition(s) for
reuse:

 To be negotiated

 Latest update: 2020-12-09

18

Exploitable Results by Third Parties

16018 COMPACT

Name: QEMU Timing Analyzer (QTA)

Input(s): Main feature(s) Output(s):

 WCET annotations
of Basic Blocks in
aiT/Absint XML
export format

 Compiled SW
Binary compliant to
the aiT ISA analysis

 Cycle accurate dynamic timing
analysis of the execution of the SW
binary

 Cycle accurate
timing of the
execution of the SW
binary

Unique Selling
Proposition(s):

 Dynamic cycle accurate worst-case timing analysis of individual SW
binaries

 Preprocessor to import aiT/Absint timing analysis reports

Integration
constraint(s):

 Can be integrated with QEMU V4.2 or higher

Intended user(s): SW Engineers / Embedded SW Developers

Provider: Paderborn University / Heinz Nixdorf Institut

Contact point: Wolfgang Mueller / Circuit and System Design / Heinz Nixdorf Institute

Condition(s) for
reuse:

 BSD License Agreement

 Latest update: 2020-12-09

19

Exploitable Results by Third Parties

16018 COMPACT

Name: CAR DETECTOR

Input(s): Main feature(s) Output(s):

 Video stream, still
images

 System for detecting cars when they
appear in video stream

 XML or other
message with car
position

Unique Selling
Proposition(s):

 State-of-the-art detection accuracy

Integration
constraint(s):

 Runs on a platform that supports Intel OpenVINO library

Intended user(s): Customs, border control

Provider: VISY Oy, Tampere, Finland

Contact point: Jyrki.selinummi@visy.fi

Condition(s) for
reuse:

 Commercial license

 Latest update: 2020-12-04

20

Exploitable Results by Third Parties

16018 COMPACT

Name: Model Aware Debugger for Simulink and Stateflow (MADSL & MADSF)

Input(s): Main feature(s) Output(s):

 Simulink and/or
Stateflow model

 Linux based target
platform

 Cross-level debugging between the
model and the generated code
running on the target processor

 Visualization of the model and
corresponding code in a single GUI

 Interactive
debugging session

Unique Selling
Proposition(s):

 Debugging of Simulink models and mixed Simulink and Stateflow
models at assembler/code level running on arbitrary target processors
with Linux support.

 Allows to reconstruct model information from the generated code, to
step simultaneously through the model and the generated code running
on the embedded target device:

- set breakpoints on hierarchical block ports (on activation of the
block)

- set breakpoints on transitions and/or states (incl. entry and exit
actions). Designed to be embedded in model-based firmware
development with source code generation

 Provides a GUI to visualize and to interact between the
Simulink/Stateflow model, the generated source code and the
assembler code

 Future versions will support bare metal system debugging for ARM and
RISC-V base platforms

Integration
constraint(s):

 MATLAB & MATLAB Coder
 Simulink & Simulink Coder
 Stateflow (optional)
 Clang/LLVM
 gdbgui
 External Linux based development board with GDB/LLDB support

Intended user(s): Embedded SW developers
 Researchers

Provider: OFFIS e.V. (OFFIS)

Contact point: Kim Grüttner – kim.gruettner@offis.de

Condition(s) for
reuse:

 Case-by-case decision

 Latest update: 2021-01-13

mailto:kim.gruettner@offis.de

	Exploitable Results by Third Parties
	Project details

