

Exploitable Results by Third Parties
14014 ASSUME

Affordable Safe & Secure Mobility Evolution

Project details

Project leader: Wolfgang Köpf

Email: wolfgang.w.koepf@daimler.com

Website: http://assume-project.eu/

http://assume-project.eu/

2

Exploitable Results by Third Parties

14014 ASSUME

Name: Scade KCG / CompCert coupling

Input(s): Main feature(s) Output(s):

 Scade model Scade to asm code compilation flow
with Scade KCG-CompCert compilers

 Assembly file (asm)

Unique Selling
Proposition(s):

 Automatic generation of assembly code from any Scade 6.6 application
using & 2 stages compiler: first Scade KCG than CompCert.

Integration
constraint(s):

 Academic version of CompCert (3.0.1)
 Specific version of Scade KCG
 TRL 6

Intended user(s): SCADE users and embedded software developers that would like to
benefit from both Scade KCG and CompCert safety and certification
capabilities

Provider: CompCert: AbsInt (see Git repository at
https://github.com/AbsInt/CompCert)

 Scade KCG: ANSYS (see https://www.ansys.com/products/embedded-
software/ansys-scade-suite)

Contact point: Bruno Pagano – bruno.pagano@ansys.com

Condition(s) for
reuse:

 Research partnership

 Latest update: June 27, 2018

https://github.com/AbsInt/CompCert

3

Exploitable Results by Third Parties

14014 ASSUME

Name: Kalray MPPA target for SCADE Multi-Core KCG

Input(s): Main feature(s) Output(s):

 Scade 6.6
application

 Tooled integration process to
ease/automate the integration of
Scade KCG generated multi-core C
code on MPPA target

 Multi-core code that
can be executed on
Kalay MPPA many-
core target

Unique Selling
Proposition(s):

 Scade KCG automatically generates C code that can be executed on
multi-core and many-core architectures.

 This C code is target independent and requires an integration step to
create target specific code

 This integration step has been (partly) automated for Kalray MPPA
target

Integration
constraint(s):

 The Python target integration script developed by Kalray automates the
generation of integration code for the MPPA, using the SCADE
Integration Toolbox and Multi-Core Toolbox.

 Python
 Scade KCG for Multi-Core

Intended user(s): SCADE users and embedded software developers that would like to
execute their Scade application on an MPPA and benefits from multi-
core speedup.

Provider: Kalray for the Integration part
 ANSYS for Scade KCG targeting Multi-core architecture

Contact point: Günther siegel – Gunther.siegel@ansys.com

Condition(s) for
reuse:

 Research partnership
 Early users evaluation

 Latest update: June 27, 2018

4

Exploitable Results by Third Parties

14014 ASSUME

Name: SDF3: SDF For Free

Input(s): Main feature(s) Output(s):

XML specification of a
streaming system as a
composite scenario-
aware DF model

Performance (throughput) analysis tool Throughput of the
system

Unique Selling
Proposition(s):

 Exact throughput analysis for time-dependent pipelined systems
specified as systems of subsystems

Integration
constraint(s):

 libiconv-1.14.vc10
 libxml2-2.9.7
 boost_1_67_0
 ExprTk lib
 StrTk lib

Intended user(s): Research community (embedded), practicing (embedded) engineers

Provider: TU/e, when added to the main branch
http://www.es.ele.tue.nl/sdf3/

Contact point: m.skelin@tue.nl, m.c.w.geilen@tue.nl

Condition(s) for
reuse:

 GPL license and SDF3 Proprietary License

 Latest update: June 27, 2018

http://www.es.ele.tue.nl/sdf3/
mailto:m.skelin@tue.nl
mailto:m.c.w.geilen@tue.nl
http://www.gnu.org/copyleft/gpl.html
http://www.es.ele.tue.nl/sdf3/license.php

5

Exploitable Results by Third Parties

14014 ASSUME

Name: PLAATO (Platform Architecture & Analysis TOol)

Input(s): Main feature(s) Output(s):

 UML (Enterprise
Architect) functional
and physical
architecture

 Fault probabilities

 Creates fault trees
 Performs computation of importance

metrices and cut-sets
 Ability to investigate design choices to

make systems more reliable

 Fault trees
 Importance

metrices:
 Fussell-Vesely
 Birnbaum

Unique Selling
Proposition(s):

 Tool chain for Fault Tree Analysis that can be integrated in the
development chain using model based systems and safety engineering.

 No other tools available that support this engineering process
completely.

Integration
constraint(s):

 Current version still uses Enterprise Architect and Matlab code as basis.
TNO investigates how to use other Systems Engineering tools and
intents to create executable code that not needs a Matlab license.

Intended user(s): System Architects, System Designers, System Engineers,
Software/Hardware Engineers, Test Engineers

Provider: TNO Automotive

Contact point: Frank.Benders@tno.nl

Condition(s) for
reuse:

 License fees
 Possibility to buy open-source software

 Latest update: June 27, 2018

6

Exploitable Results by Third Parties

14014 ASSUME

Name: MBaSSy (Model Based Safety System engineering)

Input(s): Main feature(s) Output(s):

 ISO26262
documents in MS
Word or Excel

 Support the traceability of the Safety
Engineering process for compliance to
the ISO26262

 Support the multi-user distributed and
concurrent usages of documents

 Web and Database based system that
includes configuration management.

 Automatic compliance checking to the
ISO26262

 Traceability of
development
artifacts

 Safety Case
reporting

Unique Selling
Proposition(s):

 At this moment there does not exists an integrated tool for (Automotive)
Safety Engineering that support the complete traceability and
compliance checking.

 Automatic checking and reporting the ISO26262 compliance checking.

Integration
constraint(s):

 Current input should be compliant with Microsoft Office tools.

Intended user(s): Safety Engineers, System Engineers, Safety Verification and Validation
Engineers

Provider: TNO Automotive

Contact point: Arash.Khabbaz@tno.nl

Condition(s) for
reuse:

 License fee
 Possibility to buy open-source software to extend compliance to other

tooling.

 Latest update: July 02, 2018

7

Exploitable Results by Third Parties

14014 ASSUME

Name: aiT for Kalray

Input(s): Main feature(s) Output(s):

Fully linked binary
executable for Kalray
MPPA2

Computes safe upper bounds for the
worst-case execution times (WCETs) of
non-interrupted tasks

WCET bounds in report
files and in GUI

Unique Selling
Proposition(s):

 aiT computes correct and tight upper bounds for the worst-case
execution time by static program analysis. There is no need for
measurements.

 aiT's results are valid for all inputs and each execution of a task.
 aiT directly analyzes binary executables. There is no need for code

instrumentation.
 A graphical user interface supports the visualization of the worst-case

program path with WCET values at basic blocks.

Integration
constraint(s):

 There are aiT WCET analyzers for various different target processors.
 aiT for Kalray can only analyze fully linked binary executables for Kalray

MPPA2 (Bostan).
 System requirements:

o Windows: 64-bit Windows 7 SP1 or newer
o Linux: 64-bit CentOS/RHEL 6 or compatible
o 4 GB of RAM (16 GB recommended)
o 4 GB of disk space
o The Linux version requires the libxcb-* family of libraries to be

installed

Intended user(s): Developers who need to validate the timing behavior of their software

Provider: AbsInt Angewandte Informatik GmbH

Contact point: support@absint.com

Condition(s) for
reuse:

 AbsInt offers commercial licenses, including training, support, and
maintenance.

 Latest update: June 28, 2018

mailto:support@absint.com

8

Exploitable Results by Third Parties

14014 ASSUME

Name: Astrée

Input(s): Main feature(s) Output(s):

C source code Astrée automatically proves the absence
of runtime errors and invalid concurrent
behavior in C applications.

List of runtime errors
and invalid concurrent
behavior, or statement
that no such problems
exist

Unique Selling
Proposition(s):

 Astrée is a static code analyzer that finds runtime errors and invalid
concurrent behavior in safety-critical software written or generated in C.

 Astrée is sound - that is, if no errors are signaled, the absence of errors
has been proved.

 This includes floating-point computations: All possible rounding errors,
and their cumulative effects, are taken into account.

 Astrée offers powerful annotation mechanisms for supplying external
knowledge and fine-tuning the analysis precision for individual loops or
data structures.

 The integrated RuleChecker checks for compliance with MISRA, CWE,
ISO/IEC, and SEI CERT C coding rules. You can easily toggle individual
rules and even specific aspects of certain rules.

 Astrée has been optimized to be able to analyze large industrial code
bases.

Integration
constraint(s):

 System requirements:
o Windows: 64-bit Windows 7 SP1 or newer
o Linux: 64-bit CentOS/RHEL 6 or compatible
o 4 GB of RAM (16 GB recommended)
o 4 GB of disk space

Intended user(s): Developers of safety-critical and mission-critical software written in C

Provider: AbsInt Angewandte Informatik GmbH

Contact point: support@absint.com

Condition(s) for
reuse:

 AbsInt offers commercial licenses, including training, support, and
maintenance.

 Latest update: June 28, 2018

mailto:support@absint.com

9

Exploitable Results by Third Parties

14014 ASSUME

Name: 5.7. Services using MQAnalyzer

Input(s): Main feature(s) Output(s):

 Functional models
(Simulink)

 Static analysis of models with respect
to model clones, runtime errors,
guideline violations, metric hotspots

 Assessment Result

Unique Selling
Proposition(s):

 Efficient handling of the review process of model-based software with
focus on usability, aggregated results from multiple sources and assisted
reviewing

Integration
constraint(s):

 MATLAB Simulink models
 MATLAB Stateflow models

Intended user(s): Model developers which want to check the model-based software
developments of their suppliers regarding quality standards and runtime
errors.

Provider: Assystem Germany GmbH

Contact point: Michael Schmidt – mischmidt@assystem.com

Condition(s) for
reuse:

 Licensing

 Latest update: July 02, 2018

mailto:mischmidt@assystem.com

10

Exploitable Results by Third Parties

14014 ASSUME

Name: SWEET (SWEdish Execution Time tool)

 Input(s): Main feature(s) Output(s):

 Embedded real-time
code (mainly C)

 Automatic derivation of program flow
constraints (“flow facts”), and
approximate BCET/WCET estimates.

 Flow facts
 BCET/WCET estimates
 Value constraints on

program variables
 Program slices

Unique Selling
Proposition(s):

 Reduces the need for manual flow fact annotations
 Early sourrce level BCET/WCET estimates

Integration
constraint(s):

 There has to be a translator from the code format to analyze into the IF of
SWEET (exists for C).

 For BCET/WCET estimates a rough cost model for the SWEET IF, modeling
the timing of the target system, must be provided.

Intended user(s): Developers of real-time software, researchers

Provider: Mälardalen University, Programming Languages research group

Contact point: Björn Lisper, bjorn.lisper@mdh.se

Condition(s) for
reuse:

 SWEET is open source under a BSD style license

 Latest update: June 29, 2018

11

Exploitable Results by Third Parties

14014 ASSUME

Name: MES Quality Commander

Input(s): Main feature(s) Output(s):

 Results of quality
assurance activities
in general

 BTC Embedded
Tester Report

 MES Model
Examiner Report

 MES M-XRAY
Report

 Definition of quality model
 Aggregation of quality status
 Visualization of quality trend

 Detailed
visualization of
quality trends

 Determination of hot
topics in project

Unique Selling
Proposition(s):

 Customizable definition of quality
 Implementation compliant to ISO 25010 System and software quality

models

Integration
constraint(s):

 Generic XML-format for import of quality information

Intended user(s): Project and quality manager, developers

Provider: Model Engineering Solutions GmbH

Contact point: info@model-engineers.com

Condition(s) for
reuse:

 Commercial license available

 Latest update: July 02, 2018>

12

Exploitable Results by Third Parties

14014 ASSUME

Name: Vélus – prototype verified Lustre compiler

Input(s): Main feature(s) Output(s):

 Lustre program Formally specified and verified in the
Coq proof assistant

 PowerPC, ARM,
RISC-V, or x86
assembly

Unique Selling
Proposition(s):

 Gives a formal guarantee that the generated assembly code calculates
the values defined by the high-level dataflow model.

 Provides a completely functional implementation of a standard, modular
compilation scheme for Lustre programs.

Integration
constraint(s):

 The Lustre programs must not contain side effects or external function
calls.

 The proof only guarantees correctness for programs whose semantics
are defined by the model.

Intended user(s): Industrial and Academic Researchers

Provider: Inria

Contact point: Timothy Bourke (timothy.bourke@inria.fr)

Condition(s) for
reuse:

 Initial closed source prototype release. Binary to be made available on
Internet (https://velus.inria.fr) for evaluation and testing.

 Semantic models to be shared with collaborators.

 Latest update: July 02, 2018

13

Exploitable Results by Third Parties

14014 ASSUME

AlloyInEcore: Deep Embedding of First-order Relational Language into
Essential Meta-object Facility (MOF) for Model Reasoning

Input(s): Main feature(s) Output(s):

 MOF Metamodel /
UML Class Model
(EMF Ecore Model)

 Partial XMI Instance
(which conforms to
given EMF Model)

 First-order
Relational
Constraints as
Invariants (optional)

 Upper and/or Lower
Bounds (optional)

 Synchronizes Ecore types with Java
types

 Extends incomplete models to
maintain consistency based on formal
semantics given in First-order
Relational Logic by the user,

 Enhanced Text Editor to define
EClass, ERerefence, EAttirbute,
EEnum, Invariants, Bounds

 Text Editor supports syntax
highlighting, content assists, content
outline, and Error reporting

 Complete XMI
Instances within the
bounds defined by
the user (The
system infers new
EObjects and Slots
on the partial
instance)

 If no solution found,
the reason of the
inconsistency is
reported to the user.

Unique Selling
Proposition(s):

 Model Completion support EMF partial models.
 Infers instances of EReferences and EClasses based on the formal

semantics defined by the user.
 Fully integrated with Eclipse Modeling Framework (EMF).
 Supports EMF Generics and Template Parameters.
 Integrated with Java Compiler for type checking.

Integration
constraint(s):

 Works on top of Eclipse IDE
 Minimum Unsatisfiability (MUS) feature works only on Linux OS

Intended user(s): Modelers, Language Engineers, Data Engineers

Provider: UNIT Information Technology R&D Ltd., Turkey
 KoçSistem Information and Communication Services Inc., Turkey

Contact point: Ferhat Erata ferhat@computer.org

Condition(s) for
reuse:

 EPL (Eclipse Public License)

Source Codes https://github.com/ModelWriter/AlloyInEcore

Publications F. Erata et. al. AlloyInEcore: Embedding of First-order Relational
Language into Essential Meta-object Facility (MOF) for Model
Completion International Conference on Software Engineering
(ESEC/FSE 2018) (submitted)

Website https://modelwriter.github.io/AlloyInEcore

 Latest update: July 03, 2018

mailto:ferhat@computer.org
https://github.com/ModelWriter/AlloyInEcore
https://modelwriter.github.io/AlloyInEcore

14

Exploitable Results by Third Parties

14014 ASSUME

Tarski: Automated Reasoning about Traces using Configurable Formal Semantics

Input(s): Main feature(s) Output(s):

 Artifacts and traces
(Traceability
Information)

 Configuration file
written in First-order
Relational Logic

 Tarski supports the management of
traces between software artifacts,
which is relevant for any development
team that wants to maintain
consistency of the artifacts and their
traces.

 Maintains synchronization using the
trace semantics defined by the user

 New inferred traces
among artefacts

 Inconsistency report
 Visualize traces

among locations in
the artifacts

Unique Selling
Proposition(s):

 Tarski supports traceability between diverse development artifacts
(requirements, architectural models, source codes, test cases etc.)

 The platform allows users to specify artefacts and traces between them,
as well as new trace types and their semantics.

 Tarski is built on top of the Eclipse platform, and uses Kodkod and
Alloy, two well-known tools that ensure a solid technical base.

Integration
constraint(s):

 Integrated version only runs on Eclipse IDE
 Standalone version can be used through the API of the tool.

Intended user(s): Software and System Engineers / Knowledge Engineers

Provider: UNIT Information Technology R&D Ltd., Turkey
 KoçSistem Information and Communication Services Inc., Turkey

Contact point: Ferhat Erata ferhat@computer.org

Condition(s) EPL (Eclipse Public License)

Source Codes https://github.com/ModelWriter/Tarski

Publications F. Erata et. al. A Tool for Automated Reasoning About Traces Based on
Configurable Formal Semantics, ACM SIGSOFT Foundations of
Software Engineering Conference (ESEC/FSE 2017),
http://doi.org/10.1145/3106237.3122825

 F. Erata et. al. Tarski: a platform for automated analysis of dynamically
configurable traceability semantics, ACM SIGAPP Symposium on
Applied Computing (SAC 17), http://doi.org/10.1145/3019612.3019747

 F. Erata et. al. ModelWriter: Text and Model-Synchronized Document
Engineering Platform, IEEE/ACM Automated Software Engineering
Conference (ASE 2017).

Website https://modelwriter.github.io/Tarski

 Latest update: July 03, 2018

mailto:ferhat@computer.org
https://github.com/ModelWriter/Tarski
http://doi.org/10.1145/3106237.3122825
http://doi.org/10.1145/3019612.3019747
https://modelwriter.github.io/Tarski

15

Exploitable Results by Third Parties

14014 ASSUME

Name: Formal Functional Requirement Consistency Analysis

Input(s): Main feature(s) Output(s):

 Formal
requirements
specified in BTC
EmbeddedPlatform
using the Simplified
Universal Pattern

 Formal consistency analysis of
functional requirements

 Consistency results
 Witness traces for

passing analysis
 Minimal

inconsistent/maximal
consistent
requirement sets

 Quality data for MES
Quality Commander

Unique Selling
Proposition(s):

 Support for Simplified Universal Pattern and “Classical BTC Patterns”.
 Different types of consistency are checked
 Based on bounded model checking, therefore low number of false

warnings
 No design or implementation model is required. The consistency

analysis operates on the requirements only and is therefore applicable to
early-version requirements or incomplete specifications.

Integration
constraint(s):

 Windows
 Z3 (>= version 4.3) or iSAT SMT solver
 Java 7 Runtime Environment
 BTC EmbeddedPlatform is recommended for requirement specification
 MES Quality Commander is required for visualization of exported quality

metrics

Intended user(s): Domain expert for formal functional requirements

Provider: OFFIS e.V.

Contact point: Jan Steffen Becker (becker@offis.de)

Condition(s) for
reuse:

 Closed source research prototype.

 Latest update: June 28, 2018

16

Exploitable Results by Third Parties

14014 ASSUME

Name: BTC Embedded Platform

Input(s): Main feature(s) Output(s):

 Informal textual
requirements

 optional: system
under test (SUT) as
Simulink/Targetlink
model or C code

 Requirement formalization using
Simplified Universal Pattern (SUP)

 Formal test (simulation-based
evaluation of formal requirements)

 Requirement coverage
 Test case generation from formal

requirements (with or without SUT)
 Consistency analysis of formal

requirements
 Simulation of formal requirements
 MES Quality Commander Export

 results of
requirement
consistency, error
traces for
inconsistent
requirements

 test cases from
requirements

 detailed test status if
SUT is available
(requirement
violation, coverage
results, etc)

 Quality data for MES
Quality Commander

Unique Selling
Proposition(s):

 intuitive, graphical requirement formalization language (SUP)
 smooth and easy-to-use integration of test applications in one platform

like formal test, consistency checks, requirement coverage
 early analysis of requirements feasible without having SUT model or

implementation
 analysis results are precise because it is based on highly-integrated

model checking technology

Integration
constraint(s):

 Windows 7/10
 MES Quality Commander is required for visualization of exported quality

metrics
 Note: no further integration needed as BTC EmbeddedPlatform is

provided by a single installer

Intended user(s): Domain expert for formal functional requirements

Provider: BTC Embedded Systems AG

Contact point: Dr. Tino Teige (teige@btc-es.de)

Condition(s) for
reuse:

 commercial software product

 Latest update: July 03, 2018

17

Exploitable Results by Third Parties

14014 ASSUME

Name: Lyo Designer

Input(s): Main feature(s) Output(s):

 None (This is an
end-user
modelling tool,
requiring no other
inputs)

 https://github.com/eclipse/lyo.designer/wiki
 An Eclipse plugin that allows one to

graphically model (1) the overall system
architecture, (2) the information model of
the RDF resources being shared, and (3)
the individual services and operations of
each Server in the system.

 Lyo Designer includes a integrated code
generator that synthesizes the model into
almost-complete OSLC4J-compliant
running implementation.

 A graphical
representation of a
toolchain
architrcture

 OSLC-compliant
java code
implementing the
modelled
toolchain.

Unique Selling
Proposition(s):

 Lyo Designer is part of the Eclipse Lyo project – the de-facto open-source
toolkit for the development of OSLC-compliant tool interfaces.

 Lyo Designer provides a model-based approach to toolchain design, and
tool integration based on the OSLC standard.

 Lyo Designer seamlessly integrates with a code generator that produces
almost-complete OSLC4J-compliant running implementation of each tool
interface.

Integration
constraint(s):

 Lyo Designer is an Eclipse plugin, and hence requires its setup within an
Eclipse installation (Although future setup as a standalone product is
possible)

 Lyo Designer generates a Java implementation of the tool interfaces.

Intended
user(s):

 Tool chain architects, information modelling, developers of tool
interfaces.

Provider: KTH Royal Institute of Technology

Contact point: Jad El-khoury, jad@kth.se

Condition(s) for
reuse:

 None. Open-source EPL license

 Latest update: July 03, 2018

https://github.com/eclipse/lyo.designer/wiki
mailto:jad@kth.se

	Exploitable Results by Third Parties
	Project details

