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1. Introduction 
1.1. Purpose of the Document 

In this document an overview will be given of the candidate deep learning (DL) networks that are suitable 
for spectral analysis. Within Spectralligence, multiple spectral domains are investigated by multiple 
partners. For this deliverable, three spectral domains are considered by the corresponding partners 
(see Table 1). The final aim is to combine the DL candidates of all domains and to summarize similarities 
and cross-domain interests. 
 

Table 1: Overview of the spectral domains and the corresponding partners who investigated the 
DL candidates. 

Spectral Domain Abbreviation Partners 
(Neutron Induced) Gamma Ray Spectroscopy GRS Dynaxion 
Atomic Emission Spectroscopy AES Sensmet 
Magnetic Resonance Spectroscopy MRS Philips and TU/e 

  

1.2. Spectroscopy Workflow 

To facilitate a general framework of summarizing DL candidates per domain, an overall spectroscopy 
workflow is constructed. This workflow will apply to all spectral domains and will enable the comparison 
of all domains and the categorization of the type of DL candidate. Figure 1 shows the spectroscopy 
workflow that is used for this document. Different steps in the spectroscopy workflow are accompanied 
by various machine learning (ML) applications. Per domain, all possible DL candidates are categorized 
with the use of this workflow.   
 

 
Figure 1: Schematic representation of the overall spectroscopy workflow. The workflow is divided in 
Data Acquisition, Data Processing and Data Analysis. Each block has its own machine learning (ML) 
applications, which are indicated in the grey boxes. An additional block for Artificial Data Generation is 
added to represent possible ML methods that focus on generating synthetic data for training the ML 
applications.  
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2. Spectral Domains and Needs 
All materials have characteristic energy states reflecting atomic or molecular structures, states, 
vibrational modes and interactions. Spectroscopy is the domain of science and technology focused on 
probing the distribution of these energy states, either actively or passively, with a wealth of sensors and 
embedded systems, varying from micro devices and Lab-on-Chip to CERN’s accelerators and radio 
telescopes. 
Table 1 provides an overview of different types of spectroscopy that are in common use in 
pharmaceutical and (bio-)chemical labs. The referenced webpage provides a very basic overview of 
workflow steps for each modality. 
 

Table 2: Overview of types of spectroscopy (https://microbenotes.com/types-of-spectroscopy/) 

The detected electromagnetic waves range from 
radio (kHz and MHz, including NMR and MRI) and 
radar (GHz) through (near-)optical (THz, 
UV/VIS/IR, Raman) to hard radiation (X-ray, 
Neutron). 
Applications cover military, space exploration, 
GIS (hyperspectral) for pollution and crops 
monitoring, chemistry and pharma, biology and 
medicine, environmental monitoring, and others. 
Advances in sensor miniaturization and energy 
efficiency have broadened its application to 
beyond the lab, for example through multi-
spectral optical imaging from satellites, planes 
and drones. 
 
The general challenge in all of these applications 
is to provide ultra-simple procedures to accurately 
detect, classify and quantify of signals of 
components in mixtures, and from very noise 
signals. 
To address these challenges, several groups 
have engaged in including AI/ML for denoising 
and classification tasks across the full spectrum. 

Several recent reviews (for example those listed below) cover the scientific potential of AI/ML in spectral 
analysis, and some products are available based on physics-informed spectral training and analysis 
(e.g. Bruker’s high-resolution NMR spectroscopy SW package). Translation from scientific progress 
with generative AI towards validated real-world applications is an active field of research, as also 
recognized by IAEA (2022) in their white paper on  Artificial Intelligence for Accelerating Nuclear 
Applications, Science and Technology. Further investments in miniaturized sensing, on-chip analysis, 
and reduced expert-dependence are necessary to further harness the robustness and validation of 
AI/ML in real-world settings with strict QA/QC settings. The most significant challenge is training models 
in the absence of ground-truth big data, and providing proof that models trained on simulated or 
synthetic data operate accurately in the target application. 
 
The references below provide an examplary set of recent overview papers for several spectral domains: 
[1] Artificial Intelligence in Analytical Spectroscopy (2023), Part I: Basic Concepts and Discussion 

(spectroscopyonline.com) 
[2] Artificial Intelligence in Analytical Spectroscopy (2023), Part II: Examples in Spectroscopy 

(spectroscopyonline.com) 
[3] A review of machine learning applications for the proton MR spectroscopy workflow - Sande - 2023 

- Magnetic Resonance in Medicine - Wiley Online Library 
[4] Current advances in imaging spectroscopy and its state-of-the-art applications – (2024) 

ScienceDirect 

/ 

https://microbenotes.com/types-of-spectroscopy/
https://www-pub.iaea.org/MTCD/Publications/PDF/ART-INTweb.pdf
https://www-pub.iaea.org/MTCD/Publications/PDF/ART-INTweb.pdf
https://www.spectroscopyonline.com/view/artificial-intelligence-in-analytical-spectroscopy-part-i-basic-concepts-and-discussion
https://www.spectroscopyonline.com/view/artificial-intelligence-in-analytical-spectroscopy-part-i-basic-concepts-and-discussion
https://www.spectroscopyonline.com/view/artificial-intelligence-in-analytical-spectroscopy-part-ii-examples-in-spectroscopy
https://www.spectroscopyonline.com/view/artificial-intelligence-in-analytical-spectroscopy-part-ii-examples-in-spectroscopy
https://onlinelibrary.wiley.com/doi/10.1002/mrm.29793
https://onlinelibrary.wiley.com/doi/10.1002/mrm.29793
https://www.sciencedirect.com/science/article/pii/S095741742302674X
https://www.sciencedirect.com/science/article/pii/S095741742302674X
https://microbenotes.com/types-of-spectroscopy/
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[5] Zajnulina (2022).pdf (arxiv.org): Advances of Artificial Intelligence in Classical and Novel 
Spectroscopy[1]Based Approaches for Cancer Diagnostics. A Review 

[6] Deep Learning for Biospectroscopy and Biospectral Imaging: State-of-the-Art and Perspectives | 
Analytical Chemistry (acs.org) 

[7] Application of hyperspectral imaging systems and artificial intelligence for quality assessment of 
fruit, vegetables and mushrooms: A review - ScienceDirect 

[8] Ozdemir (2020) Deep Learning Applications for Hyperspectral Imaging: A Systemic Review.pdf 
(iecscience.org) 

[9] Biomolecular NMR spectroscopy in the era of artificial intelligence – (2023) ScienceDirect 
[10] AtomAI framework for deep learning analysis of image and spectroscopy data in electron and 

scanning probe microscopy (2022) Nature Machine Intelligence 
 

https://arxiv.org/ftp/arxiv/papers/2208/2208.04008.pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c04671
https://pubs.acs.org/doi/10.1021/acs.analchem.0c04671
https://www.sciencedirect.com/science/article/pii/S1537511022001751
https://www.sciencedirect.com/science/article/pii/S1537511022001751
https://iecscience.org/uploads/jpapers/202002/j9hwj0ImrxD9gj7z5O7BmPz8p7lSaQG4twqjfF07.pdf
https://iecscience.org/uploads/jpapers/202002/j9hwj0ImrxD9gj7z5O7BmPz8p7lSaQG4twqjfF07.pdf
https://www.sciencedirect.com/science/article/pii/S0969212623003349#sec4
https://www.nature.com/articles/s42256-022-00555-8
https://www.nature.com/articles/s42256-022-00555-8
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3. Deep Learning Candidates per Spectral Domain 
3.1. Introduction 

In this section, we provide the DL network candidates that will be further investigated for the identified 
workflow steps for the spectral domains covered in the Spectralligence project. For each step in the 
spectroscopy workflow relevant DL architectures will be summarized and categorized. At the end, a 
domain-specific conclusion will be given. 
   

3.2. (Neutron Induced) Gamma Ray Spectroscopy 

This overview is created by Dynaxion. 

3.2.1. Data Acquisition 

Application DL Architecture Explanation Reference 
Volume selection - We will get information from first level 

screening about the volume to be scanned 
- 

Hardware params - We use simulations to predict which 
hardware parameters are optimal, for 
example: timing window. 

- 

3.2.2. Data Processing 

Application DL Architecture Explanation Reference 
Denoising - Using Savitzky Golay filter - 
   - 

3.2.3. Data Analysis 

Application DL Architecture Explanation Reference 
Quantification CNN 

 
 
 
Custom 
Autoencoder 

After converting our neutron induced 
gamma spectra to suitable format, Google-
net is used in combination with transfer-
learning to classify materials. 
 
The Custom Autoencoder and models is 
used to estimate the atomic composition 
from the neutron induced gamma spectra 

[1] 
 
 
[2] 

3.2.4. Artificial Data Generation 

Application DL Architecture Explanation Reference 
Data Augmentation ReVAE ReVAE model is used for conditional data 

generation. This model can generate the 
spectra for the different materials and 
combinations. This network is trained on the 
neutron induced gamma spectra. 

[3] 

3.2.5. Conclusion 
An accurate deep learning classification network is being developed by Dynaxion for the classification 
of different materials. This network extends and harnesses their proof of concept, where 16 different 
materials were measured, and later accurately classified by networks trained on both Monte-Carlo 
simulation data, and measurement data. Furthermore, Dynaxion is developing the custom autoencoder 
model to accurately estimate the atomic composition from measured spectra of these 16 different 
materials. Currently, Dynaxion is also exploring Mixture of Experts Ensemble models [4] to estimate the 
atomic composition from the neutron induced gamma spectra. 
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In addition, Dynaxion has experimented with three different types of Variation Autoencoders, namely 
Variational Autoencoder, Ladder – Variational Autoencoder, and Reparametrized VAE (ReVAE) for 
artificial data generation. The data generated by the first two networks was not in line with the neutron 
induced gamma spectra. So, Dynaxion moved to ReVAE for generating the artificial data to expand the 
training data. This network will be developed further for use in generating data that matches with the 
properties of neutron induced gamma spectra of additional materials. 
 
Dynaxion does not apply any other ML applications that are connected to the general framework 
sketched in Figure 1. 

3.2.6. References 
[1] E. T. Moore, J. L. Turk, W. P. Ford, N. J. Hoteling, and L. S. McLean, “Transfer Learning in 

Automated Gamma Spectral Identification.” arXiv, Mar. 23, 2020. doi: 10.48550/arXiv.2003.10524. 
[2] R. Dong et al., “DeepXRD, a Deep Learning Model for Predicting XRD spectrum from Material 

Composition,” ACS Appl. Mater. Interfaces, vol. 14, no. 35, pp. 40102–40115, Sep. 2022, doi: 
10.1021/acsami.2c05812. 

[3] T. Joy, S. Schmon, P. Torr, S. Narayanaswamy, and T. Rainforth, Rethinking Semi-Supervised 
Learning in VAEs. 2020. 

[4] Rokach, L. (2010). Pattern Classification Using Ensemble Methods. World Scientific. 
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3.3. Atomic Emission Spectroscopy 

This overview is created by Sensmet. 

3.3.1. Data Acquisition 

Application DL Architecture Explanation Reference 
Volume selection - Volume selection is not applicable to AES of 

liquid samples as the samples are 
homogenous. 

- 

Hardware params Two-headed Intermediate input layer to enhance 
quantification by inputting device hardware 
parameters such as sample conductivity, 
temperature, etc. 

- 

3.3.2. Data Processing 

Application DL Architecture Explanation Reference 
Reconstruction Fully connected Feature selection by applying fully 

connected neural network to optimize 
emission lines to be used. 

[1], [2] 

Artifact removal - DL not being applied at the moment. - 
Denoising - DL not being applied at the moment. - 

3.3.3. Data Analysis 

Application DL Architecture Explanation Reference 
Quality assurance RNN Recurrent neural networks (RNNs) to detect 

anomalies during device operation. 
[1] 

Quantification CNN,  
two-headed 

Quantitative calculation model that extracts 
information from emission spectra and 
incorporates it with device parameters to 
calculate concentrations with minimized 
matrix dependence. 

[1] 

Uncertainty Meas. - Real-time definition of measurement 
uncertainty by applying statistical process 
control according to laboratory guidelines. 
Future possibility to apply recurrent neural 
networks to detect measurement anomalies 
and raise measurement uncertainty flags. 

[3] 

3.3.4. Artificial Data Generation 

Application DL Architecture Explanation Reference 
Data Augmentation - DL not being applied at the moment. - 

3.3.5. Conclusion 
A deep learning network is being developed by Sensmet for the calibration of metal concentration 
measurements of liquid samples employing online AES. The network has been first used in the proof 
of concept, where two different metal concentrations were monitored in process liquids. The quantitative 
two-headed CNN was used to process raw emission spectra in combination with device operating 
parameters to produce quantitative concentration results of the sample metal concentrations. 
Furthermore, Sensmet has also experimented with simpler fully connected neural network that was 
used with existing traditional calculation methods to correct the concentration results for matrix effects. 
In the other mentioned processing steps, Sensmet does not use ML methods. 
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3.3.6. References 
[1] C. Sun et al., “Machine Learning Allows Calibration Models to Predict Trace Element Concentration 

in Soils with Generalized LIBS Spectra,” Sci. Rep., vol. 9, no. 1, Art. no. 1, Aug. 2019, doi: 
10.1038/s41598-019-47751-y. 

[2] L. Zou et al., “Online simultaneous determination of H2O and KCl in potash with LIBS coupled to 
convolutional and back-propagation neural networks,” J. Anal. At. Spectrom., vol. 36, no. 2, pp. 
303–313, Feb. 2021, doi: 10.1039/D0JA00431F. 

[3] B. Magnusson, T. Näykki, H. Hovind, and M. Krysell, “Handbook for Calculation of Measurement 
Uncertainty in Environmental Laboratories,” Nord. TR 537 Ed. 31, Jan. 2012. 
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3.4. Magnetic Resonance Spectroscopy 

This overview is created by Eindhoven University of Technology (TU/e) and Philips 

3.4.1. Data Acquisition 

Application DL Architecture Explanation Reference 
Volume selection CNN A CNN was used to segment MRI images. 

An objective function used the 
segmentations to predict the best voxel 
placement. 
Similar networks are already available at 
Philips for automatic accurate placement of 
imaging slabs, based on a fast scout scan. 

- 

Hardware params. Ensemble of 
CNNs + MLP 

Orthogonal shim values (x,y,z) were 
predicted using an ensemble of CNNs that 
are combined with the use of averaging or 
by adding an MLP. The inputs were raw H-
FID signals. 

- 

 

3.4.2. Data Processing 

Application DL Architecture Explanation Reference 
Reconstruction LSTM 

 
 
 
 
 
U-Net 

An LSTM network was proposed taking (under-
sampled) sparse time-domain signals and 
corresponding sampling schedule as input and 
outputting the reconstructed time-domain FID. 
 
 
A U-Net architecture was trained with truncated 
FIDs to reconstruct fully sampled spectra. 

[1] 
 
 
 
 
 
[2] 
 

Artifact removal MLP,  
CNN 
 
 
 
 
MLP, CNN, Auto-
encoder,  
 
 
 
 
 
U-Net 

Both MLP and CNN architectures have been 
applied to correctly predict phase and frequency 
offsets of an input spectrum in a supervised 
regression. 
 
An MLP and CNN were proposed for 
identification of ghosting artifacts (spurious 
echoes) by means of classification. Also, an 
auto-encoder network was proposed to identify 
and correct ghosting artifacts within spectra, by 
training with (synthetically) contaminated 
spectra as input and clean spectra as ground 
truths. 
 
A U-Net was trained with low resolution MRSI 
data as input and high resolution data as ground 
truth. 

[2] 
[3] 
 
 
 
[4] 
 
 
 
 
 
[5] 

Denoising LSTM,  
 
 
Auto-encoder 

An LSTM network is trained in supervised 
fashion with low average spectra to predict high 
average (therefore higher SNR) spectra. 
 
Another work used an auto-encoder network. 

[6] 
 
 
[7] 
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3.4.3. Data Analysis 

Application DL Architecture Explanation Reference 
Quality assurance CNN 

 
SVM, LDA, 
RUSBoost 

ML methods are trained to classify (by 
experts) labeled MRS spectra based on 
their quality. A CNN architecture as well as 
multiple ML methods (SVM, LDA, 
RUSBoost in combination with ICA and 
PCA feature extractors) were proposed. 

[8] 
 
[9] 

Quantification Random forest,  
CNN,  
 
 
 
CNN encoder and 
physics-model 
decoder,  
 
 
 
 
Multiple CNNs,  
U-Nets 

Quantification via supervised regression 
taking spectra and outputting metabolite 
concentrations have been proposed using 
random forest and CNN architectures. 
 
A CNN encoder and physics-model 
decoder was proposed, taking the real 
part of a spectrum as input, deconvolving 
it into signal parameters which in turn are 
reconstructed by the physics models into 
spectra, allowing self-supervised training. 
 
Per metabolite a CNN was trained to 
output a metabolite-only spectrum from 
the real part of a processed spectrum. 
Another work utilized U-Nets for the same 
setup. 

[10] 
[11] 
 
 
 
[12] 
 
 
 
 
[13] 

Uncertainty Meas. CNN A CNN-based approach to quantify 
metabolite concentrations and obtain an 
uncertainty estimate was proposed. By 
constructing a 3D space of the quantitative 
errors for each target metabolite as a 
function of the SNR, linewidth, and SBR. 
 
Further Bayesian CNN methods used 
Monte Carlo dropout for uncertainty 
estimation of the NN. 

[14] 
 
 
 
 
 
[15] 
[16] 

3.4.4. Artificial Data Generation 

Application DL Architecture Explanation Reference 
Data Generation (DC) GAN Different GAN models were trained to 

generate H-MRS spectra for healthy, low-
grade and high-grade tissue based on a 
real clinical dataset. 

[17] 

3.4.5. Integrated Analysis and Visualization 

Application DL Architecture Explanation Reference 
Clinical Workflow 
Support 

multiple A comprehensive integration of AI/ML 
based pre-processing, classification and 
analysis is provided for MR Spectroscopy, 
from a competing university. 

[18] 

3.4.6. Conclusion 
TU/e and Philips, in collaboration with MUMC+ and UMCU, are actively monitoring developments for 
AI/ML in human MR Spectroscopy. We found that different model architectures are applied at different 
stages in the workflow. CNN architectures generally found application for tasks involving feature 
extraction, such as convolving spectra into parameters of interest. MLPs have been used for such 
scenarios, though, CNNs seem to outperform them. U-Nets and Autoencoders were mainly applied in 
scenarios mapping spectral shapes to spectral shapes, or to increase dimensionality. Overall, NNs have 
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been implemented and trained mainly in a black-box manner, replacing specific problem areas as a 
whole. Further extensions of classification networks with uncertainty prediction and explainability, e.g., 
feature visualization are also under investigation. 
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4. Overall Conclusion 
 

4.1.1. Workflow Focus 
Considering all the three spectral domains and partners of Spectralligence, there are some differences 
between the current focus areas of the DL methods for spectral analysis. For GRS, Dynaxion is currently 
focusing on classification and artificial data generation using CNNs and VAEs respectively. Meanwhile, 
Sensmet focuses on quantification for AES. The DL quantification method uses a two-headed CNN with 
both the hardware parameters and the spectral data as input. Finally, TU/e and Philips are focusing on 
MRS and currently exploring the whole spectroscopy workflow. They have found literature for all MRS 
workflow steps and many architectures include CNNs. While all partners have a common ground on 
the spectroscopy workflow, the investigated DL applications are different. 
 

4.1.2. Network Architectures 
Looking at the found and used DL architectures, all spectral domains use CNNs. These types of 
architectures are mainly used to process spectral data to a lower dimension, which occurs during 
quantification. Additionally, (V)AEs are also present in both the MRS and GRS pipeline. VAEs are used 
for artificial data generation and AEs for removing artifacts and denoising purposes. Other found 
architectures like MLP, RNN, U-Net and GAN are used in some workflow steps but are not implemented 
by more than one partner. More research and testing need to be done in order to find out if these 
architectures could be useful for spectral analysis in a cross-domain fashion. Also, new developments 
in DL architectures, e.g., transformers [1] should be followed closely as well as ways to explain and 
understand the working principles of selected DL models.  
 

4.1.3. Outlook 
By understanding the DL approaches used in each spectral domain, the partners of Spectralligence are 
actively collaborating to learn from each other's work and goals. Further research can be conducted to 
define the next steps in developing DL methods for spectral analysis in each domain and to identify 
opportunities for cross-domain DL models that can leverage similarities in applications and 
architectures. Identification of commonalities and emerging architectures in adjacent AI/ML application 
domains will be continued by the project partners. 
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