

BUMBLE Deliverable D2.2 (Version 3)

BUMBLE Requirements Specification

Edited by: BUMBLE Team

Date: November 2022

Project: BUMBLE - Blended Modelling for Enhanced Software and Systems Engineering

2§

BUMBLE
Deliverable 2.2

PAGE 2 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

Contents

ACRONYMS 4

VERSIONS 5

CONTRIBUTORS 5

REVIEWERS 5

1 INTRODUCTION 6

1.1 CLASSIFICATION OF REQUIREMENTS ... 7

1.2 DELIVERABLE STATUS ... 8

1.3 STATUS OF REQUIREMENTS ... 8

2 BUMBLE SELECTION OF COMMON REQUIREMENTS 9

2.1 STRUCTURING REQUIREMENTS ALONG BUMBLE TECHNOLOGY BRICKS 9

2.2 BUMBLE CORE STAKEHOLDER REQUIREMENTS .. 10

2.2.1 Editor Generators .. 10

2.2.2 Blended Model Access ... 11
2.2.3 Collaboration Engine .. 12

2.2.4 Diff and Merge ... 13
2.2.5 (Meta-)Model Co-Evolution .. 13

2.2.6 Model Non-Conformance ... 13
2.2.7 Persistence .. 14

2.3 BUMBLE TECHNICAL SOLUTION REQUIREMENTS ... 14

2.3.1 Blended Editors ... 14

2.3.2 Editor Generators .. 14
2.3.3 Blended Model Access ... 15

2.3.4 Collaboration Engine .. 17
2.3.5 Diff and Merge ... 17
2.3.6 (Meta-)Model Co-Evolution .. 18

2.3.7 Platform Integration ... 18

3 USE CASE REQUIREMENTS 19

3.1 UC1 - SOFTWARE OPEN-SOURCE BLENDED MODELLING .. 19

3.1.1 Core Stakeholder Requirements .. 19

3.1.2 Technical Solution Requirements ... 20

3.2 UC2 - COMBINED TEXTUAL AND GRAPHICAL MODELLING OF STATE MACHINES IN HCL RTIST 20

3.2.1 Core Stakeholder Requirements .. 20
3.2.2 Technical Solution Requirements ... 21

3.3 UC3 - VEHICULAR ARCHITECTURAL MODELLING IN EAST-ADL ... 22

3.3.1 Core Stakeholder Requirements .. 22
3.3.2 Technical Solution Requirements ... 26

3.4 UC4 - CROSS-DISCIPLINARY COUPLING OF MODELS .. 27

3.4.1 Core Stakeholder Requirements .. 27
3.4.2 Technical Solution Requirements ... 29

3§

BUMBLE
Deliverable 2.2

PAGE 3 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

3.5 UC5 - REACTIVE AND INCREMENTAL TRANSFORMATIONS ACROSS DSMLS 32

3.5.1 Core Stakeholder Requirements .. 33
3.5.2 Technical Solution Requirements ... 33

3.6 UC6 - BLENDED EDITING AND CONSISTENCY CHECKING OF SYSML MODELS AND RELATED

PROGRAM CODE ... 34

3.6.1 Core Stakeholder Requirements .. 35
3.6.2 Technical Solution Requirements ... 35

3.7 UC7 - MULTI- AND CROSS-DISCIPLINARY MODELLING WORKBENCH 35

3.7.1 Core Stakeholder Requirements .. 35
3.7.2 Technical Solution Requirements ... 36

3.8 UC8 - MODEL-DRIVEN DEVELOPMENT OF WORKFLOW MODELS FOR DEBT COLLECTING

ADVOCACY ... 37

3.8.1 Core Stakeholder Requirements .. 37

3.8.2 Technical Solution Requirements ... 38

3.9 UC9 - AUTOMATED DESIGN RULE VERIFICATION ON VEHICLE MODELS 39

3.9.1 Core Stakeholder Requirements .. 39

3.9.2 Technical Solution Requirements ... 40

3.10 UC10 - DEVELOPMENT PROCESS OF LOW-LEVEL SOFTWARE .. 41

3.10.1 Core Stakeholder Requirements ... 41
3.10.2 Technical Solution Requirements .. 42

3.11 UC11 - MULTI-ASPECT MODELLING FOR HIGHLY CONFIGURABLE AUTOMOTIVE TEST BEDS

READY FOR SMART ENGINEERING DEMANDS ... 42

3.11.1 Core Stakeholder Requirements ... 42
3.11.2 Technical Solution Requirements .. 44

3.12 UC12 - AGILE V-MODEL SYSTEM ARCHITECTURE ... 44

3.12.1 Core Stakeholder Requirements ... 44
3.12.2 Technical Solution Requirements .. 46

3.13 UC13 - AUTOMATIC CFP (COSMIC FUNCTION POINT) VALUE GENERATION FOR SOFTWARE

ANALYSIS DOCUMENTS.. 47

3.13.1 Core Requirements... 48
3.13.2 Technical Requirements ... 48

4§

BUMBLE
Deliverable 2.2

PAGE 4 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

Acronyms
AD Microsoft Azure Active Directory

ADL Architecture Description Language

API Application Programming Interface

B Blended Syntaxes & Modelling

BPM4DCA Business Process Management for Debt Collector Advocates

C Collaborative Modelling

CAD Computer Aided Design

CAE Computer Aided Engineering

CR Change Request

CRUD Create, Read, Update, Delete

DCA Debt Collector Advocates

DSL Domain-Specific Language

DSML Domain-Specific Modelling Language

E Evolution

EAXML East-ADL XML

ECU Electronic Control Unit

ELK Eclipse Layout Kernel

EMF Eclipse Modelling Framework

EMOF Essential MOF

EN European Norm

GLSP Graphical Language Server Platform

GUI Graphical User Interface

IDE Integrated Development Environment

JSON JavaScript Object Notation

JVM Java Virtual Machine

LDAP Lightweight Directory Access Protocol

LSP Language Server Protocol

ME Modelling Environment

MOF Meta-Object Facility

MPS Meta-Programming System

N Model Non-Conformance

OAUTH2 Open Authentication Protocol Version 2.0

PLM Product Life-Cycle Management

RAfEBM Reactive Architecture for Editing Blended Models

SSSD System Security Services Daemon

T Traceability

UC Use Case

UI User Interface

UML Unified Modelling Language

UML-RT UML Real-Time

VCS Version Control System

5§

BUMBLE
Deliverable 2.2

PAGE 5 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

VS Microsoft Visual Studio

WP Work Package

XMI Metadata Interchange

XML Extendable Markup Language

Versions

RELEASE DATE REASON OF CHANGE STATUS DISTRIBUTION

V1.0 31/07/2021 FIRST RELEASE OF D2.2 FINAL
UPLOADED TO

ITEA PORTAL

V2.0 11/05/2022 SECOND RELEASE OF D2.2 FINAL
UPLOADED TO

ITEA PORTAL

V3.0 29/9/2022 THIRD RELEASE OF D2.2 FINAL
UPLOADED TO

ITEA PORTAL

Contributors

Federico Ciccozzi MDU

Martin Axelsson, Mattias Mohlin HCL

Henrik Lönn Volvo

Bart Theelen, Joost van Pinxten, Roelof Hamberg Canon Production Printing

Wim Bast MVG

Johan Fredriksson Saab

Alexander Darmonski, Duncan Stiphout Sioux

Katira Soleymanzadeh, Geylani Kardas Hermes

Ferhat Erata Ford Otosan / UNIT

Elisabeth Schold Linnér, Johan Ersson Unibap

Gerald Stieglbauer AVL

Staffan Skogby, Mikael Tillman Pictor Consulting

Pelin Latifoglu, Ilkay Yelmen Turkcell

Reviewers

Jan-Philipp Steghöfer University of Gothenburg

Federico Ciccozzi Mälardalen University

Detlef Scholle Pictor Consulting

6§

BUMBLE
Deliverable 2.2

PAGE 6 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

1 Introduction
This document describes requirements for blended collaborative modelling as identified for the use

cases of BUMBLE, see Deliverable D2.1 (updated version 1.1). The purpose of these requirements

is to clarify what functionality must be supported by the BUMBLE technologies in work packages

WP3, WP4 and WP5. Hence, requirements that are specific to a concrete DSML without being

relevant to the development of the BUMBLE technologies are not listed in this Deliverable D2.2.

Deliverable D2.2 was planned to have three versions, see Section 1.2. This delivery document is

the third release (version 3). The first version has provided an extraction of requirements from all

the use cases to come to a set of common requirements that were instrumental in starting the work

packages WP3, WP4, and WP5. The second version provides a refinement of the requirements

where needed, arising from new insights, a reflection of the common requirements on the individual

use cases, and processed feedback from the work packages WP3, WP4, and WP5. The most

relevant update to the second version is the organisation of common requirements along the lines

of Technology Bricks. This third version includes a consolidated list of requirements together with

an update of their status. The third version is also the final version.

Recalling from Deliverable D2.1, BUMBLE identifies two kinds of use cases:

● System/software specification (S): use cases about system and software engineering

● Testing (T): use cases concerning automation of test activities

Table 1 gives an overview of the 13 use cases in BUMBLE. Use case UC1 is a public use case by

all academic partners in BUMBLE, while the other use cases are by industrial partners.

Table 1. BUMBLE Use Cases

Use Case
(kind)

Description Lead Partner

UC1 (S) Software Open-Source Blended Modelling MDU

UC2 (S)
Combined Textual and Graphical Modelling of State Machines in
HCL RTist

HCL

UC3 (S) Vehicular Architectural Modelling in EAST-ADL Volvo

UC4 (S) Cross-Disciplinary Coupling of Models Canon

UC5 (S) Reactive and Incremental Transformations across DSMLs MVG

UC6 (S)
Blended Editing and Consistency Checking of SysML Models and
Related Program Code

Saab

UC7 (S) Multi- and Cross-Disciplinary Modelling Workbench Sioux

UC8 (S)
Model-Driven Development of Workflow Models for Debt
Collecting Advocacy

Hermes

UC9 (S) Automated Design Rule Verification on Vehicle Models Ford

7§

BUMBLE
Deliverable 2.2

PAGE 7 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

UC101 (S) Development Process of Low-Level Software Unibap

UC11 (T)
Multi-Aspect Modelling for Highly Configurable Automotive Test
Beds Ready for Smart Engineering Demands

AVL

UC12 (T) Agile V-model System Architecture Pictor

UC13 (T)
Automatic CFP (Cosmic Function Point) Value Generation for
Software Analysis Documents

Turkcell

1.1 Classification of Requirements

For the complex functionalities that are to be realised by BUMBLE technologies, the requirements

reflect a multitude of aspects. It is therefore desirable to enable classifying requirements and to

identify for which key technologies a requirement is relevant. Hence, BUMBLE partners concluded

to introduce a light-weight classification for requirements to ease such identification. To describe

this classification, it is relevant to first identify the two types of users that BUMBLE addresses:

Definition 1: DSML User - A DSML user or end-user is someone who exploits a DSML to create

concrete models for a specific context, i.e., a specific domain. To illustrate this, recall that the

BUMBLE use cases cover various DSMLs to describe state machines. A DSML user expresses a

specific state machine in one of those DSMLs and by doing so, this DSML user exploits the DSML

tooling as realised by (a) DSML developer(s).

Definition 2: DSML Developer - A DSML developer is someone who applies the BUMBLE

technologies to create and implement DSML definitions (including any facilities such as editors,

parsers, generators, etc. that come with defining and implementing a DSML definition). Considering

the example of state machines, this covers, for instance, the approach to capture a Mealy - or Moore-

based state machine language (e.g., grammar) in some data structure (abstract syntax tree) and

providing editors (e.g., textual and/or graphical), parsers and generators etc. A DSML developer

exploits the BUMBLE technologies as a basis for implementing DSML definitions.

BUMBLE identifies two levels of requirements as follows:

Definition 3: Core Stakeholder Requirement - A core stakeholder requirement (also shortened to

core requirement) describes a key principle that is to be supported. This is expressed from the

perspective of the stakeholders of the BUMBLE technologies. This means that the requirement is

(mostly) independent of a solution approach or solution technology. Core requirements can be

relevant for a DSML user or a DSML developer (or both) and link directly to realising added value

(in the form of features) in the context in which the DSML user and/or DSL developer applies the

BUMBLE technologies.

Definition 4: Technical Solution Requirement - Technical solution requirements (also shortened

to technical requirements) detail core stakeholder requirements from the perspective of the solution

approach or solution technology. Technical requirements primarily address the needs of DSML

1 Change Request CR3 describes two use cases of Ford. These have been merged into a single
use case (UC9). Identifier UC10 is assigned to a use case of Unibap. This updated list of use cases
has been implemented and described in CR4.

8§

BUMBLE
Deliverable 2.2

PAGE 8 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

developers, thereby also considering the technical context in which DSML definitions are to be

created.

An example core requirement is the ability to support multiple syntaxes (e.g., editable textual and

graphical representations of a state machine DSML definition) while the choice for Eclipse or

JetBrains MPS as base solution technology implies different detailing into technical requirements.

Since technical requirements detail core requirements, there should (eventually) be at least one

technical requirement referring to each core requirement. In this third version, the lists of technical

requirements have been consolidated with respect to the second version of this document.

Next to the distinction in two levels of details, it was concluded to tag both core and technical

requirements with the following 5 key aspects that BUMBLE will address (a shortcut letter is used

later in this deliverable). Note that a requirement can be relevant for multiple key aspects:

● Blended Syntaxes & Modelling (B). This includes any aspect related to synchronisation /

transformation between multiple representations (syntaxes).

● Collaborative Modelling (C). This covers any ability to cooperate in using the same DSML

model instances or DSML definitions between multiple DSML users and/or DSML developers.

● Evolution (E). This can be related to evolution of DSML definitions (User is a DSML Developer)

or evolution of instances of a DSML (User is a DSML User) or both.

● Traceability (T). This aspect covers both traceability within a (set of) DSML model instances

or definitions at a given instance in time but also traceability in the context of their evolution.

● Model Non-Conformance (N). This refers to the ability of a DSML user to have syntactical

elements that are not (yet) part of a model instance. An example is a partially typed text that is

to be parsed to enable a mapping of the text onto the appropriate elements of a DSML.

Chapter 2 presents an initial selection of (core and technical) requirements common to multiple use

cases that will be addressed in BUMBLE. For such common requirements, possible links to open-

source project(s) may be indicated (if applicable). This gives a wider contextual scope than just

BUMBLE in view of potential discussions on further clarifying requirements and/or publishing the

BUMBLE technologies that provide a solution to such a requirement.

1.2 Deliverable Status

Three versions of this deliverable will be delivered in accordance with the BUMBLE project plan.

For this is the third version, the lists of requirements from the first two versions have been

consolidated. The numbering of requirements has been kept intact to not break existing references

to requirements. Requirements of UC13 (Turkcell) have been included in this final version.

Focus has been on elaborating on the technical requirements, which are gradually emerging from

the technological choices made. In Chapter 2, the selected common requirements are also related

to the BUMBLE technology bricks, which were introduced in the project to organise the partial

solution concepts provided by BUMBLE.

1.3 Status of Requirements

In this third version of Deliverable D2.2, we also indicate to what extent the identified requirements

have already been satisfied by the BUMBLE technologies. We do so by using a colour coding along

with the identifier of a requirement as follows:

● Grey indicates the initial requirement is defined.

9§

BUMBLE
Deliverable 2.2

PAGE 9 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

● Red denotes that the requirement has been defined and refined, and as such has been

addressed, whereas any activities to realise the BUMBLE technologies to satisfy the

requirement are still to be started.

● Yellow reflects that the requirement has not yet been fully satisfied and work to realise the

required BUMBLE technologies is still in progress. A repeatable validation test may or may

not exist already and a partial demonstration may be feasible, where error/warnings may

occur that are still to be resolved as part of finalising the realisation of the BUMBLE

technologies.

● Green indicates that a requirement is fully satisfied by the BUMBLE technologies. This has

been confirmed by a validation test that can be repeated and shown as part of a

demonstrator.

2 BUMBLE Selection of Common Requirements
This chapter summarises a selection of requirements that are common to multiple use cases and

are therefore considered to be addressed by the BUMBLE technologies in a generic way. This

approach allows reusing the BUMBLE technologies and hence shows their generic applicability,

notwithstanding customizations that may have to be done to make them fit specific contexts.

The goal of this chapter is to provide focus points to work packages WP3, WP4 and WP5 on

developing BUMBLE technologies in terms of satisfying requirements common to multiple use

cases. The BUMBLE project does not intend to develop one single set of coherent technological

solutions that covers all listed requirements. This originates not only from support ing both the

Eclipse and MPS based technology platforms, but to some extent also from conflicting contextual

details of the use cases. Instead, the BUMBLE project will develop multiple coherent sets of

technological solutions which each will address a (major) subset of the presented requirements.

This also means that multiple BUMBLE technologies may exist to satisfy the same requirement.

Hence, concrete usage of BUMBLE results still allows a choice to which collection of BUMBLE

technologies suits a use case best.

Since contributions for most individual use cases have focused on core requirements, while

technical requirements need further progress in making technological choices to enable clarifying

them further, this chapter also focuses on core requirements in Section 2.2. It still may happen that

further core requirements may arise during the BUMBLE project and/or that the list of selected

common technical requirements in Section 2.3 will increase. When significant and relevant, updates

and extensions will be documented by just updating the final version of this deliverable.

Note that the referenced UC-specific core and technical requirements can be found in Chapter 3.

2.1 Structuring Requirements along BUMBLE Technology Bricks

In the first version of this document, a further structuring of requirements next to the BUMBLE

features Blended (B), Collaboration (C), Evolution (E), Traceability (T) and Non-Conformance (N)

was introduced. This additional structuring was comprised of the following categories:

● Blended Modelling

● Real-Time Collaboration

● Model Non-Conformance

● Contextual Integration

● Model Life-Cycle Management, with sub-categories:

10§

BUMBLE
Deliverable 2.2

PAGE 10 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

o Version control (Non-Real-Time Collaboration)

o Persistence

o (Automated) (Co-)Evolution

o Access control

In the second version, progressed insights in the BUMBLE project led to a slightly different

categorization that especially helps in further structuring the common technical requirements. These

new categories are called BUMBLE Technology Bricks, and – as the term suggests – they span the

space of partial solutions that are being developed in the BUMBLE project. This categorization

along these bricks has been kept in this version as well.

The Technology Bricks, according to which the common requirements in this section are organised,

are as follows:

● Editor Generators: Derive blended editors from meta-model definitions. Either create fully

functional editors out of the box or create extensible templates for blended editors.

● Blended Editors: The editors themselves, regardless of concrete syntax.

● Blended Model Access: Provide access to the models that are edited in a blended way. This

technology brick contains all functionality that is not part of the editors themselves, e.g.,

functionality for access control to the models.

● Collaboration Engine: Ensure that concurrent changes are synchronised between users and

that conflicts are resolved.

● Diff and Merge: Provide conflict resolution mechanisms in case collaboration happens on a file

level, e.g., via version control.

● (Meta-)Model Co-Evolution: Ensure that models are updated regardless of their concrete

syntax when the meta-model changes.

● Platform Integration: Address all aspects that are related to embedding the editor generators

and the blended editors into the respective platform (e.g., Eclipse, MPS, or VS.code).

Both the Blended Editors and the Platform Integration technology brick have no associated core

requirements. Instead, they address technical requirements only. When designing the technology

bricks, it became clear that much of the editor functionality is independent of the concrete syntax

and has therefore been moved to other technology bricks such as blended model access. The

requirements for platform integration are likewise not at the core of the project but result from the

necessity to embed the project results into existing IDEs.

2.2 BUMBLE Core Stakeholder Requirements

2.2.1 Editor Generators

At the core of BUMBLE is the ability to exploit multiple syntaxes for a DSML in a flexible way. This

introduces several requirements compared to what is supported by existing DSML technologies.

Requirements for typical facilities provided by DSML technologies such as syntax highlighting,

content assist, auto-completion, (while-you-type) model validation, warning/error notifications, and

artefact generation are basically the same for the BUMBLE technologies and are therefore not listed

here. Nevertheless, it is explicitly stated by all use cases that such traditional facilities should

basically be agnostic to the specific set of supported concrete syntaxes for a DSML model definition.

Here, we focus on requirements introduced by the novelty of requiring support for multiple syntaxes

as identified by almost all use cases. Blended modelling particularly extends the facility of

structuring models in multiple (possibly configurable or predefined) editors/views to enable

supporting multiple syntaxes for the same elements of a DSML model definition. The need to enable

11§

BUMBLE
Deliverable 2.2

PAGE 11 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

this in a cost-effective way at high quality is reflected in the BUMBLE technology brick Editor

Generators. For this, the following common core requirements are selected.

ID
Classification
(B, C, E, T, N)

Description of Requirement
Cover UC-Specific Core
Requirement(s)

BC1 B

It must be possible to define multiple concrete
syntaxes / representations for a single DSML
model definition, including relevant views or
editors conforming to the concrete syntaxes /
representations.

C1.1, C1.2, C2.1, C3.7,
C3.11, C3.12, C3.16, C3.17,

C4.11, C4.16, C7.1, C7.2,
C8.11, C10.2, C10.3, C11.1,

C12.1, C12.2

BC2 B

A DSML user must be able to select a preferred
concrete syntax / representation for a DSML
model instance. A DSML developer must define a
default concrete syntax / representation.

C1.1, C2.1, C3.7, C4.11,
C7.10, C8.11, C10.2, C11.1,

C12.1, C12.2

2.2.2 Blended Model Access

The requirements for having different users applying the blended editors are collected in this

category. Blended editors require different users to specify which editing syntax is applied, whereas

for the model content it should be indifferent which variant they apply.

Further, several use cases require the ability to use access control, which is clearly related to the

aspect of collaboration albeit with the additional need to limit freedom. Such limitations may refer

to individual elements of a DSML or to complete DSMLs. Other use cases have not specified such

need. The BUMBLE technologies should support both cases, i.e., with and without access control.

ID
Classification
(B, C, E, T, N)

Description of Requirement
Cover UC-Specific Core
Requirement(s)

BC3 B, C, E, T

In case multiple syntaxes exist for a (single
element of a) DSML model definition, all
concrete syntaxes / representations must be
updated in accordance with any changes that
have been performed by means of using one of
those syntaxes.

C1.3, C1.4, C1.5, C2.2,
C2.3, C2.7, C4.16, C4.17,

C5.1, C5.2, C5.5, C6.1,
C7.3, C10.7, C11.2, C11.3,

C12.3, C12.4

BC4 B, C, E, T

In case multiple syntaxes exist for a (single
element of a) DSML model definition, it must be
possible that certain elements may not be
visible in one or more specific concrete
syntaxes.

C1.3, C1.2, C1.4, C1.5,
C2.2, C2.4, C2.6, C2.7,

C3.3, C3.8, C3.11, C3.12,
C3.14, C4.11, C4.17, C5.1,

C5.2, C5.3, C5.4, C5.5,
C6.1, C6.2, C6.3, C7.2,
C10.2, C10.3, C10.4,
C10.7, C10.8, C11.1,
C11.3, C12.3, C12.4

BC10 C, E, T

In view of various CRUD functionalities, related
to collaboration and (traceability in the context
of) evolution, it must be possible that DSML
users can be identified by means of a(n) (single)
authentication step (e.g., with a login) when
accessing the modelling environment.

C4.1, C8.1, C12.7

12§

BUMBLE
Deliverable 2.2

PAGE 12 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

BC11 C, E, T

It must be possible to define different levels of
(CRUD) access for DSML users. In case multiple
access levels exist, the BUMBLE framework
should enforce conformance to such access
levels based on the authentication step executed
when DSML users access the modelling
environment.

C4.1, C4.5, C3.22, C8.3

BC12 C, E, T

In case access control is used, then based on the
level of (CRUD) access a DSML user has (possibly
including different levels of administrator roles),
(s)he must be able to modify the level of (CRUD)
access for him/her-self or other DSML users.

C4.5, C8.5

BC13 C, E, T

By default, a DSML user must at least have full
access rights to model elements that (s)he
modified. In particular, while editing a DSML
instance, a DSML user must at least be able to
perform undo actions for modification that (s)he
made and is (by default) not able to undo
modifications performed by other DSML users.

C4.17

2.2.3 Collaboration Engine

Another novelty of BUMBLE is the ability to support real-time collaboration between multi DSML

users that access the same (collection of) DSML model instance(s), although this is not a

requirement for all use cases. Various use cases that do require real -time collaboration, refer to a

web-based approach although not all use cases require or specify this. Collaboration at DSML

development is not explicitly expressed for any of the use cases and therefore not considered

explicitly in BUMBLE. There are no shared requirements in terms of real-time collaboration-specific

facilities such as a chat capability, the possibility of free-form textual reviewing annotations or

feedback on which model element(s) other DSML users are editing/viewing at the same moment in

time.

Although DSML technologies allow for developing the next generation of modelling environments,

these are generally to be integrated as part of a bigger context (which may not rely on any DSML

technology) for collaboration purposes. Since BUMBLE technologies should facilitate such

capability, a common requirement is identified to capture this aspect even though only use cases

UC4 and UC7 explicitly express a clear need for being integrable in a larger context.

ID
Classification
(B, C, E, T, N)

Description of Requirement
Cover UC-Specific Core
Requirement(s)

BC5 B, C, E

It should be possible to support real-time
collaboration between multiple DSML users. This
means that - independent of which concrete
syntax the DSML users have chosen - changes by
an individual DSML user are instantly visible to all
other DSML users that have viewing/reading
and/or editing/writing rights to the considered
(collection of) DSML model instance(s).

C1.5, C3.23, C3.24, C4.12,
C5.3, C7.3, C12.5

BC6 B, C

It must be possible to integrate BUMBLE-based
DSML environments in larger non-DSML-
technology-based applications, the latter
enabling real-time or non-real-time

C4.23, C4.26, C7.1

13§

BUMBLE
Deliverable 2.2

PAGE 13 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

collaboration between users in a larger context
(i.e., including users who do not apply DSML
technology).

2.2.4 Diff and Merge

Most use cases describe a need for having support for file-based version control, which is a means

to support non-real-time collaboration between multiple DSML users of the same (collection of)

DSML model instance(s) and between multiple DSML developers of the same (collection of) DSML

model definition(s). Although GIT is mentioned in all these use cases as a concrete version control

system that is to be supported, also SVN is mentioned as relevant, while one use case mentions

PLM as well in this context.

ID
Classification
(B, C, E, T, N)

Description of Requirement
Cover UC-Specific Core
Requirement(s)

BC7 C, E, T

It must be possible to exploit file-based version
control, including diff/merge and tagging
functionalities for both DSML model definitions
and instances.

C1.6, C3.19, C3.24, C4.4,
C4.15, C4.22, C5.4, C7.6,

C7.7, C10.10, C11.7, C12.6,
C12.10

BC8 B, C, E

Diff/merge functionality should be available at
the model level instead of the underlying
persistence format, where a DSML user can
perform a diff/merge in a concrete syntax of
choice (e.g., textual, or graphical).

C3.20, C3.21, C7.7, C10.10

2.2.5 (Meta-)Model Co-Evolution

Although not many use cases in the previous chapters explicitly address details of (co-)evolution of

(collections of interrelated) DSML model definitions and instances, taking the ability to support such

capabilities has an important impact on primary facilities to be realised by the BUMBLE

technologies.

ID
Classification
(B, C, E, T, N)

Description of Requirement
Cover UC-Specific Core
Requirement(s)

BC9 E, T

It should be possible to deploy a new version of
a DSML model definition by means of
automatically migrating existing instances of that
DSML model definition. In conjunction with that,
cross-references to other DSML model
definitions and instances must be migrated
automatically.

C2.3, C2.4, C2.5, C4.19,
C5.4, C11.15

2.2.6 Model Non-Conformance

Only use case UC3 explicitly specifies requirements on the ability to have support for model non -

conformance that do not relate to support for intermediate states of modifying a DSML model

instance that does not conform to its DSML model definition (which is generally needed when relying

on a parser-based approach). Since no other use case expresses requirements on model non-

conformance, no shared common requirements on model non-conformance are identified.

14§

BUMBLE
Deliverable 2.2

PAGE 14 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

2.2.7 Persistence

File-based persistence of DSML model definitions and instances is not only in view of the need to

support file-based version control, but also to allow interaction with tools that are outside of the

DSML context. In general, DSML technologies allow persistence or (de-)serialisation by means of

generators and parsers. While this is generally independent of the way a DSML model is dealt with

in a DSML tool, there are use cases for which a one-to-one relation is required between the structure

of DSML model definitions and files persisting instances of those DSML model definitions. Other

use cases do not require nor wish such a one-to-one relation but some different mapping. This

aspect is therefore considered to be specific for the DSML context of such use cases and hence,

there are no common requirements selected. Nevertheless, the BUMBLE technologies must support

these different approaches and can rely on the capability of existing DSML technologies to do so.

2.3 BUMBLE Technical Solution Requirements

BUMBLE focuses on two DSML technology platforms as a starting point: Eclipse and MPS. We also

consider interaction across these DSML technology platforms (including others given the concrete

context in certain use cases). For each of these DSML technology platforms, different architectural

and design choices can be made on how to realise the required BUMBLE functionalities. The

various approaches are primarily to be documented in Deliverables D3.1, D3.2, and D3.3. In this

section, we consider selected common technical requirements considering (and hence referring to)

relevant DSML technology platform contexts.

2.3.1 Blended Editors

Many of the blended editor requirements hold for both DSML technology platforms, while few are

specific to a DSML technology platform choice. It is recognized that some of the technical

requirements may individually already be satisfied by existing DSML technologies available for one

or both DSML technology platforms. This allows BUMBLE to reuse and extend such existing

technologies. It also helps in connecting to existing open-source communities for exploitation of the

BUMBLE technological solutions.

ID
Classification
(B, C, E, T, N)

Description of Requirement
Cover UC-Specific Core
Requirement(s)

BT2 B It must be possible to define (a) textual
editor(s)/view(s) for (elements of) a DSML model
definition.

BC1

BT3 B It must be possible to define (a) graphical
editor(s)/view(s) for (elements of) a DSML model
definition.

BC1

BT4 B It must be possible to define (a) form-based
editor(s) (including tabular-like layouted forms)
for a DSML model definition.

BC1

2.3.2 Editor Generators

The availability of blended editors from the previous section is facilitated in a cost-effective way at

higher quality when they can be generated from the DSML model definition. The common

requirements are overlapping with the requirements for blended editors, although they pertain to

the generation facilities in this case.

15§

BUMBLE
Deliverable 2.2

PAGE 15 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

ID
Classification
(B, C, E, T, N)

Description of Requirement
Cover UC-Specific Core
Requirement(s)

BT1 B
At least one editor/view (i.e., concrete syntax)
should be generated automatically (on-the-fly or
on demand) for a DSML model definition.

BC1, BC2

BT2 B It must be possible to define (a) textual
editor(s)/view(s) for (elements of) a DSML model
definition.

BC1

BT3 B It must be possible to define (a) graphical
editor(s)/view(s) for (elements of) a DSML model
definition.

BC1

BT4 B It must be possible to define (a) form-based
editor(s) (including tabular-like layouted forms)
for a DSML model definition.

BC1

2.3.3 Blended Model Access

The requirements for having different users applying the blended editors are collected in this

category. Blended editors require different users to specify which editing syntax is applied, whereas

for the model content it should be indifferent which variant they apply.

Additionally, there is a common technical requirement for access control to identify users and their

roles/authorization levels. Further detailing can emerge during the BUMBLE project when more

practical experience is obtained in deploying the BUMBLE technologies with respect to

collaboration.

ID
Classification
(B, C, E, T, N)

Description of Requirement
Cover UC-Specific Core
Requirement(s)

BT7 B, C, T

Cross-referencing between elements of the same
or different DSML model instances must be
agnostic to any specific syntax that a DSML user
may have selected to edit/view such DSML
model instance(s).

BC1, BC2

BT8 B, C, E, T In case multiple syntaxes exist for a (single
element of a) DSML model definition, DSML
developers must be able to exploit semi-
automatic approach to generate
synchronisation and/or transformation
mechanisms that operate at the level of the
elements of the relevant DSML model
definitions to update all concrete syntaxes /
representations in accordance with any
changes that may have been performed by
using one of those syntaxes. This must enable
at least one of the following capabilities:

● automated real-time (on-the-fly)
synchronisation/transformation.

● on-demand (i.e., based on an explicit
request of a DSML user)

BC1, BC3, BC4, BC6, BC7,
BC8

16§

BUMBLE
Deliverable 2.2

PAGE 16 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

synchronisation/transformation.

Next to this, it should also enable supporting:

● synchronisation/transformation via file-
based version control.

BT9 B, E It must be possible to view errors/notifications
on the results of DSML model instance validation
in the editor/view for any concrete syntax that
represents (elements of) the corresponding
DSML model definition. Model validation is
therefore to be realised at the level of (elements
of) the relevant DSML model definitions while
the interaction with the DSML user is to be
performed via all of the available concrete
syntaxes.

BC4

BT10 B, T Errors/notifications on the results of DSML
model instance validation must be provided with
a reference to the relevant element(s)
represented by any concrete syntax of that DSML
model instance and/or of other relevant DSML
model instances causing the error/notification to
be present.

BC4

BT11

Eclipse
only

B It must be possible to create/use EMOF-based
DSML model definitions.

BC1

BT12
Eclipse
only

B It must be possible to define (a) Xtext-based
textual editor(s)/view(s) for a DSML.

BC1

BT13
Eclipse
only

B It must be possible to define (a) tree-based
editor(s)/view(s) for (elements of) a DSML model
definition.

BC1

BT19 C, E, T File-based version control must at least be
possible based on the traditional GIT and SVN
approaches (for both DSML model definitions
and DSML model instances).

BC7, BC8

BT21 C, E, T Version control of DSML model definitions must
not break concurrent use of instances of such
DSML model definitions. Any conflicts that may
arise must be either taken care of automatically
or resolved by DSML users.

BC7, BC8, BC9

BT25 C, E, T DSML users can authenticate via standard
external infrastructural authentication services,
including LDAP and OAUTH22.

BC10, BC11, BC12, BC13

2 Although not explicitly mentioned by use cases, support for authentication via SSSD and/or
Microsoft AD services may also be required.

17§

BUMBLE
Deliverable 2.2

PAGE 17 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

2.3.4 Collaboration Engine

Real-time collaboration as considered by some use cases is assumed to be based on a server -

client approach, where the server and the different clients may or may not exist at different

computers. This allows for real-time collaboration between more traditional desktop application

clients and a centralised server, as well as for real-time collaboration exploiting web-clients using

traditional internet-browser technology and a centralised server. Both options are considered

relevant in the BUMBLE context, although some use cases are specifically referring to the web-

based approach.

ID
Classification
(B, C, E, T, N)

Description of Requirement
Cover UC-Specific Core
Requirement(s)

BT14 B, C, E, T

Changes of (elements of) DSML model instances
by one DSML user must automatically become
visible to all DSML users editing/viewing those
(elements of) the DSML model instances in (near)
real-time.

BC1, BC3, BC4, BC5

BT15

Eclipse
only

B, C, E, T, N DSML developers should be able to realise real-
time collaboration (e.g., based on an LSP/GLSP-
based approach) using an extension (i.e., by
means of plugins) of the existing Eclipse IDE as
desktop-client application.

Note: DSML developers may also use a different
approach

BC4, BC5

BT16

MPS
only

B, C, E, T DSML developers should be able to realise real-
time collaboration based on using an MPS
Model Server, where the options of using an
extension (i.e., by means of plugins) of the
existing MPS IDE as desktop-client application
and/or a web-client must be supported.
Note: DSML developers may also use a different
approach.

BC4, BC5

2.3.5 Diff and Merge

A few specific version control systems, mentioned in the context of different use cases, are to be

supported. This leads to a few common technical requirements.

ID
Classification
(B, C, E, T, N)

Description of Requirement
Cover UC-Specific Core
Requirement(s)

BT20 B, C, E, T

Version control functionality (e.g.,
diff/merge/tagging) should be accessible by a
DSML user at any available concrete syntax for
the considered (collection of) (elements of) (a)
DSML model instance. This requires diff/merge
functionality at persistence level to be (bi-
directionally) linked to diff/merge views at DSML
model instance level.

BC1, BC2, BC7, BC8

BT23 E, T DSML users who are editing/viewing instances of
DSML model definitions that are updated with a
new version by a DSML developer should be able

BC9

18§

BUMBLE
Deliverable 2.2

PAGE 18 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

to view the differences with the previous version
to be able to understand the impact of automatic
migrations of these instances.

2.3.6 (Meta-)Model Co-Evolution

The (co-)evolution of (collections of interrelated) DSML model definitions and instances leads to a

few relevant requirements on the primary facilities to be realised by the BUMBLE technologies.

ID
Classification
(B, C, E, T, N)

Description of Requirement
Cover UC-Specific Core
Requirement(s)

BT22 E, T

DSML users who are editing/viewing instances of
DSML model definitions that are to be updated
with a new version by a DSML developer should
be informed about an (upcoming) migration of
these instances.

BC9

BT24 E, T Migration of instances of DSML model definitions
to a new version should come with migration of
relevant editors/views for all existing concrete
syntaxes.

BC1, BC9

2.3.7 Platform Integration

Platform integration requirements stem from the internal requirements to be able to integrate

solutions in larger contexts. Additionally, two use cases explicitly expressed a need for integrating

their BUMBLE-based DSML solutions as part of a larger application context.

ID
Classification
(B, C, E, T, N)

Description of Requirement
Cover UC-Specific Core
Requirement(s)

BT5 B
DSML users must be able to choose the
editor/view (i.e., concrete syntax) to be used to
edit/view (elements of) a DSML model instance.

BC2

BT6 B DSML developers must be able to specify a
default editor/view (i.e., concrete syntax) for
(elements of) a DSML model instance that is
presented to a DSML user if (s)he has not (yet)
made a choose for a preferred alternative
editor/view (i.e., concrete syntax) (if
alternative(s) would be available).

BC2

BT9 B, E It must be possible to view errors/notifications
on the results of DSML model instance validation
in the editor/view for any concrete syntax that
represents (elements of) the corresponding
DSML model definition. Model validation is
therefore to be realised at the level of (elements
of) the relevant DSML model definitions while
the interaction with the DSML user is to be
performed via all of the available concrete
syntaxes.

BC4

19§

BUMBLE
Deliverable 2.2

PAGE 19 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

BT10 B, T Errors/notifications on the results of DSML
model instance validation must be provided with
a reference to the relevant element(s)
represented by any concrete syntax of that DSML
model instance and/or of other relevant DSML
model instances causing the error/notification to
be present.

BC4

BT17 B, C, E, T It must be possible to integrate BUMBLE
technological solutions as ‘DSML components’ in
a larger non DSML-technology based application.

BC1, BC2, BC3, BC4, BC5,
BC6, BC10, BC11, BC12,

BC13

BT18 B, C, E, T In the case of integrating BUMBLE technological
solutions as ‘DSML components’ in a bigger (non
DSML-technology based) modelling
environments, it must be possible to use
traditional GUI widgets to represent certain
elements of DSML model instances, i.e.,
traditional GUI widgets such as a checkbox or
radio button being a (default) concrete syntax.

BC1, BC2, BC3, BC4, BC6

3 Use Case Requirements

3.1 UC1 - Software Open-Source Blended Modelling

This use case covers a public showcase for the BUMBLE technologies. Starting from a EMOF-

based DSML, the BUMBLE framework is expected to provide the possibility to generate at least two

model specific notations, one graphical and one textual, and related editors. In addition, the

BUMBLE framework will need to support model synchronisation mappings between the DSML and

the generated notations. Given the DSML, the generated notations, and the model synchronisation

mappings, the framework is expected to semi-automatically generate synchronisation mechanisms

between notations and DSML and co-evolution transformations. In addition, the framework should

provide an API to access the elements of the abstract syntax tree to enable traceability to model

elements independent of the concrete notation in which the model is edited.

Given the DSML and its corresponding editor(s), the framework provides a collaboration mechanism

that allows multiple users to collaboratively edit the models in real-time. The collaboration

mechanism is independent of the number of users collaborating on the models at a given moment

in time and supports remotely distributed users. In addition to real-time editing, the collaboration

mechanism should allow to keep track of different versions of the edited models via a set of Git-like

diff/merging functionalities.

3.1.1 Core Stakeholder Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement

C1.1 B, T
The framework shall allow to describe mappings between a DSML specification
(metamodel) and a notation of choice.

20§

BUMBLE
Deliverable 2.2

PAGE 20 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

C1.2 B
Given the DSML specification and the mappings to the notation of choice, the
framework shall semi-automatically generate notation-specific specification
(e.g., grammar) and related editing features.

C1.3 B, C, T

Given the DSML specification and the mappings to the notation of choice and
the notation-specific specification (e.g., grammar), the framework shall semi-
automatically generate synchronisation mechanisms (model transformations)
to keep generated notation and DSML in sync.

C1.4 B, C
The framework shall allow change propagation across notations and
synchronisation both on-demand or on-the-fly, upon user’s choice.

C1.5 C
The framework shall allow a model to be viewed and edited in real-time in a
collaborative fashion by multiple users.

C1.6 C, T
The framework shall allow to version models and apply diff/merge features, in
a GIT-based fashion.

3.1.2 Technical Solution Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement
Details Core
Requirement(s)

T1.1 B, C, T
The framework shall be implemented in the Eclipse
ecosystem.

C1.1, C1.2, C1.3, C1.4,
C1.5, C1.6

T1.2 B, C, T The framework shall support EMOF-based DSMLs.
C1.1, C1.2, C1.3, C1.4,

C1.5, C1.6

3.2 UC2 - Combined Textual and Graphical Modelling of State

Machines in HCL RTist

Users of HCL RTist will be able to use a textual notation for creating, viewing, and editing state

machines, as an alternative to the current graphical notation. The textual notation should use a

syntax that is easy to learn and use. The Eclipse editor that implements the syntax will support

common features such as content assist, navigation etc. These commands will take the semantic

context of the state machine into consideration to provide accurate and relevant results. When

editing a state machine in one notation, information present in other notations will be preserved to

an as large extent possible.

3.2.1 Core Stakeholder Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement

C2.1 B
The textual state machine notation should cover all aspects of UML-RT state
machines. That is, it should be possible to fully define a state machine textually
without using any other notation or view.

C2.2 B

Changes in the state machine model should update the textual notation
without losing non-semantic information it contains, such as comments,
indentations, and other white-space characters. The “layout” of the code as
chosen by the user when typing the text should hence be preserved.

21§

BUMBLE
Deliverable 2.2

PAGE 21 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

C2.3 B, E, T

Changing a state machine in the textual notation should update the semantic
model in a way that preserves the identity of the model elements. For example,
incoming references to the model elements in the state machine should not
become broken unless the target element was deleted or renamed.

C2.4 B, T

References in the textual state machine notation that refer to model elements
defined outside the state machine should be bound to the correct model
element, using the capsule that owns the state machine as the context for
reference resolution.

C2.5 B, T
Like C2.4 Content Assist (a.k.a. “code completion”) for references should utilise
the capsule that owns the state machine as the context for finding valid target
objects for the references.

C2.6 B
Semantic checks (a.k.a. validation rules) should be implemented which detects
semantically incorrect models which the textual syntax permits creating. An
example is creation of an internal transition at state machine level.

C2.7 B
Changes in the state machine model should update the graphical notation
without losing non-semantic information it contains, such as colours, symbol
sizes, line routing and other layout information.

C2.8 C

Textual state machines should work well with the existing Compare/Merge
tooling in RTist. Running a compare or merge session where some state
machines are defined with the textual notation and others with the graphical
notation should be possible.

3.2.2 Technical Solution Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement
Details Core
Requirement(s)

T2.1 B

The Eclipse editor that implements the new state
machine syntax should provide content assist and
navigation that utilises the semantic context of the
state machine.

C2.4

T2.2 B

A textually defined state machine is persisted using
the textual syntax, while other parts of the model
are persisted as XMI. The textual state machine
files should be EMF fragments from a resource
loading point of view.

C2.1

T2.3 B
A textually defined state machine should be
persisted in a file with the file extension .srt (“state
machine real-time”)

C2.1

T2.4 B

When an .srt file is created from an already existing
state machine, the .srt file should be automatically
populated with textual syntax corresponding to
the existing state machine. The syntax should be
formatted so it is readable.

C2.2

22§

BUMBLE
Deliverable 2.2

PAGE 22 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

T2.5 B, T
Items shown in the “Content Assist” popup should
use the same icons and labels as elsewhere in
RTist.

C2.5

T2.6 B

Semantic validation of a textual state machine
should be performed as soon as the text changes,
and errors should be shown both in the text editor
and in the Problems view (with a possibility to
navigate to the correct location in the editor)

C2.6

T2.7 B

When creating a state machine diagram for a
textually defined state machine, it should be
automatically populated with symbols and lines
with a nice, automated layout.

C2.7

T2.8 B

To be able to persist graphical changes made by
the user in a state machine diagram for a textually
defined state machine, an extra file “.srtd” with
the same name as the .srt file should be created
next to it. This file should contain those graphical
changes (e.g., the user-assigned colour of a state
symbol) in a JSON format.

C2.7

T2.9 C
Comparing or merging changes in a textual state
machine should use the usual Eclipse features that
are used for textual files.

C2.8

3.3 UC3 - Vehicular Architectural Modelling in EAST-ADL

Development of automotive embedded systems at Volvo involves large amounts of data from

multiple stakeholders. To organise this data efficiently and ensure that syntax and semantics of the

content are consistent, a metamodel is required.

Autosar and EAST-ADL are architecture description languages for automotive embedded systems,

covering complementary aspects of software, electronics, and mechatronics. Use Case 3 is about

providing multi-mode editing and viewing capabilities for such models, as well as metamodel

evolution support, with focus on EAST-ADL.

3.3.1 Core Stakeholder Requirements

Editors

ID
Classification
(B, C, E, T, N)

Description of Requirement

C3.1 B

It should be possible to split the information in one model into different files.
The package structure uniquely identifies the elements in an EAST-ADL model.
The elements themselves can reside in separate files. The persistence layer the
editors are based on resolves these references automatically in the memory
representation of the model without exposing the concrete file decomposition
to the user.

23§

BUMBLE
Deliverable 2.2

PAGE 23 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

C3.2 B

Information should be possible to subset according to different model aspects.
A particular editor or editor view may address only a subset of the model.
According to:

● Package Containment Edit only elements in the selected package or its sub-
packages.

● Element Kind Edit only elements of a certain kind or set of kinds, e.g.,
related to a package of the metamodel related to, e.g., variability, timing,
behaviour.

● Element Criteria Edit only elements that fulfil a selected set of criteria, e.g.,
allocated to a certain ECU, realising a certain feature, part of a certain
variability configuration, active in a certain mode, etc. In adding elements
in such a view, the model will be updated such that the new element
complies with the criterion. For example, the new element may be
allocated to the ECU, realise the Feature, be part of the variant, etc.

C3.3 B

Shared information relevant only to specific editors (graphical, textual, tree-
based) should be stored separately from the model itself:

● Graphical information such as colours and positions should be stored in a
separate file; the graphical editor aspects shall be separated. This
information needs to be updated if the model is edited in a different
representation.

● Meta information needed by a textual editor shall also be separated.

C3.4 N
It should be possible to create models in the editor that do not fully conform
to the meta-model to ensure rapid prototyping and evolution of content.

C3.5 N
It should be possible to integrate automated semantic checks into the editors
to inform the user about inconsistencies of the model, e.g., with respect to the
meta-model or the semantics.

 (De-)Serialisation

ID
Classification

(B, C, E, T, N)
Description of Requirement

C3.6 B

The order of elements in the EAXML file should be preserved on
deserialization. New elements should be added according to the order in the
tree or textual representation on serialisation. New elements added in the
graphical representation should be added at the end of the list of existing
elements in the respective package. The order of existing elements should be
maintained in the serialisation.

Tree-Based Editing

ID
Classification
(B, C, E, T, N)

Description of Requirement

C3.7 B
The tree-based editor shows all elements of a model using the metamodel
element hierarchy in packageable elements to structure the information.

C3.8 B

Views shall be possible to define based on information sub setting, i.e., only a
subset of model content is exposed according to criteria defined by the user or
pre-defined by the editor (e.g., to only show elements in a specific package of
the meta-model such as timing or variability).

24§

BUMBLE
Deliverable 2.2

PAGE 24 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

C3.9 B
The order of elements in the underlying model can be changed by dragging
elements into a different order in an unsorted view.

C3.10 B

It should be possible to sort the information in the tree by either the meta-class
type, or in alphabetical order of the short name of the element, or in the order
in which they are stored in the underlying EAXML file. View sorting does not
affect the underlying order of elements in the model.

Textual Modelling

ID
Classification
(B, C, E, T, N)

Description of Requirement

C3.11 B

A text editor will typically operate on a subset of the model. Declarations in the
text are probably required to define which packages are available to the
package for anything added. For example, packages with data types or other
elements may be imported and subsequently visible and part of the scope.

Graphical Modelling

ID
Classification
(B, C, E, T, N)

Description of Requirement

C3.12 B

A diagram will concern a subset of the model. This subset will be defined by the
user and needs to be stored for later retrieval. The elements shown in the
diagram are based on a query. This query can select elements that are in a
Parent/child relation (e.g., elements in the same package or function
decomposition), in a reference relation (relations implemented as association
classes in EAST-ADL, e.g., allocations [e.g., elements that are allocated to a
certain ECU], realisations; alternatively relations as references with a role name
from a safety case to other elements), or of the same meta-class (e.g., all
requirements).

C3.13 B
Diagrams depicting a parent/child relation can be instantiated from any editor
by invoking an action on the parent element (e.g., on a package). If no parent
element is selected, a dialog allowing to select a package should be shown.

C3.14 B

It is also necessary to define the context for new elements that are added to the
model in the graphical view. This context defines where in the package
hierarchy new elements are stored and how they are woven with existing
elements, e.g., realising a specific feature or allocating to a specific ECU. The
context can be derived from the query that defines the diagram, since that
query contains the type of relationship that is being shown in the diagram.

C3.15 B

Deleting anything in a diagram is primarily about deleting from the diagram
canvas. If an element shall also be deleted from the model, it must be done
explicitly, e.g., by right clicking or ctrl-deleting. This is because a user may want
to customise the viewpoint and include/exclude elements depending on the
purpose of the diagram.

25§

BUMBLE
Deliverable 2.2

PAGE 25 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

C3.16 B

It should be possible to model concepts in different ways. Containment could,
e.g., be modelled using the black diamond composition relation or direct
graphical containment (boxes within boxes). Both ways of modelling should be
supported and might need to change the appearance of the elements (e.g.,
whether attributes are shown or not). It should be possible to switch between
these alternatives easily.

C3.17 B

It should be possible to have different diagram types that use a slightly different
concrete graphical syntax and different editor capabilities. Timing diagrams can
expose event chains, feature diagrams can show the variation points, structural
diagrams show allocations, and specialised diagrams for the safety cases are
also necessary.

C3.18 B

The editor should support auto-layouting that automatically selects the
diagram type and the kind of visualisation (e.g., composition or containment),
in particular when generating a new diagram from a different editor. Auto-
layouting should be based on element types, i.e., keep elements of the same
type together.

Diffing and Merging

ID
Classification
(B, C, E, T, N)

Description of Requirement

C3.19 C, E
There should be functionality for diffing and merging of EAST-ADL models to
support collaborative modelling of different team members.

C3.20 C, E

Diffing and merging should be performed based on the concrete elements of
the model, i.e., based on the meta-model rather than on the structure of the
file. This means that changes in the order of the underlying EAXML file should
not be made visible to the user.

C3.21 C, E

Visualising and managing diff and merge should be possible in a graphical,
textual, and tree-based view. It should be possible to see conflicts, added
elements, and deleted elements. It should be possible to select the version to
keep.

Multi-User Support

Ideally, multi-user editing should be supported, even though these requirements have low priority.

ID
Classification
(B, C, E, T, N)

Description of Requirement

C3.22 C
It should be possible to define access and editing rights for different
stakeholders that are automatically enforced by the tooling to limit users’
ability to see certain parts of the model or change certain parts of the model.

C3.23 C, E

Two or more users should be able to concurrently edit the same model without
the need for explicit commit and check-out operations. Changes performed by
one user should automatically become visible to the other user. Editing
conflicts should be dealt with using conflict resolution mechanisms (e.g., first
come, first serve).

26§

BUMBLE
Deliverable 2.2

PAGE 26 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

C3.24 C, E

Even if multi-user concurrent editing is available, it should still be possible to
diff and merge a model that has been modified offline with a model that has
been concurrently edited to support engineers that have been working on the
model without access to the concurrent editing environment.

3.3.2 Technical Solution Requirements

The overall solution shall be implemented by means of applying different forms of the Language

Server Protocol (LSP). For each particular editor, a corresponding language server shall be

provided. As a side effect, this will enable the application of the tool within browser -based IDEs as

VS Code and Eclipse Theia.

The textual editor shall be implemented by applying the Xtext framework and its capability of

exporting standalone LSP applications. The graphical editor shall be implemented based on the

Eclipse Graphical Language Server Platform (GLSP). For enabling auto-layouting functions in the

GLSP editors, the Eclipse Layout Kernel (ELK) shall be applied. For implementing the tree editor,

some kind of JSON Forms in combination with LSP will be applied.

ID
Classification
(B, C, E, T, N)

Description of Requirement
Details Core
Requirement(s)

T3.1 B

The usage of Xtext requires a grammar as a basis
for the textual editors. This grammar shall be
inferred from the EAST-ADL metamodel, which is
already provided by Xtext out-of-the-box.
However, such initially metamodel-inferred
grammars are typically not amenable for end
users, so that the language engineer in general
adjusts the initially inferred grammar. This
adjustment procedure must be automated as far as
possible, especially since the EAST-ADL metamodel
and thereby also the inferred grammar can evolve.

C3.1, C3.2, C3.3, C3.4,
C3.5, C3.11

T3.2 B

The currently favoured textual syntax applies
whitespace indentation to define model element
hierarchies and scopes. However, the typical Xtext-
style grammars use brackets to define such
hierarchies and scopes. Thus, corresponding
adaptations shall be implemented to support a
whitespace-aware textual language. This should
also be considered in the automation after the
initial grammar inference (cf. T3.1).

C3.1, C3.2, C3.3, C3.4,
C3.5, C3.11

T3.3 B

On editing one particular text file, the textual
editor shall support referencing and importing
contents of other model parts, which requires
adaptations on the initially generated Xtext
application regarding scoping, linking, etc.

C3.11

T3.4 B

The GLSP approach requires configuring and
implementing a client as well as a server side,
distinguishing the notation-specific client
rendering and the overall model management on
the server side.

Particularly, this includes two aspects. First, the
model information that is relevant to certain views
/ diagrams / text editors must be identified and

C3.1, C3.2, C3.3, C3.4,
C3.5, C3.8, C3.12, C3.13,

C3.14, C3.15, C3.16,
C3.17, C3.18

27§

BUMBLE
Deliverable 2.2

PAGE 27 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

configured for the particular language clients and
servers. Second, so-called handlers decide which
information is notation-specific and/or relevant to
the model. Thus, the particular handlers must be
configured and implemented to separate notation-
specific and model-relevant information and
synchronise if the information is relevant for both
domains.

This effortful procedure shall be conveniently
guided for the language engineer for efficiency
purposes (e.g., by means of documentation and/or
automation).

3.4 UC4 - Cross-Disciplinary Coupling of Models

Canon Production Printing is aiming to increase printer modularity/variability and shortening product

development lead time while maintaining high quality software for each configuration of a Product

Family. The media handling software component requires tight coupling to information from

CAD/CAE models specified in Siemens NX. Mismatches between the CAD/CAE model and the

embedded software leads to errors and underperforming products.

Canon Production Printing wants to explore techniques to enable Collaborative Modelling for cross-

disciplinary models. It should be possible to access the models easily, and switch between multiple

notations (projections in MPS), as well as keeping the models, and their relationships, up t o date

with (almost) no effort from the modellers.

Currently, the threshold of using JetBrains MPS as a tool for collaborating in models is too high; (1)

the default interface is heavily cluttered with tooling for language development, distracting from the

model development, (2) keeping the models (and languages) in sync and up to date is too

complicated for non-daily users, (3) the tooling, including all DSML plugins requires multiple

gigabytes of disk space.

3.4.1 Core Stakeholder Requirements

Modelling and Model Management

ID
Classification
(B, C, E, T, N)

Description of Requirement

C4.1 C, T
DSML users can authenticate themselves to gain access to the model
repository.

C4.2 C, T
DSML users can navigate through (relationships between) the existing models
via hyperlinks.

C4.3 C
DSML users can manage (CRUD) a hierarchy/organisation of models
(folders/packages, as well as model roots), to achieve a maintainable
organisation of the modelling content.

C4.4 C, T
DSML users can tag model versions, so that they can be used as snapshots for
later reference.

28§

BUMBLE
Deliverable 2.2

PAGE 28 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

C4.5 C
Administrators, Qualified DSML Users/Owners can manage user accounts, user
groups, and access levels for the modelling environment and modelling
entities.

C4.6 C
DSML users can generate/download/deploy modelling artefacts, so that
modelling artefacts can be used outside of the modelling environment.

C4.7 C
DSML users can start/perform analysis on a model, to check for the model for
certain properties (correctness, performance, etc.).

C4.8 B, C
DSML users can see errors and feedback (if any) inline in the model editor
(when the erroneous model element is visible in the projection), so that they
can quickly identify issues in the model.

C4.9 B, C
DSML users can see an overview of errors and feedback (if any) in an overview
per model editor (or model package), so that they can quickly identify issues in
the project.

C4.10 C, T
DSML users can follow a modelling reference (hyperlink) from the model editor,
so that they can easily navigate the relationships between models.

Blended Modelling

ID
Classification
(B, C, E, T, N)

Description of Requirement

C4.11 B, C
DSML users can view and edit the models in different projections
simultaneously.

C4.27 B, C, T DSML users can view and diff models (in different projections)

Model Collaboration

ID
Classification
(B, C, E, T, N)

Description of Requirement

C4.12 B, C
DSML users can see the current state of the model when they are connected to
the modelling environment, so that they are always up to date.

C4.13 B, C
Qualified DSML users can retrieve and export models from external sources to
link information between systems.

C4.14 B, C
DSML users can apply (free-form text) reviewing annotations to the
model/model elements, so that they can review and track progress.

C4.15 B, C, E
DSML users can use the mutation history of a model to see the evolution of the
model over time.

C4.16 B, C, T
DSML users can use a notebook-style view on the models, so that they can mix
the content with the description/documentation.

C4.17 B, C, T DSML users can perform undo actions inside a model, so that they can undo
their own changes while other DSML users are performing non-conflicting

29§

BUMBLE
Deliverable 2.2

PAGE 29 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

changes elsewhere in the DSML model instance.

C4.28 B, C, T
DSML users can edit the same part of a model simultaneously; if conflicts occur,
they are preferably automatically resolved, or resolution actions are proposed
to the users.

ID
Classification
(B, C, E, T, N)

Description of Requirement

C4.18 B, C, E, T
DSML developers can deploy a new language version, so that the model users
can make use of the new language features.

C4.19 B, C, E, T
DSML developers can perform (automated) language migrations, so that the
models become consistent with the new language.

Integration

ID
Classification
(B, C, E, T, N)

Description of Requirement

C4.20 B, C
DSML users can instantiate a template for new (related) models using a web-
based wizard, so that creation of new models is low-effort.

C4.21 B, C
DSML developers can create web-based wizards to create templates for models
that have a default structure and sets required dependencies to the DSMLs, to
enable the modelling user to instantiate new models.

C4.22 C
DSML users can (incrementally) import (i.e., uploaded by users, or retrieved
from a server) data from a Git or CAD/CAE repository, so that the external
relationships can remain up to date.

C4.23 B
DSML developers can connect an action (button-press, intention called) in the
(web-based) front-end to a computation/analysis/transformation on the
server, so that the model can be used for analysis/generation purposes.

C4.24 B
DSML users can visualise (interactively, inline, or in an external window) the
results of the modelling artefacts, to achieve a smooth integration between the
specification and the visualisation.

C4.25 C
DSML users can use model editors within a larger application that defines the
workflow of the modelling activity, so that it eases the creation/interaction
with other components.

C4.26 B, C
DSML developers can integrate model editors with web-based components, so
that they can create simplified workflows.

3.4.2 Technical Solution Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement
Details Core
Requirement(s)

30§

BUMBLE
Deliverable 2.2

PAGE 30 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

T4.1 C, T
Users can authenticate him/herself by logging into
the website through a username/password
combination.

C4.1

T4.2 C, T
Users can authenticate themselves in MPS when
connecting to the model repository.

C4.1

T4.3 C, T
Users can authenticate themselves through LDAP
and OAUTH2 services.

C4.1, C4.5

T4.4 B, C
Users can access the model repository through a
website, and through a connection with JetBrains
MPS

C4.2

T4.5 C

Qualified DSML Users/Owners can set access levels
for models and model packages, so that these
models and model packages are
visible/readable/writable by a particular set of
users/groups.

C4.5

T4.6 C
Qualified DSML Users/Owners can set access levels
to models for each defined role.

C4.5

T4.7 C

Administrators can define roles such that Qualified
DSML Users/Owners can assign/remove ‘Ordinary
DSML Users’ to such roles. Administrators can
overrule Qualified DSML Users/Owners.

C4.5

T4.8 C
Qualified DSML Users/Owners can assign/remove
users to groups.

C4.5

T4.9 C
Users can navigate and search (by name, tag,
package, project, owner) the model repository to
find a model.

C4.3

T4.10a C, T
Users can tag models and model versions using
textual tags for later reference.

C4.4

T4.10b C, T
Users can tag model versions using Git tags for
later reference.

C4.4

T4.11 C, T
Users can generate and
download/transport/deploy the artefacts to a
defined location (local PC, Git, Windows Share).

C4.6

T4.12 C
Users can start (predefined) external tools
(simulators, visualisations) from the modelling
environment.

C4.7

T4.13 B, C
DSML users can see errors and feedback (if any)
inline in the model editor, so that they can quickly
identify issues in the model.

C4.8

T4.14 B, C

DSML users can see an overview of errors and
feedback (if any) in an overview per model editor
(or model package), so that they can quickly
identify issues in the project.

C4.9

31§

BUMBLE
Deliverable 2.2

PAGE 31 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

T4.15 B, C, T

DSML users can follow an error in the error
overview to the location where the error is
reported. If the project does not show the
element, the model is selected.

C4.9, C4.10

T4.16 C, T
DSML users can follow a modelling reference
(hyperlink) from the model editor, so that they can
easily navigate the relationships between models.

C4.10

T4.17 B, C

DSML users can view and edit the model through
their individually selected projection, so that they
can simplify/extend the information shown in the
model based on their needs.

C4.11

T4.18 B, C

DSML users can see their model in multiple (at
least two) views, with different projections, so that
they can focus on the structure and particular
details at the same time.

C4.11

T4.19 B
DSML users can use textual syntax (with
highlighting, completion, cross-referencing) within
a graphical (diagrammatic/tabular) model.

C4.11

T4.33 B, C, T
DSML users can see differences between two
versions of a model, where both models are shown
in a projection selected by the user.

C4.27

T4.20 B

DSML developers can set the default view of a
model (entity) to a particular projection, so that
they can simplify/extend the information shown in
the model based on their needs (i.e., DSML
developers can provide a default projection for
DSML users as a starting situation).

C4.11

T4.21 B, C

DSML users can edit a model in each editable view
(text, tables, diagrams, and forms), so that they
have the freedom to choose the most effective
representation.

C4.11

T4.22 B, C
Views are automatically updated upon editing by
other DSML users.

C4.12

T4.23 B, C
DSML users can see collaborative feedback, like
the current selection or cursor location of other
users.

C4.12

T4.24 B, C
DSML users can see which users have the model
open, to improve communication and avoid
modelling conflicts.

C4.12

T4.25 C, E, T
Qualified DSML users can (incrementally) import
from external sources (like Git or CAD/CAE/PLM).

C4.13

T4.26 C, E, T
DSML Developers can specify incremental import
strategies for model types.

C4.13

T4.27 C, E, T
DSML users can resolve merge conflicts, so that the
models remain in a consistent state.

C4.13

32§

BUMBLE
Deliverable 2.2

PAGE 32 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

T4.28 B, C
DSML users can apply (free-form text) reviewing
annotations to the model/model elements, so that
they can review and track progress.

C4.14

T4.29 B, C, E

DSML users can use the mutation history of a
model (by the DSML user him/her-self as well as by
other DSML users), so that the differences over
time can be viewed.

C4.15

T4.30 C, E, T

DSML users can select model versions in the
mutation history, so that they can compare the
current model to the old model in any selected
projection (i.e., any of the available syntaxes).

C4.15

T4.31 B, C, T

DSML users can use a notebook-style view on the
models, so that they can mix (references of) the
model content with the
description/documentation.

C4.16

T4.32 B, C, T

DSML users can perform undo actions inside a
model, so that they can undo their own changes
while other DSML users are performing non-
conflicting changes elsewhere in the DSML model
instance.

C4.17

T4.34 B, C, T
When DSML users create a conflict by editing a
part of a model simultaneously, conflicts are
resolved automatically where possible.

C4.28

T4.35 B, C, T

When DSML users create a conflict by editing a
part of a model simultaneously, and conflict
resolution is not possible, the DSML users are
informed about the conflict, and need to resolve
the conflicts manually before they can continue
editing the model.

C4.28

3.5 UC5 - Reactive and Incremental Transformations across

DSMLs

The Modelling Value Group (MVG) aims for a generic (language independent) open-source solution

for collaborative and blending modelling. The solution is built on top of Dclare. Dclare is an open -

source framework for declarative and reactive model-based solutions. The use case of the MVG

combines collaborative and blending modelling of two different state-transition modelling-languages

that are transformed and synchronised instantly. The modellers (the users in the use-case) can

change their models in different network locations and can view and edit their models in their own

preferred syntax, yet still be able to edit the models together. Changes made by one user are

immediately visible by other users. The use case is based on a combination of highly desired

functionality by customers of the Modelling Value Group, and essential features relevant for most

of the BUMBLE partners.

The two models can both be changed independently and synchronised later-on, or immediately

synchronise when either model is changed. Furthermore, the two models are not wired together

persistently, the transformation will match the models only when synchronised and only change

models when needed.

33§

BUMBLE
Deliverable 2.2

PAGE 33 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

The use case blends two languages that are both languages for defining state-machines. State-

machines are well understood by most of the BUMBLE participants. One of the two languages will

have state-transformations that are children of the source-states (referring to the target state), the

other language will have state-transformations that are children of the state-machine itself (hence

peers from the states and referring to the source and target states). This use case will therefore

contain a non-trivial (bidirectional) language-transformation.

In addition to the model changes, information about all the (editing and viewing) users and the

current focus of each user on a model-element are exchanged and visualised. The goal is to share

information so that a user has a feeling where other users are working (vs looking) at in the

synchronised models. This implies that this information should also be sent across the network and

synchronised over the transformations between different languages.

3.5.1 Core Stakeholder Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement

C5.1 B
Bi-directional immediate transformation and synchronisation for the DSML
user.

C5.2 B Non-trivial bi-directional transformation of abstract syntaxes.

C5.3 C Remote synchronisation across different modelling clients for the DSML user.

C5.4 E
Combining immediate and deferred synchronisation by activating and
deactivating immediate synchronisation and updating models via a VCS when
not synchronising.

C5.5 B
Easy specification of non-trivial bid-directional transformations by the DSML
developer.

C5.6 C
Focus information of the different collaborating users need to be exchanged
and visualised, like google docs functionality.

3.5.2 Technical Solution Requirements

All models and meta-models will be viewed and maintained using MPS. The DclareForMPS engine

will take care of the immediate (reactive) and incremental synchronisation and transformation of the

models. The delta’s broadcast server (part of Dclare) will be used to exchange mutations across

different synchronised MPS clients. The MPS Git integration will be used to synchronise and or

merge in a deferred manner. The rule definition-aspect of DclareForMPS will be used to define the

(bi-directional) transformation between the two abstract syntaxes.

The exchanged meta-information will be part of any Dclare model-element. In this way we can

exchange that information between different technologies like EMF and MPS.

ID
Classification
(B, C, E, T, N)

Description of Requirement
Details Core
Requirement(s)

34§

BUMBLE
Deliverable 2.2

PAGE 34 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

T5.1 B

Persistent models in MPS must keep unchanged
when they are transformed and already consistent
translations according to the transformation
definition (incrementality). That implies that the
node-identities within MPS are also unchanged so
that external references are kept valid.

C5.1, C5.2

T5.2 C
The part (MPS models) that is remotely and
immediately synchronised is chosen using a
dialogue integrated within MPS.

C5.3

T5.3 C

The combination of immediate and deferred
communication will be done consistently, hence
no unnecessary model changes nor unnecessary
conflicts may appear. In this use case we will use
the standard GIT integration of MPS to support the
deferred synchronisation. This implies that
DclareForMPS needs to exchange the identity of
the models and nodes between the (immediate)
collaborating modellers so that they are
recognised by the git pushes and updates as being
the same model-elements.

C5.4

T5.4 B

Since the MPS is used for the editing of the models,
also the definitions of the (bi-directional)
transformations need to be done in a language
that fits the ecosystem of MPS. Preferably by using
the same syntax (base-language) for querying and
manipulating models.

C5.5

T5.5 C

Model elements in Dclare will contain meta-
information and all meta-information will be
exchanged with the remote synchronisation and
transported across the transformation relations.
Meta information is not persistent and therefore
not relevant for deferred synchronisation.

C5.6

T5.6 C

The focus (in the models on the nodes) of the
collaborating MPS clients need to be visualised in
the (projective) editors in MPS. The solution for
this needs to be language independent, so that no
additions to the language need to be made to
support this functionality.

C5.6

T5.7 C, B

Since we want to combine blending and
collaboration we need to ‘transport’ meta
information across the transformed models to
visualise the focus and collaborating users in each
preferred language.

C5.6, C5.1, C5.2

3.6 UC6 - Blended Editing and Consistency Checking of SysML

Models and Related Program Code

The development of large complex embedded systems at Saab involves many different models of

different notation, such as code, SysML, MATLAB, unstructured data, etc. To handle this data

efficiently and ensure that syntax and semantics of the content are consistent, a metamodel is

35§

BUMBLE
Deliverable 2.2

PAGE 35 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

required. The use case is about providing multi-mode editing and viewing capabilities for such

models, as well as metamodel evolution support.

3.6.1 Core Stakeholder Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement

C6.1 B, T
Bi-directional transformation and synchronisation of models, including
graphical traceability.

C6.2 E, N
Model consistency validation with graphical notification of violations between
code and related models.

C6.3 C, E
Feedback changes between code and models, especially in the case of model
validation violations.

3.6.2 Technical Solution Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement
Details Core
Requirement(s)

T6.1 B, T, N
Possible to view several different models related
to code in the same IDE, chosen from CLion or
Eclipse.

C6.1, C6.2, C6.3

T6.2 N Architectural model violations visible in the IDE. C6.2

T6.3 B, E, T
Bidirectional Code to model traceability by
graphical or textual links to related models.

C6.1, C6.2

T6.4 B, E Collaborative feedback is visible in the IDE. C6.3

3.7 UC7 - Multi- and Cross-Disciplinary Modelling Workbench

At Sioux, we intend to blend different but interconnected aspects of a system specification, some

of which are expressed in graphical DSMLs of Supermodels and others in multi -notation DSMLs of

MPS and hence facilitating multi- and cross-disciplinary modelling. Within BUMBLE we aim at

creating a blended modelling environment (ME) that combines the strengths of Supermodels and

MPS. Here, blended refers to mixing different (but potentially interconnected) language instances

on the same model. Live synchronisation is expected between Supermodels and MPS views on the

multi-aspect system specification. Support of version control (Git, SVN) collaboration is expected

between multiple DSML users working on the same model. A first iteration prototype is expected to

visualise differences well enough between models using graphical DSMLs and resolve conflicting

changes on the DSML level.

3.7.1 Core Stakeholder Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement

36§

BUMBLE
Deliverable 2.2

PAGE 36 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

C7.1 B
The blended ME should consist of MPS and of Supermodels as an optional
front-end (both running on the same machine). DSML users perceive the
blended ME as one environment.

C7.2 B
DSML users can use DSMLs in Supermodels to edit (parts of) a model and/or
can use other DSMLs in MPS to edit (other parts of) a model.

C7.3 B Supermodels and MPS editors should be synchronised (on-the-fly).

C7.4 B The blended ME should allow model checks to be triggered from MPS.

C7.5 B The blended ME should allow generation to be triggered from MPS.

C7.6 C, E The blended ME should allow for collaboration via file-based version control.

C7.7 C, E
The blended ME should provide diff and merge functionality on DSML level
from MPS (and optionally from Supermodels).

C7.8 B, E DSML developers can further develop the existing Supermodels DSMLs.

C7.9 B, E
DSML developers can implement (new) DSMLs in MPS for which it can
implement diagrammatic editors in Supermodels.

C7.10 B DSML users can open (or create new) and save (persist) a model from MPS.

3.7.2 Technical Solution Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement
Details Core
Requirement(s)

T7.1 B
The blended ME should provide interfacing
technology suitable to bridge MPS (JVM) and
Supermodels (.NET).

C7.1

T7.2 B
The blended ME should be started by starting
Supermodels and MPS.

C7.1

T7.3 B

The blended ME should allow for flexible
deployments depending on DSML user needs:

● only MPS (Supermodels is not
deployed/started).

● both Supermodels and MPS.

C7.1, C7.2

T7.4 B

Usability: Synchronisation between MPS and
Supermodels should happen fast enough to be
perceived by the user as live updates (probably
less than 0.5s).

C7.3

T7.5 C, E

The blended ME should provide models
persistence mechanisms. At least file based should
be supported among others. (To allow
collaboration via file-based version control).

C7.1, C7.6

37§

BUMBLE
Deliverable 2.2

PAGE 37 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

T7.7 B
Scalability: The blended ME should handle big
models (50+K elements) while keeping the UI
responsive enough.

C7.3, C7.4, C7.5

T7.8 C, E
Usability: visualise differences/conflicts between
models of graphical DSMLs in a concise, readable,
and clear way.

C7.1, C7.7

T7.9 C, E

The interfacing technology and interface
architecture provided by the blended ME should
be flexible enough to accommodate developing
existing and new DSMLs.

C7.8, C7.9

T7.11 B
DSML user should be able to view and edit models
in different notations (syntaxes) for the same
DSML.

C7.1

T7.12 B
DSML user can follow and/or create links between
models of different DSMLs irrespective of their
notation (syntax).

C7.1

3.8 UC8 - Model-Driven Development of Workflow Models for Debt

Collecting Advocacy

HERMES İletisim’s main job is creating digital solutions especially in the Information

Communication Technologies and Business Process Management area. HERMES provides Model

Driven Engineering Solution for the development of Rule Based Workflow and Business Process

Management Systems for various domains. Our aim is to design and implement a model-driven

engineering platform to ensure Business Process Management for Debt-Collector Advocates,

shortly called BPM4DCA. Debt Collector Advocates (DCA) usually cannot reach their

customers/debtors by using a single way of communication like Phone Call, SMS, Voice Message

or National ID SMS. Reaching a debtor, in fact, needs mostly reaching his/her guarantor, mother,

father or other relatives in many different ways. Moreover, these debt collectors should deal with

more than 10.000 case files on average which must be handled only in one month. Modelling with

BPM4DCA consists of both various modelling viewpoints and the construction of relations required

for managing the desired workflows. The blended modelling approach brought by the BUMBLE

project will facilitate modelling and implementation of both choreography and orchestration of

complex business services inside BPM4DCA.

3.8.1 Core Stakeholder Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement

C8.1 C
Users can be authenticated to login to get access to a graphical and textual
modelling environment and repository.

C8.2 B
Users can design their workflow by drag-and-dropping the elements in an
editing environment.

C8.3 C, T Users can access their previously accessed models on a system.

38§

BUMBLE
Deliverable 2.2

PAGE 38 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

C8.4 B Users can view and draw graphically their workflow’s rules.

C8.5 C, T
Administrator users can give different priorities to manage and control their
access to the existing models.

C8.6 T
Users can perform live tests for their workflows to be able to trace the model's
instances and if these are defined properly.

C8.7 B
Users can be informed about the notifications and errors in the modelling
environment.

C8.8 B, C
Users can edit their defined rules to represent them in a graphical view
simultaneously.

C8.9 T Users can store the models in a database to ease accessing them.

C8.10 B, C, T
Users can fork new tasks by using the attributes of the current task and
visualise relations of their workflows in a single diagram.

C8.11 B
Users can modify the workflow in a textual and graphical editing environment
with low code or no code.

3.8.2 Technical Solution Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement
Details Core

Requirement(s)

T8.1 B
The workflow rules will be written in JsonLogic
format.

C8.1, C8.4

T8.2 B
The workflow rules will be modelled in the
Blockly environment based on BPM4DCA’s
graphical syntax for rule creation

C8.4, C8.6, C8.7

T8.3 B, T

Workflow rules will be graphically or textually
edited at the same time (Synchronisation
between rule models in JsonLogic and Blockly will
be automatically provided).

C8.4, C8.11

T8.4 B
The model will be generated in XML format to
store in the database.

C8.1, C8.3, C8.5, C8.9

T8.5 B
Design of the workflow will be performed inside
BPMDCA’s graphical modelling environment
based on the MxGraph.

C8.2, C8.6, C8.7, C8.8,
C8.10

T8.6 B
XML encoded workflow models will also be
textually created or edited.

C8.10

T8.7 B, T
All BPM4DCA workflows will be graphically or
textually edited at the same time
(Synchronisation between workflow models in

C8.8, C8.11

39§

BUMBLE
Deliverable 2.2

PAGE 39 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

XML and MxGraph will be automatically
provided).

3.9 UC9 - Automated Design Rule Verification on Vehicle Models

Ford Otosan aims to have a software solution that automates design rule verification on vehicle

models in collaboration with UNIT Information Technologies R&D Ltd. Two main components of

the use case will benefit from the software deliverables of the BUMBLE project: the textual and

graphical representation of design requirements and touch conditions; the synchronisation of

design rules with the geometry and product manufacturing information.

We’ll develop a textual domain-specific language to formalise clearance rules of Ford-Otosan

conforming to ISO’s XMI standard (ISO/IEC 19503:2005) and a graphical projection of the touch

conditions of parts in the 3D models. We’ll check the validity of the design rules against

manufacturing and geometric data using ISO’s JT Standard (ISO 14306:2017) using a

synchronisation engine to be developed on top of traceability facilities of the BUMBLE project.

The BUMBLE features covered by this use case are:

● Blended Syntaxes and Modelling (B): We aim at using BUMBLE modules that support

generation of the blended modelling environment. We will develop two domain specific

languages: a graphical touch-condition diagram that identifies subsystem and part hierarchy

as well as touch conditions and a textual, syntax-directed editor for design-rule specification.

● Collaborative Modelling (C): Since different engineering teams work on various subsystems of

a vehicle model under development, the design rule repository should allow for collaborative

editing. Therefore, we aim to exploit the features of the BUMBLE project that facilitates

collaborative modelling, particularly on the textual part of the blended language.

● Traceability (T): All touch conditions should be traced back to the CAD designs of the vehicles

aligning with the ISO’s JT Standard (ISO 14306:2017). Actually, all touch conditions must be

first generated from the CAD designs and then kept synchronised throughout the design

process. If there is an inconsistency detected among synchronisation points, it should be

reported to the development team pinpointing the source of the inconsistency.

● Model Non-Conformance (N): The main purpose of the project is to identify clearance

violations among touch conditions, which requires automated geometric reasoning on CAD

models. This can be only achieved by checking whether CAD design meets the design rules

(mainly clearance rules). Therefore, this module will be separately developed by UNIT and

integrated to the BUMBLE’s blended modelling environment on top of the traceability

infrastructure of the BUMBLE environment.

3.9.1 Core Stakeholder Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement

C9.1 B

The textual Clearance Rule Specification notation should cover all aspects of
part hierarchy and Clearance Rules as well as touch conditions of parts. The
editor should allow DSML users to create and update clearance rules without
using any other notation or view.

C9.2 B Changes in specification rules of a given vehicle model should update the
textual notation without losing non-semantic information it contains, such as

40§

BUMBLE
Deliverable 2.2

PAGE 40 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

comments, indentations, and other white-space characters.

C9.3 B, E, T
Changing a Rule of a specific part in the textual notation should update the
semantic model in a way that the identity of the model elements and their
relative geometrical positions to other parts are preserved.

C9.4 B, T
References in the textual specification that refer to other elements defined
outside the clearance rule specification should be bound to the correct model
element.

C9.5 B, T

Like C2.4 Content Assist (a.k.a. “code completion”) for references should utilise
an external part hierarchy model in which a hierarchical data structure is
defined and for each part or subsystem in the hierarchy has its own properties
such as identifiers and geometric data. This data should be able to be used for
content assist.

C9.6 B

Semantic checks (a.k.a. validation rules) should be implemented which detects
semantically incorrect models which the textual syntax permits creating. For
instance, if there is no touch condition defined in the geometric data then a
clearance rule from part to part should not be created. However, a clearance
should be able to be created among modules.

C9.7 B
Changes in the state machine model should update the graphical notation
without losing non-semantic information it contains, such as colours, symbol
sizes, line routing and other layout information.

C9.8 B, C, T
The tool shall support version control, and diff and merge operations, on a state
machine, with the possibility to see a graphical representation of the
differences between versions.

3.9.2 Technical Solution Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement
Details Core
Requirement(s)

T9.1 B, T
The Tool should enable synchronisation of a
projectional Graphical notation for touch
conditions.

C9.4

T9.2 B
A textually defined Design Rule should be
persisted using the textual syntax, while other
parts of the model be persisted as XMI.

C9.2

T9.3 B

a graphical projection of the touch conditions of
parts in the 3D models. We’ll check the validity of
the design rules against manufacturing and
geometric data using ISO’s JT Standard (ISO
14306:2017) using a synchronisation engine to be
developed on top of traceability facilities of the
BUMBLE project.

C9.6

T9.4 N
The Design Rules should be validated against
graphical Data.

C9.6, C9.7

41§

BUMBLE
Deliverable 2.2

PAGE 41 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

3.10 UC10 - Development Process of Low-Level Software

Unibap is a young tech company, with a high level of innovation and variation in our portfolio, and

a wide range of skills and projects distributed among a relatively small number of employees. Our

projects flow along a chain where each step involves different people, skills, and tools. This diversity

introduces problems such as risk of miscommunication, difficulties in resource distribution,

complicated documentation, and more. The possibility to collaborate on and automatically switch

between representations of a model would both streamline our processes and eliminate several of

the risk factors, which is of great importance in our development of safety critical components. In

short, BUMBLE technology would support companies like Unibap in efficient utilisation of valuable

resources, as well as in ensuring high quality in our products.

3.10.1 Core Stakeholder Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement

C10.1 B The tool shall support creating a state machine as UML, and as XML.

C10.2 B
The tool shall support display of a state machine at diagram level as UML, as
XML, and as a state-event table.

C10.3 B
The tool shall support editing of a state machine at diagram level as UML, as
XML, and as a state event table.

C10.4 B
The tool shall support addition and display of snippets of full C17 to a state
machine state.

C10.5 B
The tool shall support dependencies on internal and external libraries for the
C17 snippets in a state machine state.

C10.6 B
The tool should support nested includes for the C17 snippets in a state machine
state.

C10.7 B, N
The tool shall automatically convert between UML, XML, and state-event table
representations of a state machine diagram on request, without loss of
information that cannot be displayed in the current representation.

C10.8 B, N
The GUI of the tool shall indicate when there is information that is not visible
in the current representation.

C10.9 T
The tool shall provide statistics of what states and branches have run during a
test, and what C functions have been called from these.

C10.10 B, C, T
The tool shall support version control, and diff and merge operations, on a state
machine, with the possibility to see a graphical representation of the
differences between versions.

C10.11 B
The tool shall be able to generate a fully functional C code representation of a
state machine for export on request.

42§

BUMBLE
Deliverable 2.2

PAGE 42 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

3.10.2 Technical Solution Requirements

We are currently investigating HCL RTist as a potential match for our requirements. Depending on

the result, we may present additional technical requirements in future versions of this document.

ID
Classification
(B, C, E, T, N)

Description of Requirement
Details Core
Requirement(s)

T10.1 -
It must be possible to use the tool in a Linux
environment.

-

3.11 UC11 - Multi-Aspect Modelling for Highly Configurable

Automotive Test Beds Ready for Smart Engineering Demands

At BUMBLE (and HybriDLUX), AVL wants to extend existing and new DSLs with the ideas of

blended and collaborative modelling. Regarding collaborative modelling, two dimensions are of

interest: One is about enhancing existing/new DSLs in terms of collaborative modelling within a

dedicated user group/department (e.g., graphical model diff), while the second dimension is about

collaborative modelling across departments. To somewhat concretize the DSLs applied in this

context, the following three DSLs will be considered here:

● DSL A for measurement device specification (textual and graphical aspects) with database

integration and code generation - related to department X.

● DSL B for measurement device integration test definition (textual and graphical aspects) -

related to department Y. This DSL has links to DSL A regarding the reuse of the data sets there.

Furthermore, DSL B is considered for test case generation.

● DSL C for the definition of step-by-step instructions (textual, graphical and 3D CAD aspects),

applied in department Z. This DSL also has direct links to DSL A. Generated results of this DSL

are interactive documentations (e.g., web-based) up to virtual and augmented reality

applications.

Intra-departmental collaboration is most relevant for DSL A, while inter-departmental collaboration

is relevant for DSL B and DSL C. Note that there is not a single physical source or data model for

all DSLs. Instead, the DSLs are developed independently, but are actively linked for reuse of data

and notification of changes (subject of improvements).

3.11.1 Core Stakeholder Requirements

AVL use cases (based on three DSLs) are usually based on a so-called driving DSL representation.

As a DSL can have different representations (views, sometimes only read-only), the driving

representation is the one the DSML user is mostly working with. It has thus higher demands

regarding features or requirements like data consistency (e.g., to other data sources). A non-driving

representation may be outdated for a while, e.g., if changes are done in the driving DSL. Related,

a driving representation must always be available to the DSML user, even in invalid status

(temporary violation of metamodel), while secondary one may be removed or is not accessible as

long as an invalid status is the case.

ID
Classification
(B, C, E, T, N)

Description of Requirement

43§

BUMBLE
Deliverable 2.2

PAGE 43 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

C11.1 B

DSML User has one driving DSL representation (textual), but has one or more
graphical representations, which shows aspects of the model (reduced
information), this is not sufficiently expressed by the driving one (without
additional further information).

C11.2 B
Changes to an instance of a driving DSL are forwarded to the alternative
representation either immediately or after some trigger event (e.g., model is in
a valid state, user event).

C11.3 B
Changes on the alternative representation (if write enabled) are forwarded to
the driving DSL immediately.

C11.4 B
Differences based on changes on the driving DSL are illustrated on the
alternative representation (e.g., before-after-comparison).

C11.5 B, T
DSL must have the possibility to reference external elements either from other
data sources or to related DSLs.

C11.6 B, T
Alternative data sources should be visualised alongside DSLs (e.g., CAD models)
to provide user-friendly input methods for the DSL (e.g., selecting a part
referenced by the DSL).

C11.7 C
Multiple users should be able to work on the same model (offline). Model
merge/diff techniques should be applied to synchronise the content again
(including graphical representations).

C11.8 C

Cross department collaboration: Different DSLs should be loosely coupled by
using references. Inconsistency should be indicated, if the linked element has
changed and should cause a certain action (e.g., notification) by the user to
ensure consistency again.

C11.9 C
Cross department collaboration - extension to C11.8. Fully automatic
consistency assurance is not required, but user support (e.g., quick fixes based
on the change) are favoured.

C11.10 T
Traceability links between different DSL representations should support editing
navigation (e.g., marking one element in one representation should highlight
the related elements in the other representation).

C11.11 T
Traceability links between different but related DSLs should be established to
enable C11.8 and C11.9.

C11.12 T
Traceability links between model and generated artefacts should be
established to support backtracking.

C11.13 T
If generated artefacts are executable, traceability links should enable life
debugging (if useful including breakpoints).

C11.14 T
If generated artefacts are executable and create a particular outcome, the
outcome should be related to model elements (e.g., test execution and test
reports).

C11.15 E
If DSL definition evolves, users should automatically get an updated version of
the models.

44§

BUMBLE
Deliverable 2.2

PAGE 44 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

C11.16 E
If models are updated during DSL evolution, changes should be indicated to the
user.

C11.17 E
If models cannot be updated automatically, invalid model elements should be
indicated, and users should be supported in decision making (e.g., quick fixes).

C11.18 C, E, T
If model editing or model evolution between different but related DSLs lead to
inconsistencies, these inconsistencies should be visualised to support decision
making in fixing the inconsistencies.

3.11.2 Technical Solution Requirements

This use case will be realised using the Reactive Architecture for Editing Blended Models (RAfEBM),

see https://drive.google.com/drive/folders/16tNZeh9hgegYlp3g4mJdN3ghgMaSGGdt).

ID
Classification
(B, C, E, T, N)

Description of Requirement
Details Core
Requirement(s)

T11.1 B
RAfEBM: Ensure Single-Source of truth (non-
redundant model source).

C11.1, C11.2, C11.3, C11.4

T11.2 B
RAfEBM: Editable goal-oriented views with view-
specific languages (metamodels).

C11.1, C11.2, C11.3, C11.4

T11.3 B
RAfEBM: Decouple model source from view-
specific languages / representations.

C11.1, C11.2, C11.3, C11.4

T11.4 B
RAfEBM: Avoid bi-directional transformation and
synchronisation.

C11.1, C11.2, C11.3, C11.4

T11.5 B
RAfEBM: Implement only required edit operations
(clear definition what need to be changed in model
sources for a specific operation).

C11.1, C11.2, C11.3, C11.4

3.12 UC12 - Agile V-model System Architecture

A digital twin is a virtual representation of a real-world infrastructure that serves as its digital

counterpart for maintenance purposes. The digital twin concept is observed in several applications

domains around the world. In UC12, the application is structural engineering for infrastructure. To

make the complex modelling of such digital twins accessible, multiple views on the same information

need to be supported.

The digital twin must be supported by blended modelling to support the user in the design and

maintenance process of the target system. This use case of Pictor considers table -based

specifications of geometry and characteristics of the members and hinges. The target system is a

model of a building structure with thousands of elements and hinges in different materials, for

example, bridges for roads and railway tracks in concrete with steel cables. The targets have

requirements according to European standards with a high regard for safety for public transportation

such as the European norms EN 1992 for concrete structures. These standards are continuously

updated with more advanced practices in civil engineering for building bridges in concrete and steel.

New civil engineering practices impose new requirements on the software packages which by using

https://drive.google.com/drive/folders/16tNZeh9hgegYlp3g4mJdN3ghgMaSGGdt

45§

BUMBLE
Deliverable 2.2

PAGE 45 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

the blended modelling approach, better meet requirements on correctness and safety in the

structural analysis calculations.

The purpose of the Civil Engineering structural design demonstrator in UC12 is to demonstrate the

advantages with the blended modelling concept and an agile V-model approach to prepare a

baseline for more efficiency in the process of fulfilling the quality and safety requirements in the

structural design work as well as increased efficiency in the structural design process and that way

shorten TTC (Time-To-Customer).

The demonstrator shall be implemented starting with basic functionality, that shall evolve to a

complete prototype showing most benefits with blended modelling in three steps, that are outlined

below. Our aim is to achieve step 1 and Step 2 in the BUMBLE project.

The steps are outlined below:

Step 1. The database for the model resides in MPS. A DSML User shall be able to perform

limited blended modelling. This means that a change in the tabular notation, upon

request, will propagate to the 3D view, thus a simple live/up-to-date visualisation of the

model.

Step 2. The database for the model resides in MPS. A DSML User shall be able to perform

blended modelling, i.e., changes and viewing of the model is possible in both the tabular

and in the 3D notation that are synced.

Step 3. The database for the model resides in a cloud. DSML Users shall be able to perform

collaborative blended modelling in real-time via web access. DSML developers shall be

able to perform modelling support over web access. Single/Multi DSML Users shall be

able to perform model administration over web access.

Model administration means ability to version the models and apply diff/merge features in a GitHub

manner, ability to navigate the existing models, manage a hierarchy of models, to achieve a

maintainable blended model handling.

Blended modelling in UC12 means to build a model of the Civil Engineering structure by assembling

building elements in the tabular notation and in the 3D notation. Further it shall be possible to add

symbols representing reaction forces and building element types.

Modelling support is the CRUD of symbols in the symbol table and of building element types of

rods, beams, joint, reactions, polygons, frames etc. in other tables. It also covers CRUD of the table

notation itself, if this needs to be extended with new functionality for example for dimensioning.

The DSML tabular notation shall be built using a de facto construction methodology. In the

demonstrator the focus is on graphical representation of the building element types listed above

and labelling of element types and reaction forces (symbols) to be used for demonstration purposes

of the blended concept. This means that load indications and calculations are excluded.

The DSML tabular notation covers much more than what shall be covered in the demonstrator, the

reason for this is that the structural designer shall be in a well -known environment. Lot of the

parameters in the tables shall be left unattended thus indicated with a “not applicable” or simply

46§

BUMBLE
Deliverable 2.2

PAGE 46 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

filled with grey. The tables contain definition of needed element data and its geometrical

characteristics, position and cross point data representing the complete structure.

3.12.1 Core Stakeholder Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement

C12.1 B
The framework shall allow to describe mappings between a DSML
specification (metamodel) and a notation of choice.

C12.2 B

Given the DSML specification and the mappings to the notation of choice, the
framework shall semi-automatically generate notation-specific specification
(e.g., grammar) and related editing features.

C12.3 B, C, T

Given the DSML specification and the mappings to the notation of choice and
the notation-specific specification (e.g., grammar), the framework shall semi-
automatically generate synchronisation mechanisms (model transformations)
to keep generated notation and DSML in sync.

C12.4 B, C
The framework shall allow change propagation across notations and upon
user’s choice.

C12.5 C

The framework shall allow a model to be viewed and edited in a collaborative
manner, using a single blended fashion, which means that CRUD performed in
the textual notation can be viewed in the 3D notation.

C12.6 C, T
The framework shall allow to version models and apply diff/merge features, in
a GIT-based fashion.

C12.7 C DSML users can authenticate through a login on a website.

C12.8 C DSML users can navigate the existing models on a website.

C12.9 C
DSML users can manage (CRUD) a set of models, to achieve a maintainable
organisation of the modelling content.

C12.10 C
DSML users can tag model versions, so that they can be used as snapshots for
later reference.

3.12.2 Technical Solution Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement
Details Core
Requirement(s)

T12.1 B, C, T
The framework shall be implemented in the MPS
ecosystem.

C12.1, C12.2, C12.3,
C12.4, C12.5, C12.6

T12.2 B, C, T The framework shall support MOF-based DSMLs.
C12.1, C12.2, C12.3,
C12.4, C12.5, C12.6

47§

BUMBLE
Deliverable 2.2

PAGE 47 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

T12.3 B, T
The graphical view must support viewing nodes,
hinges, and members configurable for visible or
hidden.

C12.1

T12.4 B, T
The graphical view must show lines for centre of
gravity, cables, and members configurable for
visible or hidden.

C12.1

T12.5 B, T

The graphical view must show x, y, z coordinates at
the point of interest for configurable visible or
hidden. The x, y, z coordinates at the point or at
the bottom of the window.

C12.1

T12.6 B, T
The graphical view must show loads for
configurable visible or hidden.

C12.1

T12.7 C, B

A DSML User shall be able to perform blended
modelling by using tabular and 3D notation.
Further it shall be possible to add symbols
representing reaction forces and building
element types

C12.1

T12.8 C, B

A DSML Developer shall be able to perform CRUD
of symbols in symbol tables and of building
element types of rods, beams, joint, reactions,
polygons, frames etc. in other tables.

C12.1

3.13 UC13 - Automatic CFP (Cosmic Function Point) Value

Generation for Software Analysis Documents

Turkcell aims to model the analysis documents of various existing Turkcell-developed services and

new Turkcell services developed during the BUMBLE project from its own perspective. For this

purpose, it is planned to apply the blended modelling methods to be developed in BUMBLE to

Turkcell Academy software product use cases. Thus, it is aimed to express free text or semi -

structured requirements in formal languages. In this way, standardisation of Turkcell requirements

engineering practices will be ensured and automation possibilities will be examined. Thanks to the

standardisation and potential automation of manually conducted analysis and scope measurement

activities, the quality and efficiency of the service Turkcell provides for its individual and corporate

customers will increase. Within the scope of the study, it is aimed to automatically calculate the

CFP (Cosmic Function Point: Cosmic Function Point), which is used as a software scope

measurement method.

The BUMBLE features covered by this use case are:

● Blended Syntaxes and Modelling (B): In this project, it is aimed to automatically measure

the CFP used in the analysis documents prepared for the Turkcell Academy software

product within the scope of the project.

● Collaborative Modelling (C): Analysts in different teams or in the same teams use the

Confluence application while preparing their analysis documents. Therefore, we aim to

exploit the features of the BUMBLE project that facilitates collaborative modelling,

particularly on the textual part of the blended language.

48§

BUMBLE
Deliverable 2.2

PAGE 48 OF 48 DELIVERABLE D2.2 (VERSION 3) BUMBLE REQUIREMENTS SPECIFICATION

● Traceability (T): In this project, it is aimed to automatically measure the CFP used in the

analysis documents prepared for the Turkcell Academy software product within the scope

of the project. It is aimed to express free text or semi-structured requirements in formal

languages. In this way, it will be possible to express free text or semi-structured

requirements in official languages.

3.13.1 Core Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement

C13.1 B

Changes in specification rules of a given software analysis document model
should update the textual notation without losing non-semantic information
it contains, such as comments, indentations, and other white-space
characters.

C13.2 B, T

References in the textual specification that refer to other elements defined
outside the clearance rule specification should be bound to the correct model
element.

C13.3 B
Semantic checks should be implemented which detects semantically incorrect
models which the textual syntax permits creating.

C13.4 B

Changes in the state machine model should update the graphical notation
without losing non-semantic information it contains, such as colours, symbol
sizes, line routing and other layout information.

C13.5 B, C, T

The tool shall support version control, and diff and merge operations, on a
state machine, with the possibility to see a graphical representation of the
differences between versions.

3.13.2 Technical Requirements

ID
Classification
(B, C, E, T, N)

Description of Requirement
Details Core
Requirement(s)

T13.1 B, T
The tool should enable to calculate CFP values
according to use case items.

C13.2

T13.2 B
A textually defined Design Rule should be persisted
using the textual syntax, while other parts of the
model be persisted as XMI.

C13.1

T13.3 N
The Design Rules should be validated against
graphical Data.

C13.3, C13.4

	Acronyms
	Versions
	Contributors
	Reviewers
	1 Introduction
	1.1 Classification of Requirements
	1.2 Deliverable Status
	1.3 Status of Requirements

	2 BUMBLE Selection of Common Requirements
	2.1 Structuring Requirements along BUMBLE Technology Bricks
	2.2 BUMBLE Core Stakeholder Requirements
	2.2.1 Editor Generators
	2.2.2 Blended Model Access
	2.2.3 Collaboration Engine
	2.2.4 Diff and Merge
	2.2.5 (Meta-)Model Co-Evolution
	2.2.6 Model Non-Conformance
	2.2.7 Persistence

	2.3 BUMBLE Technical Solution Requirements
	2.3.1 Blended Editors
	2.3.2 Editor Generators
	2.3.3 Blended Model Access
	2.3.4 Collaboration Engine
	2.3.5 Diff and Merge
	2.3.6 (Meta-)Model Co-Evolution
	2.3.7 Platform Integration

	3 Use Case Requirements
	3.1 UC1 - Software Open-Source Blended Modelling
	3.1.1 Core Stakeholder Requirements
	3.1.2 Technical Solution Requirements

	3.2 UC2 - Combined Textual and Graphical Modelling of State Machines in HCL RTist
	3.2.1 Core Stakeholder Requirements
	3.2.2 Technical Solution Requirements

	3.3 UC3 - Vehicular Architectural Modelling in EAST-ADL
	3.3.1 Core Stakeholder Requirements
	3.3.2 Technical Solution Requirements

	3.4 UC4 - Cross-Disciplinary Coupling of Models
	3.4.1 Core Stakeholder Requirements
	3.4.2 Technical Solution Requirements

	3.5 UC5 - Reactive and Incremental Transformations across DSMLs
	3.5.1 Core Stakeholder Requirements
	3.5.2 Technical Solution Requirements

	3.6 UC6 - Blended Editing and Consistency Checking of SysML Models and Related Program Code
	3.6.1 Core Stakeholder Requirements
	3.6.2 Technical Solution Requirements

	3.7 UC7 - Multi- and Cross-Disciplinary Modelling Workbench
	3.7.1 Core Stakeholder Requirements
	3.7.2 Technical Solution Requirements

	3.8 UC8 - Model-Driven Development of Workflow Models for Debt Collecting Advocacy
	3.8.1 Core Stakeholder Requirements
	3.8.2 Technical Solution Requirements

	3.9 UC9 - Automated Design Rule Verification on Vehicle Models
	3.9.1 Core Stakeholder Requirements
	3.9.2 Technical Solution Requirements

	3.10 UC10 - Development Process of Low-Level Software
	3.10.1 Core Stakeholder Requirements
	3.10.2 Technical Solution Requirements

	3.11 UC11 - Multi-Aspect Modelling for Highly Configurable Automotive Test Beds Ready for Smart Engineering Demands
	3.11.1 Core Stakeholder Requirements
	3.11.2 Technical Solution Requirements

	3.12 UC12 - Agile V-model System Architecture
	3.12.1 Core Stakeholder Requirements
	3.12.2 Technical Solution Requirements

	3.13 UC13 - Automatic CFP (Cosmic Function Point) Value Generation for Software Analysis Documents
	3.13.1 Core Requirements
	3.13.2 Technical Requirements

