D} | TEAZ [yVES

Industrial-grade Verification and Validation of Evolving Systems

Labelled in ITEA3, a EUREKA cluster, Call 5

ITEA3 Project Number 18022

D3.4 Final validation methods and techniques for evolving
systems considering feedback from the first evaluation

Start date of project: 1 October 2019

Organisation name of lead contractor for this

deliverable:

Author(s):

Status:

Version
number:

Submission
Date:

Doc reference:

Work Pack.
Task:

Description:
(max 5 lines)

Due date of deliverable: 31 March 2022 (M30)
Actual date of submission: 28 March 2022

Duration: 39 months

CRIM

Tatu Aalto, Joona Oikarinen, Sorin Patrasoiu (F-Secure), Pekka Aho
(OUNL), Alexandre Petrenko (CRIM), Mahshid Helali Moghadam (RISE),
Tijana Nikolic, Almira Pillay (Sogeti), Eva Garcia Martin (Ekkono)
completed

\'2!

28-03-2021

IVVES Deliverable D3.4 V1.docx
WP3
T3.1, T3.2, T3.3

The report presents the final validation methods and techniques
developed for evolving systems.

Nature: M R=Report, O P=Prototype, 0 D=Demonstrator, 0 O=0Other
Dissemination PU | Public
Level: - —
PP | Restricted to other program participants
RE | Restricted to a group specified by the consortium
CO | Confidential, only for members of the consortium

Table of Contents

3 OO PRRUPRR: Executive summary
.. 5
2 e e e e Testgeneration and test prioritization for fault detection
.. 6
2.1....Scriptless E2E testgeneration for ES with coverage analysis (OUNL, Innspire, Marviq, F-Secure,
ING) ettt ettt et e e et et e e et e e e e e et et e s e e et et e et et et et et et ea et et et e e et et et et et e e et et et et et eaen e et ereeeeeeteeenaas 6
5 S PPN State of the art
.. 6
0 P Contributions
.. 7
N . O PSSP TUUPPPTPPPRINN Claimed novelty
.. 8
2.2 e Machine learning-assisted automated performance testing (RISE)
.. 8
80 2 SN Performance testing: State of the art
.. 8
OO PSPPNN Contributions
.. 9
2.3 e Testgeneration and prioritization for ESG-investment (SI| CONCATEL)
.. 11
5 T S State of the art
.. 11
0 707 PO PPPPINN Contributions
.. 13
2.3 i e e e et ——ieeeee ettt —————aeeeeett—————aaeeeteetta——aaeaareatr—aaaaaeerrrrran Claimed novelty
.. 13
28, e Anomaly detection forindustrial environments (KeyLand)
.. 13
S OO PRt State of the art
.. 13
2.2 et e e e ettt e e e e e s e bbbttt e e e e e e e sa bt bteeeeeeeesananae Contributions
.. 16
. TSN Claimed novelty
.. 17
B Flaky tests-based detection (F-Secure, University of Helsinki)
.. 17
701 PP State of the art

32t et e e e ettt —e— et ettt et e e et r——a——n, Contributions

.. 19
33 RN Claimed novelty
.. 19
PO PPPOPPPPPPPPPPPPRE Test failure root cause analysis (F-Secure, University of Helsinki)
.. 19
B0 oottt ——————————————————————————_——__—___n——_——_——n]———————] State of the art
.. 20
B . e et ——eeeeeeeeeet—————eeeeetttt———eeeettettt———aaaetttt—aaaerrtta————_ Contributions
.. 20
. F OO PPTTPRTR Claimed novelty
.. 20
D e ettee ettt eeieeeeeeett—eeeeeeeeeetta——eeeeeeetatt—aaeeeeetera—————aeeeteartt—aaeearrrrrrtans Oracle mining (CRIM)
.. 20
701 Introduction
.. 20
707 2P PR PPN State of the art
.. 21
70 TSP Contributions
.. 22
RN Claimed novelty
.. 24
B, Automated test verdict generation via Model Learning (F-Secure, OUNL)
.. 25
B. L. ittt e e e e e e e e e e e e r e aeeearar——_ Description (Change-Analyzer)
.. 25
B2 i Example (Change-Analyzer)
.. 25
30 T Ut State of the art
.. 28
B e e e e e e aaaaaa, Anticipated contributions (Change-Analyzer)
.. 28
B, S ettt ettt et et e e e e et ——eeeeete e e —eeeteaa——————eeeeetrt— e aarrarrr———_ Contributions (Testar)
.. 29
e Conformal prediction for edge applications (Ekkono Solutions)
.. 29
7281 PSPPSR Introduction
.. 29
725 2 Technical description

725 T Example

.. 30
2 S State of the art and anticipated contribution
.. 30
e, Code defectrisk prediction (Sogeti)
.. 31
300 U UPPPPPIN Introduction
.. 31
<300 2SR Anticipated contribution
.. 31
< T PO TP P S OPPPPPPPPRN Proposedapproach
.. 31
Bl e DevOps pipeline: integration and traceability
.. 34
538 TS Claimed novelty
.. 35
PP PPPPPPPPPPPPPPN References
.. 36

1. Executive summary

Work package three focuses on solving problems related to complex evolving system, which
can be ML based or traditional software projects. The problems address different aspects of
evolving systems, starting from automated test case generation, either based on Ul of the
application or processing different textual sources, to analyzing test result and all the way to
different physical aspects of a device.

Scripless test generation aims to ease the E2E testing by applying both, non-ML and ML
techniques to generate test suites with a high coverage level. The project also provides
automated change detection and visualization based on comparing inferred state models of

consequent SUT versions.

Machine learning-assisted automated performance testing aims to solve the complex
requirements in the performance testing area. It uses a reinforcement learning (RL) algorithm
to find optimal test cases detecting performance problems.

Test generation and prioritization aims to process different textual data sources with an NPL
algorithm and then use RL-based test generation and prioritization.

Research in anomaly detection for industrial environments has analyzed currently existing
techniques and tools and is in underway in building a tool to provide more comprehensive
view in the current software lifecycle.

Flaky tests-based detection tries to solve a problem related to randomly failing tests by
analyzing previous tests data and displaying result in command line.

Test failure root cause analysis is in early stages but tries to provide categories test failuresin
similarity groups.

Oracle mining uses machine learning to process requirements and tries to provide precise
oraclesin a two-step process.

Automating test verdict generation via model learning aims to build models from the
application Ul and display changes between different application versions.

Conformal prediction for edge applications tries to predict with machine learning when
hardware might break by collecting data from sensors.

2. Test generation and test prioritization for fault detection

2.1. Scriptless E2E test generation for ES with coverage analysis
(OUNL, Innspire, Marviq, F-Secure, ING)

Building a test automation pipeline of complex evolving systems (ES) is an elaborate task,
especially on the end-to-end (E2E) level. One of the main challenges is the fact that the
resulting test suites are difficult to maintain. We plan to address this challenge by applying
both, non-ML and ML techniques to generate test suites with a high coverage level.
Techniques, methodologies, and tools are needed to be able to:

e generate test cases automatically with a good level of interpretability for
o different stages of test automation (TA);
o different types of applications: standalone, web, and mobile applications;
e reuse generated test suites and inferred application models to optimize TA in terms of
time and coverage.

2.1.1. State of the art

Traditionally, software test automation is based on scripts (pre-defined test sequences with
test oracle checks) that are either automatically generated from models or written by a
human. In scriptless test automation, the test sequences are generated dynamically during
the execution, usually one step at a time, based on automatically detected available
interactions that the end user could perform, or events from the environment. The execution
of the action includes waiting for the reaction from the system under test (SUT). Figure 2.1
depicts the process of scriptless testing at a high level.

1. Detect all
the available
interactions

3. Wait for the GUI 2. Select and
to update, check execute one

test oracles v interaction

Figure 2.1: Scriptless testing process.

The action selection often involves some level of randomness, and therefore scriptless GUI
testing is often called random or monkey testing. One of the research directions for trying to
make monkey testing tools smarter has been using Al and machine learning for improving
action selection. Usually, some kind of model inference approach has to be used for the
learning process. Often, the reward or fitness functions have been connected to increased
GUI or code coverage [7], [8]. This kind of strategy usually rewards visiting (i.e., covering) all
GUI states at least once. However, visiting all GUI states does not mean that all paths or
combinations of paths have been visited.

Inferring state models during automated GUI exploration has been researched with various
approaches, for example, GUITAM [9], GUI Driver [10], and Crawljax [11]. However,
automated change detection by comparing inferred models of consequent system versions
has not been widely researched; Murphy tools [12] seems to be the only existing approach in
the literature.

2.1.2. Contributions

Open source TESTAR tool is being used for scriptless graphical user interface (GUI) test
generation and state model inference in continuous integration (Cl) environment for selected
software packages in the use cases of F-Secure and ING. TESTAR dynamically generates test
sequences during the exploration of SUT, one step at a time, based on detected available
actions. TESTAR supports state model inference during the automated exploration of the GUI
of an application and uses the model for systematically (but in random order) trying out all
the available actions in all the explored states.

During IVVES project, TESTAR has been extended to use the inferred models for
reinforcement learning with various reward functions to improve action selection and
automated change analysis based on comparing the inferred state model of consequent SUT
versions. During the evaluation, we noticed that various SUTs required different levels of
abstraction. Therefore, TESTAR was extended with a feature that allows configuring the state
abstraction and action abstraction for each SUT. There are also two new open-source tools
for automated change detection and visualizing the changesfor the end user. One of the tools

is using the database containing the state models inferred by TESTAR. The other one is a
stand-alone tool implemented by F-Secure, including also the GUI exploration.

For Windows desktop applications, TESTAR uses Windows accessibility APl to access the GUI
information for detecting the state of the SUT and available actions. For web applications,
TESTAR uses Selenium WebDriver. During IVVES project, TESTAR has been extended to
support mobile applications by using Appium to connect to a mobile device emulator.

To increase the speed of state model inference and GUI exploration, TESTAR has been
containerized for Docker and extended with support for distributed/parallel GUI exploration
with shared state model database.

To increase the effectiveness, TESTAR has been integrated with Sonar Cube for code smell
analysis and directing GUI testing into the risky parts of the code based on previously
measured code coverage foot-prints of each GUI action.

2.1.3. Claimed novelty

The novel aspects of TESTAR extensions include:

e using inferred state models for machine learning to improve action selection in scriptless
GUI testing,

e distributed/parallel model inference and GUI exploration with shared state model,

e using code coverage foot-prints of GUI actions to direct TESTAR action selection to cover
specific parts of the code,

e support for testing mobile applications with TESTAR,

e automated change detection and visualization based on comparing inferred state
models of consequent SUT versions.

New publications have been written and more are expected from the results.

2.2. Machine learning-assisted automated performance testing
(RISE)

2.2.1. Performance testing: State of the art

Performance, which is also called efficiency in some taxonomies, is a quality characteristic
which describes the time and resource bound aspects of a system’s behavior and is of great
importance for the success of many products. It's measured in terms of some metrics like
response time, throughput and resource utilization.

Performance analysis is typically done to measure performance metrics and detect
performance-related issues. Performance issues could be referred to as any violation of
performance requirements or any functional problems emerged under special performance-
related conditions such as heavy workload and limited resource availability. Several methods
have been developed to analyze the performance of software products. Performance
modelling and performance testing are two main classes of techniques used for performance
analysis. Modeling methods [13, 14, 15, 16, 17] are mainly based on the performance models

extracted from the system model or the source code of the target system. While, in
performance testing, certain test cases (scenarios) are generated and applied during the
execution of the SUT to trigger performance failures, e.g., violations of performance
requirements. Many of the common performance testing approaches such as techniques
based on source code analysis [18], system model analysis [19, 20], user behavioral models
[21], and declarative behavior specifications [22, 23] mostly rely on source code or system
models.

Performance testing challenges. Software performance testing to find performance issues
upon new changes mainly occurred within CI/CD practice is always a challenging task.
Therefore, automated performance testing is of importance in this regard and subsequently
one of the primary concrete challenges in software performance testing is generating
appropriate test cases (test scenarios) in an efficient and cost-effective way. Performance test
scenarios are intended to detect performance degradation issues. By detecting performance
degradation issues at an early phase, the changes leading to the degradation is easier to
localize and could be actively decided upon, and consequently the extra cost at the customer
side due to degraded system performance can be avoided.

Currently, the performance test is done manually for many software products. However, due
to the increasing complexity and diversity of the products and the services requested by
customers, the need to automate the performance testing process is highlighted. In the
manual testing process, several test cases have to be executed upon each change in the
software. Not only, the manual process is time-consuming and laborious, but also it is error-
prone and does not provide any correctness guarantee since it relies on expert knowledge.

Onthe one hand, in many cases in order to generate test cases, we usually have a large input
space to explore which makes manual test case generation a time-consuming and laborious
task. On the other hand, we usually do not have any knowledge about the internal structure
and dynamics of the SUT, and the interaction with its public interface is the only way to learn
about the SUT’s performance characteristics. Last but not least, we usually have a limited test
budget, which means that we are not free to execute a large set of test cases hoping that
some of them will reveal performance defects. Instead, we need to be careful about the test
cases that we select for running on the SUT.

Taking advantage of the recent advances in machine learning, machine learning-assisted
technigues have been used widely for meeting the need for automated performance testing.
In our work, we propose reinforcement learning-assisted approaches which learn from the
behavior of the SUT to generate promising/effective test cases automatically and efficiently.
The details of the proposed techniques are presented in the following sections.

2.2.2. Contributions

Reinforcement learning (RL) [24] is a fundamental machine learning paradigm which is mainly
intended to address decision making problems. Inspired by human’s learning, RL is used to
find the optimal way to make decisions. The learning procedure is quite different from
supervised and unsupervised learning algorithms. The learning is based on continuous
interaction between a smart RL agent and the problem environment which is system under

test (SUT) in our research case. At each step of interaction, the smart test agent observes the
status of the environment and makes a decision. The decision is generating a test scenario,
e.g., based on changing the variables involved in forming the test scenario. Then the SUT is
executed under the recommended test scenario, and the test agent receives a reward signal
indicating the effectiveness of the recommended test scenario. One of the main differences
between RL and other learning paradigmsis that there is no supervisor in RL, i.e., the agent
just receives a reward signal from the environment, and the agent goes through the

environment based on a sequential decision-making process.

With regard to the characteristic of RL, we proposed that if the optimal policy (way) for
accomplishing the intended performance test objective could be learned by a test agent, the
test could be done automatically without need to access to source code or
performance/system models. Moreover, once the optimal policy is learned, it can be reused
in further testing situations, for example, regression performance testing of a SUT or
performance testing of SUTs with similar performance sensitivity to resources [25]. Therefore,
the capability of knowledge formation and reusing the gained knowledge in further situations
is a key feature leading to test efficiency improvement. Based on this idea, we have proposed
an RL-assisted performance testing framework that learns the optimal policy to accomplish
the intended test objective without access to system model or source code of SUT. Once it
learns, itis able to reuse the learned policy in further testing cases [25, 26, 27]. The proposed
framework consists of two performance testing tools: SaFRel [28] and RELOAD [25, 29].

SaFRel, as a self-adaptive fuzzy reinforcement learning test agent which generates
performance platform-based test cases, learns how to tune the resource availability to reach
an intended performance breaking point for different types of SUTs with different levels of
sensitivity to resources. It assumes two phases of learning:initial and transfer learning phases.
First, it learns the optimal policy to reach the intended performance breaking point for
different types of SUTSs, i.e., CPU-intensive, memory-intensive and disk-intensive software.
Once learning the optimal policy, it replays the learned policy on further similar SUTs. The
conducted experimental evaluation shows that SaFRel can perform efficiently and adaptively
on different software programs., i.e., CPU-intensive, memory-intensive and disk-intensive
SUTs running on various hardware configurations and with different response time
requirements. SaFReL accomplishes the intended test objective, i.e., finding performance
breaking point, more efficiently in comparison to a typical stress testing technique which
generates performance test cases in an exploratory way. SaFReL leads to reduced cost in
terms of computation time by reusing the learned policy upon the SUTs with similar
performance sensitivity [28].

RELOAD is an adaptive RL-driven load testing agent which learns how to tune the load of
transactions in the submitted workload to the SUT to accomplish the test objective (e.g.,
finding an intended performance breaking point). It learns the optimal policy to generate a
cost-efficient workload to meet the test objective during an initial learning, then it is able to
reuse the learned policy in later tests within the continuous testing context, e.g., for meeting
further similar test objectives. RELOAD generates a more accurate and efficient workload to
accomplish the test objective compared with baseline and random load testing techniques,

without access to source code or system models. Moreover, once itlearns, itis able to reuse
the learned policy in further situations, i.e., testing w.r.t. different objectives on the SUT and

still keeps the improved efficiency over later test episodes [29].

2.3. Test generation and prioritization for ESG-investment (SlI
CONCATEL)

2.3.1. State of the art

The irruption of game-changing innovations and open-source technologies in NLP is changing
the way that companies work with text. Unstructured text is being used as input data for
many industrial domains (i.e., predicting market trends based on sentiment analysis). Data
Analytics companies are curating and collating text information from diverse sources to feed
Al models (Figure 2.2) and provide trends and insights. Its combination with other Al
techniques applied to numerical data is fostering the integration of NLP into regular Data

Analysis.

Figure 2.2: General workflow for NLP-based models to provide trends and insights in
finance sector

ESG (Environmental, Social and Governance) investing refers to a class of investing that is also
known as “sustainable investing.” This is an umbrella term for investments that seek positive
returns and long-term impact on society, environment and the performance of the business.
To assess acompany (an asset) based on environmental, social, and governance (ESG) criteria,
investors look at a broad range of behaviors to set the ESG score for a given asset.

Figure 2.3: Estimates of assets under management with an ESG mandate.
Source: Deutsche Bank.

The compilation of these scores is based on the analysis of a vast amount of fast changing
alternative data sources, including non-structured information (websites, news, corporate
reporting...) that can’t be processed with traditional keyword searches and manual analysis.
Since ESG investment is a solid trend that is increasingly impacting the market (Figure 2.3),
the data sources to analyze are growing fast. Given the vast amount of data and information
available, that analysis can only be reliably carried out with artificial intelligence. New,
powerful Al-based systems are now on the scene that can potentially reduce manual tasks
and increase efficiency. However, new V&V techniques are required:

e The growth of Al-based analysis of sources has alsoimpacted the way that companies
communicate with the external audience, being savvier with their wording. This is
causing the appearance of biased content, that must be taken into account before
applying NLP-based techniques -heavily relying on sentiment analysis- to getinsights
and trends. Hence, a systematic and continuous analysis of source credibility and
content credibility must be implemented.

e The Al-based systems must continuously adapt to a great variability in sources and
content, that are constantly changing. Information sources evolve, mutate and topics
related to ESG change over time. Hence, test maintenance and prioritization are
challenging.

Added to this, since the outcomes of the evolving systems are insights that may impact
investment decisions, these systems are subject to regtech (regulatory technology)
constraints that must be taken into account.

There are different approaches for test case Reinforcement Learning-based test case
prioritization. Zhaolin, et al. [83], provides a reference for test case prioritization to save
computing resources in Continuous Integration. In [83], a novel reward function is proposed,
by using partial historical information of test cases effectively for fast feedback and cost
reduction. The approach is focusing on reducing the huge cost in terms of time and resource

availability defining the Average Percentage of Historical Failure with time Window (APHFW),
as a novel reinforcement learning reward function, that utilizes a time window to filter recent
historical information to calculate reward value.

2.3.2. Contributions

The main technical contribution is supporting testing based on Reinforcement Learning for
NLP-based ESG evolving systems. Specifically, given an ESG-investment-focused ES and a set
of rules defined by an expert for scoring securities with respect to ESG criteria, develop

masked language models.

really O the flight

e e

Figure 2.4: Templating with masked language models.

The RL-based test generation and prioritization is based in a time window-based reward
function that will also take into account the most effective Metamorphic Relations for a given
case. For the selection of effective Metamorphic Relations, the model will initially interact
with the templates generated in WP2 with masked language models (Figure2.4), and
eventually will control “Plug” operators.

As an outcome, the most effective Metamorphic Relations will be selected to generate the
optimal test cases to execute, taking also into account performance.

2.3.3. Claimed novelty
e ESG news validation to train the Fintech model
e XAl applied to NLP and keyword recognition
e Automatic detection of fake news.

2.4. Anomaly detection for industrial environments (KeyLand)

2.4.1. State of the art

KEYLAND has conducted a comprehensive state-of-the-art analysis of the techniques,
methodologies and the use of technologies to detect the maintenance needs of AAS, and to
reflect the changes that have occurred in the physical system of the machine learning model.

An extensive analysis of the methods and techniques for dynamically assessing and cataloging
the quality of the data sets used has also been carried out through an analysis of the different

proposals.

A state-of-the-art analysis of the techniques and technologies based on machine learning
tests that can be applicable in the context of the industrial sector has been carried out, taking
into account all the scenarios and use cases involved in this project.

These analysis tasks have allowed the creation of a common framework for all existing

methods, techniques and tools to be used.

This will also allow the development of components capable of working with data collected

from different sources.

In order to have a clearer, global picture of the current state of validation techniques for SAAs,
at IVVES we have mapped the ES lifecycle in a two-dimensional space where the vertical axis
(Y) is used to measure complexity and the horizontal lifecycle stage (X). Figure 2.5 shows that
mapping. Since software development is an iterative process, after the production release
phase, the design starts again. It is important to understand that the techniques used are
based on simpler ones. The "automatic test prioritization" is almost impossible to implement
without consolidated components in the context of "CI/CD" and "test result data collection".

ES lifecycie

/--//'-r-_r > _EER_
/ : -

Figure 2.5: Lifecycle of SAAs

A summary of different existing techniques and tools (which can be integrated in different
phases of the project) is shown in the following table:

Modelling

Threat Modelling Req. P High - STRIDE
-P.AST.A.
- Trike
- VAST
TLA Req. A Low - TLA toolbox
Improvements
Automatic bugs | Req., E2E A Medium - CERT Triage tool / Exploitable
triaging

Development

Static code analysis Unit P High - SonarQube
- Language specificIDEs, lintersand
analysis tools

Code anomaly | Unit A Low - REPD
detection
Formal Verification Req. P Medium - Uppaal

- PRISM

- Rebeca(Afra)
Risk-based testing Unit, Int., E2E P Medium

Tests creation

Automatictests creation

Fuzzing Int., E2E A Medium - LibFuzzeretc

- American Fuzzy Loop

- AddressSanitizer, ThreadSanitizer,
MemorySanitizer

- OssFuzz
Metamorphictesting | Unit, Int., E2E A Low
Search-basedtesting | Unit, Int., E2E A Medium - EvoSuite
- Randoop
- MicrosoftIntelliTest
- DiffBlue Cover
Model-based testing | E2E A Medium - Test Modeller
- APOGEN with Crawljax
- ALEX
ML-based testing | Unit, E2E A Low - RELOAD
(model free - SaFRelL
reinforcement
learning)
Tests maintenance
Automatic test | Unit, Int., E2E A Low - TestArchiver and ChangeEngine
selection and by SALabs

prioritization

Automatic root cause | Unit, Int., E2E A Low - Functionize platform
analysis - Delta debuggingtools
Automatic test suite | Unit, Int., E2E A Low

reduction

Automatichealing Unit, Int., E2E A Low - Functionize platform

Analytics and | E2E P High - AWS CloudWatch

monitoring - New Relic
- Kibana
- Google Analytics
- Matomo

Real usage-based | E2E, Int. A Low

testing

2.4.2. Contributions

We are still developing a component whose implement a kind of monitoring and diagnostic
module, in which, through the metrics collected by monitoring tools such as Istio or
Prometheus, we will try to monitor the system to look for possible operating problems, either
due to external factors (machine, network, ...) or internal (malfunctioning of some parts of

the system, anomalous input or output values, ...).

Figure 2.6: Example of Prometheus + Grafana dashboard

O ‘T. e

MY ﬁw-“mllﬁ-:-ﬁl: I-"IL“Q"' 'II"'!h S AN e

Service discovery Prometheus

Short-lived alerting 4 page ___||g
jobs
€ kubernetes file_sd
push metrics Alertmanager [~ * Email
at exit H =
discover
targets ¥ notity
1 ete
Prometheus server
: push
alerts
......... pull | | pieval -+ TSDB - HTIP
metrics server
PromQL

i . | L |
- Nt @ Grafana _ Data
exporters H '~ visualization
and export
Prometheus H

Figure 2.7: Prometheus Architecture
(https://prometheus.io/docs/introduction/overview/)

Then, depending on the type of problem detected, we will try to perform aroot cause analysis
to try to isolate which of the analyzed components are causing some kind of problem, either
individually or in combination with each other.

2.4.3. Claimed novelty

e Automatic fault detection in industrial environments
e Generator of possible causes of internal or external failures in industrial
environments.

3. Flaky tests-based detection (F-Secure, University of Helsinki)

In continuous integration and continuous delivery (Cl/CD) pipelines, where there usually are
lots of tests and test execution is frequent, going through all test results is not possible by
humans. Especially in integration and acceptance test level, there are many reasons why a
test may randomly fail. For example, the application under test may have integrations to an
external system or a system which cannot be controlled by a team developing the application
under test. When these external systems suffer a downtime or from bug, it may cause tests
to randomly fail. Please note that there are numerous reasons why random failure might
happen and itis not limited to the previous example. These random failures, ifthere are many
of them, can reduce the trustworthiness on the CI/CD pipeline.

When people responsible for the CI/CD pipeline review the test results, usually there are not
enough resources to review all results or even all the failures from the different executions.
Experts usually resort to looking at the latest failures and perhaps looking at the first failure
and assume that all failuresare originating from the same reason. If there are multiple Cl jobs,
they might look for failuresin a single job and assume that all the jobs have the same reason
for failure. Therefore, experts might have different opinions about what test fails randomly
and how often random failures happen.

3.1. State of the art

Because random failures may reduce the trustworthiness of the CI/CD pipeline, traditionally
test results are analyzed manually at looking results from the CI/CD pipeline. When there are
random failuresin the pipeline, analyzing results and coming to resolution is manual and time-
consuming work. That time is away from more important work, for example, new feature
development. Currently many Cl systems are capable of visualizing the latest execution results
or show trends of failing/passing/skipped for a time period. Although many CI/CD systems
allow configure how long execution results are kept, many development teams choose to
limit the period as narrow as possible, because usually it is expensive to keep results in the
Cl/CD pipeline.

Also, systems that can provide better visualization services, than usually are available in the
CI/CD system, are available for but usually those systems require sending data to external
system. Also, these services require effort to set up and maintain.

To get continuous and comprehensive feedback from their CI/CD system, flaky test detection
was developed. Flaky test detection has three different parts and all parts are running inside

of the CI/CD pipeline.

1. Processing xunit result in xml format

2. Finding the flakiest tests from the results and presenting result easy to understand
format.

3. There s also example integration script for GitHub actions, which can be used

download xunit result from GitHub actions artifacts.

Data

prosessing

The flaky test tool process is illustrated in the figure above. First data is retrieved either from
CI/CD pipeline or from other storage where xunit results are kept. Tool provides example
integration script how xunit result can retrieved from GitHub actions and similar technique
can be usually applied in the other CI/CD pipelines or a blob storage. After data retrieval, tool
will process the xunit result and calculate based its algorithm which tests are flaky. Tests that
change test often and state changes are most resent are more important than tests which are
further in history or have less state changes. Tool also provides few options which can be used
to adjust the algorithm how test state changes are counted and how many flaky tests are
presented in the results. After results are calculated, the tool prints out a simple table of tests
which are the flakiest. Table can be viewed from command like STDOUT and optionally tool
can be configured to save the result as heatmap image file.

3.2. Contributions

Flaky test detection tool is open source and is published under Apache license version 2 in
GitHub. It is also available as PyPi package or if used from GitHub actions, itruns as an action
in the pipeline.

For the data retrieval part, we provide an example script how to integrate with GitHub actions
and how to download artifacts from GitHub actions. For demonstration purposes, there is a
separate GitHub project which shows the tool in use, with full integration on GitHub actions.

Development teams can choose the method which is best suitable for them, from zero install
in the GitHub Marketplace to fully managed install from PyPi.

3.3. Claimed novelty

Jonathan Bell et al. [98] have proposed “a general purpose, lightweight technique for
detecting flaky tests by tracking differential coverage”. The technique has an open-source
implementation for Java, called “DeFlaker”. Gustavo Pinto et al. [102] have researched how
prevalent flaky tests are and have concluded that flaky tests are relatively common in 10
projects. They have also noticed that detecting flakiness with test reruns is challenging. Wing
Lam et al. [101] have done research on categorizing flaky tests and have come up with two
distinct classes of flaky tests; order-dependent and order-independent. They find that most
flaky tests are order-dependent. They also introduce a guideline that states that a test should
be run only up to five times to reveal flakiness. Alex Grose and Josie Holmes [99] propose “a
number of formal definitions of types of nondeterminism (horizontal and vertical) and an
implementation, based on these definitions, for detecting and debugging nondeterminism in
property-based testing”. Wing Lam et al. [100]) propose a technique for enhancing regression
test selection by making it dependent-test-aware.

The flaky test detection tool does relayin code coverage calculation or does not require doing
analysis in the test or application source code. Example in compiled languages, like C++,
calculating code coverage in acceptance test level is complex or is not possible during the
runtime of the application. The tool changes the view to the problem and only looks at the
test results to determine the flakiness of the tests. As ininput data tool uses xunit xml, which
is available out of the box in many testing frameworks.

. Test failure root cause analysis (F-Secure, University of Helsinki)

When doing acceptance or integration testing, tests have connections to external systems or
depend on a resource which cannot be controlled by team developing. In specially in the
acceptance test level, individual test tends to be complex, example test might requires setting
up data, driving the application to certain state and many more action before the test reaches
the point where it starts the actual testing process. Also, when test setups the application,
data or configuration, it is usually test responsibility to clean up the done setups. Because of
the complexity in the test, single and same test may fail in multiple different ways. In
continuous integration and continuous delivery (CI/CD) pipelines, where there usually is lots
of test and test execution interval is frequent, going through all test results is not possible by
humans.

When people responsible for the CI/CD pipeline review the test result, usually there are not
enough resources to review all results or even all the failures from the different executions.
People usually result looking at the latest failures and perhaps looking at the first failure and
assume that all failures are originating from the save reason. If there are multiple Cl jobs,
people mightlook for failuresina single job and assume that all the jobs have the same reason
for failure. Therefore, different people will have different opinions about what is the reason
for the failure in the individual test, because test might have been failing in multiple reasons

in different test execution runs in the pipeline.

4.1. State of the art

Usually CI/CD systems or other data visualization systems display results based on the single
execution in the pipeline and do not take account of the history of execution. Or pipeline can
display results as trend, but do not do deeper analysis on the failure reason. Because single
test may fail in multiple different ways in different executions in the pipeline or different tests
may fail on same underlying reason, just displaying trends or looking at the single execution
result is not sufficient to determine the root cause of the test failure.

Instead of counting tests results and doing root cause analysis manually based on the test
results, we think that itis it should be possible to parse the test result from the test execution
logs and apply machine learning model to group or label similar failures. We are currently in
the early stages of the study but based on the initial analysis we believe that it is possible to
use ML to find similar failures from test logs. If grouping can be done by ML algorithm, it can
be more accurate and can process more data than a human would go through in a manual
process. This would shorten the time taken in the analysis of test results and saved time could
be more efficiently used to fix the problem.

4.2. Contributions

Currently we do not have any public contributions, because we are in the early stages of
research. Initial results look promising, with sample data provided from F-Secure test
automation. If the results are good, we aim to publish this tool as an open-source package in
GitHub with University of Helsinki.

4.3. Claimed novelty
Currently there are various visualization systems for test results, but the existing systems
neither perform analysis on deeper levels nor perform root cause analysis.

. Oracle mining (CRIM)

5.1. Introduction

Automating the test generation from requirements expressed in ambiguous natural
languagesis challenging, even for controlled ones. It can be decomposed into two steps: the
automatic generation of formal specifications and test generation from formal specifications.
Formal specification plays the role of an oraclein testing, i.e., it specifies the relation between
the inputs and the expected outputs. However, constructing formal specifications is a very

challenging task. CS Canada and IVVES industrial partners are facing this challenge in testing
(critical) evolving systems. Requirements describe features and functionalities of systems in
terms of constraints that must hold on variables that represent concepts (e.g., input, outputs,
and states) of the systems. In addition to the variable names, ambiguous words and
punctuation marks from the natural languages (e.g., when, if, after, while, where, and, or, do,
make, set, etc.) appear in the constraints. The ambiguity of the meaning of some words and
marks, the usage of multiple variable names for the same concepts introduce uncertainty in
the requirement analysis. For example, a part of a requirement can be enhanced by
connecting it to a new part of the requirement via the usage of the word "where"; it is not
obvious to determine the connected parts of requirements. The uncertainty leads to various
interpretations of each ambiguous part of the requirements and combinations of the
interpretations result in a possible vast number of plausible specifications. Approaches are
needed to choose proper specifications.

5.2. State of the art

Most of the approaches to generate precise oracles or tests from requirement documents are
fully automated and aims at producing precise oracles [2, 6, 4, 1, 5]. The direct translation
approach makes correspondence between certain patterns in the modelling language for
precise oracles and their possible representations in natural languages. The machine
translation-based approach uses examples of translated requirements either to infer formal
grammar for the requirements or to train a translation model with ML techniques. The
approach in [4] automatically generates a precise oracle, which is compared to a manually
generated precise oracle for validation of the automatic precise oracle generation procedure.
In case the generated oracle is not the expected one, the approach does not propose another
version to the expert.

Our contribution is a two-steps approach to generate precise oracles, as illustrated in Figure
6.1. The first step consists in generating imprecise oracles representing a set of plausible
precise oracles (specifications). The second step is mining a precise oracle from the imprecise
one. Mining a precise oracle corresponds to the resolution of uncertainty in the imprecise
oracle in order to choose one of the plausible precise oracles. We suggest involving an expert
in realizing this task.

Requirements

stated in a MU.N"""
natural based

language analysis

Precise oracle

Figure 5.1: Two-steps approach to generate precise oracles

The next section presents our approach to mining a precise oracle from an imprecise one.

5.3. Contributions

In our approach, we represent uncertainty with nondeterministic transitions in a finite state
machine. Finite state machine has been used as a formal model for evolving systems [1] and
used in developing verification and validation techniques for evolving systems such as model-
based testing and model-checking.

We represent a set of plausible precise oracles, called the imprecise oracle, with an input
complete and non-deterministic finite state machine (FSM). A plausible precise oracle is then
a deterministic and input complete submachine of the imprecise one. Each precise oracle
produces a single output sequence in response to an input sequence. A test is nothing else
but an input sequence. Precise oracles are distinguishable if they produce different output
sequences for the same test; otherwise, they are indistinguishable.

Our approach to assisting an expert in choosing a proper precise oracle from an imprecise

one works as follows:

- Randomly generate a test

- Loop: Determine the outputs which can be produced by the executions of the
plausible precise oracles with the test; this is done by exploring paths of the
imprecise oracle

- Ask an expert to choose the expected output; we assume that one of the outputs is
expected.

- Remove from the imprecise oracle the precise ones that do not produce the chosen
output sequence

- If the imprecise oracle contains only indistinguishable precise oracles, then return
any one of the precise oracles as expected and exit

- Else generate a test that distinguishes two precise oraclesinit and goto loop

Let us illustrate our contribution. The nondeterministic FSM in Figure 5.2 represents an
imprecise oracle for a system. It has 11 transitions t1, t2 ..., t11. Its inputs a and b can
represent a Boolean assertion over variables used in requirements. The outputs are O and 1.
Uncertainty is modelled with nondeterministic transitions in states. For example, in state 3,
it is uncertain whether the output is O or 1 on input a. The imprecise oracle defines eight
plausible precise oracles. Two of them appear in Figure 5.3.

a/0 ! b/0 sl a/0 !

b/() Its]

b/() ttaal

Figure 5.2: An imprecise oracle

a/() #2] h/() (tsa]

a/1 tw]

b/ ()

Figure 5.3: Two plausible oracles

The two plausible precise oracles are indistinguishable with test babaab because both
produce output 000100 on the test. For input babaab, the eight precise oracles produce
outputs 000100, 000110 and 000000. If the expert judges the output 000100 is expected, the
procedure will generate the test babaaa that distinguishes between the two plausible precise
oracles in Figure 5.3. The precise oracles produce 000101 and 000100 with the test babaaa.
If an expert chooses 000101 as the expected output, then the first precise specification is the
expected one. Otherwise, a new test is automatically generated, and the expert is invited to
estimate the plausible outputs.

5.4. Claimed novelty
Our two-step approach to generating precise oracleis novel and suitable for evolving systems.
We anticipate that it can be easier to automatically generate imprecise oracles without

missing any complexinterpretation of the requirements. In addition, the proposed procedure
for mining precise is based on the Boolean encoding of the imprecise oracle and constraint
resolution. It avoids a one-by-one enumeration of every precise oracle. It proceeds by building
partitions of the imprecise oracle, which is also a novelty as compared to our previous work

[3].

Ongoing work includes enhancing a prototype tool for the proposed procedure and lifting
the procedure to extensions of FSM with variables and complex operations on them. The
variables can represent input and output ports of evolving systems on these variables. We
are also investigating the ML/NLP based generation of imprecise specifications for
requirement documents, especially requirements used by the IVVES industrial partners.

6. Automated test verdict generation via Model Learning (F-
Secure, OUNL)

In orderto achieve automatingtest verdict generation, first we need to collect data from SUT, which
afterwards will be analyzedin orderto determine whetherthe outcome isintended orit is a bug.

The following three main approaches have been usedto collect data from SUT:

e Actionsdonerandomly
e Actionsdone by replayinga prior testsequence
e Actions done using Reinforcement Learning aligned to specific reward strategies.

Afterthe datais collected, it comes down to comparing the results across different executions of the
same sequence (model) and determine the differences in a way that will help Software Engineers
identify potentialissues within the new versions.

For this purpose, F-Secure used two frameworks which were integrated within the existing Test
Automation process:

e TESTAR (developed by Open University of Netherlands)
e Change-Analyzer (developed by F-Secure).

6.1. Description (Change-Analyzer)

Change-Analyzer (CA) is an open-source framework built utilizing ML techniques, leveraging OpenAl
Gym library. CA allows product teams to get feedback regarding their software product, aka SUT
(System Under Test) without having any prior knowledge of the SUT.

Essentially, CAis built around the following main Data features:

e Data Collection, done through Automated Exploratory Testing

e Data Reconstruction, done through Automated Regression Testing
e Data Analysis, done through Change Detection

e Data Validation, done through Verdict Generation

6.2. Example (Change-Analyzer)

In a simplistic generalway, below is the representation of the workflow, using Reinforcement
Learning approach to selectthe nextaction. The workflow representsateststepfroma test
sequence. Note thatthe data will be used later, as basis for test verdict generation.

START Active Screen (SUT screen from where the action will be
performed

-
Data is the screen page source and its

screenshot
p

PN

Collect Data

PN

s
Actions are elements that can be

Identify Actions

manipulated (clicked, hovered, etc.)

PN

s
Data is prepared to be useful for the

Process Data Deep Learning (DL) model

PN

I
Initialize the DL model according to the
processed data

h

Init DL Model

PN

Train the DL model using current and old

Train DL Model q
ata

p
-

PN

Predict next action based on the trained

Predict Action

model and the available actions
p

PN

Perform the action which was predicted

END Perform Action

in the previous step

s -

For every step, the above workflow is repeated until the desired amount of steps is reached, or a
blocking action is encountered. When mentioning blocking actions, that can have different meaning,
dependingonthe purpose determined by the reward policy. Forinstance, we can have test sequences
that aim to remain within the designated SUT, and therefore when an action takes the user outside
the SUT, we have a blocking action and the test sequence should stop.

Reward policy is a mechanism used to grade the outcome of a performed action. For instance, a naive
approachis to count the amount of changed pixels, using the screenshotsfrom one action to the next.
The reward information allow the Reinforcement Learning agentto observe and learn fromiits actions
in order to adapt to the respective reward policy.

When framework is integrated into existing CI/CD pipelines, the generated test sequences can be
executed against future versions of SUT. For each execution of the test sequence, the datais recorded
in the same way as when the sequence is first discovered.

Once there are two test results of the same test sequence, the output can be compared in order to
evaluate the behaviour. The difference isdone ontwo levels:

e Onimagelevel: comparingthe screenshots

e On source level: comparing the page sources

Based on the sequence differences, a test report is generated. Here each performed step is listed
alongside the associated screenshot. Any encountered difference is highlighted to make further
evaluation easier.

Here is an example to showcase how the reportis currently displayed and how an actual difference is

highlighted.

Change analyzer report

Expected sequence: 4bfa83c0-7ddf-11ec-9761-18cc18ca8900 (2022_01_25-13_44_30)
Actual sequence: 2890a6e8-7dd4-11ec-ac3a-18cc18cal8900 (2022_01_25-15_04_14)

Date: 2022_01_25-15_40_40

Toggle all steps

open the Application
Step 2 click on Manual scanning
Step 3 click on Manual scanning
click on More options
click on More options
click on Manual scanning

Step 7 click on More details

Step 8 click on Main view

m click on Mare options

The actual screenshot is not the same as the expected screenshot

Expected screenshot Actual screenshot

= F-SECURE ELEMENTS AGENT = F-SECURE ELEMENTS AGENT

Recent events Recent event
Your ¢ Your ¢
protec Submit a sample protec Submit a sample
More det ¥ Quarantine and exclusions More det ¥ Quarantine and exclusions
¥ Turn off all security features ¥ Turn off all security features
F-Secure Ele Help F-Secure Ele Help
Premium Premium
Version 22,1 About Version 22,1 About

® R #& O @ R & ©

As it can be seen, the report presents at first an overview with the performed test steps. Each step
can be expandedtosee further details considering the test execution. In the above example, the only
difference was amissing “s” from “Recent events”. The difference is so smallthat even an experiences

Software Engineer could easily miss it. However, because the difference is visually highlighted, it
allows a properfocus onthe potentialissue.

6.3.

State of the art

Most of the approaches to test automation and to verdict generation can be summarized as follows:

Functional requirements are defined (prior knowledge of the SUT)

Test cases are identified to address the functionalrequirements

Test cases are automated and are integrated into a test automation framework
Testautomation framework is executed against different software versions
Testautomation results and compared with a predefined expected output.

However, if an action can be performed by a user, it means thatit is a valid action, therefore, it should
be tested.

Here is the innovative approach proposed within Change-Analyzer:

6.4.

No prior knowledge of the SUT required

Reinforcement Learning agents explore the SUT

Datais collected for every performed action

Performed actions are evaluated based on a given reward policy
Testsequences are executed against new versions of SUT

Data collected during test sequences formthe modelof the SUT

Data collected during test sequences contains the generated test cases
Output from different executions is compared to previous results
Change-Analyzerisintegrated into existing testautomation framework
Generated test sequences are executed against different software versions.

Anticipated contributions (Change-Analyzer)

We anticipate several contributions to improve the current state of Change-Analyzer. Below we list

main contribution directions:

Reward mechanismis rather naive
o Improve reward mechanismto have betteraddress different use cases
Data used for modeltraining has limited features
o Create additional features regardingthe images used in training the model
SUT modelis based on visual assets such as screenshots and page source
o Explore expanding SUT modelto contain internal state of differentcomponents
Changes are based on Uland page source detection
o Connecta Reinforcement Learningagentto the source code to map changes from
code to changes from Ul, and further being able to recommend teststo cover
specific changes
Available actions are limited to clicking
o Extendthe actions to include for example also hovering, right-clicking elements
The framework is available for Windows and Web applications
o Extendthe frameworktoaddressalso Mobile applications
The report is basic
o Create an actual dashboard for visualization, connecting different analysis, including
quality trends

6.5. Contributions (Testar)

For functional data collection system data needs to be generated and stored. Testar will be
used to generate data against SUT. The best way to achieve this is to integrate Testar into F-
Secure’s current test automation. This will enable company’s standardized delivery of the SUT
to target platform and will make Testar execution generic. This means it’s possible to extend
Testar to be executed also against different software of the company later if needed.

SUT test automation will be executed in the temporary Azure instance which exists only for
length of testing. This means that it’s not possible to store the data on the same platform. A
remote database will be needed to store data. Company’s policy declines storing persistent
data into the Azure, forcing data to be stored in the AWS. Connection from the Azure to the
AWS had to be created and tested. Backups for the AWS database should be enabled in case
of data loss or corruption.

Data has to be stored in an organized way soit’s availableina reasonable manner. This means
planning for different Testar modes and comparing results. Testar doesn’t support remote
saving for comparing results yet. Therefore, comparing results will be temporarily stored in
Jenkins. Later results will be saved in a database when Testar has a feature to support remote
saving.

Desired way to execute Testar modes and comparison will be tested and adjusted. Testing in
practice will show results and process will be adjusted to correspond with wanted outcome.
Testar’s comparison tool will be tested and evaluated if it’s sufficient in the labeling process.
If the comparison tool will turn out to be insufficient, brand new comparing tool should be
created. The tool should generate values that are machine readable. Automatable mechanism
to detect regression versus improvement in Ul should be discovered.

7. Conformal prediction for edge applications (Ekkono Solutions)

7.1. Introduction

Many machine learning systems involve making predictions, through estimating the value of
a dependent variable with a priori unknown ground truth. Verification of such predictive
systems, in particular when applied in high-risk applications, is crucial. Traditional machine
learning algorithms and means of validation, however, generally lack capabilities for
establishing trustworthy verification; e.g., established common-use validation procedures
tend to be biased, leading to error frequency on production data not corresponding with error
frequency on test data; and, established common-use validation procedures tend to perform
verification on a macroscopic level (per-model) rather than a microscopic level (per-
prediction), leading to difficulties in verification of individual predictions.

Conformal prediction and in particular the conformal prediction framework presented here
offers an alternative method for constructing and evaluating predictive models that is better
suited than traditional predictive methods in applications where thorough verification is
crucial.

7.2. Technical description

Traditional predictive models output so-called point predictions—a single-valued best-guess
prediction for the value of the dependent variable. Conformal predictors, on the other hand,
output multi-valued prediction regions that represent a range of likely value assignments for

the dependent variable, constrained by its domain. Any prediction region produced by a
conformal predictor comes associated with a very specific, statistically valid, expectation: that
the a priori probability of the prediction region containing the ground truth value of the
dependent variable is fixed and known. Under these conditions, model and prediction
verificationbecomes straight-forward, as each prediction is guaranteedto contain the correct
value of the dependent variable with a user-specified probability.

7.3. Example

In this example we create a virtual sensor for the temperature of the stator windings in an
electrical motor, from the publicly available electrical motor dataset. The electrical motor
data is from a permanent magnet synchronous motor which is typically used in electrical
vehicles. Due to the intricate design of the motor, direct measurements of temperature is
only possible in a lab setting and not on commercial vehicles. At the same time, precise
temperature estimations are getting more and more important in step with the rising
relevance of functional safety. The target is best-cost hardware of traction drives in an
automotive environment. A machine learning model for this scenario must be small in both
terms of memory and CPU.
The original dataset 1 had 140 hours (collected at 2Hz) of handcrafted test runs that should
simulate typical usage. The data has been down sampled to 1/60 Hz (a sensor reading each
minute) since a higher frequency provides little benefit for temperature data. In the resulting
dataset we have 8319 instances with eight attributes. The last attribute stator_winding is the
temperature of the stator winding (see the picture below), asmeasures in the test bench. This
temperature should be predicted using the other variables. Note
that stator_windings normally shouldn’t be used as an input to the model since the sensor
would most often be absent at deployment.

The following figure shows an example of the conformal prediction framework applied to such
dataset.

= stator_winding

error bound

7.4. State of the art and anticipated contribution

1 Kirchgéssner W. ,Wallscheid O. and Bécker J and described in their publication Empirical Evaluation of
Exponentially Weighted Moving Averages for Simple Linear Thermal Modeling of Permanent Magnet
Synchronous Machines 2019.

In the previous deliverables we have presented an efficient implementation of conformal
prediction, able to run on edge applications. The implementation supports online re-
calibration of the conformal predictor, to allow for individualized learning, and adapting to
change. The provided implementation of conformal prediction is further extended to support
fully online training on the edge, without the need to supply any prior training data.

We have improved upon that version by continuing the development and presenting a
streamlined execution engine, improved upon the documentation and tutorials, and we have
optimized the algorithm for smaller footprint and more energy efficiency.

Finally, we have also been evaluating it in real case scenarios on edge applications.

The novelty of our approach is focused on extending the state-of-the-art research on
conformal prediction focusing on incremental learning at the edge. Ekkono’s conformal
prediction frameworkis the first commercial application of conformal prediction, in particular
for embedded devices and streaming data.

8. Code defect risk prediction (Sogeti)

8.1. Introduction

In the previous deliverable, we have introduced a method of code analysis and defect
prediction using ML. The code defect detection tool aims to assess risk earlier indevelopment
and more accurately focus QA activities, making them more efficient. Furthermore, it can be
used to improve code maintainability, and make the development team more aware of the
code they commit. This will ultimately add value by enhancing the quality of the software
while shortening the delivery/release cycle.

For our final approach, we focus on:

e Providing a list of guidelines for proper version control tracking of buggy code.

e Extending the list of programming languages supported by our tool.

e Calculating feature importance to derive which static code analysis metrics impact the
model predictions most.

¢ Integrating our tool with a WP4 tool, DevAssist.

8.2. Anticipated contribution

A final version of the tool with an ML component and XAl layer, with a reporting dashboard.
This code quality tool will help to speed up the peer review process by showing developers
which parts of their code are risky. The XAl layer will help the developers understand the
model output. The model artifacts can be used in DevOps monitoring solutions and improve
project management decisions.

8.3. Proposed approach
The final version of the code defect risk prediction tool development approach is outlined in
Figure 8.1.

Pull Request
contents

\,1

Keyword | |
logic

P ~ Comams

keyword _

Extract buggy
code

T
Label defect/not a defect >

Scrape
repository

Data
Extract extraction

healthy code

Data

Cormitlval eature File level feature general\ preprocessing
generation /
X v

- N

/ Train data /

Model
“_Q N muﬁ‘ development
N

model metadata

Model

~ evaluation

{ Log the trained 1

~

Figure 8.1: The diagram of the solution approach.

We split the approach per QAIF phase (framework built in WP2 followed to ensure quality of
Al solutions).

Phase 1: Understanding of risks of application

During our work between D3.2. and now, we realized the guidelines for commit messages
are extremely important as the data quality is low in case of none being followed. As a final
version of this method, we propose a set of guidelines for a defect detection efficient
committing of code in a repository, for example:

e The buggy code must be clearly reported on in issues.

e The pull requests must be labelled with adequate labels so the scraping can be
optimized.

e Keyword extraction must be specific to use case and repository at hand.

The list of guidelines is evolving and is open to adjustment based on repository at hand.

Phase 2 & 3: Data Understanding and preparation

We stand by using static code analysis packages to extract features for model training,
therefore, we kept this method in the final version of the tool. Some of the features we derive
from scraped code (healthy and buggy) are outlined below:

e Code block level features - complexity, number of distinct operators and operands,
single comments, blank lines, etc.

e Metadata features — related to the user and related to the number of files in the
commit, added, changed, removed files, etc.
Phase 4 & 5: Model development and evaluation

We propose using a Random Forest Classifier as an innovative method to detect the
probability of faults and thus determine if the quality of code is risky or not. We use defects
as our objective for our machine learning outcome. The inference result can be seen in Figure
8.2.

CodeAssist

Prediction of riskiness

1) django-utils-autoreload.py +

utoreload.py +

Predicted risk

Codeblock

0.0 0.2 0.4 0.6 0.8 1.0
Risk

Figure 8.2: The prediction output. The predicted risk is split per committed code block.
Furthermore, we test the model with XAl methods (SHAP) for:

e Local feature impact.
e Global feature impact (Figure 8.3).

CodeAssist

Prediction explanation

n

,
.
. T
- -=Tem
ST [~)
s s o
e]
no_of_deleted_pyton_fees -
—— =

0.04 008 006 0.07 0.08 009
ann)

Feature impacts

High
¢ .- e *.
blank — - ..
oc 2 K
author_previous_file_changes - o .
no_of_deleted_pyton_files - ’
stox . oo
complexity _*.
author_previous_commits R
no_of_python_files B ST s
i m d < . . [
no_of_modified_files .’ ;
no_of_files . + . 2
no_of_modified_python_files LR 2
no_of_deleted _files . oe *
muiti . *
single_comments *.-
comments 4+
h2 . *
N2 . *
n ..
N1 4
v Low

04 3 0.2 01
SHAP value (impact on model output)

Figure 8.3: The top part of the figure is the SHAP plot of local feature impacts, the bottom
part shows the global feature impactto the model.

8.4. DevOps pipeline: integration and traceability
Given the tool Sogeti is working on in WP4, DevAssist —we propose feeding this tool’s output

into a monitoring dashboard. A representation of this is in Figure 8.4. The widgets in the
dashboard include structural and functional metrics like:

e Code coverage.
e Risk by commit ID.
e Feature hotspots.

e Code risk over time.

These widgets provide insight into code commits during a time period, for example an agile
sprint. The stakeholders, testers and developers can use it to gain insight into the
development process in that time period. This dashboard can answer the following questions
related to project management:

e “Which features introduce buggy code?”

e “Did we give enough time for proper development and unit testing during this sprint?”
o “Which commits were flagged as risky?”

e “Hasa specific test method reduced code risk over time?”

G

B8 General / Code Quality vy =3

Code coverage Feature Hotspots

(@)

50%

Risk by Commit ID Code Risk

-
@
a
[
o

& @

Figure 8.4: A code defect risk prediction report in a monitoring dashboard (Grafana).

Our dashboard of choice is Grafana, a cloud-based time series dashboard commonly used for
log analysis and monitoring. Due to Grafana’s extensive plug ins (GitHub and GitLab, for
example), there is a myriad of choices regarding data sources and methods for log analysis.
Therefore, we propose the usage of this dashboard in the final version to integrate with the
relevant data sources of a project to create a unified testing dashboard to provide
transparency and monitoring of the development process and drive testing and project
management decisions.

8.5. Claimed novelty

As industrial systems evolve and grow increasingly complex, we need to find new ways to
manage the sustainable growth of development and testing operations. By implementing an
automated machine learning code risk model, we can more accurately predict the quality of
our code and where the high-risk features are, which will enable the prioritisation of test cases
and better organization of projects.

We have developed this tool with ITEA IVVES WP2 methods place to ensure development of
validated and quality ML — starting with data and ending with model evaluation. Our tool not

only has a smart component, but also has an explainable layer which helps the users
(developers, testers, stakeholders) understand why a certain commit is predicted as risky.
This helps align teams and bring transparency to the solution. Finally, the report dashboard is
used to drive decisions in testing and project management. Our proposed technical solution
is a novelty in the software industry and will shift the way of working towards compliant &
quality development.

9. References

[1] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, S. Yoo, “The Oracle Problem in Software
Testing: A Survey” IEEE Transactions on Software Engineering, 2015.

[2] I. Buzhinsky, "Formalization of natural language requirements into temporal logics: a
survey," 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki,
Finland, pp. 400-406, 2019.

[3] O. Nguena Timo, Alexandre Petrenko, S. Ramesh, “Using Imprecise Test Oracles Modelled
by FSM”. ICST Workshops, pp. 32-39, 2019.

[4]). Galvani Greghi, E. Martins, A. Maria Brito, R. Carvalho, “Semi-automatic Generation of
Extended Finite State Machines from Natural Language Standard Documents”, DSN
Workshops, pp. 45-50, 2015.

[5] F. Pudlitz, F. Brokhausen, A. Vogelsang, “Extraction of System States from Natural
Language Requirements” RE 211-222, 2019

[6] C. Gustavo, S. Augusto, “Formal Specification Generation from Requirement Documents”,
Electronic Notes in Theoretical Computer Science. 195. 171-188, 2008.

[7] S. Bauersfeld, T. Vos, “A reinforcement learning approach to automated gui robustness
testing”, In Fast Abstracts of the 4th Symposium on Search-Based Software Engineering
(SSBSE), IEEE, pp. 7-12, 2012.

[8] A. Esparcia-Alcazar, F. Almenar, T. Vos, U. Rueda, “Using genetic programming to evolve
action selection rules in traversal-based automated software testing: results obtained with
the TESTAR tool”, Memetic Computing 10(3): 257-265, 2018.

[9] Y. Miaoand X. Yang, “An FSM based GUI Test Automation Model”, the 11th International
Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 120-126, 2010.

[10] P. Aho, N. Menz, T. Raty and |. Schieferdecker, "Automated Java GUI Modeling for Model -
Based Testing Purposes," In Eighth International Conference on Information Technology: New
Generations, pp. 268-273, 2011.

[11] A. Mesbah, A. van Deursen, and S. Lenselink, "Crawling Ajax-Based Web Applications
through Dynamic Analysis of User Interface State Changes”, ACM Trans. Web 6, 1, Article 3
(March 2012), 30 pages. DOI:https://doi.org/10.1145/2109205.2109208

[12] P. Aho, M. Suarez, T. Kanstrén and A. M. Memon, "Murphy Tools: Utilizing Extracted GUI
Models for Industrial Software Testing," Seventh IEEE International Conference on Software
Testing, Verification and Validation Workshops, pp. 343-348, 2014.

[13] V. Cortellessa, A. Di Marco, P. Inverardi, “Model-based software performance analysis”,
Springer Science & Business Media, 2011.

[14] M. Harchol-Balter, “Performance modeling and design of computer systems: queueing
theory in action”, Cambridge University Press, 2013.

[15] K. Kant, M. M. Srinivasan, “Introduction to computer system performance evaluation”,
McGraw-Hill College, 1992.

[16] S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni, “Model-based performance prediction
in software development: A survey”, IEEE Transactions on Software Engineering, 295-310,
2004

[17] H. Koziolek, “Performance evaluation of component-based software systems: A survey.
Performance evaluation”, pp. 634-658, 2010.

[18] P. Zhang, S. Elbaum, M. B. Dwyer, “Compositional load test generation for software
pipelines”, In Proceedings of the International Symposium on Software Testing and Analysis
pp. 89-99, 2012.

[19] V. Garousi, “A genetic algorithm-based stress test requirements generator tool and its
empirical evaluation”. IEEE Transactions on Software Engineering, 36(6), 778-797, 2010

[20] M. B. da Silveira, E. D. M. Rodrigues, A. F. Zorzo, L.T. Costa, H. V. Vieira, F. M. de Oliveira,
“Generation of Scripts for Performance Testing Based on UML Models”, In SEKE, pp. 258-263,
2011.

[21] C. Lutteroth, G.Weber, “Modeling a realistic workload for performance testing”. In 12th
International IEEE Enterprise Distributed Object Computing Conference, pp. 149-158, 2008.

[22] H. Schulz, D. Okanovi¢, A. van Hoorn, V. Ferme, C. Pautasso, “Behavior-driven load
testing using contextual knowledge-approach and experiences”, In Proceedings of the
ACM/SPEC International Conference on Performance Engineering, pp. 265-272, 2019.

[23] V. Ferme, C. Pautasso, “A declarative approach for performance tests execution in
continuous software development environments”, In Proceedings of the ACM/SPEC
International Conference on Performance Engineering, pp. 261-272, 2018.

[24] R.S. Sutton, A. G. Barto, “Reinforcement learning: An introduction”, MIT press, 2018.

[25] H. M. Moghadam, “Machine Learning-Assisted Performance Assurance”, Licentiate
Thesis, Malardalen University, 2020

[26] M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, B. Lisper, “Poster: Performance
Testing Driven by Reinforcement Learning”, In IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST), pp. 402-405, IEEE, 2020

[27] M. H. Moghadam, “Machine learning-assisted performance testing”. In Proceedings of
the 27th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 1187-1189, 2019.

[28] M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, B. Lisper, “An Autonomous
Performance Testing Framework using Self-Adaptive Fuzzy Reinforcement Learning”,
Software quality journal, 1-33, 2021

[29] M. H. Moghadam, G. Hamidi, M. Borh, M. Saadatmand, M. Bohlin, B. Lisper, B., & P.
Potena, “Performance Testing Using a Smart Reinforcement Learning-Driven Test Agent”, In
2021 IEEE Congress on Evolutionary Computation (CEC) (pp. 2385-2394). IEEE. 2021

[13] S. Pimont and J. Rault, “A software reliability assessment based on a structural and
behavioral analysis of programs”, In Proc. of the 2nd international conference on Software
engineering (ICSE). IEEE, pp. 486—491, 1976.

[14] T. Chow, “Testing Software Design Modeled by Finite-State Machines”, IEEE Trans. on sw.
eng., vol. SE-4, no. 3, 1978.

[15] V. Cortellessa, A. Di Marco, P. Inverardi, “Model-based software performance analysis”,
Springer Science & Business Media, 2011.

[16] M. Harchol-Balter, “Performance modeling and design of computer systems: queueing
theory in action”, Cambridge University Press, 2013.

[17] K. Kant, M. M. Srinivasan, “Introduction to computer system performance evaluation”,
McGraw-Hill College, 1992.

[18] S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni, “Model-based performance prediction
in software development: A survey”, IEEE Transactions on Software Engineering, 295-310,
2004.

[19] H. Koziolek, “Performance evaluation of component-based software systems: A survey.
Performance evaluation”, pp. 634-658, 2010.

[20] P. Zhang, S. Elbaum, M. B. Dwyer, “Compositional load test generation for software
pipelines”, In Proceedings of the International Symposium on Software Testing and Analysis
pp. 89-99, 2012.

[21] V. Garousi, “A genetic algorithm-based stress test requirements generator tool and its
empirical evaluation”. IEEE Transactions on Software Engineering, 36(6), 778-797, 2010.

[22] M. B. da Silveira, E. D. M. Rodrigues, A. F. Zorzo, L. T. Costa, H. V. Vieira, F. M. de Oliveira,
“Generation of Scripts for Performance Testing Based on UML Models”, In SEKE, pp. 258-263,
2011.

[23] C. Lutteroth, G. Weber, “Modeling a realistic workload for performance testing”. In 12th
International IEEE Enterprise Distributed Object Computing Conference, pp. 149-158, 2008.

[24] H. Schulz, D. Okanovi¢, A. van Hoorn, V. Ferme, C. Pautasso, “Behavior-driven load
testing using contextual knowledge-approach and experiences”, In Proceedings of the
ACM/SPEC International Conference on Performance Engineering, pp. 265-272, 2019.

[25] V. Ferme, C. Pautasso, “A declarative approach for performance tests execution in
continuous software development environments”, In Proceedings of the ACM/SPEC
International Conference on Performance Engineering, pp. 261-272, 2018.

[26] B. Settles, “Active learning literature survey”, University of Wisconsin-Madison
Department of Computer Sciences, 2009.

[27] R.S. Sutton, A. G. Barto, “Reinforcement learning: An introduction”, MIT press, 2018.

[28] H. M. Moghadam, “Machine Learning-Assisted Performance Assurance”, Licentiate
Thesis, Malardalen University, 2020.

[29] M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, B. Lisper, “Poster: Performance
Testing Driven by Reinforcement Learning”, In IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST), pp. 402-405, IEEE, 2020,

[30] M. H. Moghadam, “Machine learning-assisted performance testing”. In Proceedings of
the 27th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 1187-1189, 2019.

[31] M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, B. Lisper, “An Autonomous
Performance Testing Framework using Self-Adaptive Fuzzy Reinforcement Learning”, arXiv
preprint arXiv:1908.06900, 2019.

[32] G. Hamidi, “Reinforcement Learning Assisted Load Test Generation for E-Commerce
Applications”, Master thesis, Malardalen University, 2020.

[33] J. O’Duinn, The financial cost of a check in (2013). Accessed 2020-08-11.

[34] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs, and benefits of
continuous integration inopen-source projects,” in2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, pp. 426437, 2016.

[35] G. Rothermel and M. J. Harrold, “Analyzing regression test selection techniques” IEEE
Transactions on software engineering, vol. 22, no. 8, pp. 529-551, 1996.

[36] B.G. Ryder, F. Tip, “Change impactanalysis for object-oriented programs,” in Proceedings
of the 2001ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering, pp. 46-53, 2001.

[37] M. Gligoric, L. Eloussi, D. Marinov, “Ekstazi: Lightweight test selection,” in2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 2. IEEE, pp. 713-716, 2015.

[38] T. A. Budd, D. Angluin, “Two notions of correctness and their relation to testing”, Acta
Informatica 18(1), pp. 31-45, 1982.

[39] E. J. Weyuker, “Assessing test data adequacy through program inference. ACM
Transactions on Programming Languages and Systems (TOPLAS) 5(4), pp. 641-655, 1983.

[40] R.D. King, K.E. Whelan, F.M. Jones, P.G. Reiser, C.H. Bryant, S.H. Muggleton, D.B. Kell,
S.G. Oliver, “Functional genomic hypothesis generation and experimentation by a robot
scientist”, Nature 427(6971): pp. 247-252, 2004.

[41]). Henkel, A. Diwan, “Discovering algebraic specifications from java classes”, In: European
Conference on Object-Oriented Programming, Springer, pp. 431-456, 20035t

[42] P. Papadopoulos, N. Walkinshaw, “Black-box test generation from inferred models”, In:
Proceedings of the Fourth International Work- shop on Realizing Artificial Intelligence
Synergies in Software Engineering, IEEE Press, pp. 19-24, 2015

[43] L. C. Briand, Y. Labiche, Z. Bawar, N. T. Spido, “Using machine learning to refine category-
partition test specifications and test suites”, Information and Software Technology 51(11): pp.
1551-1564, 2009.

[44] V. Vovk, A. Gammerman, G. Shafer, “Algorithmic learning ina random world”, Springer
Science & Business Media; 2005.

[45] G. Shafer, V. Vovk, “A tutorial on conformal prediction”, Journal of Machine Learning
Research, vol 9, pp. 371-421, 2008.

[46] C. Saunders, A. Gammerman, V. Vovk, “Transduction with confidence and credibility”,
pp. 712-726, 1999.

[47] V. Balasubramanian, S.S. Ho, V. Vovk, editors. “Conformal prediction for reliable machine
learning: theory, adaptations and applications”, Newnes, 2014.

[48] U. Johansson, H. Bostrom, T. Lofstrom, H. Linusson, “Regression conformal prediction
with random forests”, Machine Learning, vol 97(1-2), pp. 155-76, 2014.

[49] H. Linusson, U. Norinder, H. Bostrom, U. Johansson, T. Léfstrom, “On the calibration of
aggregated conformal predictors”, In Conformal and probabilistic prediction and applications,
pp. 154-173, 2017.

[50] J. Alvarsson, S.A. McShane, U. Norinder, O. Spjuth, “Predicting with confidence: Using
conformal prediction in drug discovery”, Journal of Pharmaceutical Sciences, 2020.

[51] N. Bosc, F. Atkinson, E. Felix, A. Gaulton, A. Hersey, A.R. Leach, “Large scale comparison
of QSAR and conformal prediction methods and their applications in drug discovery”, Journal
of cheminformatics, vol 11(1), p. 4, 2019.

[52] M. Eklund, U. Norinder, S. Boyer, L. Carlsson, “The application of conformal prediction to
the drug discovery process”, Annals of Mathematics and Artificial Intelligence, vol 74(1-2),
pp. 117-32, 2015.

[53] M. Pashkovskiy, et. al, “State of the artof validation methods and techniques for complex
evolving systems,” ITEA, 30-Jun-2020. [Online]. Available:
https://itea3.org/project/ivves.html. [Accessed: 2020].

[54] R.Bellairs, “What Is Code Quality? And How to Improve Code Quality,” Perforce Software,
2019. [Online]. Available: https://www.perforce.com/blog/sca/what-code-quality-and-h ow-

improve-code-quality. [Accessed: 01-Dec-2020].

[55] A. VanTol. “Python Code Quality: Tools & Best Practices.” Real Python, Real Python, 7
Nov. 2020, realpython.com/python-code-quality/.

[56] I. S. Cordasco, flake8 Documentation. (2020) [online] Available at: <
https://flake8.pycqa.org/ /downloads/en/latest/pdf/> [Accessed 23 November 2020].

[57] GitHub. 2020. Dmytrolitvinov/Awesome-Flake8-Extensions. [online] Available at:
<https://github.com/DmytroLitvinov/awesome-flake8-extensions> [Accessed 23 November
2020].

[58] Radon.readthedocs.io. 2020. Welcome To Radon’S Documentation! — Radon 4.1.0
Documentation. [online] Available at: <https://radon.readthedocs.io/en/latest/> [Accessed
23 November 2020].

[59] Bandit.readthedocs.io. 2020. Welcome To Bandit’S Developer Documentation! — Bandit
Documentation. [online] Available at: <https://bandit.readthedocs.io/en/latest/> [Accessed
23 November 2020].

[60] Coverage.readthedocs.io. 2020. Coverage.Py — Coverage.Py 5.3 Documentation.
[online] Available at: <https://coverage.readthedocs.io/en/coverage-5.3/> [Accessed 23
November 2020].

[61] M. H. Halstead, “Elements of Software Science”, Elsevier, vol 7, 1977.

[62] K. Pijanowski, “Improve Code Quality Using Test Coverage.” CODE Magazine,
www.codemag.com/article/1701081/Improve-Code-Quality-Using-Test-Coverage.

[63] Docs.python.org. 2020. Py_Compile — Compile Python Source Files — Python 3.9.0
Documentation. [online] Available at: <https://docs.python.org/3/library/py_compile.htm|>
[Accessed 23 November 2020].

[64] “GitLab Cl,” GitLab. [Online]. Available: https://about.gitlab.com/stages-devops-
lifecycle/continuous-integration/. [Accessed: 07-Dec-2020].

[65] lJenkins User Documentation. [Online]. Available: https://www.jenkins.io/doc/.
[Accessed: 07-Dec-2020].

[66] Wily. [Online]. Available: https://wily.readthedocs.io/en/latest/. [Accessed: 07-Dec-
2020].

[67] M. Madera, R. Tomon, "A case study on machine learning model for code review expert
system in software engineering"”, In Federated Conference on Computer Science and
Information Systems (FedCSIS), pp. 1357-1363, 2017.

[68] P. Deep Singh, A. Chug, "Software defect prediction analysis using machine learning
algorithms", In 7th International Conference on Cloud Computing, Data Science & Engineering
- Confluence, pp. 775-781, 2017.

[69] V. Barstad, M. Goodwin, T. Gjgsaeter, “Predicting Source Code Quality with Static Analysis
and Machine Learning”, In Norsk IKT-konferanse for forskning og utdanning. 2014.

[70] “Interpreting random forests,” Diving into data, 19-Oct-2014. [Online]. Available:
http://blog.datadive.net/interpreting-random-forests/. [Accessed: 01-Dec-2020].

[71] GitHub. 2020. Andosa. [online] Available at <https://github.com/andosa/treeinterpreter

[72] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, E. Duchesnay, “Scikit-learn: Machine Learning in Python”, JMLR 12, pp. 2825-2830,
2011.

[73] E. Klevak, S. Lin, A. Martin, O. Linda, E. Ringger, “Out-Of-Bag Anomaly Detection”, arXiv
preprint arXiv:2009.09358, 2020.

[74] K. Zhang, X. Kang, S. LI, “Isolation Forest for Anomaly Detection in Hyperspectral Images”
In IEEE International Geoscience and Remote Sensing Symposium *(IGARSS), IEEE, pp. 437-
440, 2019.

[75] G. Staerman, P. Mozharovskyi, S. Clémencon, F. d'Alché-Buc, “Functional Isolation
Forest”, arXiv preprint arXiv:1904.04573, 2019.

[76] F. T. Liu, K. M. Ting, Z.-H. Zhou, “Isolation forest”, In Eighth IEEE International Conference
on Data Mining, IEEE, pp. 413-422, 2008.

[77] V. Vercruyssen, “Designing Anomaly Detection Algorithms that Exploit Flexible
Supervision”, PhD Thesis, 2020.

[78] M. Tulio Ribeiro, T. Wu, C. Guestrin, S. Singh, “Beyond Accuracy: Behavioral Testing of
NLP Models with CheckList”. arXiv preprint arXiv:2005.04118, 2020.

[79] A. Chan, L. Ma, F. Juefei-Xu, X. Xie, Y. Liu, Y. S. Ong, “Metamorphic relation based
adversarial attacks on differentiable neural computer”. arXiv preprint arXiv:1809.02444,
2018.

[80] WU, Zhaolin, et al., “ATime Window based Reinforcement Learning Rewardfor Test Case
Prioritization in Continuous Integration”, In Proceedings of the 11th Asia-Pacific Symposium
on Internetware, p. 1-6, 2019.

[81] NASA. [Online]. Available:
https://atmos.nmsu.edu/data and services/atmospheres data/INSIGHT/insight.html.
[Accessed: 15-Dec-2020].

[82] H. Linusson, U. Johansson, T Lofstrom, “Signed-error conformal regression”, In Pacific-
Asia Conference on Knowledge Discovery and Data Mining, pp. 224-236, Springer, 2014.

[83] M. Tulio Ribeiro, T. Wu, C. Guestrin, S. Singh, “Beyond Accuracy: Behavioral Testing of
NLP Models with CheckList”. arXiv preprint arXiv:2005.04118, 2020.

[84] WU, Zhaolin, et al., “A Time Window based Reinforcement Learning Reward for Test
Case Prioritization in Continuous Integration”, In Proceedings of the 11th Asia-Pacific
Symposium on Internetware, p. 1-6, 2019.

[85]E. Breck, N. Polyzotis, S. Roy, S. E, Whang, , and M. Zinkevich, “Data validation for
machine learning,” IEEE Transactions on Software Engineering., In SysML, 2019.

[86] CARLETTI, Mattia, et al. Explainable machine learning in industry 4.0: Evaluating feature
importance in anomaly detection to enable root cause analysis. En 2019 |IEEE International
Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019. p. 21-26.

[87] Anastasi, S., Madonna, M., & Monica, L. (2021). Implications of embedded artificial
intelligence-machine learning on safety of machinery. Procedia Computer Science, 180, 338-
343,

[88] Lu, Y.)., &Li, C.T. (2020). GCAN: Graph-aware co-attention networks for explainable
fake news detection on social media. arXiv preprint arXiv:2004.11648.

[89] Pan, J. Z., Pavlova, S, Li, C., Li, N,, Li, Y., & Liu, J. (2018, October). Content based fake
news detection using knowledge graphs. In International semantic web conference (pp. 669-
683). Springer, Cham.

[90] Popat, K., Mukherjee, S., Yates, A., & Weikum, G. (2018). Declare: Debunking fake news
and false claims using evidence-aware deep learning. arXiv preprint arXiv:1809.06416.

[91] Bagherzadeh, M., Kahani, N., & Briand, L. (2021). Reinforcement learning for test case
prioritization. IEEE Transactions on Software Engineering.

[93] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should i trust you?"
Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining (pp. 1135-1144).

[94] Koncel-Kedziorski, R., Bekal, D., Luan, Y., Lapata, M., & Hajishirzi, H. (2019). Text
generation from knowledge graphs with graph transformers. arXiv preprint
arXiv:1904.02342.

[95] Liy, Y., Yang, T.,You, Z., Fan, W., & Yu, P. S. (2020). Commonsense Evidence Generation
and Injection in Reading Comprehension. arXiv preprint arXiv:2005.05240.

[96] Anastasi, S., Madonna, M., & Monica, L. (2021). Implications of embedded artificial
intelligence-machine learning on safety of machinery. Procedia Computer Science, 180, 338-
343,

[97] E. Breck, N. Polyzotis, S. Roy, S. E, Whang, , and M. Zinkevich, “Data validation for
machine learning,” IEEE Transactions on Software Engineering., In SysML, 2019.

[98] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung, and
Darko Marinov. 2018. DeFlaker: Automatically Detecting Flaky Tests. In Proceedings of ICSE
’18: 40th International Conference on Software Engineering, Gothenburg, Sweden, May 27-

June 3, 2018 (ICSE "18).

[99] Alex Groce, Josie Holmes. 2020. Practical Automatic Lightweight Nondeterminism and
Flaky Test Detection and Debugging for Python. 2020 IEEE 20th International Conference on
Software Quality, Reliability and Security (QRS.)

[100] Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie. 2020.
Dependent-Test-Aware Regression Testing Techniques. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA '20), July 18-22,
2020

[101] Wing Lam, Stefan Winter, Angello Astorga, Victoria Stodden, Darko Marinov.
Understanding Reproducibility and Characteristics of Flaky Tests Through Test Rerunsin Java
Projects. 2020 IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE).

[102] Gustavo Pinto, Breno Miranda, Supun Dissanayake, Marcelo d’Amorim, Christoph
Treude, and Antonia Bertolino. What is the Vocabulary of Flaky Tests? MSR'20: Proceedings
of the 17th International Conference on Mining Software Repositories, June 2020.

