

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

DISPERSE Confidential © 2022 IVVES Consortium Page 1 of 59

IVVES
Industrial-grade Verification and Validation of Evolving Systems

Labeled in ITEA3, a EUREKA cluster, Call 5

ITEA3 Project Number 18022

D2.4 – Final version of
Validation Methods and Techniques for ML

Due date of deliverable: March 31, 2022
Actual date of submission: March 25, 2022

Start date of project: 1 October 2019 Duration: 39 months

Organization name of lead contractor for this deliverable: Solita

Author(s): Tijana Nikolic, Almira Pillay, Sogeti; Timo Lehtonen, Solita; Harri Pölönen, Janne
Merilinna, Johan Plomp, VTT; Mark Van Heeswijk, Tatu Aalto, F-Secure; Lalli S.
Myllyaho, Tuomas P. Halvari, Jukka K. Nurminen, Zafar Hussain, Dennis Muiruri,
University of Helsinki; Mahshid Helali Moghadam, Sima Sinaei, RISE; Steven
Boylan, Ana Soto, CCTL; Marko Koskinen, Techila Technologies; Eva Garcia
Martin, Ekkono Solutions; Mark Pijnenburg, Philips

Status: Draft

Version number: 1.0

Submission Date: 25-March-2022

Doc reference: IVVES_Deliverable_D2.4._V1.0.docx

Work Pack./ Task: WP 2 / T2.2

Description:
(max 5 lines)

This document describes the final version of validation methods and techniques
for ML considering use case requirements.

Nature: X R=Report, � P=Prototype, � D=Demonstrator, � O=Other

Dissemination
Level:

PU Public X

PP Restricted to other program participants

RE Restricted to a group specified by the consortium

CO Confidential, only for members of the consortium

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 2 of 59

DOCUMENT HISTORY

Release Date Reason of change Status Distribution

V0.1 27/01/2022 First draft, kick-off version Draft All

V0.2 25/03/2022 First version Concept Authors

V1.0 25/03/2022 Approved by PMT, to be submitted to ITEA3 Final Uploaded to ITEA

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 3 of 59

Table of Contents

1. Glossary ... 4

2. Executive Summary .. 6

3. Task 2.2 - Incoming Data QA ... 7

3.1. Synthetic Data ... 7
3.1.1. Simulated data for healthcare .. 7
3.1.2. Simulated data for cybersecurity ... 9

3.2. Incoming data QA methods .. 10
3.2.1. Data Quality Wrapper .. 10
3.2.2. Audio data QA ... 13
3.2.3. Quality Assurance of Semi-Natural Language Data ... 18
3.2.4. Data Quality for text driven ESG investment systems .. 19

4. Task 2.1 - Model Quality ... 22

4.1. Explainable AI Toolkit .. 22
4.1.1. Training data quality ... 23
4.1.2. Model Quality Assurance .. 27
4.1.3. Prediction Quality Assurance .. 28

4.2. Model Quality for text driven industrial environments ... 34

4.3. Model Inference Scalability ... 37
4.3.1. Protocol scalability .. 37
4.3.2. Knowledge Distillation .. 39

4.4. Drift Detection and Response ... 40

4.5. Model Transparency with Neural Backed Decision Trees ... 45

5. Task 2.3 - Testing techniques for ML ... 45

5.1. Bio-Inspired Search-Based Testing of ML-Driven Systems ... 46

5.2. Generating Adversarial Examples for increasing ML Robustness .. 47

5.3. Metamorphic Testing for text driven ESG Investment systems ... 49

5.4. Robust AutoML ... 50

6. Operationalizing tasks - From incoming data to a validated model .. 51

7. References ... 56

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 4 of 59

1. Glossary

Abbreviation
or acronym

Description

ADAS Advanced Driver-Assistance System

AI Artificial Intelligence

AN Agglomerative Nesting

ANN Artificial Neural Networks

BC Branch Classifiers

BraTS Brain Tumor Segmentation

BNN Bayesian Neural Network

CART Classification and Regression Trees

DL Deep learning

DevOps Development and operations

DIP-VAE Disentangled Inferred Prior Variational Autoencoder

DNN Deep Neural Network

DOE Degree of Correctness

DQW Data Quality Wrapper

DTM Document Term Matrix

EDA Explorative Data Analysis

ETL Extract, Transform, Load

GAN Generative Adversarial Network

KG Knowledge Graph-based

KNN K-Nearest Neighbour

LDA Linear Discriminant Analysis

LIME Local Interpretable Model-Agnostic Explanations

ML Machine Learning

MLOps Machine Learning Operations

NBDT Neural-Backed Decision Trees

NLP Natural language Processing

OS Operating systems

OT Operational Technology

PDP Partial Dependence Plot

PDS Pedestrian Detection System

PLC Programmable Logic Controllers

ProtoDash Prototypes with Importance Weights

QAIF Quality Artificial Intelligence Framework

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 5 of 59

RL Reinforcement Learning

SHAP SHapley Additive exPlanations

SUT System Under Test

SVD Singular Value Decomposition

WEKA Waikato Environment for Knowledge Analysis

XAI Explainable Artificial Intelligence

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 6 of 59

2. Executive Summary

This document (D2.4) describes the final validation methods and techniques for machine learning (ML) in
project use cases. During the previous phases of the IVVES project, the state of the art of the validation
techniques for ML were described in document D2.1. The work continued in deliverable D2.2 where an
initial version of validation methods and techniques for ML was developed. The document acted as a project
plan for deliverable D2.3, where the actual tool development was started. Finally, this deliverable (D2.4)
presents the final version of methods and techniques for ML in project use cases. The document is based
on previous deliverable documents D2.1, D2.2 and D.2.3. Moreover, the latest advances of tool
development are included in this deliverable with directions for future work in the last part of the project.

The objectives of this work package are to:

 Assess data collection methods and techniques that produce data with adequate quality to be used
by ML algorithms.

 Analyze data quality to support testing of trained ML algorithms.
 Improve training data quality by enriching small or incomplete training data sets.
 Develop methods, techniques and tools that address quality aspects of AI and ML models.
 Devise techniques to assess quality aspects of ML models after the model training phase.

Based on the above objectives, three tasks are derived:

 Task 2.1 – Model Quality.
 Task 2.2 – Incoming Data QA.
 Task 2.3 – Testing techniques for ML.

This document is divided into three parts based on the above tasks. First, a section with title Incoming
Data QA, contains descriptions of synthetic data cases in the healthcare sector and cyber security.
Additionally, a section dedicated to quality data is included.

Second, the Model Quality section describes the topic of Explainable AI in financial investments and
industrial environments. This section also discusses the MLOps topic, focusing on drift detection when
monitoring ML Models in the cyber security field and on inference scalability.

Finally, the section for Testing techniques for ML contains information on ML-assisted testing, testing
learning algorithms, metamorphic testing, and testing model robustness. The testing techniques can be
applied in many sectors, for instance, in finance, robotics, healthcare and industrial automation.

The outputs are novel. The tools were developed to address several topics in using artificial intelligence,
especially machine learning, to create value in many sectors of society. Since the previous document
deliverable, we have introduced three new tools:

 Knowledge distillation by Ekkono in section 4.3.2.
 Data harvester by Solita in section 3.2.2.
 Adversarial example generator by RISE in section 5.2.

The following tools were discontinued and will not be included in this deliverable:

 Testing learning algorithms by CRIM.
 Neural backed decision trees by Sogeti NL.

This deliverable is a continuation of deliverable 2.2. which was the initial version. The final version of the
methods and techniques are explained in their designated chapters. At the end of this document, we
describe how the following tools can be used together to operationalize ML tasks and automate the quality
assurance checks for model development and deployment which follows the Quality AI Framework (QAIF)
best practices described in previous deliverables.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 7 of 59

3. Task 2.2 - Incoming Data QA

Task lead: Solita

In this chapter, we introduce the important topic of incoming data quality assurance. The focus is on
machine learning [1]. Quality assurance in general is a wide topic in the industry [2]. Incoming data quality
and its assurance is a key element in every machine learning solution. If the quality of data is poor, the
model built on top of the data will also be poor. In this chapter, we present synthetic data in different
domains, for instance healthcare. Moreover, a data quality wrapper approach is presented. Special focus
has been put to acoustic analysis. In addition to the topics mentioned, semi-natural language data, training
data quality and data quality for text driven ESG investment systems are presented. There are several tools
related to this chapter. First, the data quality wrapper (DQW) tool. DQW tool has been applied to several
use cases. Moreover, several tools for data collection have been implemented.

3.1. Synthetic Data

3.1.1. Simulated data for healthcare

Solution provider: VTT

For verification of the MRI scanner functionality and software, large clinical data sets of the brain are
needed. Data sets are typically created using volunteers during development and verification/validation
activities. The availability of volunteers, however, is limited. Moreover, unlike the patients to be scanned at
the clinic, the volunteers typically are healthy and do not contain tumors and other anomalies of interest.
Using volunteers during the verification execution is also time consuming, resulting in long lead times and
strict planning of activities, limiting flexibility of execution. In addition, volunteer scanning cannot be
automated, typical sample sizes are small and data privacy rules and regulations prevent the sharing and
using of data from hospitals.

Synthetic MRI data created with AI models can help to solve the above issues. There are AI models that
can adopt the essential characteristics of a given data set and after intensive training learn how to generate
similar - but not exact duplicates - of the given data samples. Most widely used such AI models are
generative adversarial networks [3] (GANs). In case enough clinical MRI data samples are available, a
GAN model can be trained to produce massive amounts of synthetic MRI data. Synthetic MR data created
this way is anonymous and can be used in combination with automated test execution.

Data privacy rules slow down acquisition of adequate clinical MRI datasets significantly and demand major
restrictions to share data with research partners. Therefore, a data plan/strategy is required. We inspect
also whether it is better to create “raw” (spatial frequency and phase information) or “imaging” synthetic
data. It also needs to be investigated how to feed the synthetic data into the test framework and validate
the data for its intended use.

As next steps, we aim to create a synthetic data plan defining what data to generate, how the
training/generation is performed, how much data is needed, how to validate, data privacy impact analysis,
etc. The AI model trained partly with synthetic data will be tested on customer data, when available. We
will define product equivalent interface for synthetic data insertion and validate quality of synthetic data with
clinical specialists. While all the previous steps are completed successfully, we will extend the AI model to
create synthetic data for other anatomies i.e., knee, spine, breast.

The synthetic MRI data can be generated either via physics-based model or via a data driven approach.
Physics based model tries to imitate the whole scanning process including human anatomy, scanner
technology and physical phenomena such as magnetic field distortions. In data driven approach an
algorithm is used to generate samples like given training data.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 8 of 59

Here we concentrate on data driven approach using GAN models and public MRI data sources. There have
already been a lot of development efforts on GAN models and in recent years also three-dimensional GAN
approaches have emerged. As the algorithm development is done widely on open-source philosophy, most
of the suitable GAN algorithms are available publicly. We concentrate on applying these algorithms to our
case instead of developing a new algorithm from scratch. First, we start with public data sets and later aim
to obtain clinical data from our partners.

Data driven solutions depend heavily on the availability and quality of the data. The first application we
investigated was low-grade and high-grade gliomas i.e., brain tumors [4, 5, 6]. The public data set we
obtained had less than 400 patients with MRI images. We managed to apply the state-of-the-art GAN
algorithms to this data, but the quality of the generated synthetic data was far from the original data used
in training. Next, we obtained a public data set of MRI images from 1112 healthy young adults as the
training data [7]. With this dataset we were able to produce synthetic MRI images with much better quality
and anatomical correctness (see Figure 1). A medical expert confirmed that the anatomy in these images
looks correct. However, it is worth mentioning that the human brain is a relatively easy target generative AI
model for our approach as the anatomical variation is small in that region. Applying the algorithm e.g., to
abdominal region data may require much more training data.

We checked that the synthetic MRI data generated from 1112 healthy young adults seem to be unique in
the sense that we managed to confirm that the generated volumes are not replicas of any of the training
MRI images. However, as AI models are very complex containing millions of parameters, it is very
challenging to prove that privacy is 100% preserved. Although privacy issues are not in focus in this
challenge, we keep an eye on the progress on this field of science.

Figure 1. Synthetic 3D MRI data created from a dataset of 1 112 healthy young adults

As the GAN model [8] we used seems to work well with healthy young adults, we continued to investigate
new datasets and use cases. As we are working with medical data and are interested in various pathologies,
the shortage of data will always be an issue. Thus, we are investigating methods to process the training
data in various ways in order to expand the available data for the GAN model. Note that this process is
different to commonly implemented data augmentation schemes already included within many AI models
as we modify the training data itself. One approach that we have noticed to work to some extent is to
perform non-rigid registration between pairs of original training data samples and create a “new” data
sample from half-transformed sample. We also investigate pre-processing methods to modify the training
data more consistent, for example via co-localization and intensity normalization. The Alzheimer's Disease
Neuroimaging Initiative [9] (ADNI3) dataset is used in this study. See Figure 2 for the first results with this
limited (366 Alzheimer’s patients) dataset.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 9 of 59

Figure 2. Synthetic 3D MRI data created from a dataset of 366 Alzheimer's patients

We also keep an eye on state-of-the-art on this field and try out any new available GAN algorithms that are
published. The generated synthetic datasets will be used in training and testing existing AI algorithms. Final
output is planned to consist of an AI algorithm that can reliably generate synthetic three-dimensional
medical data like the given training data, understanding of the capabilities and limitations of the proposed
AI algorithm and one or more synthetic datasets created with the AI algorithm.

3.1.2. Simulated data for cybersecurity

Solution provider: F-Secure

The main issues with quality training data in the OT domain is the confidentiality of the customer data,
extensive use of proprietary undocumented protocols and the challenges in obtaining such data from the
highly sensitive control system networks. To battle all the issues, the only way to get good quality data and
to get the data for multiple scenarios is to simulate the data in as close to the real setting as possible. In
practice, this means using the same or similar OT components typically found in the OT setting. This
includes PLCs (Programmable Logic Controllers) and real sensors and actuators.

To enable this F-Secure built a flexible platform that doesn't take up a lot of space but allows the simulation
of wide variety of different scenarios where OT can be found, this includes but is not limited to industrial
facilities, marine vessels, and trains. The platform makes it possible for a small scale but accurate
representation of the scenario in question, this includes correctly simulating the process flow, physical
simulation of the process and generating simulated data that is accurate for the scenario.

The final version of the F-Secure simulation platform is built using Siemens S7-1200 PLCs, Siemens HMI
displays, 3 simulation PCs and bunch of cyber physical sensors and actuators.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 10 of 59

Figure 3. F-Secure simulation platform

The platform is a full-sized facility in a miniature form factor. It accurately follows and simulates all of the
levels in the Purdue reference model for OT environments. The simulation platform can be used to simulate
a wide range of attack scenarios against OT systems and to collect data for further analysis and AI training.

The platform also enables the testing of AI based threat mitigation methods and their effectiveness in OT
environments and whether there are adverse effects on the production systems.

3.2. Incoming data QA methods

This section focuses on ensuring quality in data prior to the model training phase. The final version of the
methods focuses on more data structures than in the initial version, with, most notably, audio data being
added. Furthermore, VTT’s contribution to training data quality focuses on feature importance and
engineering, giving an MLOps perspective to handling data.

3.2.1. Data Quality Wrapper

Solution provider: Sogeti NL

The Data Quality Wrapper (DQW) [10] is an automated EDA and data selection tool. This tool has potential
to be used in any AI workflow, in any industry in the Data Understanding and Data Preparation phase of
the QAIF (See more information in chapter 6).

The methods and approach to the preprocessing are deployed in a Streamlit [11] app. Streamlit is an app
framework that ensures effortless and streamlined application development, specifically tailored for
machine learning and data science. Streamlit can be used for educational and demonstration purposes, so
we found the approach of making these methods available as an application to a broader audience is
beneficial for the ITEA IVVES project-related work dissemination.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 11 of 59

The packages used in the tool have undergone some changes due to the validation of approaches. The
updated package table is below.

(Sub)section Description Visualisation Selection Package Reference

Synthetic tabular

 Table-evaluator [12]

Tabular

 Sweetviz [13]

Tabular

 Pandas Profiling [14]

Tabular, text

PyCaret [15]

Text

NLTK [16]

Text

SpaCy [17]

Text

TextBlob [18]

Text

 WordCloud [19]

Text

TextStat [20]

Image

 basic-image-eda [21]

Audio

 librosa [22]

Audio

 dtw [23]

Audio

 AudioAnalyser [24]

Audio

audiomentations [25]

Report generation

 Fpdf [26]

Report generation

 pdfkit [27]

Table 1. The packages used in the DQW.

The final version of the methods used to preprocess and ensure quality for the following data structures:

1. Structured data analysis – improved feature:
a. Added more elaborate analysis methods.

2. Text data analysis – improved feature:
a. Improved runtime.
b. Improved preprocessing.

3. Audio data analysis – new app feature.
4. Image data analysis – new app feature.

Structured data

Since the initial version of the methods included the EDA of one dataset, we have validated this approach
and found that having more flexibility in this app section brings a lot of value. Therefore, we added more
subsections in this part of the app:

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 12 of 59

 One file analysis with pandas-profiling, an automated EDA package. This package outputs a report
that is used to share EDA findings with team members, ensuring operationalization and
transparency of the data understanding process in AI model development.

 One file preprocessing with PyCaret – a very useful package for workflow automation. In the DQW,
we rely on a PyCaret function which creates the preprocessing pipeline. Transparency into the
pipeline is ensured by displaying a diagram of the preprocessing steps taken. Furthermore, a
pipeline pickle is provided so it can be used in model training, especially in case of imbalanced
class mitigation with SMOTE. The sampling needs to happen within training folds, so you will not
be able to see any impact of this method on the datasets themselves, but you will be able to see
the difference in model performance when you use the pipeline pickle file.

 Comparison of two files with Sweetviz – another automated EDA library in python that is extremely
useful in cases of comparison of two files. This package also outputs a report that can be shared
with relevant team members.

 Comparison of original and synthetic data with table-evaluator. This package offers descriptive
statistics’ comparison of the synthetic and original dataset, together with PCA analysis of both.
Additionally, the package can be used to train various ML models (Logistic Regression, Random
Forest, Decision Tree Forest, MLP Classifier) and compare the F1 scores obtained from the training
results on the synthetic and original dataset.

 Report generation is also added to the final version of this method. Reports are useful for
operationalization of a technical process like data preprocessing.

Text data

The text data part was well received in the validation part, but it has been noted that the flexibility in
languages needs to be improved as the app only supports English. Due to the time-consuming nature of
adding other languages to the app, Sogeti has decided to abandon this improvement and focus on text
data preprocessing and runtime improvement.

The preprocessing has been set to the following:

 Tokenizing with NLTK. The process of splitting input text into tokens that can be passed to
subsequent steps in the preprocessing pipeline.

o Normalizing
o Removing email and URL patterns
o Removing non-ascii characters [28]
o Converting to lowercase
o Removing punctuation
o Replacing numbers with words

 Removing stop-words with NLTK.
 Lemmatizing with NLTK.

The topic analysis has been improved by adding the LDA u_mass coherence score [29] for automatic
selection of the topic number based on coherence scores. This is an advanced, automated method of LDA
performance analysis which can save time in the text preprocessing pipeline because the developer doesn’t
need to experiment on their own. This feature was added in collaboration with Helsinki University.

Audio data

A data source that was not recognized in the first version of the methods, audio data is used in audio signal
processing algorithms such as music genre recognition and automatic speech recognition. We have
realized that this part of the app is very useful as the audio data pipeline is complex and developers would
benefit from having a standardized way of audio data analysis and augmentation. Furthermore, this data
structure preprocessing and quality methods were validated and added in collaboration with Solita as they
are utilizing audio data (see 3.2.2.) for a predictive maintenance use case.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 13 of 59

In this section, we have added:

 One file analysis where we provide plots that can be saved as potential training data for
classification algorithms or simply used to understand the audio data file:

o Waveform plot [30].
o Power Spectrum plot [31].
o Short-time Fourier transform plot [32].
o Mel Frequency Cepstral coefficient plot [33].

 1 file augmentation with audiomentations, useful for increasing training data robustness as audio
data is known for being difficult to collect.

 Comparison of two files with:
o Spectrum compare, a method to compare two audio files based on their power spectrums,

with applied thresholds.
o Time Warping (DTW) [34], a method of analyzing the maximum path to similarity of 2

sequences with different lengths. This method is added to the DQW because of its
application to speech recognition, where words may mean the same but are pronounced
differently.

Images

Image preprocessing (augmentation) was added to the final version of the methods due to the importance
of having a versatile image training set for computer vision algorithms. Furthermore, image augmentation
can be used as a method of testing data collection (for metamorphic tests).

 EDA of images for basic understanding of provided images, including file type, size and name
information, image sizes, color histograms and color channels.

 Augmentation of the images using Pillow – the app offers several augmentation methods,
including image resizing, applying noise, contrast, and brightness adjustment.

Conclusion

To sum up, DQW is a tool for automatic preprocessing of data. Additionally, it offers report generation to
operationalize the Data Understanding and Data Preparation phase of the QAIF. Through
operationalization and standardization, we aim to offer methods to quantify and record observations made
in these two phases. Finally, these methods support the data-centric AI approach, which puts data handling,
quality, and validation to the forefront of the AI project.

3.2.2. Audio data QA

Solution provider: Solita

Industrial grade evolving systems (ES) consist of software and hardware. On the Edge, there may even be
thousands of devices which evolve all the time. New versions of software are released continuously.
Firmware of the device is updated. Hardware has been replaced with a newer one over the years. The
devices are often connected to each other by a local network or internet of things where machine to machine
(M2M) communication is needed. Cloud computing is often the endpoint which then sends feedback to the
devices and vice versa. These kinds of complex evolving systems in the industry provide a very interesting
challenge in many ways, especially when AI is involved. Furthermore: how to execute AI on the Edge with
limited resources real-time?

How to verify and validate a complex ES? One answer is to develop special methods, techniques, and
tools. In this context, in co-operation with IVVES partners, we have developed methods and techniques for
validating data-driven ML solutions. In this subsection we focus on incoming data QA, especially audio data
which is a very promising data source for many industrial-grade use cases.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 14 of 59

Sound is a very promising data source for building industrial-grade machine learning models. The
methodology developed in this project context is heavily based on experimentation. To conduct an
industrial-grade experiment for a business relevant use case, e.g., predictive maintenance, the preparation
must be very careful. How to conduct an experiment? Which phenomenon is validated? It may be assumed
that an experiment is part of a proof-of-concept (PoC) implementation. However, what is the concept that
is proved?

At this stage, we’ll have to define sound data, often called audio data. Audio data is everywhere. Humans
communicate with voice by producing nouns and vowels. In addition to this, industrial-grade machines
produce sounds. The question is: how to apply traditional speech recognition techniques to audio data of
machines?

There are several audio data file format types available. The format types can be divided into three
categories. First, uncompressed audio formats (for example WAV, AIFF, AU and raw) save the audio data
as is. Second, lossless compression (for example, FLAC, Monkey’s audio, WavPack, TTA, ATRAC, ALAC
(.m4a), MPEG-4 SLS etc.). Finally, lossy compression (for example, MP3, Vorbis, AAC, Musepack, WMA
etc.) provide a way to store audio data in a smaller place [35].

From data farming point of view [36], audio data is a very potential data channel. In data farming, it is very
important to get any data. For instance, data farming in audio data can be applied to, e.g., machines in an
industrial-grade setting.

Audio data analysis often begins with tagging the data. There are two kinds of tags in this case. First, low
level tags can be applied to any data sample. They characterize raw data. Second, logical tags characterize
the dataset on a higher abstraction level. For instance, in case of an industrial-grade setting, a machine on
a factory floor may produce a waveform of sounds that characterize how the machine works.

When the tags are in place, for instance, deep learning in audio data analysis is a topic that has been widely
researched [37]. Deep learning solutions produce analysis that are often hard to interpret. Moreover,
principal component analysis (PCA) of audio data is another approach. From explainable AI (XAI) point of
view, the results are easier to explain due to the mathematical approach instead of neural networks.

We have conducted several experiments in co-operation with IVVES partner. The first experiment was an
A/B test at the office. We tried to tell if the machine is ok (A) or broken (B) based on the sound. The second
experiment was at the machine rental shop. A contact microphone was attached to the machine. An air
microphone records sound, i.e., vibration through air. No digital metadata tool was available at that time.
Therefore, we’ve implemented a tool called Data Harvester, which is used for collecting data.

In the IVVES project with our partners, we went to a local machine rental shop to conduct an industrial-
grade experiment. The setup was set up very carefully. The goal of the industrial-grade experiment in a
real industrial environment (a machine rental shop), was to recognize a machine by its audio finger printing.
This has been applied to consumer products for music recognition. One of the most famous services is
Shazam [38]. It can recognize practically any piece of music ever published. The solution is based on audio
fingerprinting or audio hashing [39]. When the sound of an industrial machine is recorded, sound data
quality is a key concept. To put it short, sound data must have at least three attributes in place, which are
depicted in the following.

First, gain of the recording [40]. This is a very special attribute in the real world. If gain is too low or high,
the collected audio data can be corrupted. The gain level must be adjusted according to the environment.
If the machine to be recorded is very loud, any peaks in the data can be bad from audio data quality point
of view. Naturally, automatic gain control systems exist. Although already in the 1950’s, automatic gain
control systems were presented [40], there is no solution that would always work out-of-the-box.

Second, background noise filtering while recording audio [41]. This problem has been addressed earlier
[41]. The problem of background noise is very relevant in an industrial environment. For instance, the
factory floor is a place where there may even be thousands of machines operating at the same time.
Moreover, outdoor environments related to one of the partners, namely Bombardier, where the trains
operate, background noise is a relevant challenge.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 15 of 59

Finally, extra resonance with equipment nearby. In the conducted experiments, nearby magnetic fields, for
instance, have been an issue affecting audio data quality. The phenomenon to be recorded may be affected
by many potential sources of error.

In this project, we have been piloting three different topics in focus described below.

First, data collection with good enough quality. This topic has been an interesting problem. The quality of
the microphone of the recording device affects data quality at scale. With our partners, we have been
experimenting with very cheap microphones. This is because a microphone may be damaged in an
industrial environment. Many consumer devices, e.g., mobile phones, have microphones by default. We
have been trying to use such readily available devices. In the future, an experiment related to the
comparison of high-quality microphones with very cheap ones, is apparent. A formally setup experiment
would provide information on this important topic.

Second, data analysis with novel methods. In the well-managed IVVES consortium project, the partners
have been able to co-operate. Novel mathematical methods, for instance, combination of self-similarity
matrices and principal component analysis, have been developed. Moreover, applications of applying
machine learning in combination with traditional mathematical methods, have been developed further. The
complementary of the developed tools will help to develop a methodology for sound data analysis in the
future.

Finally, the data has been analyzed as part of the consultancy business. Sensor software consulting for
sensor fusion. In the consultancy business, we have an empirical context with real-world problems to be
solved. Initial pilots with customers have been planned.

In the future, we are planning to implement a data collection tool for fault detection by remote observation,
namely the Data Harvester. The tool collects any sensor data on the Edge. The incoming data is processed
before it is sent to the cloud, in this case, Amazon Web Service and Microsoft Azure. In the future, the
multi-cloud approach will most likely contain Google Cloud Platform, too.

Predictive maintenance is an important part of the life cycle cost of any machine in industrial context. IVVES
project has involved several research organizations and partners with whom we are able to conduct real-
world experiments with real-world business feedback. With this approach we can make an impact that lasts.
How to identify the need to replace a consumable part? (e.g., drill bit or grinding wheel)

By collecting voice and radar data in an experiment in cooperation with VTT, where A = machine in good
condition and B = need for maintenance. Repeat experiments A and B alternately so that the heating of the
machine or material is not affected

Two more pairs of A and B are collected, but these samples have been kept hidden from the beginning, so
it has not been possible to learn these from the data in advance.

Data farming [36] is process where data is grown in an experiment. It is a metaphor which means that is
possible to generate your own data if no data exists [42]. In some of the use cases, a data farming approach
has been used [36]. Furthermore, Edge devices can analyze the data real-time. The latest analysis initially
included MFCC-coefficients computed from spectrogram, but it turned out that Mel bucketing [33], i.e.,
grouping frequencies similarly to how humans hear, may not work since machines use different frequencies
than humans.

To record data in an industrial-grade experiment, the setting is very important. In this particular domain
where we handle real-world machines, a key point for failure is the experimentation sequence. In the case
of audio data, the quality of incoming data is, naturally, often distracted. There are many sources of
distraction. For instance, another machine may disrupt the recording. Moreover, human factors may
produce problems with sound.

There are many solutions for improving the quality of incoming audio data. The first option is to design the
experiment with rigor. The experimentation setup is essential. In the case of, for instance, A/B testing, there
are many potential problems related to audio data setup. In one of the experiments in the industrial-grade
setting, a very basic mistake took place. The problem was with the heating of the machine which is
demonstrated in the following.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 16 of 59

Method 1: AAAAA BBBBB

Method 2: A B A B A B A B

In the industrial-grade A/B testing context we had two options where A=machine is ok and B=broken
machine (for instance, ventilation of the machine was shut down on purpose). Then, we recorded the sound
of the device with method 1 depicted in the sequence above. The results of the experiment were very
promising since the model had a very high accuracy when we repeated option A five times and then option
B five times in a row. Unfortunately, the model accuracy in case A was due to the rising temperature of the
machine. The correct way to design the experiment would have been to have method 2, i.e., ABABABA
where the temperature of the machine behaves differently. In the beginning, the machine is cold. In the
end, the machine is hot. Due to the approach in method 2, the experiment was based on accurate data
collected with rigor.

If high quality data doesn’t exist, then it must be collected. It is crucial to design the method of collection
(i.e., the experiment setup) from a data-centric point of view while keeping the model use case in mind. For
instance, if we were to record the sound of several identical industrial machines in order to build a classifier,
it is tempting to capture long audio clips of each machine one after the other. However, for many industrial
grade machines their operational sound can take a long time to stabilize (if it happens at all) as the
machines warm up, which means that there is considerable drift in the distribution of the data recorded
during such a period. Therefore, if we want to be able to classify the machines without having to run them
for lengthy periods of time, then a proper experiment design would be to interleave the recordings by
capturing shorter clips of each machine sequentially, multiple times, thus ensuring that the state of the
machines stays constant.

Once we have designed our data collection procedure to ensure a stable distribution, we have to take steps
to mitigate any potential sources of noise that could impact the data quality during recording. Continuing
with our prior example, suppose that our machines run at very high cycles causing strong airflow near them.
With improper setup, this airflow can introduce excess noise in our recordings which heavily deteriorates
the quality of our data. There are, of course, certain standard metrics, such as clipping and dynamic range,
we can measure during the recording to mitigate this, but often this is not enough. However, if we recognize
the risk beforehand, we can overcome it by equipping our recording devices with proper windshields.
Another typical risk in an industrial setting is a noisy environment. For example, factories and warehouses
are full of varying levels of unpredictable background noise. One way to alleviate its impact could be to
record samples of the background noise and use methods, such as spectral subtraction or denoising
variational autoencoders, to try to separate the machine sounds from the noise. We could also try to
augment our collected data set by overlaying it with various samples of separately recorded background
noise and hoping the model learns to distinguish the machines’ sound from the noise. This, however, is
costly, since more time must be spent both collecting data for augmentation and for validating that the
augmentation and denoising is having the desired effect on our model. On the other hand, we found that a
cost-effective pragmatic solution to this problem is to also employ a contact microphone (also known as a
piezo microphone) in our data recording by attaching it to the machine. This automatically filters out
background noise and requires no further effort from us after the data is collected, thus consistently
ensuring high quality of incoming data.

Having obtained our data, we can start building our model. Since the amount of data is limited (since we
have to painstakingly collect it on location in real-time), we cannot rely on deep neural networks to do the
heavy lifting for us, but we have to put actual thought into the model design and to carefully determine
which features we want our model to use. The standard method in literature is to use the mel-frequency
cepstral coefficients (MFCCs)—which capture the harmonies and periodicities present in the short-term
power spectrum of the input signal—as the main feature. However, they are sensitive to noise and, due to
their scaling which mimics the human auditory system, do not respond well to machines creating high-pitch
sounds.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 17 of 59

Figure 4. Top: Activations of machine B’s fingerprint for the sound of four identical machines A, B, C and D. Bottom:

activations for the sounds that have been augmented with moderate (resp. heavy) additive random noise on the left (resp. right).

On the other hand, we found that by introducing a custom scaling tailor-made to the task at hand along with
other representative features, such as periodicities of the log-spectral energy, we produce better-
performing more robust models. For example, in our hypothetical setting of classifying machines, we built
a system to create audio fingerprints for each machine based on representative kernels of the self-similarity
matrix of their operational sound. By detecting the patterns unique to each machine, via kernel activations
computed with sharpened cosine similarity, we were able to consistently identify the correct machine even
when introducing heavy random noise to the input signal. In Figure 4, we show how the machine
classification with audio fingerprint performed for four identical machines (A, B, C and D) with fuel
combustion engines. At the top we show how the detector built for machine B reacts to the original audio
recorded from each of the four machines. In the bottom we have introduced additive Gaussian noise to the
input clips. Notice how the activation of the detector for machine B stays relatively small for machines A, C
and D even with the added noise.

3.2.2.1. Future work related to audio data with IVVES partners

In IVVES consortium, we have an opportunity to collaborate with partner organizations in the industry. At
the time of writing, we are looking for a partner to collaborate on research with Solita's artificial intelligence
solutions. An EU-wide project provides a plethora of research organizations, for instance, to collaborate
with.

For a future experiment, we need an industrial machine to research. From a business point of view,
predictive maintenance is an important part in managing the life cycle cost of industrial equipment. If
maintenance is done only, when necessary, cost savings may be available.

How to identify the need for machine maintenance? For example, how could the need to replace a wearing
part be detected by sensors? The part to be replaced could be, for example, a drill bit or a grinding wheel.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 18 of 59

In the experiment, we'll use microphones and radar as sensors since some of the partners have special
expertise in these fields.

The plan is to collect audio and radar data in a test set-up in cooperation with a research organization. In
case A of the test set-up, the machine is in perfect condition, but in case B there is some need for
maintenance. In a half-day experiment, voice and radar data will be recorded by repeating cases A and B
in a sequence (ABABABA). In our previous experiment, it has been shown that rotation is important instead
of a serial sequence (AAABBB) so that, for example, the heating of the machine or material does not affect
the quality of the data collected. Some of the collected A and B samples are set aside immediately at the
end of the experiment so that the models being developed, such as machine learning models learning from
data, are not aware of all the results in advance.

In addition to data collection with high quality microphones, we use microphones that already exist in the
environment. For instance, one of the partners has medical devices which have a microphone. Moreover,
every mobile device has a microphone. What kind of data quality does it produce?

In research, we need real-world problems. We hope to find a target to be researched during the upcoming
weeks already. Initial technical solution of the experiment in real-world context real-time is depicted in the
following:

First, a machine operates in an industrial context. In this case, we assume that the machine produces
products I, L and O. The letters depict the physical form of the objects. Product O is round whereas products
I and L are not round. In the real-world setting, there may be a lot of background noise, for instance, other
machines or humans communicate with their voices. The hypothesis is that when the machine produces
product O, the sound is different than when it produces product L and I.

The sound is captured with four sensors. First, an air microphone records the sound. Second, a contact
microphone attached to the machine physically records sound. Third, a mobile device records the sounds.
Finally, a radar captures a signal of the machine. With these four datasets we are able to recognize machine
operations.

An intelligent Edge solution operating in the factory stores the sensor data. Features may be mined at this
stage already. Edge computing is good from, for instance, information security point of view. The Intelligent
Edge sends the data to multi-cloud. There is an API that receives the data and stores it to one of the clouds,
for instance, AWS, Azure or GCP. The feedback loop back to the factory is, for instance, 6 seconds. When
there is a problem recognized, the multi-cloud warns the domain experts working in the factory. With this
setting, continuous learning is enabled.

3.2.3. Quality Assurance of Semi-Natural Language Data

Solution provider: Helsinki University

This research direction addresses similarity between commands users enter the terminal windows or which
are automatically generated by other applications. The work is driven by the F-Secure needs to detect
abnormally behaving users.

We aim to visualize the similarities and differences between two commands. We develop new ways to
measure command similarity. For this we use NLP methods and NLP models. In addition to just focusing
on the command text we use the text of the official documentations and manuals data to complement it.
The work targets Windows, Mac and Linux commands. The commands in these environments have rather
different structures and types of documentation reflecting the historical development of these systems. The
processing of command lines is a mixture of formal and natural language processing. We expect the work
to create results useful for future command line syntaxes and for their documentation. Since various
command lines are underlying today's graphical user interfaces, we expect our basic technologies to also
have other uses besides F-Secure’s immediate needs.

Semi-natural languages, such as markup languages, algorithms, command-line commands, and processes
are hard to analyze in the absence of a ground truth and without any syntactic and semantic knowledge.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 19 of 59

To add the extra layer of knowledge, expert opinions can be useful in creating a set of rules. These rules
act as grammar, add syntactic and semantic meanings, and help in understanding the sentence
(commands) structures just like natural languages. In general, all the possible analyses can be performed
using a set of rules, but a rule-based system is not efficient when the data size is increasing exponentially
and insights from data are needed continuously. Maintaining a rule-based database is also an exhaustive
and expensive task. To solve these problems, we studied a hybrid approach of a rule-based system with a
machine learning system. This approach is useful in finding similar commands, understanding the hierarchy
and dependency of the prevalent flags and parameters, and learning the structure of the commands.

The approach of combining a rule-based system with machine learning is not common because machine
learning has the capability to solve the problems related to quantitative data, image data, and natural
languages solely. Since our data is semi-natural and unlabeled, applying machine learning exclusively is
not a feasible solution. With this hybrid approach, we managed to solve this problem, and this approach
can also be useful for other use cases where data is of semi-nature and expert opinions are needed. For
example, a lot of research has already been done to detect code clones, but this hybrid approach has not
been explored before. To detect code clones or to analyze code structures, chunks of codes can be
clustered. Following the proposed approach, experts can help in labeling the pieces of codes as function,
declarative statement, conditional statement etc. and then using a carefully created set of rules, codes
similarities can be detected. Another possible use for this approach can be in the conversion of algorithms
to code, where parts of an algorithms can be labeled, such as instruction, variable, condition, loop etc. Then
applying set of rules created by the domain experts it is possible to detect similar algorithms. This can be
helpful in evaluating how structurally similar codes can be generated against the similar algorithms of a
cluster.

Though this approach is proven beneficial in certain cases as discussed earlier but it needs a lot of human
effort in the beginning. The customized labeling of tokens also requires extensive domain knowledge and
adequate time. Experts need to be careful while creating a set of rules, as they can keep increasing with
the complexity of the data. Besides all these limitations, this hybrid approach is a promising solution to a
problem which involves complex and semi-natural data, and where the experts' opinions are required to
understand the sensitivity of the domain.

For the future work, we plan to cluster the commands and upon receiving a new command would map it to
any existing cluster. This will help us in analyzing the structure of the commands by calculating inter-class
and intra-class similarities. If a new command does not map with any of the existing clusters, a new cluster
will be started if the command is safe, otherwise the new command will be part of risky cluster of commands.

Finally, a new research direction was found related to a collaboration in the topic of DQW with F-Secure
due to the text data support in Sogeti’s tool: ensuring quality of semi-natural language data used in in the
semi-natural language analysis model. The collaboration and validation of the DQW text analysis, with a
special focus on topic analysis with LDA has been limited to the first part of the pipeline – data scraping of
the text of the official documentation.

3.2.4. Data Quality for text driven ESG investment systems

Solution provider: Concatel/Netcheck

To solve the problem of data quality in complex ESG investment systems, SII CONCATEL & NETCHECK
have designed tools to evaluate the quality of the data, considering that the data handled will be obtained
from different sources [43]. The evaluation of the quality of this data will allow us to determine if this data is
suitable to be used in the procedures followed to train the Machine Learning models implemented in the
Fintech domain.

For a better understanding and contextualization of this concept, the concept of Fintech will be briefly
explained. The term Fintech comes from the English words Finance and Technology. This term refers to

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 20 of 59

all types of companies whose functions include activities involving innovation and new technological
developments in the design, supply or provision of financial services or products.

Fintech companies make it possible to offer consumers much more efficient management of their personal
finances and a wide range of possibilities for comparing different financial products. They provide
information on the status of financial products and services, hence the importance of being able to control
and provide the highest quality of data handled in this sector.

Different aspects will be considered to treat this information since data handling is very sensitive and all
this procedure must be always in line with the GDPR (General Data Protection Regulation) law, which is a
regulation within the EU framework that controls the way in which companies or organizations use personal
data [44]. To this end, the tools developed will use techniques to ensure that all ML (Machine Learning)
components comply with these directives, certifying that the data is of high quality and that robustness and
security can be guaranteed.

One of the added values that Fintech bring to the sector is that they generate added value to the market by
creating large volumes of data (Big Data), which allows the use of various artificial intelligence techniques
on them [44].

Airflow is one of the tools that will be used to process this large volume of data, as this tool is one of the
most powerful in terms of workflow automation and allows processing and managing large workloads
dynamically. Airflow is a so-called "workflow manager" type of tool, i.e., it allows us to manage, monitor and
plan workflows, being used as a service orchestrator. A service orchestrator acts as a dedicated component
for organizing systems and integrating services from different sources.

Other tools such as MLflow and Kafka will be used to maintain the quality of the data so that it can persist
over time through the different machine learning (ML) mechanisms. They are briefly described below so
that their function or performance can be understood.

MLflow is an open-source platform for managing the entire machine learning lifecycle. MLflow allows for
comprehensive logging and tracking of all training execution metrics and artifacts of the model being trained
with the data obtained.

Kafka, on the other hand, is a messaging system and a complete real-time data processing and streaming
platform. Being able to handle real-time data provides great benefits such as the ability to publish and
process data streams in a scalable and fault-tolerant manner. Kafka also allows data to be subscribed to
so that it can be obtained immediately from multiple sources and this data can be distributed.

Additionally, another objective of this task is to develop methods, techniques and tools that address the
quality issues resulting from deviations and biases in the training data that would eventually result in poor
performance of the trained ML algorithm. The methods and techniques devised in this task will be able to
uncover hidden patterns and correlations as well as biases in the training data. In addition, coverage criteria
and synthesis techniques will be devised from training data.

Figure 5. Testing dataset

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 21 of 59

The Data Validator [43] compares the data properties with a previously generated schema. The schema
may have data types, data formats and any other conditions on the characteristics, such as "non-null" or
"non-duplicate", etc. This component produces a reference schema, which attempts to capture meaningful
properties of the data. With each new data ingest, the Data Validator recommends updates to the initial
schema.

This system supports data validation for three different cases. Single batch validation checks for anomalies
in a single batch of data. Inter-batch validation evaluates training data against service data and evaluates
data from multiple batches. In the third component, the system checks if there are any assumptions in the
training code that are not represented in the data. The Data Analyzer calculates a predefined set of
statistical properties such as mean, median, etc. The data is validated against these properties based on
some threshold values. The Model Unit Tester detects errors in the training code using synthetic data. This
synthetic data is generated based on the schema and statistical properties.

Figure 6. System Analysis of Data Quality.

 Figure 7. Demo of UI CCTL/NTCHK.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 22 of 59

 Figure 8. Demo of UI CCTL/NTCHK.

4. Task 2.1 - Model Quality

Task Lead: Techila Technologies

In the following sections, we discuss the metrics, approaches and methods used to ensure machine
learning model quality. Explainable AI approaches used to provide transparency in the ESG field describe
novel approaches such as mutation validation for avoiding the pitfalls of typical cross validation and
presents a context-aware outlier and novelty detection approach that consider what is to be predicted.

Performance of machine learning models is discussed in 5.3 with the focus of comparing the inference
scalability with different network protocols and on the benefits of knowledge distillation, which is a novel
approach for addressing model scalability while maintaining predictive performance. Drift detection (4.4)
expands the MLOps aspects and describes how a monitoring approach was designed, implemented, and
deployed to track the performance of a host behavior classification system. This system uses a machine
learning classification model to predict as many classes as there are types of host behavior to identify.

4.1. Explainable AI Toolkit

Solution provider: VTT

VTT realizes that developing trustworthy machine learning (ML) models requires tackling a multifaceted
complex challenge which remains to be unsolved. We approach the topic by discussing the challenge from
three viewpoints and introduce, some, supporting methods accompanied with their implementations. To be
noted, some of the background work is still unpublished but the presented work is tempting enough to be
discussed here.

1. How to ensure that the utilized data for fitting a model is of high quality given the task to be
modelled? That is, the data is not analyzed in isolation but instead analyzed from a viewpoint if it

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 23 of 59

facilitates predicting what is to be predicted. Detecting data corruption is of particular interest and
how to detect it automatically. The methods are based on [45] and [46].

2. Mutation Validation (MV) discussed in yet to be published paper [47] suggests complementing the
traditional cross-validation (CV) to tackle some of the caveats of CV. The claim is that MV can
better catch when the model is under-fitted and when the models start to be over-fitted. MV is also
claimed to able catching when the model seems to be over complex for the task therefore there
exists a simpler model with similar performance. Thus, whereas 1) tackles the data quality, 2)
strives to enable developing models which are complex enough for the task, but not too complex.

3. In real-world applications, it is not always guaranteed that there would not be, even drastic,
covariate shift, or any other types of shifts, in the data. Covariate shift causes performance
degradation as the model is forced to extrapolate. When extrapolating, epistemic uncertainty of the
model will be elevated but unfortunately, not typically expressed in any way. Here, we present a
simple wrapper method to incorporate a proxy metric for epistemic uncertainty for a random forest
model, to LightGBM1 due to performance reasons. The proxy metric can capture when the model
is forced to operate in a feature-space which is off the training-data.

Having a quantifiable metric for data quality, particularly a quantifiable metric for each training data sample,
facilitates developing more robust models as removing samples of bad quality have a negative impact on
the model performance. Additionally, if a sample is of no value, then such a sample can be removed
altogether. In addition, detecting which samples are of good or bad quality enables further analysis of why
the case is as such.

After filtering samples out which harm the model, MV, aside to CV, enables developing models which are
complex enough, but not too complex, for the task at hand. Avoiding developing unnecessarily complex
models facilitates having a model which is less brittle, and perhaps less vulnerable for adversarial attacks.

In the end, even though the model would be fitted with high quality data and it would be of just the right
complexity, the model must be monitored when deployed. In mission critical applications, it is necessary to
monitor if the model is forced to extrapolate. The discussed method does just that, sample by sample,
therefore giving a chance for e.g., human operator to overwrite the predictions or to temporarily replace the
model with a simpler, less accurate but more robust model.

4.1.1. Training data quality

Training data QA, in this context, refers to assessing the quality of the training data with respect to the task
to be modelled. Evaluating the quality of the data in isolation is excluded but the quality of data when utilized
for fitting a specific model to predict a specific target is of interest. Thus, the quality is assessed given the
dependent variable and the model accompanied with its hyper-parameters.

A model-agnostic approach based on Shapley values is discussed, which claims to be more robust than
Leave-One-Out (LOO) in assessing the usefulness of the samples. In LOO, the sample usefulness is
assessed by fitting a model with and without a sample of interest and calculating the performance difference
between these two models. If the model performs better with the sample, then the sample is deemed to be
useful. In case the performance degrades, the sample is considered harmful.

The method discussed in [45] is somewhat like LOO except it draws inspiration from game theory where
the goal is to distribute the usefulness of the samples fairly. The difference in essence is that in Data
Shapley all permutations of the samples are evaluated when calculating the usefulness. Calculating the
usefulness of each sample is a computation heavy procedure. Whereas in LOO, one is required to fit and
evaluate the model N + 1 times where N is the number of samples, in Data Shapley the number of times

1 https://lightgbm.readthedocs.io/en/latest/

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 24 of 59

the model is to be fitted and evaluated grows exponentially to the number of samples thus in practice
rendering the vanilla method intractable even for toy cases. Fortunately, permutation truncation means,
and Monte-Carlo sampling of permutations discussed in the paper makes the method tractable for more
than toy-cases. The algorithm is also trivially parallelizable and distributable therefore enabling computing
slightly more samples in reasonable time depending on the utilized model. Nevertheless, the algorithm can
be considered very heavy in all cases.

In [46], a fast K-Nearest Neighbour (KNN) specific version of Data Shapley is discussed which enables
computing the exact Data Shapley values of the samples in O(NlogN) thus making is feasible for larger
datasets too than the previous version of the algorithm. Additionally, at least Data Shapley for classification
is trivial to compute in parallel or taking advantage of distributed computing. For larger dataset, Locality
Sensitive Hashing (LSH) method is also discussed which improves performance.

Implementation

In IVVES, implementations for [45] and [46], for both regression and classification, were implemented. For
[45], a parallel processing enabled implementation was developed as a single-core implementation was
considered prohibitively slow. However, even when utilizing multiple CPU cores, [45] does not scale beyond
much above toy-cases. Thus, [46] was implemented where for both classification and regression parallel
processing capabilities were implemented as the algorithm is straightforward to make parallel along the
test-set. For larger datasets, the current implementation is not feasible therefore a proper distributed
computing enabled implementation must be developed. Nevertheless, both implementations based on [46]
are multitudes faster than [45] although suffering from inherent restriction of using KNN as an internal
model.

Experiments

In this experiment, classification and regression based on [46] are experimented with in detecting if the
algorithm can detect samples which have corrupted targets, i.e., the dependent variable. It is experimented,
similarly to in [45], how the performance of the model improves when removing the worst samples by Data
Shapley value. For binary classification, Wisconsin Breast Cancer2 dataset consisting of 569 samples with
30 features was utilized whereas for regression, California Housing dataset consisting of 20640 samples
with 8 features was used. The train/val/test splits for both datasets are 50/25/25. For classification 25% of
the training-set targets are corrupted, i.e., the label is flipped. In the regression case, 25% of the targets
are corrupted by zero-mean two training-set target standard deviation Gaussian noise.

As [46] is based on KNN which is not exactly a very powerful model, additional means are taken advantage
of before calculating the Data Shapley values. First, LightGBM random forest model is fitted with the training
data to get the feature importance values. In this case, we utilize mean absolute Shap values of the features
instead of vanilla tree-based feature importance scores. Second, the features are scaled between 0 and 1.
Third, the scaled features are multiplied by the Shap value-based feature importance to emphasize those
features which on average are relevant for the prediction task. This step sometimes makes sense as KNN
is based on simple distance metrics and if the not useful features dominate in scale, KNN model does not
necessarily perform very well.

In Figure 9 a histogram of non-corrupted and corrupted samples in Breast Cancer dataset is depicted. X-
axis depicts Data Shapley values where positive values stand for samples with positive impact on the model
performance and negative the other way around. As depicted, non-corrupted samples tend to have a
positive Data Shapley value as expected and the main body of the corrupted samples have negative values.
This is what one could expect.

2 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 25 of 59

Figure 9. Corrupted and non-corrupted samples in Breast Cancer dataset.

In Figure 10, the impact of removing worse samples by Data Shapley values is depicted. The samples are
sorted by Data Shapley value, then the samples are gradually removed from the training-set and model
performance is then evaluated again. As depicted, removing circa 30% of the samples results in perfect
training-set performance. However, high training set performance is not the goal but high test-set
performance instead. Validation-set performance is not directly utilized in the model training phase, but
Data Shapley values were computed against it therefore essentially making the validation set a part of the
training-set as well. As depicted, test-set performance (ROC AUC) improves till circa 30% of the samples
are removed from the training-set. This is again, as expected.

In the Breast Cancer dataset, Data Shapley seems to behave exactly as expected. Removing samples with
low or negative Data Shapley values have a positive impact on the model performance in out-of-sample
data.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 26 of 59

Figure 10. The impact of removing worst samples in Breast Cancer dataset.

In the regression case, similar behavior can be observed as depicted in Figure 11. As the noise is sampled
from a Gaussian distribution, plenty of the additional noise has not much impact on the target variable which
can also be observed. The non-corrupted and corrupted samples overlap but corrupted samples have
significantly fatter left tail indicating that there are plenty of samples which hurt the performance.

Figure 11. Corrupted and non-corrupted samples in California Housing dataset.

Similarly, as it is in the Breast Cancer experiment, removing worst samples by Data Shapley value from
the training-set has a positive impact on the model performance as depicted in Figure 12. As can be
observed mean squared error (MSE) of test-set gets lower till circa 10% of the worst samples are removed
which also reflects the histogram above. Clearly, removing samples with worst Data Shapley values has a
positive impact on the model performance.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 27 of 59

Figure 12. The impact of removing the worst samples in California Housing dataset.

4.1.2. Model Quality Assurance

Industry best practice for model QA is to conduct cross-validation (CV). However, as briefly discussed in
[47], out-of-sample validation has the following limitations:

1. Test-set can be too small to represent the real out of sample distributions.
2. The model performance has a large variance across different runs.
3. The test-set has exactly the same distributions as the train-set therefore leading to inflated test-

score.
4. Overfitting to the test-set.

Mutation Validation (MV) is a new unpublished method which strives to avoid the pitfalls of typical cross
validation by using only the training-set to validate the model. MV is based on an idea of mutation testing
and metamorphic testing where both combined is argued to lead to a method which is able to capture when
a model is under-fitted and when over-fitted. In essence, MV is argued to indicate when the model is too
simple or unnecessarily complex.

Implementation

Implementation for binary classification is as discussed in [47]. In the case of multi-class classification, label
shifting is replaced by randomly picking a different label for the mutated samples. Regressions were not
discussed in the original paper, but an experimental version of it is implemented but further discussion
omitted here.

Experiments

The Wisconsin Breast Cancer dataset is utilized as an experiment. As a model LightGBM was utilized. The
goal is to find maximum number of leaves for a random forest.

Figure 13 depicts the result of both 10-fold CV and MV. As depicted, the maximum and stable ROC AUC
is reached at 18 n_leaves after which the performance does not improve. Considering MV, first, MV starts
to climb higher while reaching the peak at circa 10 n_leaves followed by declining MV score. This curve is

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 28 of 59

as discussed in the paper. That is, first the model is underfitting, i.e., it is too simple, then it hits the sweet
spot at 10 n_leaves, and then the model starts to get unnecessarily complex. The model does not
necessarily overfit as CV remains stable but the model is unnecessarily complex. That is, adding more
leaves does not improve the CV but the model begins to have capability to learn mere noise which is
unwanted.

Figure 13. Mutation Validation and 10-fold cross-validation in Breast Cancer dataset.

4.1.3. Prediction Quality Assurance

In classification, in the case of models which are capable of providing prediction probabilities, probabilities
are sometimes considered indicating confidence. In essence, probabilities, excluding Bayesian realm,
indicate the frequency of similar samples being classified as predicted. Now, this behaves correctly if, and
only if, the probabilities are well calibrated, but this fails when the samples fall out of the training-data
distributions. That is, the model is forced to extrapolate. In the regression case, confidence intervals are
typically utilized to manifest confidence but unfortunately not all machine learning models are capable of
providing such.

Outlier and novelty detection are typical means to detect drift in the covariates. However, the vanilla outlier
and novelty detection means do not take into account the task which is being modelled. The outliers are
evaluated against other training data samples without knowing which features are even meaningful for the
prediction task. Thus, the prediction task must also be taken into account to detect when the model is forced
to extrapolate or is otherwise forced to operate in non-optimal conditions.

Here, in this section, we briefly discuss one attempt in providing an uncertainty metric for random forest
classifier and regression which is capable of providing uncertainty score for each sample. Before moving
into the specifics, trivial synthetic data which is easy to visualize and comprehend is introduced for
classification and regression.

In Figure 14, four 2D moons are depicted where dots colored in red are of label 1 and the blue ones 0. The
dots are utilized as training data in this binary classification experiment. As a model, LightGBM extremely
randomized tree model is utilized, whose decision surface is as depicted.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 29 of 59

Figure 14. Decision surface of a binary classifier.

As can be observed, the decision surface is as what is typical of tree-based models. The model completely
fails in providing any sense of uncertainty when extrapolating as depicted. The model is capable of very
accurately predicting the samples but when moving away from the training-data space, the model repeats
the predictions. This is typical of tree-based models, and many others (excluded from further discussion)
where e.g., advanced piece-wise linear regression is not utilized.

As random forest is an ensemble of many trees, one can also study how the trees independently predict,
collate the independent predictions and calculate the spread of the predictions to come up how well the
trees agree as depicted in Figure 15. The purpose of such an experiment is to effectively get an impression
of the aleatoric uncertainty, i.e., knowing when the model knows when it does not know. If the spread is
high, the trees in the forest disagree therefore there must be something in the data which causes such
disagreement.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 30 of 59

Figure 15. Decision surface spread.

As depicted in Figure 15, the trees in the forest disagree in some areas of the decision surface whereas
e.g., between the clusters of the moons, the disagreement remains low. The disagreement is high in the
class boundaries in the decision surface and then such a disagreement is extrapolated as it is. This can
hardly be considered optimal. Observing only the disagreement of the trees cannot be considered as a
good metric of uncertainty, especially in the extrapolation case.

In the case of regression, the same is true as illustrated in Figure 16. In Figure 16, a noisy sine wave is to
be predicted from X. 20% of the sine wave is removed from the middle and 20% is removed from the end.
Now, as depicted in Figure 16 and more explicitly in Figure 17, the prediction spread is high in the mid-
section mainly due to how the wave behaves just before and after a part of it is deleted. This is typical of
tree-based models and how trees function in general. If the wave had been cut differently, i.e., at the same
level, the prediction spread would be significantly smaller. This phenomenon is visible at the end of the
wave. The model keeps predicting the last encountered value and also maintains the same spread of the
predictions. This clearly is unwanted behavior as one would like to see widening spread in the predictions
due to the elevated uncertainty. In this case, the confidence interval is abnormally low at the end which is
the opposite of what one would like to have.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 31 of 59

Figure 16. Regression with confidence intervals.

Figure 17. Regression with CI and prediction spread.

Implementation

LightGBM is a state-of-the-art algorithm very similar to its more known counterpart, XGBoost3, but is
significantly faster but tends to have the same performance, or better. LightGBM is utilized as the basis of

3 https://xgboost.readthedocs.io/en/stable/

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 32 of 59

the implementation even although any tree-based algorithm is applicable. We start with a pre-fitted model.
Thus, we take the model as given.

To model uncertainty given the prediction task, leaves of the trees are of interest. Each sample falls into
one leaf in each tree even though a sample would be very far from the training-set distributions. This is as
trees are in essence just a set of if-then statements which can be computed no matter how peculiar a
sample would look like. Nevertheless, each sample is, in essence, clustered together with their closest
peers conditioned by the prediction task. We will take advantage of this.

The idea is to fit a novelty model for each leaf in all trees therefore there will be a significant amount of
separate novelty models for one LightGBM model. To be more specific there will be n_leaves * n_trees
amount of novelty models. Each novelty model is fitted with samples which fell into a specific leaf and only
the features which were utilized to land on such a leaf will be considered. This is conducted as it is wanted
to compute the novelty score by considering the same features the tree itself utilized for clustering the
samples. As a novelty model One Class SCM is currently utilized with Radial Basis Function kernel.

As fitting many separate novelty models is computation intensive process, the work is computed in parallel
to significantly shorten the computation time. The algorithm itself is trivially distributable similarly to it is
parallelizable, but now only single CPU solution is currently implemented.

Experiments

Let’s use the same data as above but now visualize the mean novelty of the samples. In Figure 18, areas
with positive values (red) are considered inliers and negative (blue) are considered outliers. In Figure 19,
the same is depicted but as binary colored to facilitate intelligibility. As can be seen, the training samples,
i.e., the dots, are considered inliers, and areas of extrapolation as outliers as expected. Now, when
predicting, when a sample is considered an outlier, one should seriously consider should one trust the
prediction in the first place.

Figure 18. Novelty surface of the classifier.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 33 of 59

Figure 19. Novelty inliers and outliers of the classifier.

The same behavior is illustrated in Figure 20 for the regression case. As discussed above, the confidence
intervals of the predictions are not necessarily to be trusted but the novelty scores might assist.

Figure 20. Regression novelty.

As depicted, when residing in the known space, the novelty tends to be positive meaning that the samples
are considered inliers. The mid-point area where the sine wave has been cut was detected also by
inspecting the prediction spreads but only due to mere luck, in essence. That is, if the wave had been cut
in a way where the end and starting point of the cut would be at the same level, the prediction spread would
have been smaller. Here, the novelty clearly indicates with negative values that the samples are off the

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 34 of 59

training-set distributions. It is the same with the removed end of the wave. When prediction confidence
intervals are not to be trusted, novelty clearly indicates that the model is forced to extrapolate.

Although both presented cases are synthetic and very trivial, and perhaps the extrapolation would have
easily been expressed by utilizing any widely available prediction model independent means, that is not the
case in non-trivial datasets. The outlier or novelty detection algorithms which do not consider what is to be
predicted inspect only the raw data without knowing how the downstream prediction model sees the data.
This is not the case in the presented algorithm. The presented algorithm knows exactly how the model has
landed on its predictions therefore the novelty is computed in that context

4.2. Model Quality for text driven industrial environments

Solution provider: Keyland

Artificial intelligence, predictive machine learning in the context of this project, is often presented as an
opaque method, which takes data and generates some values. Between these two phases, there is a black
box that solves the mapping, the equations. This is partially true, especially when using state-of-the-art
nonlinear models [49], which can be notoriously difficult to interpret when compared to more traditional
linear solutions.
Research has approached the challenge of explainability from different angles, as each application domain
has its own needs and objectives. In addition, different audiences require different types of explanation.
For example, some of the standard terms used in the literature to refer to XAI objectives are reliability,
fairness, causality, transparency, and justification [50]. All of these indicate the importance of explainability
in practice. Developers can use explainability not only to understand the black box model, but also to debug
the system by detecting unexpected model behavior or any bias in the training data set or model. Therefore,
AI explainability can also facilitate model improvement and the recovery of new hidden features.
In Machine Learning, some models are interpretable models by design and can have different levels of
transparency. Such as algorithmic transparency, transparency based on simulation capability and
transparency based on decomposition capability. This category includes linear/logistic regression, decision
trees, K-nearest neighbors, rule-based learning, general additive models, and Bayesian models [51]. On
the other hand, there are algorithms such as Artificial Neural Networks (ANN), which are cumbersome to
analyze and interpret as they often include even millions of parameters. Therefore, XAI is a challenge
consisting of numerous subfields and challenges, as described in the XAI Taxonomy.

Figure 21. XAI Taxonomy

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 35 of 59

In general, XAI can be divided into explaining 1) the data itself and 2) the model. Since the model is based
on the data, these two sections overlap and intersect. Explaining the data is concerned with exploratory
data analysis (EDA). It consists of numerous techniques, including statistical analysis and unsupervised
machine learning methods, such as clustering, latent variable analysis, and anomaly detection. In addition
to explaining the data in isolation, the data can reveal more when using means of model interpretation.

KEYLAND has analyzed benchmark techniques and their benchmark implementations, performing different
proofs of concept applicable to the industrial context.

Algorithm Domain Scope Data Type Implementation Reference

G-REX Model-
agnostic

Global/Local Tabular NA NA

QII Model-
agnostic

Global/Local Tabular QII NA

ELI5 Model-
agnostic

Global/Local Any ELI5 [53]

LIME Model-
agnostic

Local Any LIME [54]

Anchors Model-
agnostic

Local Tabular, Text Anchor [55]

Real-Time
Image
Saliency

Model-
agnostic

Local Image pytorch-saliency

[56]

Real-Time
Image
Saliency

Model-
agnostic

Local Image SaliencyMapper [57]

ASTRID Model-
agnostic

Global Any astrid-r [58]

KernelSHA
P

Model-
agnostic

Global/Local Any KernelExplainer [59]

TreeSHAP Tree
ensemble

Global/Local Tabular TreeExplainer [60]

DeepLIFT Deep
learning

Local Any DeepLIFT [61]

DeepSHAP Deep
learning

Global/Local Any DeepExplainer [62]

Grad-CAM Deep
learning

Local Image ELI5 [63]

Grad-CAM Deep
learning

Local Image Captum [64]

Deep
Visualizatio
n

Deep
learning

Local Image DeepVis [65]

Table 2. The techniques and implementation.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 36 of 59

LIME uses the metaphor of the black box, where the input variables are on one side and the output on the
other, with no access to the inside of the box. The L (Local) of LIME focuses on locality and operates on
the model test set (test) with both the subset of correctly classified and unclassified instances.

For each instance, close (local) dummy data are created. Distances between the false data and the original
data are calculated and predictions are made based on this new data. The minimum number of variables
m that generates the maximum probability of correctness is determined and this is considered an
explanation of why the instance was classified with the assigned class.

Figure 22. Front-end KEYLAND – LIME Evaluation.

Finally, the outline of Keyland's development is summarized in the figure below.

Figure 23. Keyland final scope.

For this purpose, Keyland has focused on the following developments, highlighting the following WP2 tasks:

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 37 of 59

 ARLean-style generation application [48]. Keyland has investigated GAN for creating synthetic data
to train with. This is part of T2.3.

 Validation system based on DATA VALIDATION FOR MACHINE LEARNING [49] which validates
that the data corresponds to what is expected, corresponding to T2.2.

4.3. Model Inference Scalability

Performance is yet another perspective related to model quality. Often, model accuracy is traded with model
performance where neural networks (NN) with denser hidden layers and using high precision number
representation formats such as 64-bit floating point often led to higher level of accuracy. On the other hand,
a less dense network and using lower forms of numeric precision for example 32-bit integers are known
provide enhanced performance at the expense of higher accuracy. These performance tuning approaches
(typically pruning and quantization) [66] are used at the development stage of the ML lifecycle or at compile
time. In this study, we consider performance at the deployment and inference stage of the ML life cycle or
what may be considered at a model’s runtime.

4.3.1. Protocol scalability

Solution provider: Helsinki University

Models are either served using REST or gRPC protocols, the choice between these two protocols is largely
influenced by the system or business requirements. REST is more dominant due to its popularity in classic
web development and it’s utility in public API design. GRPC on the other hand has gained traction as a
more performant alternative to rest more so in low-latency environments due to its support of streaming
among other technical features.

In this study, we establish the empirical performance characteristics between REST and gRPC in order to
characterize the latency associated with the two architectures. The test setup involves a client and a server
each running on their own virtual machine having three virtual cores and 4GB of memory. The client
generates requests (REST/gRPC) to the server currently a tensorflow serving server. We use the Locust
performance testing framework to generate a target test load.

Figure 24 presents data obtained from latency experiments on single requests (non-batch). The setup
simulates 500 users spawned 10 users/sec and the experiments are run for 5 minutes each. The first
subplot shows that for the same number of users and HW resources, a gRPC architecture would result in
a significantly higher number of requests compared to a rest architecture, at maximum 1392 requests/sec,
707 requests/sec respectively. This is attributed to gRPC’s multiplexing feature. The second subplot shows
the average response time across the two architectures, gRPC has a significantly lower latency compared
to REST. The shape of the latency graphs shows gRPC to have an almost linear shape compared to REST
suggesting that gRPC would consume resources in an linear manner. This has a bearing on the rate of
resource utilization, gRPC would require fast provisioning of resources if the traffic increases rapidly. Such
a scenario is proven in the third subplot which shows that gRPC begins to experience failures at the peak
load (no other resource were available to support the traffic).

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 38 of 59

Figure 24. Comparison of gRPC and REST at a peak load of 500 users

An alternative view is the generation of users and latency development as shown in Figure 25 below. In
both cases the system simulates 500 users, the latency increases much faster in gRPC as users are added
to the system compared to REST where the latency increases but in a non-linear manner.

Figure 25. User addition and latency

Figure 26 shows experiments conducted in a batch handling setting. We compare batch performance
across gRPC and REST by increasing the batch size from 4, 8 and 16. As the batch size increases the
number of requests handled by REST is reduced by a factor of 4 while gRPC request handling reduces by
a factor of 1.7. This outcome has implications on the scaling designs required across each architecture.

Figure 26. Latency and batch sizes in gRPC and REST

At higher batch sizes, the behavior across both protocols is shown in Figure 27 below. In this setting the
simulation involved 100 users and the prediction was carried out using a batch size of 32. The Request

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 39 of 59

throughput is shown in the first subplot and indicates a significant disparity in REST and gRPC request
throughput. The large payload results in a very low throughput when using REST compared to gRPC due
to the single request-response communication channel used in REST. The second subplot shows how
users are generated across the systems and in this view, we note that the first few REST-based requests
block the simulation to the extent that the load generation framework does not record the early stages of
spawning users. Finally, the third subplot shows a significant difference in latency across the two protocols.
With large batch sizes, REST based requests would need to be asynchronous to avoid the observed
blocking behavior. GRPC on the other hand has built-in asynchronous communication by default but can
be configured to operate in an asynchronous way to match a RESTful pattern.

Figure 27. Higher batch sizes

Overall, gRPC benefits from the streaming capabilities provided by HTTP2 which allows multiplexing and
asychronous requests by design compared to REST which uses HTTP1.1 and therefore sends one
request/response for every TCP connection. REST remains highly popular due to its ease of use among
the developer community and is still widely adopted in non-performance critical environments. These
experiments motivate more research questions on how the protocols differ, for example in the serialization
stage of data transfer and their impact on low-level HW resource utilization, for example memory, network
bandwidth and CPU clocks.

4.3.2. Knowledge Distillation

Solution provider: Ekkono

Knowledge distillation is a novel approach to address model scalability while maintaining predictive
performance (accuracy). Model compression [86] was introduced in 2006 as an attempt to compress larger,
complex models (e.g., ensembles) into smaller, more scalable models, without significant loss in predictive
performance. This approach was later extended into knowledge distillation [87] and the student teacher
framework. The key idea is to build a student model (small version, scalable) that is trained on the soft
labels of the teacher model (bigger, too complex) rather than on the original dataset that the teacher was
trained on. The theory suggests that these soft labels are easier to be correctly approximated by a smaller
model that would, on the other hand, not be able to correctly learn from the complex non-linearities of the
original dataset. The process is usually the following. First, a teacher model is trained on the original
dataset; the teacher then labels that dataset; and the student is trained on the labels (called soft labels)
from the teacher model. The authors [87] introduced the distillation loss, a loss function that takes into
account how good the student is at learning the labels of the teacher (soft labels) and also the hard labels
from predicting on the original dataset (ground truth).

At Ekkono, we investigate knowledge distillation for model compression in the context of federated learning.
The setup for federated learning consists of a central server that is orchestrating the decentralized learning
of individual ML models across different devices (e.g., IoT devices). These devices can’t operate with big

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 40 of 59

ML models due to computational and memory constraint, thus having smaller distilled models that can keep
up with the required predictive performance is key.

In this context, we have set up a framework that can orchestrate this sharing of knowledge by using
knowledge distillation, focusing on two aspects.

Data compression

First, we designed a solution that allows devices to share the knowledge of their model with the central
server by only saving small proportions of the data. With that summary of the data, plus the model, we can
generate new data (thus helping privacy-aware scenarios), that is used to update the general model at the
server. That model then labels the data, which are later used to train the student model. That small student
model can then be sent back to the device, contributing with new more general knowledge.

While most of the knowledge distillation and investigation papers assume that the data to train the student
model is easily available, in the context of federated learning that is not feasible. The reason is that it is not
possible to save large amounts of data at the edge. We have designed a new approach, called the Online
Data Compressor, that can create a very accurate summary of the observed data with only a few instances.
Part of the investigation in this project has been to evaluate this approach and compare it with other data
summarization approaches, the results showing that the online data compressor can create very good
representations of the data with only a few data points (50 in many cases). We are continuing to benchmark
this solution and the plan for the upcoming deliverables is to disseminate this in the form of a paper and
empirical experiments.

Distillation approaches

There are several ways to create the teacher model that resides in the server. That is, how the generated
dataset is going to be labeled, which will then be used to train the student model. This teacher model should
be general enough to work in different scenarios, and accurate enough to output good results on those
scenarios. We have been investigating several approaches to do the training for the teacher under different
datasets from different devices. Such as a weighted ensemble of all the models sent to the cloud, each
model’s weight being proportional to how good it approximates the generated data; a standard ensemble;
and a combination of the models where each model labels their generated dataset. The combination of the
models works best in those scenarios where there is a clear separation of the domain between the devices,
i.e., each device has learned from a different domain so a general model can’t generalize well between
devices.

Some of the use cases where we have been investigating knowledge distillation for federated learning are
the following:

 Model warm-up: in case we are going to deploy a new model on a completely new device to
conduct incremental training on it, it’s a good idea to start the training from a pre-trained model
that has already gathered knowledge from similar devices in similar or different environments

 Improved personalized learning: personalized learning at the edge can be improved by
increasing the diversity of the data that a specific device has observed. That way, that specific
device will have observed data not only from its particular region, but also from many other ones.
This makes the model more generalizable and robust.

4.4. Drift Detection and Response

Solution provider: F-Secure

Machine learning models are trained at a particular time and with data. Under the assumption that the
environment (and thus the distribution of the data) does not change, the model will likely keep performing

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 41 of 59

well. However, in practice, the environment in which a model operates (and thus the distribution of the data)
changes and, as a result, the performance of this model may deteriorate. Therefore, it is important to
monitor machine learning models and their data once deployed in order to make sure that the models keep
performing as expected. Once it is detected, through monitoring, that the performance of a model
decreased, we can respond and mitigate the issue with the help of information gathered as part of the
monitoring.

At F-Secure, as part of this project, such a monitoring approach was designed, implemented, and deployed
to track the performance of a host behavior classification system. This system uses a machine learning
classification model to predict as many classes as there are types of host behavior to identify (say class A,
B and C). The model uses information about the host activity as input, e.g., processes launched, domains
accessed, and files opened by a given unknown host. It is trained in a supervised manner using this same
activity information from hosts from which the behavior types are known. The output of this machine
learning model is then used in downstream tasks that help protect these hosts.

At any point after deployment, observability is desired into whether the model still performs as expected or
whether the model deteriorated due to e.g., covariate shift or concept drift [67]. Furthermore, since the data
is temporal and the environment may change in some seasonal (or otherwise regular) way, it can be useful
to monitor how performance metrics vary with time, and whether the latest model still performs better than
previous models.

Typical metrics for performance monitoring (e.g., recall or precision) require availability of ground truth
labels. However, labeled data is not always available or labels can be incorrect due to data poisoning or
mislabeled samples. Therefore, it is useful to have performance monitoring that does not rely on labels or
ground truth being available.

An alternative approach to monitoring model metrics is to directly measure differences in data distribution
between training data and inference data, and to quantify data drift that way. The advantage of this
approach is that it can be applied regardless of availability of labels, and it can highlight changes in the
data before they have a negative impact. However, data drift can be harmless in practice, and it was
observed to not always translate into worse performance. Data drift does not always correlate well with
actual model performance. Therefore, we take the approach of detecting potential issues through observed
performance metrics, and then respond by investigating those samples that likely caused the deterioration
of metrics.

To obtain observability in current and historical model performance, starting from the day a model is trained,
daily predictions are gathered on a collection of benchmark data sets, and metrics of interest are computed.
These metrics are then made available through a dashboard, where the end-user can select what time,
models, and data to visualize as depicted in Figure 28.

Figure 28. Filtering section of the dashboard.

Since the approach needs to work for data for which ground truth labels are not (yet) available, our main
metric of interest is average model uncertainty (entropy of predicted class probabilities), aggregated over
all samples per predicted class.

First, we compute the per-sample model uncertainty (entropy) for each sample 𝑖 , given the predicted class
probabilities 𝑦𝑝𝑟𝑜𝑏௜௝

𝑒𝑛𝑡𝑟𝑜𝑝𝑦௜ ൌ Σ௝ 𝑦𝑝𝑟𝑜𝑏௜௝ log൫𝑦𝑝𝑟𝑜𝑏௜௝൯

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 42 of 59

Then, we aggregate these into per-class 𝑚𝑜𝑑𝑒𝑙𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑎𝑣𝑔௖ metrics, for each of the classes 𝐶 :

𝑚𝑜𝑑𝑒𝑙𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑎𝑣𝑔௖ ൌ 𝑎𝑣𝑔ሺ𝑒𝑛𝑡𝑟𝑜𝑝𝑦௜ ,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 𝑖𝑠 𝐶ሻ

The intuition behind this metric is that once samples move closer to decision boundaries (and the model
becomes more uncertain of its predictions), they are more likely to be misclassified. Therefore, model
uncertainty (entropy of predicted class probabilities) can be a proxy for actual model performance: if model
uncertainty goes up, the model performance goes down, and vice versa.

To validate the approach, it is evaluated on data for which we have ground truth labels available. First, we
look at actual model performance, computed using ground-truth labels, per-class recall and precision:

Figure 29. Evolution of performance metric (recall for class A) for 3 different

 models (2021-03-15, 2021-06-13, 2021-09-12), since the day they were trained.

 Figure 30. Evolution of performance metric (precision for class A) for 3 different

 models (2021-03-15, 2021-06-13, 2021-09-12), since the day they were trained.

From Figures 29 and 30, we can see that:

 retraining a model generally improves its performance.
 model performance varies over time, and after an initial drop, it increases back (which may point

at the existence of seasonal trends, although more data is needed to say for sure).
 around the turn of the year, all models suddenly show a drop in performance.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 43 of 59

Next, we look at whether this is reflected in the average model uncertainty metric, which can be
computed without having ground truth labels available:

Figure 31. Evolution of performance metric (model_uncertainty_avg for class A) for 3 different

 models (2021-03-15, 2021-06-13, 2021-09-12), since the day they were trained.

From Figure 31, we can see that:

 As model performance deteriorates, average model uncertainty increases.
 Average model uncertainty shows similar trends over time, albeit not in such an apparent way.
 Around the turn of the year, average model uncertainty for all models suddenly peaks, which is well

correlated with a decrease in precision and recall.

 Based on these observations, the average model uncertainty provides a good indication of actual
model performance, and it can be used as an indicator of deteriorating model performance. An analyst
works with these metrics through the top part of the dashboard, as depicted in Figure 32.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 44 of 59

Figure 32. Main part of the dashboard used by the analyst to select what
data and models to inspect and check for potential issues

Once likely deterioration in model performance is detected, several responses for mitigation are available:

 Model retraining: the model can be retrained on the latest data (which improves the performance
metrics, as our results indicated):

 Refining data: the samples of interest can be investigated and correctly labeled, i.e.:
o Active learning: provide labels for those unlabeled samples that the model is most

uncertain on (have highest 𝑒𝑛𝑡𝑟𝑜𝑝𝑦௜ , as defined earlier), since these samples will likely
have the biggest impact on the model, if labeled correctly as part of an active learning loop.

o Label correction: investigate and potentially relabel samples that the model gets most

wrong (have the highest loss 𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦௜ ൌ െΣ௝𝑦𝑡𝑟𝑢𝑒௜௝ ⋅ log൫𝑦𝑝𝑟𝑜𝑏௜௝൯), since the

samples with highest loss are potentially mislabeled.

These per-sample statistics are provided in two tables (sorted by metric value) at the bottom of the
dashboard, as shown in Figure 33, where the analyst can inspect them, and then decide whether to take
further action of labeling / relabeling certain samples.

 Figure 33. Per-sample model uncertainty and cross-entropy statistics.

In summary:

 The average model uncertainty metric provides an effective way to monitor the effects of harmful
data drift, because it is a proxy for the actual model performance and can be computed without
having ground truth labels available

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 45 of 59

 Therefore, it can be used to monitor models in production, where only unlabeled data is available,
and can be used to detect deteriorating model performance.

 In response to detected model deterioration, the model can be retrained when needed and/or
specific samples can be investigated based on either model uncertainty (for unlabeled data), or
cross-entropy loss (for labeled data), and correctly labeled.

4.5. Model Transparency with Neural Backed Decision Trees

Solution provider: Sogeti NL

In D2.3 Sogeti demonstrated the use of Neural-Backed Decision Trees (NBDTs) as a solution to interpreting
intermediate model decisions. The process is to convert a neural network into a decision tree and then
create hierarchical explanations to explain the sequential decisions. Sogeti implemented this solution with
open-source image data and built a Streamlit front-end to visualize the model decisions. Because the use
case that was planned to be used to validate this approach was delayed from the beginning of the IVVEs
project, this solution was a challenge because it has remained general and trained on open-source data.

Sogeti, together with the contributors and partners of WP2, have collectively decided to terminate the
development of this solution due to the challenges and to a shift in effort of Sogeti (Sogeti has assumed
the role of WP2 lead). However, Sogeti will still investigate and implement XAI methods for their contribution
in WP3 T3.1 and T3.2. This includes developing a code quality solution that can explain model predictions.
The current implementation of XAI for this WP3 solution is SHAP.

5. Task 2.3 - Testing techniques for ML

Task Lead: Sogeti NL

In the following sections we describe the final methods that the IVVES consortium is developing to test
machine learning models. These smart testing methods apply to the 'Model Evaluation' and 'Model
Deployment' phases of the QAIF mentioned in the SoTA Deliverable 2.1 [18]. These are the last phases in
which we determine quality before the model is deployed to production. We describe innovative methods
such as bio-inspired search-based optimization techniques to generate failure-revealing test scenarios
effectively and efficiently for the ML-driven system under test.

The oracle-centered approach to evaluate learning algorithms by CRIM has been put on hold and will
therefore not be included in this deliverable. A new method of adversarial testing of convolutional neural
networks is introduced by RISE.

Additionally, RISE presents the final version of their evolutionary test generators for testing a DNN-based
lane-keeping system, a prevailing advanced driver assistance system (ADAS) in the automotive industry.

Furthermore, SII Concatel presents the final version of metamorphic testing techniques to automate black
box testing by generating label preserving perturbations to inputs to scale test creation.

Finally, the AutoML methods to generate ML models and compare the performance of these autonomously
generated models to manually created ML models are presented. This is to test and evaluate model
robustness to optimize hypermeter tuning and model configuration for utmost performance and quality
assurance. The partners in collaboration of the AI-driven testing initiatives include RISE, CONCATEL &
NetCheck, University of Helsinki and Techila Technologies.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 46 of 59

5.1. Bio-Inspired Search-Based Testing of ML-Driven Systems

Solution provider: RISE

Nowadays, with the growing use of machine learning components in many software-intensive systems,
there is a big demand for sophisticated and though pragmatic approaches for testing ML-driven systems.
Many of these ML-driven systems in the areas such as automotive, manufacturing, and health care are
subject to strict safety requirements. There are new technical guidelines and safety standards being
developed to support quality assurance of ML systems. Self-driving cars are prevailing examples of safety-
critical AI systems and in this regard, in the automotive domain, ISO/PAS 21448 Safety of the Intended
Function (SOTIF) standard is a new under development standard focusing on safety assurance of the
systems relying on ML [66]. Meanwhile, AMLAS (Assurance of Machine Learning in Autonomous Systems)
is another framework, developed by the University of York, supporting the development and quality
assurance of safety-critical ML systems [67].

AMLAS pints out different required activities for the assurance of ML systems. Those activities include
assurance of ML safety requirements, data management, model learning, model verification, and model
deployment. AMLAS introduces testing and verification procedures at different stages, e.g., model
verification that can be regarded as unit testing for ML components and system-level (integration)
verification that is carried out after integration and deployment of the model in the system. Besides the
model verification, there is a strong need for system-level testing of ML components, particularly in safety-
critical systems. For example, in autonomous vehicles, as a prevailing use case of ML-enabled systems,
ML components are also connected to other components and the actual functionality of the systems is
realized through the integration of ML-based components and some other advanced electronics such as
cameras, sensors, and LiDAR technologies. More interestingly, for instance in parallel with the rapid growth
of the application of these systems in the automotive domain, there is also an increase in the number of
car malfunctions, accidents and crashes that involve the autonomous cars. Therefore, there is an essential
need to verify and test at the “system level” to ensure the intended correct functionality of the system,
particularly in safety-critical domains.

In practice, generating effective test inputs which could lead to malfunctions or improper functionality of the
ML model or ML system is often a challenging task. Test input data that can reveal failures, depending on
the test level, could be for instance images, as used in DeepTest [68] and DeepXplore [69] or test scenario
configurations as used in GA-driven ScenarioGenerator in [70] and Deeper [71].

Generating failure-revealing test input data could be done through input data mutation and test scenario
manipulation. Mutating input data involves generating new input through applying various transformation
techniques such as using metamorphic testing techniques [68, 69] and evolutionary search-based
algorithms [72, 73] to the existing data.

Test scenario manipulation involves going through the search space of the possible test scenarios to find
the failure-revealing scenarios. Many of the works in this category use search-based techniques to discover
the critical failure-revealing scenarios [74, 75, 76]. In this regard, simulators as a form of digital twins have
been considered an effective complementary solution to field testing that can strongly help with capturing
the critical scenarios. Nowadays, several high-fidelity simulators have productively contributed to this area.
CARLA, BeamNG.tech, SVL simulator, and Pro-SiVIC are among the ones that have been widely used for
testing automotive ML-driven systems [77].

The current test subject (ML-driven system under test) in our research is a smart driving agent---a BeamNG-
integrated autonomous driving agent, which utilizes optimization techniques to plan the driving trajectory
w.r.t speed limit constraints while keeping the car inside the road lane. It has been equipped with a deep
neural network-based lane-keeping system, which involves onboard cameras and a deep learning steering
angle prediction module. The functionality that is intended to be tested is the capability of keeping the car
inside the lane (Lane-keeping).

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 47 of 59

In our work, we propose and develop a bio-inspired computation-driven test generator, called Deeper,
which can generate effectively and efficiently failure-revealing test scenarios. In this work, failure is defined
in terms of episodes in which the car drives partially outside the lane, w.r.t a tolerance failure threshold.
This threshold specifies the percentage of the car’s bounding box required to be outside the lane to regard
that driving episode as a failure.

Deeper in its current version utilizes a set of bio-inspired search-based techniques, genetic algorithm, (𝜇 ൅
𝜆) and ሺ𝜇,  𝜆ሻ evolution strategies, and particle swarm optimization to generate failure-revealing test
scenarios. The problem is basically considered an optimization problem. In this regard, we use a heuristic-
based objective function to guide the search process and leverage a quality population seed to boost the
search, meanwhile, we develop domain-specific evolutionary operations (crossover and mutation) for the
presentation model used for modelling the test scenarios in the tool. Our empirical evaluation of Deeper
shows that the test generators in Deeper can perform effectively and efficiently to provoke a considerable
number of failure-revealing test scenarios with respect to different target failure severity (e.g., high tolerance
failure threshold), driving constraints (e.g., speed limits), and the available test budget (I.e., the amount of
time allocated for generating test scenarios).

They prove to be able to trigger several diverse failures even under limited test budget, speed limit
constraints and high failure tolerance threshold. These developed test generators show significant
effectiveness in terms of the ratio of detected failures to the total valid test scenarios generated and prove
to be reliable test generators in reaching the test objective, i.e, triggering diverse failures in the ML system
under test.

5.2. Generating Adversarial Examples for increasing ML
Robustness

Solution provider: RISE

An adversarial example is a slightly perturbed image, still easily recognizable by human observers,
generated by an adversary with the goal of producing a wrong output from the correct target class. An
adversarial example 𝑥́ is generated as 𝑥́ ൌ 𝑥 ൅ 𝜖 where 𝑥 is the original sample and 𝜖 is the added
perturbation. The aim of an adversary is to find 𝑥́ to deceive network 𝑓 such that:

𝑓ሺ𝑥ሻ ് 𝑓ሺ𝑥́ሻ ∧ 𝛻ሺ𝑥́, 𝑥ሻ ൑ 𝜖

Where 𝛻ሺ𝑥́,𝑥ሻ indicates the difference between the original data and the adversarial example. Generally,
the strength of the adversaries is limited by 𝜖 which is the amount of change they are allowed to apply to
the original sample. Adversarial examples may be targeted in which their goal is for adversarial example
𝑥́ is to be classified as a specific class 𝑡 such that:

𝑓ሺ𝑥́ሻ ൌ 𝑡 ∧ 𝑓ሺ𝑥ሻ ് 𝑓ሺ𝑥́ሻ

𝛻 is commonly defined by a 𝐿௣_norm distance metric. Three of the most popular choices for 𝐿௣ are:

 𝐿଴: For image samples, this metric limits the number of pixels that the adversary is allowed to
perturb to generate an adversarial example. The amount of perturbation on each pixel is unlimited.

 𝐿ଶ: This metric is the Euclidean distance between the initial sample 𝑥 and the adversarial example
𝑥́. In this method the adversary is allowed to tweak any pixel of the image if the 𝐿ଶ distance is
smaller than a certain value.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 48 of 59

 𝐿ஶ: This metric limits the amount of perturbation that an adversary is allowed to apply to each pixel.
The adversary may alter any number of pixels if the amount of perturbation for each pixel is smaller
than a predefined value.

We have used several different attack algorithms to evaluate the models in our experiments. These attacks
generate their examples based on different metrics, one pixel attack [78] uses 𝐿଴ norm, DeepFool [79] uses
𝐿ଶ norm and 𝐿ஶ norm attacks such as FGSM [80], BIM, and PGD [82]. Carlini and Wagner attack (C&W)
[72] supports all of the aforementioned metrics. The following is a detailed description of how these attacks
generate their adversarial examples. Here, we refer to the difference between the original and the perturbed
image as 𝜂 ൌ 𝑥 െ 𝑥́.

Pixel Attack: This adversarial attack generates its examples based on differential evolution (DE) method
where the attacker is only allowed to perturb one pixel from the original image. This process is formulated
into an optimization problem defined as:

min𝑃௔ௗ௩൫𝑥 ൅ 𝑒ሺ𝑥ሻ൯ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∥ 𝑒ሺ𝑥ሻ ∥଴ ൑ 1

Where 𝑃௔ௗ௩ shows the probability of 𝑥 being misclassified as the wrong class 𝑎𝑑𝑣, and 𝑒ሺ𝑥ሻ is an additive
vector with values of 𝑒ଵ, … , 𝑒௡ 𝑤here 𝑛 is the number of pixels. According to the optimization problem, only
one of the elements of 𝑒ሺ𝑥ሻ is allowed to have a non-zero value. Ultimately, solving the optimization problem
from the pixel attack determines the amount of perturbation and the pixel it should be applied to.

Fast Gradient Sign Method (FGSM): FGSM is an efficient method that benefits from the liner nature of
neural networks to generate adversarial examples. Cost of the attack is controlled by measuring the 𝜂 using
the 𝐿ஶ metric. FGSM assumes that the amount of perturbation is similar in every dimension which is limited
by the parameter 𝜖. The following formula describes how FGSM calculates perturbation using gradient
vector of the loss function:

𝜂 ൌ 𝜖. 𝑠𝑖𝑔𝑛ሺ𝛻௫𝐽ሺ𝑓ሺ𝑥ሻ,𝑦ሻሻ

where 𝐽ሺሻ is the loss function that is used in the training phase of DNNs and 𝑦 is the correct classification
label of the input 𝑥. The goal of the FGSM is to perturb the input 𝑥 by maximizing the loss 𝐽ሺሻ based on a
transformed gradient.

Basic Iterative Method (BIM): This method is the iterative version of the FGSM attack. Here, the
perturbation 𝜖 is added at small steps instead of applying it at once. The adversarial example at the
𝑚௧௛iteration is defined as:

𝑥́௠ାଵ ൌ 𝑥́௠ ൅ 𝐶𝑙𝑖𝑝௫,ఢሺ𝛼. 𝑠𝑖𝑔𝑛ሺ𝛻𝐽ሺ𝑓ሺ𝑥́௠ሻሻ,𝑦ሻሻሻ

The clipping function, 𝐶𝑙𝑖𝑝௫,ఢ, performs clipping on each pixel of 𝜂 to ensure that the 𝑥́ remains in the 𝜖 -
neighborhood of the original sample 𝑥. This approach gives the adversary more control over generating the
adversarial example and has proven to be more effective than FGSM.

Projected Gradient Descent (PGD): This method uses 𝐿ଶ and 𝐿ஶ and the concepts of back-propagation
training to find the smallest perturbation possible to maximize the loss function. Basically, PGD is an
advanced version of FGSM and BIM where they have adopted the momentum method to escape from local
maxima while finding an adversarial example. Momentum method accumulates a velocity vector with the
gradients at each iteration to accelerate gradient descent algorithms. Velocity vectors are calculated as:

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 49 of 59

𝑔௜ାଵ ൌ 𝜇.𝑔௧ ൅
𝛻௫𝐽ሺ𝑥ො௜ ,𝑦ሻ

∥ 𝛻௫𝐽ሺ𝑥ො௜ ,𝑦ሻ ∥ଵ

 After the calculation of the gradients at the 𝑖௧௛ step, adversarial examples are generated as:

𝑥ො௜ାଵ ൌ 𝑥ො௜ ൅ 𝛼. 𝑠𝑖𝑔𝑛ሺ𝑔௜ାଵሻ

Adversarial examples generated by PGD are more effective than FGSM and BIM attacks in fooling DNNs.

DeepFool: This method finds adversarial examples with minimal required perturbation. The perturbation is
calculated by finding the distance from the original image to the closest decision boundary of the classifier.
In case of linear classifiers, where decision boundaries are made of linear planes, output classes are
represented as polyhedrons (the planes of which are the classifier defined boundaries). To generalize the
non-linear classifiers, DeepFool adopts an iterative approach to estimate the linear polyhedron of
classifiers. The perturbation is computed as:

arg𝑚𝑖𝑛 ∥ 𝜂௜ ∥ଶ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑓ሺ𝑥௜ሻ ൅ 𝛻𝑓ሺ𝑥௜ሻ்𝜂௜ ൌ 0

Where 𝑓 is the approximate linearized version of the classifier at each iteration.

Carlini & Wagner (C\&W): This targeted attack is stronger than other known targeted attacks while
requiring small amount of perturbation. C\&W attack has three different versions that generate their
examples based on 𝐿଴, 𝐿ଶ and 𝐿ஶ norms. An objective function 𝑔 is defined in C\&W such that:

𝑚𝑖𝑛 ∥ 𝜂 ∥௣ ൅𝑐.𝑔ሺ𝑥 ൅ 𝜂ሻ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑥 ൅ 𝜂 ∈ ሾ0, 1ሿ௡

Where 𝑝 indicates the used norm and 𝑔ሺ𝑥́ሻ ൒ 0 if and only if 𝑓ሺ𝑥́ሻ ൌ 𝑙ሖ, in which 𝑙ሖ is the intended target of
the attack.

In our research we proposed using attacks that generate their examples to evaluate the robustness of
neural networks. We select adversarial examples that are generated using these metrics 𝐿଴ 𝑎𝑛𝑑 𝐿ஶ, as
opposed to any other combination of metrics, can enhance the robustness evaluation in neural networks.
We have used this method to create a set of pre-generated adversarial examples using different threshold
values for 𝐿଴ 𝑎𝑛𝑑 𝐿ஶ, metrics, 1, 3, 5 and 10 respectively. To be inclusive among various neural network
architectures, our adversarial examples set is targeted at four well-known CNNs including DenseNet,
LeNet, Resnet, and VGG-16. During our search process, we evaluate the robustness of our models as their
accuracy against our generated adversarial set. Our approach also assures our robustness evaluation is
not biased towards certain adversarial attacks.

5.3. Metamorphic Testing for text driven ESG Investment systems

Solution provider: Concatel/Netcheck

The tools described in 4.2.5 and 5.1. have been used to generate a component that validates and verifies
AI models developed for news tagging, within the FinTech sector. Most notably, MLflow records the training
metrics as well as trains, saves, verifies, and validates the AI models that are used in the platform.

The following components are highlighted in this validator:

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 50 of 59

 Background_Worker: Based on C#, this component asks every N minutes if there is a new model
registered - it has to fulfill some conditions, test tags coming from Mlflow and when it is verified that
there is a model with those tags a message is sent to Kafka that this model is available and that it
solves a task and passes it the most influential tags.

 Evaluator: this component based on Python, collects those messages with the selected model to
the task and evaluates that model against a dataset not seen in training. With that evaluation the
training metrics are available. Model-drifting can be captured (the model is trained with a starting
dataset but with the passage of time it can make wrong predictions, it indicates that it must be re-
trained with other datasets) once re-trained, the model is re-validated, and it is checked if it is useful
for the trained dataset.

In parallel, a tool has been developed to validate, verify, and correctly classify ESG news for responsible
investment and detection of erroneous behavior. The necessary models have been generated to classify
the news according to its ESG topic and its sentiment. In addition to all the necessary components to carry
out this task automatically on all the news that is published on the internet in real time. This tool is composed
of:

 News Scrapper: component that collects news from various sources and applies an AI model of
classification for its division into E(environmental), S(social), G(governmental).

 Sentiment classification transformers: this component applies a sentiment analysis AI
algorithm which indicates whether the news, understanding its origin (E, S or G), is positive or
negative within that group.

 Topic classification transformers: this component extracts the most relevant keywords from the
article by applying an XAI algorithm.

 Graph database for persistence: this component aims to obtain a better visualization of the news
in real time.

 Docker for service orchestration.
 Web UI, graphical interface based on TypeScript.
 Rest API based on TypeScript through which all components communicate.
 Amazon Cognito for user and permissions management.

To conclude, with the type of technology available on the market today, ensuring that software is specifically
tailored to your audience can make all the difference against competitors. That's why domain knowledge is
such a valuable and coveted asset. Within the FIntech use case, CONCATEL and NETCHECK want to
give extra value within domain knowledge as it collects data validation from experts that translate into
improved algorithm training.

5.4. Robust AutoML

Solution provider: Helsinki University

AutoML is a promising direction to further automate the creation of ML models and choose the optimal
models and parameters matching the needs. A potential risk for a highly optimized model is that it becomes
very sensitive to its input data. While the training data should contain a wide set of examples it may not
fully represent all possible cases where anomalous input is used for inference. In order to ensure that the
system is as robust as possible to unexpected inputs, we investigate how robust the models generated by
different AutoML approaches are. We use and extend a previously implemented dpEmu data fault
generator [83] for this task.

The key observation is that the different AutoML systems work in very different ways. As we report in detail
in [84] the resulting models differ in type, size, and performance. Also, there are major differences in the

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 51 of 59

computational resources needed. The same applies to robustness. The difficulty is that predicting in
advance how robust the models will be is not easy.

In particular, we have investigated AutoML for time series data coming from different kinds of sensors.
Sensor data collection in IoT networks is sensitive to the malfunction of sensors and communications.
Hence, it is important that models using the data work in a reasonable way even when there are some,
potentially temporary, problems. We have used temperature and taxi data as examples and analyzed how
the models generated with different AutoML systems tolerate faults in their input data. We have emulated
faults arising from common problems in wireless sensor networks such as missing readings, anomalous
values, and readings stuck to a constant value. The analyzed AutoML systems are Microsoft’s Azure
AutoML, Intel’s Analytics Zoo AutoML, and Facebook’s Prophet. As a result, we rank AutoML systems
based on their performance with respect to data faults and their severity. In addition, we show how the
AutoML generated models differ given the data fault type. As an observation, it was interesting to see that
some systems performed well with certain data fault types and level combinations but did not do so well
with another setup. Also, the generated models were quite different given the type of fault in the training
data. Therefore, for a certain problem, one of the systems might be much more effective than others, but
in general, this can be found out by running suitable tests. For cases where training must be fast, Prophet
is clearly the best, with its forecasting performance comparable with other tested systems.

While all compared systems provide similar features, they all are clearly different, making it difficult to
compare them technically in terms of other than input, output, and performance. With LSTM models, deeper
layers are used to capture more high-level or abstract features from the data, which in the case of time
series would correspond to longer-term trends. Analytics Zoo seems to exclusively generate two-layer
LSTM models. So, it can be said that the second layer is used to capture more general trends in the training
data, while the first layer is used to describe the more immediate changes. On the other hand, the width of
each LSTM layer, namely the number of units on a layer, determines how strongly the relationships
between the inputs to a specific layer are taken into account by the model. So, too few units on a layer can
lead to underfitting, while too many units can lead to overfitting. In addition, both LSTM layers have an
associated Dropout layer in our generated models. The Dropout layer helps to reduce overfitting by
excluding some units from updates. More detailed results are available in [85].

Our currently ongoing work is trying to reuse the models developed during the AutoML search. Normally,
the non-optimal models are discarded. We, instead, store a sample of the explored models and in case of
concept drift, try to find an existing model matching the changed data. In this way we hope to make reacting
to concept drift more agile.

6. Operationalizing tasks - From incoming data to a
validated model

During the work on this work package, we have noticed three recurring themes:

 Proper data handling and quality assurance.
 Model quality in training and development phase.
 Testing of models after the development phase.

These three points are mapped to the tasks in the work package. For the final version of the methods, we
conclude that these three points should not be treated separately in an ML development lifecycle. They
need to be brought together so ML algorithms can be tested and developed as traditional software. This
ensures a valid basis for a fundamental shift in software and brings about Software 2.0 [83]. In Software
1.0, software is explicitly programmed and usually consists of one team working on the development
together. In Software 2.0, we have a lot of moving parts which are mapped to the tasks – training data
preparation, architecture, modelling, and behavior of the model after training. These moving parts are
handled by different teams. To make them communicate appropriately, we present the Quality AI
Framework (QAIF) that can be used to operationalize ML model development.

Inspired by the CRISP-DM Framework, QAIF is a cohesive, generic framework that can be tailored to any
AI solution. It is designed to help product managers and business owners identify and mitigate potential
risks at each stage of the AI lifecycle. The QAIF can be used to govern the AI development cycle. We add

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 52 of 59

a gate to each phase – just like in traditional software testing – to ensure certain quality control checks are
completed. The following paragraphs describe the quality control tests that should be conducted at each
phase of the AI lifecycle to ensure quality and ethical adherence. The QAIF has 5 phases – Business
Understanding, Data Understanding and Preparation, Model Development and Evaluation, and
Deployment.

The process of developing and implementing an AI solution always starts with the business case. A
business problem is defined and scoped and then turned into design requirements for data scientists – this
is called the Business Understanding phase. Next, training and test data are collected in the Data
Understanding phase. In the Data Preparation phase, the data is analyzed, sampled, and pre-processed
for the chosen AI model. Then the Model Development phase can begin. In this phase, the AI model is
trained, tuned, and evaluated. Once the Model Evaluation is optimized and meets the business
requirements, the model can be tested and Deployed. This is when the AI system goes into production and
performance is monitored. These phases are iterative and illustrated in Figure 34.

Figure 34. The QAIF gates and main activities.

The methods introduced during the work in this work package correspond to the gates of the QAIF. We will
highlight the end-to-end AI product lifecycle by highlighting those methods through the phases.

Business Understanding

In this phase, the tasks of identifying stakeholders, product requirement specifications, technical design
specifications, performance metrics and ethical/legal compliance will be completed and understood for the
development process to be initiated. No specific tool has been developed to accommodate for this phase
as it is a theoretical one, but we have used the principles tied to it to set up experiments in the ITEA IVVES
project.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 53 of 59

Data Understanding and Preparation

The data phases are the most important in the AI project lifecycle. Data is the fuel for AI, so treating data
as a first-class citizen is of outmost importance in AI project management and development. The DQW is
here to serve as an automated way of approaching data quality assessment. Synthetic data is used to
accelerate this phase and mitigate privacy risks.

As part of this work package, we can provide an example of how this phase looks for one of the use cases
around audio data by Solita. The data handling in the use case has many moving parts, two of which are
sensor fusion and data farming. It is important to understand these methods because they impact the
following phases of model development. The mapping of the methods happens in the initial phase of the
use case, with all relevant parties (stakeholders, developers, product owners, etc.). The output is a
document containing specifications of all moving parts of the use case. Two examples are below.

Sensor fusion [84] is a process where several sensor data sources are combined into one. Sensor data
quality plays a very important role in many contexts. For instance, Internet of Things (IoT) is an emerging
technology where sensor fusion can be applied. Machine learning has many applications in sensor fusion.
In the use cases of this project, we have found many ways to apply ML to sensor fusion which are described
in the following. In some of the use cases, a data farming [36] approach has been used.

If we understand the nuances of data handling in a use case, we can successfully mitigate risks caused
down the line.

Model Development

The AI Model Development phase starts with high quality training data. Model developers have the main
responsibility in this phase - ensuring that the AI model they are developing is suited for the application and
works with the data prepared in previous phases. To be sure of this, performance metrics are drawn from
the model and presented to the stakeholders. Furthermore, we test the model performance and functionality
on the most granular level. The testing is focused on features, where we can use XAI to assess feature
importance. Furthermore, AutoML can be used to infer optimal hyperparameters for a given model
architecture.

Model Evaluation

The model evaluation phase is mapped to the final task of this work package, meaning that all tools
explained in its section contribute to this phase of QAIF. To reiterate, you can execute metamorphic and
adversarial tests to ensure the model is robust enough to be deployed. Metamorphic tests aim to assess
model impact by transforming the inputs of the model and then testing the model with the augmented inputs.
Adversarial testing aims to generate adversarial attacks to stress test the model. Furthermore, you can
execute user acceptance tests using the XAI outputs that were implemented in the previous phase.

Model Deployment

Once we have a transparent and understandable model, we can enter the final phase with a focus on
monitoring, real-world model performance and maintenance.

To ensure robustness, fairness and transparency, a monitoring dashboard should be set up to track model
performance in production. The production performance metrics include:

 Model performance metrics from Model Development.
 Bias metrics from Model Evaluation.
 Drift detection metrics like concept drift and data drift detection

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 54 of 59

In this final phase, we can confidently check all the quality control boxes and pass through all the gates of
development, but that doesn’t necessarily mean we are done with the AI lifecycle. When the model needs
to be retrained or adjusted, we can always turn back and revisit any of the phases, as the AI project life
cycle is an iterative process.

Finally, we have a wholesome approach that is in line with the framework and encompasses all three tasks
in this work package. From CCTL and NTCHK, an ESG solution that encompasses the application of
artificial intelligence for news classification within the Fintech ecosystem is presented. Thanks to this new
and innovative development, the verification and validation of artificial intelligence models involved in the
classification of news is of great value and complies with the Human In The Loop (HITL) concept.

NETCHECK has contributed its development by designing tools to assess the quality of data from different
sources for the training phase of ML algorithms in the FinTech domain, considering GDPR and regulatory
constraints. As a result, techniques for erroneous or bad performance of ML algorithms have been provided.

Moreover, CONCATEL has focused on assessing the reliability of datasets from multi-domain sources,
including open data initiatives considering specific constraints (GDPR) for Fintech and RegTech (regulatory
technology). In addition, techniques to enable KRR from Deep Learning models have been analyzed and
components for transparency of ML-based Fintech solutions will be implemented.

Finally, CONCATEL and NETCHECK have generated a tool with great added value within the FinTech
community, which goes hand in hand with experts to preserve domain knowledge.

This wholesome approach to the ESG use case and ML adoption in the FinTech industry is impressive and
shows that a framework with guidelines on ML model development is of utmost importance when building
these solutions.

With these state-of-the-art tools, we can automate the quality control checks at every phase of the QAIF
and AI development cycle. The tools enable efficient testing and operationalizing of ML. Many of these
tools can be deployed as micro-services to automate the development and testing of AI. This is in line with
DevOps & the shift left movement and should be a standard when developing AI products and services.

In the next deliverable, 2.5, we will deliver the final version of the tools along with validation results. We will
also report on the dissemination and commercial activities of the tools in the market.

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 55 of 59

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 56 of 59

7. References

[1] Jordan, Michael I., and Tom M. Mitchell. "Machine learning: Trends, perspectives, and prospects."
Science 349.6245 (2015): 255-260.

[2] Fox, Michael J. Quality assurance management. Springer, 2013.

[3] Goodfellow, I. et al., “Generative adversarial networks,” Commun. ACM, vol. 63, no. 11, pp. 139–144,
Jun. 2020.

[4] Menze, B.H., A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al. "The Multimodal Brain
Tumor Image Segmentation Benchmark (BRATS)", IEEE Transactions on Medical Imaging 34(10), 1993-
2024 (2015) DOI: 10.1109/TMI.2014.2377694

[5] Bakas, S., H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J.S. Kirby, et al., "Advancing The Cancer
Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features", Nature
Scientific Data, 4:170117 (2017) DOI: 10.1038/sdata.2017.117

[6] Bakas, S., M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, et al., "Identifying the Best Machine
Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival
Prediction in the BRATS Challenge", arXiv preprint arXiv:1811.02629 (2018)

[7] Van Essen, D.C., S. M. Smith, D. M. Barch, T. E. J. Behrens, E. Yacoub, and K. Ugurbil, “The WU-Minn
Human Connectome Project: An overview,” Neuroimage, vol. 80, pp. 62–79, Oct. 2013.

[8] https://github.com/neuronets/nobrainer

[9] Mueller S. G. et al., “The Alzheimer’s disease neuroimaging initiative,” Neuroimaging Clinics of North
America, vol. 15, no. 4. NIH Public Access, pp. 869–877, Nov-2005.

[10] Data Quality Wrapper: Clean, describe, visualise and select data for AI models. Available at:
https://share.streamlit.io/soft-nougat/dqw-ivves/app.py

[11] Streamlit to the rescue! https://medium.com/sogetiblogsnl/streamlit-to-the-rescue-7d5f2f663465

[12] https://github.com/Baukebrenninkmeijer/table-evaluator

[13] https://github.com/fbdesignpro/sweetviz

[14] https://github.com/pandas-profiling/pandas-profiling

[15] https://github.com/pycaret/pycaret

[16] https://github.com/nltk/nltk

[17] https://github.com/explosion/spaCy

[18] https://github.com/sloria/TextBlob

[19] https://github.com/amueller/word_cloud

[20] https://github.com/shivam5992/textstat

[21] https://github.com/python-pillow/Pillow

[22] https://github.com/librosa/librosa

[23] https://github.com/pierre-rouanet/dtw

[24] https://github.com/iver56/audiomentations

[25] https://github.com/QED0711/audio_analyzer

[26] https://github.com/Setasign/FPDF

[27] https://github.com/JazzCore/python-pdfkit

[28] Dynadot. What is ASCII and what are ASCII vs. Non-ASCII domains? Available at
https://www.dynadot.com/community/help/question/what-is-ascii

[29] Zvornicanin, E. When Coherence Score is Good or Bad in Topic Modeling? Available at
https://www.baeldung.com/cs/topic-modeling-coherence-score

[30] Comeau, J. Let's learn about waveforms, available at: https://pudding.cool/2018/02/waveforms/

[31] Spectral Density. Available at https://en.wikipedia.org/wiki/Spectral_density

[32] Short-time Fourier transform, available at https://en.wikipedia.org/wiki/Short-time_Fourier_transform

[33] Nair, P. The dummy’s guide to MFCC. Available at: https://medium.com/prathena/the-dummys-guide-
to-mfcc-aceab2450fd

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 57 of 59

[34] Zhang, J. Dynamic Time Warping. Available at https://towardsdatascience.com/dynamic-time-warping-
3933f25fcdd

[35] Wikipedia: Audio file format. Available at https://en.wikipedia.org/wiki/Audio_file_format

[36] Wikipedia: https://en.wikipedia.org/wiki/Data_farming

[37] Chamberlain, Daniel, et al. "Application of semi-supervised deep learning to lung sound analysis." 2016
38th annual international conference of the IEEE engineering in medicine and biology society (EMBC).
IEEE, 2016.

[38] Wang, Avery. "The Shazam music recognition service." Communications of the ACM 49.8 (2006): 44-
48.

[39] Haitsma, Jaap, Ton Kalker, and Job Oostveen. "Robust audio hashing for content identification."
International Workshop on Content-Based Multimedia Indexing. Vol. 4. 2001.

[40] Hathaway, J. L. "Automatic Audio Gain Controls, Part 1." Journal of the Audio Engineering Society 1
(1950): 16-18.

[41] Malik, H. "Acoustic environment identification and its applications to audio forensics." IEEE
Transactions on Information Forensics and Security 8.11 (2013): 1827-1837.

[42] Sanchez, Susan M. “Data Farming: Methods for the Present, Opportunities for the Future.” ACM
transactions on modeling and computer simulation 30.4 (2020): 1–30. Web.

[43] Liu, Y., Yang, T., You, Z., Fan, W., & Yu, P. S. (2020). Commonsense Evidence Generation and
Injection in Reading Comprehension. arXiv preprint arXiv:2005.05240.

[44] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should i trust you?" Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining (pp. 1135-1144).

[45] Ghorbani, A., Zou, J., Data Shapley: Equitable Valuation of Data for Machine Learning, pre-print:
arXiv:1904.02868

[46] Ruoxi, J., et al., Efficient Task-specific Data Valuation for Nearest Neighbor Algorithms, Proceedings
of the VLDB Endowment, Volume 12, Issue 11, July 2019, pp 1610–1623,
https://doi.org/10.14778/3342263.3342637

[47] Zhang, J. M., et al., Model Validation Using Mutated Training Labels: An Exploratory Study, pre-print:
https://arxiv.org/pdf/1905.10201.pdf

[48] Christopoulos, Athanasios, et al. "ARLEAN: An Augmented Reality Learning Analytics Ethical
Framework." Computers 10.8 (2021): 92.

[49] Breck, E., N. Polyzotis, S. Roy, S. E, Whang, , and M. Zinkevich, “Data validation for machine learning,”
IEEE Transactions on Software Engineering., In SysML, 2019.

[50] Carletti, Mattia, et al. Explainable machine learning in industry 4.0: Evaluating feature importance in
anomaly detection to enable root cause analysis. En 2019 IEEE International Conference on Systems, Man
and Cybernetics (SMC). IEEE, 2019. p. 21-26.

[51] Anastasi, S., Madonna, M., & Monica, L. (2021). Implications of embedded artificial intelligence-
machine learning on safety of machinery. Procedia Computer Science, 180, 338-343.

[52] https://github.com/hovinh/QII

[53] https://github.com/TeamHG-Memex/eli5

[54] https://github.com/marcotcr/lime

[55] https://github.com/marcotcr/anchor

[56] https://github.com/plasmashen/pytorch-saliency

[57] https://github.com/karanchahal/SaliencyMapper

[58] https://github.com/bwrc/astrid-r

[59] https://github.com/slundberg/shap/tree/master/notebooks/kernel_explainer

[60] https://github.com/slundberg/shap/tree/master/notebooks/tree_explainer

[61] https://github.com/kundajelab/deeplift

[62] https://github.com/slundberg/shap/tree/master/notebooks/deep_explainer

[63] https://github.com/TeamHG-Memex/eli5/blob/master/notebooks/keras-image-classifiers.ipynb

[64] https://github.com/pytorch/captum

[65] https://github.com/yosinski/deep-visualization-toolbox

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 58 of 59

[66] Liang, T., et al. "Pruning and quantization for deep neural network acceleration: A survey."
Neurocomputing 461 (2021): 370-403.

[66] Road Vehicles – Safety of the intended Functionality. International Organization for Standardization,
Tech. Rep. ISO/PAS21448:2019, 2019.

[67] Hawkins, R., Paterson, C., Picardi, C., Jia, Y., Calinescu, R., & Habli, I. (2021). Guidance on the
assurance of machine learning in autonomous systems (AMLAS). arXiv preprint arXiv:2102.01564.

[68] Tian, Y., Pei, K., Jana, S., & Ray, B. (2018, May). Deeptest: Automated testing of deep-neural-network-
driven autonomous cars. In Proceedings of the 40th international conference on software engineering (pp.
303-314).

[69] Pei, K., Cao, Y., Yang, J., & Jana, S. (2017, October). Deepxplore: Automated whitebox testing of deep
learning systems. In proceedings of the 26th Symposium on Operating Systems Principles (pp. 1-18).

[70] Ebadi, H., Moghadam, M. H., Borg, M., Gay, G., Fontes, A., & Socha, K. (2021, August). Efficient and
Effective Generation of Test Cases for Pedestrian Detection-Search-based Software Testing of Baidu
Apollo in SVL. In 2021 IEEE International Conference on Artificial Intelligence Testing (AITest) (pp. 103-
110). IEEE.

[71] Moghadam, M. H., Borg, M., & Mousavirad, S. J. (2021, May). Deeper at the sbst 2021 tool competition:
ADAS testing using multi-objective search. In 2021 IEEE/ACM 14th International Workshop on Search-
Based Software Testing (SBST) (pp. 40-41). IEEE.

[72] Carlini, N., & Wagner, D. (2017, May). Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp) (pp. 39-57). IEEE.

[73] Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., & Swami, A. (2016, March). The
limitations of deep learning in adversarial settings. In 2016 IEEE European symposium on security and
privacy (EuroS&P) (pp. 372-387). IEEE

[74] Abdessalem, B., R., Nejati, S., Briand, L. C., & Stifter, T. (2016, August). Testing advanced driver
assistance systems using multi-objective search and neural networks. In Proceedings of the 31st
IEEE/ACM international conference on automated software engineering (pp. 63-74).

[75] Abdessalem, R. B., Nejati, S., Briand, L. C., & Stifter, T. (2018, May). Testing vision-based control
systems using learnable evolutionary algorithms. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE) (pp. 1016-1026). IEEE.

[76] Haq, F. U., Shin, D., Briand, L. C., Stifter, T., & Wang, J. (2021, July). Automatic test suite generation
for key-points detection DNNs using many-objective search (experience paper). In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis (pp. 91-102).

[77] Borg, M., Abdessalem, R. B., Nejati, S., Jegeden, F. X., & Shin, D. (2021, April). Digital twins are not
monozygotic–cross-replicating adas testing in two industry-grade automotive simulators. In 2021 14th IEEE
Conference on Software Testing, Verification and Validation (ICST) (pp. 383-393). IEEE.

[78] Su, J. , D. V. Vargas, and K. Sakurai, “One Pixel Attack for Fooling Deep Neural Networks,” IEEE
Transactions on Evolutionary Computation, 2019.

[79] Moosavi-Dezfooli, S.M., A. Fawzi, and P. Frossard, “DeepFool: A Simple and Accurate Method to Fool
Deep Neural Networks,” in Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2016.

[80] Goodfellow, I.J., J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” in 3rd
International Conference on Learning Representations (ICLR), 2015.

[83] Karpathy, A. Software 2.0. https://karpathy.medium.com/software-2-0-a64152b37c35

[84] Teh, Hui Yie, et al. "Sensor data quality: a systematic review." Journal of Big Data 7.1 (2020): 1-49.

[82] Madry, A., A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant
to adversarial attacks,” in 6th International Conference on Learning Representations (ICLR), 2018.

[83] Nurminen, J.K., Halvari, T., Harviainen, J., Mylläri, J., Röyskö, A., Silvennoinen, J., and Mikkonen, T.,
"Software Framework for Data Fault Injection to Test Machine Learning Systems". 4th IEEE International
Workshop on Reliability and Security Data Analysis (RSDA 2019) at 30th Annual IEEE International
Symposium on Software Reliability Engineering (ISSRE 2019), Berlin, Germany, October 2019

[84] Halvari, T., Nurminen, J.K., and Mikkonen, T., “Testing the Robustness of AutoML Systems," 1st
Workshop on Agents and Robots for reliable Engineered Autonomy (AREA) at 24th European Conference
on Artificial Intelligence (ECAI 2020), September 2020

D2.4 – Final version of validation methods and techniques for ML 25-March-2022
IVVES_Deliverable_D2.4_V1.0_Final_version_of_validation_methods_and_techniques_for_ml.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2022 IVVES Consortium Page 59 of 59

[85] Halvari, T., Nurminen, J.K., Mikkonen, T., “Robustness of AutoML for Time Series Forecasting in
Sensor Networks,” IFIP Networking Poster Session, virtual event, June, 2021

[86] Buciluǎ, Cristian, Rich Caruana, and Alexandru Niculescu-Mizil. "Model compression." Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. 2006.

[87] MLA, Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network."
arXiv preprint arXiv:1503.02531 2.7 (2015).

