
Deliverable D9.3 Version 1.0 1

ITEA 2 - 09033

TIMMO-2-USE
Timing Model – Tools, algorithms, languages, methodology, USE cases

Report type Deliverable D9.3

Report name State-of-the-Art Report

Report status Consortium Confidential

Version number Version 1.0

Date of preparation 2011-11-29

Deliverable D9.3 Version 1.0 2

TIMMO-2-USE Partners

AbsInt Angewandte Informatik GmbH

Arcticus Systems AB

Chalmers University of Technology

Continental Automotive GmbH

Delphi France SAS

dSpace GmbH

INCHRON GmbH

Institute National de Recherche en Informatique et Automatique
INRIA

Mälardalen University

Rapita Systems Ltd, UK

RealTime-at-Work

Robert Bosch GmbH

Symtavision GmbH

Technische Universität Braunschweig

University of Paderborn

Volvo Technology AB

Project Coordinator

Dr. Daniel Karlsson

Volvo Group Trucks Technology

Advanced Technology & Research

Dept 6260, M2.7

405 08 Göteborg

Sweden

Tel.: +46 31 322 9949

Email: Daniel.B.Karlsson@volvo.com

© Copyright 2010-2011: The TIMMO-2-USE Consortium

Deliverable D9.3 Version 1.0 3

Authors

Marie-Agnès Peraldi-Frati, INRIA

Ramin Tavakoli Kolagari, Volvo Technology

Kay Klobedanz, University Paderborn

Wolfgang Müller, University Paderborn

Sophie Quinton, TU Braunschweig

Matthias Hanke, TU Braunschweig

Frank Hagl, Continental Automotive GmbH

Stefan Kuntz, Continental Automotive GmbH

Morayo Adedjouma, DELPHI

Reinhold Heckmann, AbsInt

Ulrich Kiffmeier, dSPACE

Wendel Ramisch, INCHRON GmbH

Reinhold Heckmann, AbsInt

Nico Feiertag, SymtaVision

Björn Lisper, Mälardalen University

Ian Broster, Rapita Systems Ltd

Deliverable D9.3 Version 1.0 4

Document History

Version Date Description

1.0 2011-11-29 First version.

Deliverable D9.3 Version 1.0 5

Table of contents

TIMMO-2-USE Partners .. 2

Authors .. 3

Document History .. 4

Table of contents ... 5

1 Introduction ... 7

2 Definition and Example of Timing Characteristics 8

2.1 Continuous Time .. 8

2.2 Discrete Time ... 9

2.3 Logical respectively Multiform Time 9

2.4 Uncertain Time... 10

3 Modeling and Analysis of Timing Information 11

3.1 Timing Modeling and Languages ... 11

3.1.1 UML Introduction ... 11

3.1.2 UML SPT Profile ... 12

3.1.3 UML SysML Profile ... 12

3.1.4 UML MARTE Profile .. 13

3.1.5 Clock Constraint Specification Language CCSL 15

3.1.6 Synchronous Languages .. 17

3.1.7 Property Specification Language PSL 18

3.1.8 Temporal Logic and CTL .. 19

3.1.9 Testing and Test Control Notation TTCN 19

3.1.10 SystemC .. 20

3.1.11 SystemVerilog ... 21

3.1.12 Modelica .. 22

3.2 Timing Analysis Approaches and Tools 22

3.2.1 Worst and Best Case Analysis 23

3.2.2 Worst and Best Seen Cases and Statistics 27

3.2.3 Probabilistic Timing Analysis 30

3.3 Other tools ... 33

3.3.1 Simulink® ... 33

3.3.2 Production Code Generation from Simulink®.............. 35

3.3.3 AUTOSAR ECU Design and Implementation 37

4 Project Results in the Field of Time Modeling 39

4.1 AUTOSAR ... 39

4.2 EAST-ADL ... 40

4.3 TIMMO ... 42

Deliverable D9.3 Version 1.0 6

5 Conclusion .. 43

6 Bibliography .. 45

Deliverable D9.3 Version 1.0 7

1 Introduction

Purpose

The purpose of this document is to identify the existing models and
tools available to solve problems arising in the domain of modeling
timing requirements, constraints, and properties at different levels of
the design process of automotive embedded systems.

Scope

The scope of this document is to investigate the different models and
tools which might be used in the context of the TIMMO-2-USE (T2U)
project. Different timing requirements, constraints, and properties
must be handled for designing automotive embedded systems. This
document aims first at defining a set of timing characteristics
generally expressed in such systems. Depending on the level of
abstraction (vehicle, analysis, design, implementation, operational) in
the design, different notions of time can be handled by models and
tools. In the first paragraph we provide a definition of each of these
notions of time and we give practical examples of their use. The
second paragraph identifies models capable of expressing these
timing characteristics. Approaches for timing analysis are presented,
including tools supporting them, as well as their potential use in the
T2U project. Finally a third paragraph presents the results of projects
in connection with the modeling of embedded systems for
automotive.

Abbreviations and Acronyms

The table lists all abbreviations and acronyms used in this document.

Abbreviation
Acronym

Description

T2U TIMMO-2-USE

Deliverable D9.3 Version 1.0 8

2 Definition and Example of Timing Characteristics

Time is a major concern in Computer Science and Engineering.
However, each domain may have its own interpretation and modeling
of time. F. Schreiber [1] has described several aspects of time and
defines ontology for time in different domains of computers and their
applications.

A first form of time is the one used in physical laws, and especially in
mechanics. In computer science this time is often referred to as
“physical time”, but its nature is above all mathematical.

In digital systems, this ideal time is approximated by circuits, called
“clocks”, generating well defined “periodical” signals. This leads to a
discrete model of time. Unfortunately, a digital system often needs
several clocks. This raises the problem of clock synchronization [2].

Distributed systems, because of their spatial extension, experience
the same problem to agree on a unique time reading. To address this
issue, L. Lamport [3] has introduced the concept of logical clock. With
logical clocks, partial ordering of events can be obtained without
recourse to any physical “real” time. Improvements in logical clocks
permit to characterize the causal relationship among events [4]. For
performance evaluation or hard real-time property verification, a time
model restricted to partial ordering of events is not enough.
Synchronization with physical time becomes necessary.

For analysis purposes, the notion of worst-case time is essential.
Traditional scheduling algorithms and analysis methods (e.g. for
processor utilization or response time), provide deterministic timing
guarantees (i.e., all task instances meet their deadline) which take
into account worst-case timing information. However, these worst-
case scenarios may be very rare in practice. Thus, uncertain time is
introduced for soft real-time systems [28] and even for some hard
real-time systems where the application allows for a given failure rate
(e.g. the probability of missing a deadline could be as small as the
probability of hardware failure).

2.1 Continuous Time

Definition

A continuous time is a varying quantity whose domain is an
uncountable set (in general, an interval of the reals) unlike to the
discrete time where the domain is countable (natural numbers). The
continuous-time template generally results from measurements on a
real physical system. The continuity of the time variable means that
the signal value can be found at any arbitrary point in time; and this is
usually expressed by differential equations.

For modeling, the continuous time can be designed by discrete time
by sampling and quantization in such a way that the resulting model,
expressed as a signal flowchart, is capable to reproduce the behavior
of the continuous-time.

Deliverable D9.3 Version 1.0 9

Levels of Abstraction

Automatic control – Analysis and Design level

Examples of Constraints, Properties

The system set its outputs with state=OFF until the command frame
appearance.

2.2 Discrete Time

Definition

In digital systems, this continuous time is approximated by circuits,
called “clocks”, generating well defined strictly periodical signals. This
leads to a discrete model of time. A clock provides access to a
discrete time base, and possibly to a dense (continuous) time base,
but through a discrete time base. The instants of this time base
correspond to "ticks" of the clock. A clock associates time values with
instants of the time base. A DiscreteTimeBase represents an ordered
discrete set of instants.

Levels of Abstraction

Analysis, Design and Implementation Level

Examples of Constraints, Properties

Duration, period, deadline, etc.

2.3 Logical respectively Multiform Time

Definition

In logical time (physical) time passing is represented by event
occurrences; for instance a signal generated by an external device.
Temporal distances between two occurrences of events linked to a
logical clock are not necessarily strictly periodic. However, these
events do not have any specific status that distinguishes them from
other events. Hence, requirements linked to logical time may refer to
statements such as “a task must complete before 10 ms”, and “a car
must stop within 50 m”. Both statements express a deadline: “10 ms”
for the former, and “50 m” for the latter. This is known as Multiform
Time.

Levels of Abstraction

Requirement phase, Analysis, Design, and Implementation Level

Examples of Constraints, Properties

Function duration: knock control duration is 20° crank

Period: Every 180° crank knock sensor must be sampled

Deadline: knock control must be computed before 46° crank

The ECU is 20% faster than a standard ECU (e.g. in a certain
context, execution times are given assuming a nominal speed of 100
MHz; Our CPU is then 120 MHz)

Deliverable D9.3 Version 1.0 10

A car must stop within 50 m.

2.4 Uncertain Time

Definition

There are various ways of representing uncertainty of timing
information. One can for example use a probability distribution to
represent the execution time of a task, thus expressing how frequent
a given execution time will be in practice. Another possibility is to use
one single probability to express a reasonable case. For example,
one can express like this that the execution time of a task is less than
a given time with a given probability.

Besides, uncertainty can arise from different sources: from the
activation pattern, e.g., in presence of a-periodic tasks, or from the
execution time. This may lead to different representations of
uncertainty in the same analysis.

Levels of Abstraction

Analysis, Design, and Implementation Level

Examples of Constraints, Properties

Function duration: the execution time of the task is given by the
following distribution

Deadline:

• The message must be received within 25 ms in 90% of the
cases.

• In any 20 consecutive deadlines the process must always
meet at least 18 of them and it must never miss any 2
consecutively.

Deliverable D9.3 Version 1.0 11

3 Modeling and Analysis of Timing Information

At the different levels of a design, multiple languages, models and
tools can be used to handle timing properties. In the first section, this
paragraph describes the capabilities of different models and
languages – that could be potentially used in the TIMMO-2-USE
project – with respect to time modeling. In the second section several
approaches dealing with timing analysis are described, and tools
supporting these approaches are mentioned. Special attention is paid
to analysis capabilities (simulation or formal proof) of these tools. In
the latter section only those analysis approaches and tools are
described which are being investigated in the TIMMO-2-USE project.
Other tools which are not under consideration in the project are
mentioned in the first section associated to the models and
languages.

3.1 Timing Modeling and Languages

The models and languages

3.1.1 UML Introduction

Type of Properties

Implicit time

Modeling Concepts

In UML [7], time is seldom part of the behavioral modeling, which is
essentially untimed (by default, events are handled in the same order
as they arrive in event handlers).

UML describes two kinds of behaviors: the intra-object behavior —
the behavior occurring within structural entities — and the inter-object
behavior, which deals with how structural entities communicate with
each other [8].

The CommonBehaviors package defines the relationship between
structure and behavior and the general properties of the behavior
concept. A subpackage called SimpleTime adds metaclasses to
represent time and duration, as well as actions to observe the
passing of time. This is a very simple time model, not taking account
of problems induced by distribution or by clock imperfections. In
particular the UML causality model, which prescribes the dynamic
evaluation mechanisms, does never refer to time (stamps). Instead,
the UML specification document explicitly states that “It is assumed
that applications for which such characteristics are relevant will use a
more sophisticated model of time provided by an appropriate profile”.

Analysis Capabilities

Not applicable concerning timing aspects.

Associated Tools

Deliverable D9.3 Version 1.0 12

UML editors: Enterprise Architect [10], Papyrus [11], IBM Rational
Rhapsody [12].

3.1.2 UML SPT Profile

Type of Properties

Discrete time, instant duration, clocks timers

Modeling Concepts

The UML Profile for Schedulability, Performance, and Time (SPT) [9]
aimed at filling the lacks of UML in some key areas that are of
particular concern to real-time system designers and developers.
SPT introduces a quantifiable notion of time and resources. It
annotates model elements with quantitative information related to
time, information used for timeliness, performance, and schedulability
analyses.

SPT only considers metric time, which makes implicit reference to
physical time. It provides time-related concepts: concepts of instant
and duration, concepts for modeling events in time and time-related
stimuli. SPT also addresses modeling of timing mechanisms (clocks,
timers), and timing services. But “time” here is only introduced
through dedicated stereotype annotations that are not interpreted and
given meaning as part of UML semantics. Instead, their purpose is to
be understood by external analysis tools to perform schedulability or
performance evaluation and after automatic translation from the UML
model into a corresponding tool input format. SPT, which relies on
UML 1.4, had to be aligned with.UML 2.1.

Analysis Capabilities

Not applicable

Associated Tools

Not applicable

3.1.3 UML SysML Profile

Type of Properties

Time with units, Probability distribution

Modeling Concepts

The OMG Systems Modeling Language [13] (OMG SysML™) is a
general-purpose graphical modeling language for specifying,
analyzing, designing, and verifying complex systems that may include
hardware, software, information, personnel, procedures, and
facilities. In particular, the language provides graphical
representations with a semantic foundation for modeling system
requirements, behavior, structure, and parametrics, which is used to
integrate with other engineering analysis models.

Deliverable D9.3 Version 1.0 13

Though SysML offers no specific support for Time, it extends UML in
several ways: value property with units, and constraint block. A
SysML value property defines a value with units, dimensions, and
probability distribution.

A SysML constraint block contains equations expressing constraints
between value properties. The usages of the constraints in an
analysis context are represented in a parametric diagram.

Analysis Capabilities

Not applicable

Associated Tools

SysML editors: Enterprise Architect [10], Papyrus [11], IBM Rational
Rhapsody [12].

3.1.4 UML MARTE Profile

Type of Properties

Continuous / discrete / multiform time

Modeling Concepts

Modeling and Analysis of Real-Time and Embedded Systems
(MARTE) is a response to the OMG RFP to provide a UML profile for
real-time and embedded systems [14]. MARTE is a successor of
SPT, aligned on UML 2, and with a wider scope. MARTE introduces a
number of new concepts, including time concepts.

The underlying model of time is a set of time bases. A time base is
an ordered set of instants. Instants from different time bases can be
bound by relationships (coincidence or precedence), so that time
bases are not fully independent and instants are partially ordered.
This partial ordering of instants characterizes the time structure of the
application. This model of time is sufficient to check the logical
correctness of the application. Quantitative information can be added
to this structure when quantitative analyses become necessary. Note
that a specification of a temporal behavior may refer to points of time
(instants) or to segments of time (durations). In the MARTE meta-
model of time, Instant and Duration are two distinct concepts,
specialization of the abstract concept of time.

The users of MARTE have access to the time structure through
clocks. Here, clocks are not physical devices; they are model
elements representing a general concept of time. While in SPT,
clocks were implicitly bound to the physical time, in MARTE, a clock
can be bound to any recurrent event. Thus, MARTE distinguishes two
kinds of clocks:

• chronometric clocks, which make reference to physical time,
and

• logical clocks, which focus on the ordering of instants,
possibly ignoring the physical duration between instants.

Deliverable D9.3 Version 1.0 14

Some classes are stereotyped by the stereotype ClockType, they
define the type of a clock. Such a class specifies the nature (dense or
discrete) and the kind (chronometric or logical) of the represented
time, a set of clock properties (e.g., resolution, maximal value, etc.) a
set of accepted time units. For the chronometric clock types, time
units are the usual time units: the second (s) and its derived units.
Most logical clock types use a generic time unit called tick. In some
cases, they may use more specific units: a processor cycle, for
instance, or even units for physical quantities, such as for example
time measured in angular degree (◦). A Clock (i.e., an instance of a
Clock-Type) is characterized by its unit and the values (real numbers)
given to its optional properties: resolution, maximalValue, offset.
Resolution gives the granularity of the clock; maximalValue is the
value at which the clock rolls over; offset specifies the origin instant.
The resolution, the maximalValue and the offset are given with the
unit of the clock. A predefined Clock is provided in the TimeLibrary of
MARTE:

• idealClk. This hypothetical clock reads the dense “physical
time”. It is used as a reference clock for the (imperfect)
chronometric clocks defined by the users of the profile.

A ClockConstraint sets dependencies up amongst clocks.

In the MARTE time model, time-related concepts (e.g., event
occurrences and behavior executions) make explicit reference to one
or several clocks, through the property on, on identifies the clock and
then the unit used. In UML, an Event describes a set of possible
occurrences; an occurrence may potentially trigger effects in the
system. A TimeEvent is an Event that defines a point in time (instant)
when the event occurs. The specification can be either absolute or
relative to some other instant. A TimedEvent is a TimeEvent, where
the instant specification explicitly refers to a clock. Note, that in the
general case it is not possible to compare two events that refer to two
different clocks. The comparison is only possible when specific
constraints on the clocks (ClockConstraint) or the events
(InstantConstraint) are given. A UML Behavior describes a set of
possible executions; an execution is the performance of an algorithm
according to a set of rules. MARTE associates a duration, an instant
of start, an instant of termination with an execution, these times being
read on a clock. A TimedProcessing is a Behavior or an Action with
explicit references to clocks.

Analysis Capabilities

Simulation and Formal Proof

Timing simulation: Timesquare tool

Schedulability analysis: MAST tool

Associated Tools

MARTE editors: Papyrus [11], IBM Rational Rhapsody [12],

MagicDraw [15]

Scheduling analysis: Marte2Mast [16]

Timing analysis: Timesquare tool [17]

Deliverable D9.3 Version 1.0 15

3.1.5 Clock Constraint Specification Language CCSL

Type of Properties

Continuous / discrete / multiform time

Modeling Concepts

The Clock Constraint Specification Language (CCSL) has been first
introduced in the annex of the MARTE profile. After many
improvements, CCSL has now a formal semantics [5] that can be
exploited to process a correct execution, if any. Foundational CCSL
constraints are defined in a kernel library. CCSL allows building new
libraries and the definition of user-defined constraints by composing
existing relations (from the kernel library or from other ones) in order
to fit the constraints from a specific domain. CCSL is a mean to
specify relations between the evolutions of some clocks. These
relations can either be synchronous or asynchronous.

All these relations between clocks are first defined by using a
reflexive and transitive instant relation named precedence and noted

.

From precedence four new instant relations are derived:
Coincidence, Strict precedence, Independence and Exclusion.

To express clock relations, one can then use these instant relations.
For instance, a strict clock precedence relation (denoted) between
two clocks a and b is asynchronous and specifies that for all natural
number k, the k

th
 instant of a occurs before the k

th
 instant of b:

The coincidence relation (denoted =) between these two clocks
imposes a stronger synchronous dependency: the k

th
 instant of a

must be coincident with the k
th
 instant of b:

The same mechanism applies for all relations. Informally, the
exclusion relation (denoted #) between two clocks a and b specifies
that no instants of the clock a coincide with one of the clock b.

The alternatesWith relation (denoted ~) between two clocks a and b
specifies that instants of the clock b are interleaving instants of the
clock a.

Additionnally to constraints some expressions can be directly defined
on clocks. For instance, the isPeriodicOn expression takes three
parameters: a clock specifying the super clock, a positive natural
number specifying period and a positive natural number specifying
the offset. It results in a clock which is a subclock of the super clock
and whose instants are always separated by period instants of the
super clock. Moreover, the first instant of the resulting clock coincides
with the offset

th
 instant of the super clock.

Another useful expression is delayedFor. It takes three parameters: a
reference clock, which represents the clocks we want to delay; a
counter clock, which represents the clock on which the delay is
counted and a positive natural number, which specifies the number of
ticks of the counter clock by which the reference clock is delayed.

A CCSL specification is the conjunction of all these constraints. As a
result, because synchronous and asynchronous relations are used

Deliverable D9.3 Version 1.0 16

conjointly, the execution of a CCSL specification is a partially ordered
set of coincidence equivalence classes of instants [6]. It is important
to notice that the addition of new constraints to a CCSL specification
results in a new partial order that is either the same than the previous
one (i.e., the new constraint has no impact) or a subset of the
previous partial order (i.e., it is “more ordered”).

Because clocks are defined in the MARTE profile and used in the
CCSL semantics, they act as an interesting junction between the
structural model and its behavior. In some sense, Clocks (that can be
applied on every property or instance specification) generalize the
concept of UML events, which are used in only very specific parts of
the model.

The current version of TimeSquare generates a sequence of steps
that satisfies the set of constraints. An inconsistent specification can
lead to a deadlock: after a finite sequence of steps, the simulation
gets at a point where all the clocks are disabled (not allowed to tick).

Examples of Properties

Intervals: (tFBDC + 40 ≤ tIC ≤ tFBDC + 60) on crkClk

Period: T isPeriodicOn cc period p offset o;

Temporal patterns between clocks camClk = crkClk filteredBy (10)

Mathematical relations tKWE - tKWB = min (sampleNb * Tsampling on
idealClk, KAWD on crkClk)

Causal relation Aj Bj

Analysis Capabilities

Simulation and Formal Proof

Associated Tools

TimeSquare [17] is the software environment to deal with MARTE
time model and CCSL. TimeSquare is an Eclipse plug-in that has
four main functionalities: 1) interactive specifications, 2) clock
constraint checking, 3) generation of a solution, 4) displaying and
exploring waveforms.

TimeSquare has been designed to be used with UML tools applying
MARTE profile. In this profile, clocks and clock constraints can be
associated with many and various model elements.

A wizard is included in TimeSquare. It facilitates clock definitions,
clock constraint specifications, model element browsing, and
parameter setting.

The second functionality checks constraint sanity and is called when
the above mentioned wizard is not used.

The third functionality relies on a constraint solver that yields a
satisfying execution trace or issues an error message in case of
inconsistency. The traces are given as waveforms written in VCD
format. VCD (Value Change Dump) is an IEEE standard textual
format for dump files used by EDA logic simulation tools. The solver
intensively uses Binary Decision Diagrams (BDD) to manipulate
boolean equations induced by CCSL clock constraints. Waveforms
can be displayed with any VCD viewer.

Deliverable D9.3 Version 1.0 17

As fourth functionality, TimeSquare has its own viewer enriched with
interactive constraint highlighting and access facilities.

3.1.6 Synchronous Languages

Type of Properties

Discrete / multiform time

Modeling Concepts

Synchronous languages [18] like Esterel/SyncCharts, Lustre/Scade
and Signal appear in the early 1980

th
. They are suited to reactive

systems programming and their formal semantics allows taking off
ambiguous behavioral interpretation and a synchronous design can
be proved to be correct. The synchronous languages used in reactive
system programming also make use of logical time. In synchronous
programming, (physical) time passing is represented by event
occurrences; for instance a signal generated by an external device.
However, these events do not have any specific status that
distinguishes them from other events. Hence, a synchronous
program may have statements such as “a task must complete before
10 ms”, and “a car must stop within 50 m”. Both statements express
a deadline: “10 ms” for the former, and “50 m” for the latter. This is
known as Multiform Time.

Analysis Capabilities

Simulation and model checking

Associated Tools

Simulation and model checking are two ways to validate a system.
With synchronous languages, simulation can be used for early bug
finding. With simulation, a designer can test scenarios through a
user-friendly interface, and moreover, see the internal reactions of
the controller.

However, even if the design passes successfully all the simulation
tests, it is not sure that a safety property holds. To prove this, an
exhaustive simulation of the controller behavior should be provided.
Symbolic executions of the model can solve this problem. Symbolic
model checker, part of the synchronous languages distribution, does
this job very well. A limitation is that signals must not convey values.
They use only pure signals (associated with event occurrences) and
counters. When a safety property is violated, model checkers
generate a counter-example input sequence. This sequence can be
played back in order to understand the flaw.

Another technique widely used in synchronous programming [12] is
the technique of an observer. An observer is a reactive program
expressing the property to verify. The observer is put in parallel with
the program and receives the same inputs from the environment. It
takes also as input the outputs of the program. The unique output of
the observer is a violation signal. The verification consists of checking
that the observer never emits the violation signal. Analysis is provided

Deliverable D9.3 Version 1.0 18

by calculating reachability analysis onto the synchronous composition
of the observer and the program.

3.1.7 Property Specification Language PSL

Type of Properties

PSL can be applied for the definition of assertions, as well as for
complex modeling. It can be used for the precise formulation of
specifications in the area of hardware design by means of hardware
description and modeling languages like VHDL, Verilog, SystemC, or
SystemVerilog. The IEEE Conclusion PSL can be seen as a variant
of CTL and LTL mainly introducing a different syntax to future based
TLs. Thus timing concepts are already covered when CTL and LTL is
considered. As PSL also covers timing intervals based on semantics
of discrete event simulation along the lines of VHDL, SystemVerilog,
and SystemC (delta-cycle with time advance) it also provides insights
to TL extension towards this simulator family.

Modeling Concepts

The Property Specification Language (PSL) is derived from Sugar,
which was originally developed by IBM. PSL as a standard was
developed by the industrial consortium Accellera, and it has recently
been adopted as IEEE Standard P 1850 [22] [23]. PSL is defined in
four layers: boolean, temporal, verification, and modeling layer.

The boolean layer encompasses expressions, as defined for the
underlying HDL.

The temporal layer is a central building block of PSL. It allows all
expressions from the boolean layer in connection with temporal
operators and Sequential Extended Regular Expressions (SEREs).

The verification layer specifies syntactic elements for grouping PSL
expressions, as well as mechanisms to bind such expressions to
models in an HDL.

The modeling layer, finally, allows behavioral elements of the
underlying HDL. This allows, e.g., the calculation of expected results
for a simulation. This layer also supports mechanisms, which allow
the access to values from previous simulation cycles.

Analysis Capabilities

PSL is a specification language to be used in conjunction with
hardware description languages, such as VHDL, Verilog, and
SystemC. Verification is performed either dynamically, e.g. by means
of simulation, or in a formal static manner, e.g., by means of model
checking, or theorem proving.

Associated Tools

There are several tools that support PSL for simulation and formal
verification (e.g. from Mentor Graphics, Cadence, and Synopsys).
The tools support PSL assertions for use in dynamic simulation
verification.

Deliverable D9.3 Version 1.0 19

3.1.8 Temporal Logic and CTL

Type of Properties

Some variants of temporal logic allow the specification of time-
intervals (CCTL, TCTL, TLTL). Other variants are based on different
execution models, e.g. discrete vs. continuous time. Some of these
variants restrict themselves to certain kinds of operators for efficiency
reasons (ACTL, UPPAAL). Most temporal logics applied today are
restricted to future based expressions, though some exist, which also
allow past expressions.

Modeling Concepts

A modal logic based on temporal modalities is called temporal logic.
Operators of a temporal logic relate to future (Next, Henceforth,
Eventually, Until, Unless) or past (Previous, Has-Always-Been, Once,
Since, Back-To). Temporal operators usually relate to state
sequences. The most frequently applied temporal logics are future
oriented. They apply either a branching or a linear time model. In the
branching time model, a formula applies from a current state to all
possible execution paths simultaneously, whereas in the linear time
model, a formula evaluates over a certain path.

Analysis Capabilities

The primary application area of temporal logic is in formal
requirements descriptions. The high degree of abstraction supports
discrete and continuous specifications in the value and in the time
domain. Temporal logics are frequently applied in model-checking
[24]. Several techniques have been described for the generation of
test cases from a model and from temporal logic specifications. The
formal means of temporal logics and its variants CTL and LTL [25]
are the most commonly used means for formal verification.

Associated Tools

The described temporal logics are supported by several tools (e.g.
SPIN and UPPAAL). Each Tool defines its own, specific syntax for
logic expressions. The semantics of each temporal logic are usually
defined formally. Temporal logics allow the precise formulation of
temporal dependencies.

3.1.9 Testing and Test Control Notation TTCN

Type of Properties

In comparison with its predecessor TTCN-2, which mainly bases on
hierarchical tables, TTCN-3 is similar to modern programming
languages. TTCN-3 basically differs from established imperative
programming languages because it features a compact additional
syntax for the description of alternative execution paths and allows
the handling of synchronous and asynchronous communication
mechanisms. As an administrative feature, test cases can be
grouped hierarchically and integrated in a test suite.

Deliverable D9.3 Version 1.0 20

Modeling Concepts

The Testing and Test Control Notation (TTCN) is used for the
detailed specification of tests and its latest version is TTCN-3
standardized by ETSI and ITU-T [19] [20]. Its main feature is the
separation of concern between abstract test suites and an adapter
layer which allows full portability of test suites and therefore makes
them independent of any platform implementation. The test adapter
handles all platform and implementation languages (e.g. C/C++ or
JAVA) issues for the communication with a System Under Test (SUT)
and also the actual coding and decoding requirements of an
application.

Analysis Capabilities

TTCN was mainly applied in the telecommunication sector and most
recently was also used for automotive software testing. Its description
of alternative execution paths allows the handling of synchronous and
asynchronous communication mechanisms. Furthermore, the
definition of alternatives triggered by time-outs enables protocol tests
in a straightforward manner.

Associated Tools

There are several open source tools as well as commercial
compilers, interpreters, and generators for TTCN-3 available. These
tools offer automatically generated TTCN-3 test cases and scripts by
means of the state model of the SUT, test data, test scripts, and
timed tests.

3.1.10 SystemC

Type of Properties

Properties for SystemC can be specified either in the language itself
e.g., by annotating the model with assertions or specifying state
machines/automatons which react sensitive to state changes of the
system model. Moreover, formal temporal languages (e.g. IEEE
P1850 PSL) can be applied on the signal level.

Modeling Concepts

System modeling in SystemC (IEEE Std. 1666™-2005) [26] is based
on the discrete event modeling concepts. Occurrences of an event
are assigned to certain points on a linear time line. Processes are
sensitive to events which again notify events immediately or in future.
Thus, timing aspects are modeled using wait statements blocking a
process for a certain amount of time or until an event occurs. In order
to model the structure of a system, processes can be grouped to
(hierarchical) modules which communicate via ports, interfaces and
channels.

Analysis Capabilities

Analysis in SystemC is based on dynamic verification through the
executable model (simulation). A pseudo parallel simulation is
achieved by means of a cooperative multi-tasking kernel. Simulation
output can be either proprietary (e.g. textual) or a standardized trace
format (e.g. Value Change Dump IEEE 1364-2001).

Deliverable D9.3 Version 1.0 21

Associated Tools

The Open SystemC Initiative (OSCI) [27] reference implementation of
the SystemC language and the simulation kernel consists of a
collection of C++ macros and class libraries. Thus, the model itself is
pure C++ code that must be linked to the SystemC library. Compiling
the model for simulation on a host requires the availability of a C++
toolchain (e.g. the GNU toolchain).

3.1.11 SystemVerilog

Type of Properties

SystemVerilog specifies so-called assertions (SystemVerilog
Assertion, SVA) to verify properties of a design or a system evolving
and manifesting over time. These assertions are based on so-called
sequences and properties (supersets of sequences). Sequences
consist of boolean expressions augmented with special temporal
operators.

Modeling Concepts

SystemVerilog (IEEE Std 1800™-2005) is a unified hardware
description and verification language (HDVL) standard based on
extensions to the Verilog (IEEE Std 1364

TM
-2002) language [21]. The

combination of description and verification in SystemVerilog provides
means to handle all important aspects of the design and verification
flow: design description, functional simulation, property specification,
and formal verification. SystemVerilog is based on a behavioral
semantics for discrete event simulation comparable to VHDL,
SystemC, and SpecC. This implies causal relationships between
events plus advancement of discrete time scalable through user
specified time units.

Analysis Capabilities

Analyses and formal verification with SystemVerilog are performed by
means of its test bench features which include the specification of
functional coverage and constraint-based random test generations.
Functional coverage refers to statistics based on sampling events
throughout the simulation. It is used to determine when the device
under test (DUT) has been exposed to a sufficient variety of stimuli,
so that there is a high confidence that the DUT is working correctly.
This coverage ensures that all desired corner cases in the design
space have been explored. Combined with simulation and SVA this
also enables the analysis and verification of the system timing
behavior.

Associated Tools

There are several tools that support SystemVerilog for simulation and
formal verification (e.g. from Mentor Graphics and Synopsys). The
tools support SystemVerilog assertions, functional coverage and
constraint-based random test generation for use in dynamic
simulation verification.

Deliverable D9.3 Version 1.0 22

3.1.12 Modelica

Type of Properties

Continuous / discrete time

Modeling Concepts

Modelica is an object-oriented equation-based general purpose
modeling language primarily aimed at physical systems. The model
behavior is based on ordinary differential algebraic equation (OAE
and DAE) systems combined with discrete events, so-called hybrid
DAEs. Such models are ideally suited for representing physical
behavior and the exchange of energy, signals, or other continuous-
time or discrete-time interactions between system components.
Nevertheless it is possible to represent time discrete SW systems or
the runtime behavior of embedded systems based on the discrete
event semantic.

Modelica models are similar in structure to UML/SysML models in the
sense that Modelica models consist of compositions of sub-models
connected by ports that represent directed or undirected signal flow.
Constraints and timing constraints can be realized by assert
statements. Timing constraints in the Model (SysML, EAST-ADL)
must therefore be represented as textual constraints on block or
function level.

Analysis Capabilities

Simulation of hybrid (continuous and discrete) DAE

Associated Tools

OPENMODELICA, supported by OpenSource Modelica Consortium

• Compiler/Interpreter for the Modelica language

• Model evaluation.

The results of a simulation can be visualized by a plotter, Assert
statements can raise warnings, errors.

ModelicaML is a UML profile for Modelica supported by OSMC.

3.2 Timing Analysis Approaches and Tools

In the scope of phase I of the TIMMO-2-USE project, in the
predecessor of this document i.e. in the State-of-the-art document of
work package 1 (Deliverable D1), several existing ways and
approaches dealing with timing have been collected. Corresponding
descriptions have been provided from the perspective and experience
of contributing partners. Within work package 3, analysis approaches
have been discussed and finally structured. As a result of these
investigations, in this version of the State-of-the-art document
(Deliverable D9) the structuring of the analysis approaches has been
aligned with the results from work package 3 (see also Deliverable
D10).

Tools supporting the approaches are mentioned in association.

Deliverable D9.3 Version 1.0 23

3.2.1 Worst and Best Case Analysis

3.2.1.1 Worst-Case Execution Time Analysis

Type of Properties

Worst-case timing information

Modeling Concepts

Worst-case timing information does not require specific modeling
concepts as it can be represented as discrete time.

Worst-case execution time analysis basically focuses on execution
times of target code or basic blocks and therefore applies to lower
levels of abstraction.

Analysis Capabilities

Embedded systems with hard real-time constraints need reliable
guarantees for the satisfaction of their timing constraints. These
guarantees can be obtained by sound timing-analysis methods. An
overview of timing-analysis methods is provided in [34]. One such
method is static program analysis by abstract interpretation, which
works by analyzing the program code without actually executing the
program. The analysis results obtained in this way are valid for all
non-interrupted program runs with all inputs.

Over the last several years, a more or less standard architecture for
code-level timing-analysis tools has emerged. One can distinguish
three major building blocks:

• Control-flow reconstruction and static analyses for control and
data flow find possible values of registers and memory cells,
addresses of memory accesses, and (some) loop bounds.

• Micro-architectural analysis determines upper bounds on
execution times of basic blocks. It performs an abstract
interpretation of the program execution on the particular
architecture, taking into account its pipeline, caches, memory
buses, and attached peripheral devices. By means of an
abstract model of the hardware architecture, the pipeline
analysis simulates the execution of each instruction. The
cache analysis provides safe approximations of the contents
of the caches at each program point. Complex architectural
features are the main challenges for this analysis phase.

• Path analysis computes the longest execution paths through
the whole program. This can be done by modeling the control
flow by an integer linear program so that the solution to the
objective function is the predicted worst-case execution time
for the input program. The values of the variables are the
execution counts of the basic blocks and their links, which
together define the worst-case execution path.

Associated Tools

Deliverable D9.3 Version 1.0 24

aiT

Description: The commercially available tool aiT by AbsInt
implements this architecture, cf. http://www.absint.com/ait. The tool is
employed in the aeronautics and automotive industries and has been
successfully used to determine precise bounds on execution times of
real-time software [35].

Results: aiT determines safe and precise upper bounds for the worst-
case execution times of tasks in real-time systems. Here, a task
means a sequentially executed piece of code (no threads, no
parallelism, and no waiting for external events). aiT operates on
binary executables for selected target architectures and produces
results valid for all program runs with all inputs. aiT takes as input an
executable containing the task to be analyzed, a description of the
hardware on which the task is running including a description of
(external) memories and buses (i.e. a list of memory areas with
minimal and maximal access times), and code annotations providing
additional information like targets of indirect jumps, loop bounds, etc.
The annotations may be written by the user or generated by other
tools.

The tool then computes an upper bound for the runtime of the task
(assuming no interference from the outside). Results about the basic-
block execution times, the worst-case path, and also the results of
auxiliary analyses such as register values are provided as a textual
report intended for human reading, an XML report intended for
machine reading, and graphical output in the form of an annotated
control-flow graph.

SWEET

Description: The Swedish Execution Time Analysis Tool (SWEET) is
a research prototype WCET analysis tool from Mälardalen University.
It has the same basic architecture as aiT, but its use is mainly for
automatic program flow analysis and computing program flow
constraints rather than making precise WCET estimates using a
micro-architectural analysis. SWEET’s program flow analysis can
take into account restrictions on possible values for program
variables, and can produce tighter results if such restrictions are
given. SWEET performs its flow analysis on the “ALF” code format,
and can analyze different kinds of code, both on source and binary
level, by first translating them into ALF. SWEET can also perform an
approximate WCET analysis for source code if a cost model is
provided.

Results: SWEET can compute advanced program flow constraints for
C code using a C-2-ALF translator. If desired, the constraints can be
exported as source-level annotations that are readable by aiT.
SWEET can also compute approximate (unsafe) WCET estimates for
C source code.

RapiTime

Description: RapiTime by Rapita Systems Ltd is a commercially
available tool that computes worst case execution times and reports
other timing and code coverage information based on evidence from
testing. RapiTme is typically used during system testing, where
detailed timing measurements are taken of the software running on
the real hardware, with operating system scheduling/interrupts etc.

Deliverable D9.3 Version 1.0 25

Static analysis of the source code structure is used in conjunction
with test data to compute the WCET for functions in the system.
RapiTime is used for timing verification, performance optimization
and code coverage measurements. RapiTime operates mostly at the
source-code level, supporting C, C++ and Ada on most 8, 16 and 32-
bit targets with a variety of on-target tracing options.

Results: RapiTime determines accurate upper bounds for the worst-
case execution times of components for real-time systems, the test
evidence to support detailed “drill-down” and optimization processes.
RapiTime can import and export data and traces in a variety of
formats.

3.2.1.2 Worst-Case Response Time Analysis

Type of Properties

Worst-case timing information:

Complete abstract system description including buses,
communication layers, ECUs, cores, bus speed, tasks, runnable
entities, task priority, execution times, runnable entities order, task
chaining, variables, signals, etc.

Modeling Concepts

Worst-case response time analysis basically focuses on the
dependencies and interferences of different components with their
properties and therefore applies to higher levels of abstraction.

System level:

On system level, worst-case response time analysis is also referred
to as Scheduling Analysis which also covers the consideration of best
cases, resulting in lower and upper bounds for the parameter under
investigation.

Worst-case response times can be applied to and computed for
several objects in an embedded system, for example response times
of tasks, end-to-end delays spanning multiple components e.g. from
sensor to actuator, or communication paths.

Worst-case response times are impacted by scheduling properties
like activation periods, delays / execution times of components,
interrupts, etc.

CAN communication:

CAN frame transmissions are modeled with a trajectory based
approach (like stochastic processes, but without probabilities) so that
results about worst case (=longest possible) response times can
mathematically be proven and worst case values or upper bounds on
them can concretely be computed. This approach allows to verify
latency constraints.

[37] introduces and formalizes the notion of meeting n out of m
deadline constraints. This type of uncertainty loosens the requirement
imposed in TADL by the delay constraint.

Deliverable D9.3 Version 1.0 26

Analysis Capabilities

Computation of worst-case response times, or upper bounds, for
tasks, path latencies, or communication frames.

Associated Tools

SymTA/S

SymTA/S is used for predicting, optimizing and verifying software
integration (embedded controllers), communication integration (field
buses), and system integration (controllers and buses).

The SymTA/S tool-suite automatically predicts and verifies worst-
case and typical-case timing using efficient models of the system
functions, electronic architecture, controller and bus scheduling, and
the system environment. A key strength of SymTA/S is the right level
of abstraction. SymTA/S focuses on the ‘time consumers’ in the
system at an appropriate level of detail for each development phase.
Most data is imported automatically, avoiding unnecessary modeling
overhead.

INCHRON Tool-Suite

The INCHRON Tool-Suite with its tool component chronVAL allows
constructing system models using an intuitive GUI, supported by an
import facility for OIL (OSEK Implementation Language) files. Tasks
can be specified as black box or with functions/runnables. The Tool-
Suite GUI provides the view of the system from different
perspectives, e.g. system view, hardware view, or clocks view,

Main features:

• worst-case response time calculation for tasks and CAN
communication

• worst-case response time analysis for end-to-end delays /
event chains, also covering distributed systems including CAN
and FlexRay communication

• analysis of Residual Bus (Restbus) traffic (chronBUS)

• specification and supervision of different timing requirements

• extensive HTML report containing detailed information about
each task, ISR, function, and CAN message, event chains,
and timing requirements

NETCAR-Analyzer

The NETCAR-Analyzer tool provides worst-case response time
analysis for CAN frames. It requires as input

• Bus Speed

• Frame periods, payloads, priorities, transmission offsets

and offers the following features:

• Computation of worst-case response times of periodic CAN
frames

• Takes into account transmission offsets

• Near-optimal offsets assignment algorithms with user-defined
performance criteria: e.g. optimize the worst-case response

Deliverable D9.3 Version 1.0 27

times for a specific subset of tasks, for instance, the 10 lowest
priority frames

• Exhibit the situations leading to the worst-case: results can be
checked by simulation (e.g. with RTaW-Sim) or testing

• Enable dimensioning frame transmission queues and buffers
at ECU and communication controller level

• Handle both FIFO and prioritized waiting queues at the ECU
level

• Fast multi-core implementation: typically, an exact response
time computation requires less than 30 seconds for 100
frames on a dual-core system

3.2.2 Worst and Best Seen Cases and Statistics

3.2.2.1 Simulation of CAN Bus Communication

Type of Properties

Discrete timing information

Modeling Concepts

Discrete event based simulation that allows inferring statistics about
response times of CAN frames. The simulated events are limited to
those strictly needed to reproduce the typical behavior of CAN bus
communications.

Type of Properties

The simulation of CAN bus communications requires as input:

• Bus Speed

• Frame periods, payloads, priorities, transmission offsets

• Clock drifts

• Transmission error models

Analysis Capabilities

Statistics about CAN frame response times derived by simulation:

• Min, average, max, quantiles, histogram

Associated Tools

RTaW-Sim

RtaW-Sim provides the following features:

• Simulates frame exchanges on CAN buses

• Provides fine grained statistics (histogram, min, average,
max, quantiles) for frame transmission delays

• Takes frame transmission offsets into account

Deliverable D9.3 Version 1.0 28

• Models ECU clocks drifting apart

• Takes into account the queuing policies at the ECU and com.
controller levels (FIFO, HPF, etc)

• Fault-injection : transmission errors through user-defined error
models

• Simulates the total functioning time of a vehicle in a couple of
hours

INCHRON Tool-Suite

The INCHRON Tool-Suite with the add-on tool component chronBUS
provides analysis capabilities for CAN and FlexRay communication.

Main features:

• automatic import of industrial CAN and FlexRay configuration
files (CANdb dbc, FIBEX)

• support of separate ECU clocks in distributed systems

• editing of ECU and message properties

• extensive HTML report containing detailed information about
CAN buses and CAN messages

3.2.2.2 System Simulation

Type of Properties

Execution times can be specified as best-case, worst-case, or
probabilistic distribution (normal or uniform) between bounds.

• Discrete event descriptions

• Discrete clocks

• Stimulation patterns (periodic, sporadic, burst, jitter) for task
activations and external stimuli

• Bus schedules, speeds, and transmission times

• ISR, task, runnable entity, and functions execution times (to
be specified as best-case, worst-case, or probabilistic
distribution (normal or uniform) between bounds)

Modeling Concepts

Static and probabilistic timing information can be associated to
different entities in a distributed system:

• activation patterns for tasks and functions

• execution times of tasks, functions, and basic blocks

• communication means e.g. buses

• hardware clocks

Constructing a system model composed of (hardware) resources,
processes (tasks and ISRs) deployed on the resources, operating
system and scheduling properties, and equipping these entities with

Deliverable D9.3 Version 1.0 29

timing properties like execution times allows to simulate and analyze
the system model both in a pessimistic (worst-case) and optimistic
(best-case) context, and in any (probabilistic) context between best-
case and worst-case.

Simulation and analysis take into account inter-process impact like
scheduling-based preemptions or data dependencies which may
influence start and end time of processes as well as their execution
times.

Simulation results in a variety of diagrams and graphs, e.g. sequence
diagram, state diagram, and load diagram. Histograms show
statistical distributions of chosen parameters.

Analysis results in graphs showing best-case and worst-case under
consideration of inter-process interference according to the specified
system criteria.

Analysis Capabilities

Simulation in the scope of an ECU or of distributed systems

Applicable to Analysis, Design, and Implementation levels

Associated Tools

INCHRON Tool-Suite

The INCHRON Tool-Suite including the components chronSIM,
chronBUS, chronVIEW, and chronEST allows constructing system
models using an intuitive GUI, supported by an import facility for OIL
(OSEK Implementation Language) files. Tasks can be specified in
different granularity, from black box via functions/runnables to basic
blocks, and even target code. Furthermore a profile for IBM Rational
Rhapsody® is available which enhances a UML model by timing
characteristics and which allows to automatically generate a
simulation model out of a UML model.

The Tool-Suite GUI provides the view of the system from different
perspectives, e.g. system view, hardware view, or clocks view,

Main features:

• support of separate clocks in distributed systems

• specification of execution time in time units (granularity from
picosecond to second) or in clock ticks

• estimation of execution time of target C / C++ code
(chronEST)

• consideration of CAN, FlexRay, and Ethernet buses

• simulation of Residual Bus (Restbus) traffic (chronBUS)

• simulation and visualization of event chains and their
segments

• specification and supervision of different timing requirements

• extensive HTML report containing detailed information about
each task, ISR, function, and CAN message, event chains,
and timing requirements

Deliverable D9.3 Version 1.0 30

• visualization of trace logs with timing relevant events
(chronVIEW)

Website

http://www.inchron.com/tool-suite-inchron.html

3.2.3 Probabilistic Timing Analysis

3.2.3.1 Distributions Analysis and Typical Case Analysis

Type of Properties

Probabilistic

Modeling Concepts

One possibility to reduce the pessimism inherent to worst-case
analysis is to introduce uncertainty in the model of the system. This
approach applies only to soft real-time systems, as the result of the
analysis will also be uncertain.

In probabilistic analysis, the uncertainties on task/resource
parameters are modeled by probability distributions, obtained for
example by using statistical analysis of execution traces. As the
behavior of a system that has a probabilistic choice at every instant is
called a stochastic process, probabilistic timing analysis is often
referred to as stochastic analysis.

Analysis Capabilities

The key idea of probabilistic timing analysis is to model at least one
parameter in the task/resource model by a random variable. In the
case of execution times for instance, this parameter is ideally
represented by a function which associates with each possible
execution time, relative to a given sampling scenario, a probability
value. In practice, such a function is approximated by a set of pairs
(execution time, probability value).

Then compositional techniques must be found to provide guarantees
(expressed using probabilities) on the global system based on the
properties of its constituting tasks.

Since the 1990’s probabilistic timing analysis has been extensively
studied. Earlier approaches include Gardner and Liu [29], Lehoczky
[30] and Manolache [28] and all make some worst-case assumptions
such as restrictions on preemption, restrictive load conditions etc.

Díaz et al. [30] [31] have greatly contributed to the state of the art in
stochastic analysis of real-time systems under various scheduling
policies. Assuming a periodic and independent task model, their
approach provides safe bounds for response time distributions. Their

Deliverable D9.3 Version 1.0 31

use of correct approximations renders the complexity of the analysis
“manageable” while preserving soundness of the result. Besides no
worst-case of restrictive condition is needed anymore.

Furthermore, dependencies arising from shared resources can be
taken into account. However, other dependencies are not dealt with.
More precisely, interdependency between different tasks of a system
can be classified as follows:

• Inter-stream dependency: several tasks sharing a resource
(e.g. executing on the same processor) interfere with each
other.

• Intra-stream dependency, which can be twofold:

1. Data dependency: the output value of some task may have
an impact on the execution time of another task. This is
due to the fact that the execution time of a task may
depend on the input data it is provided with.

2. History dependency: successive activations of the same
task may not be independent of each other (e.g., bursts
may never occur). Typically, if the result of a computation is
stored, then the second activation of a task will be much
faster than the first one.

When supposing independence of tasks, it is possible to combine
tasks’ execution times using convolution. However, this hypothesis
does not hold in many practical situations and may lead to major
errors in the results of timing analysis, as shown by Ivers and Ernst
[32]. When dependencies are unknown, Bernat et al. showed in [37]
that execution times should be combined using supremal convolution
and Ivers integrates this result into the scheduling analysis approach
followed by Díaz.

Associated Tools

INCHRON Tool-Suite

The INCHRON Tool-Suite allows to model probabilistic distributions
for process/function/runnable execution times and for periodic event
patterns. Such models can be both simulated and statically validated.

RapiTime

Part of the analysis that RapiTime does is based on measuring and
analyzing the distributions of execution time and producing probability
distributions of worst case execution time: evidence-based
probabilities of different execution times occurring when the worst
case path is executed.

3.2.3.2 Probabilistic Timing Information Visualization and Analysis

Modeling Concepts

Understanding system timing and performance are key when testing
real-time systems. Tracing is regularly applied today to log the timing

Deliverable D9.3 Version 1.0 32

of relevant events. A challenge is to efficiently analyze such trace
data and quickly identify timing problems and their root causes.

Analysis Capabilities

Visualize and analyze traces

Associated Tools

TraceAnalyzer

Description: The SymtaVision TraceAnalyzer analyzes and visualizes
network and ECU traces and enables engineers to find the cause of
timing problems. TraceAnalyzer can create timing models for
scheduling analysis in SymTA/S.

Results:

• Visualize controller and bus schedules with events, blocking,
and preemptions.

• See the flow of signals and data through a system.

• Automatically create overviews of key timing parameters, e.g.
load over time.

• Automatically generate key statistics, e.g. distribution of task
response times.

• Create timing models of existing systems as input for
SymTA/S

INCHRON Tool-Suite

The INCHRON Tool-Suite with its component chronVIEW allows
processing of trace logs in a way that activation, start, termination,
entry and exit events are assigned to the corresponding processes
(tasks, ISRs, functions/runnables), resulting in the possibility to
transform this information into diagrams known from the tool
chronSIM. Once the diagrams are available, statistical information
can be retrieved and probabilistic distributions can be visualized e.g.
in histograms. Furthermore, timing requirements can be defined or
imported to supervise the traced behavior of the measured system
with respect to constraints.

Main features:

• visualization of trace logs with timing relevant events
(chronVIEW)

• specification and supervision of different timing requirements

• extensive HTML report containing detailed information about
each task, ISR, function/runnable, event chains, and timing
requirements

3.2.3.3 Reasonable-Case Timing Analysis

Type of Properties

Uncertain

Deliverable D9.3 Version 1.0 33

Modeling Concepts

[36] presents a method based on reasonable heavy-load case
analysis for dealing with a-periodic tasks. The idea behind a
reasonable heavy-load case is to be less pessimistic than a worst-
case analysis while being more pertinent for validation of timing
constraints than an average case analysis. However, dependencies
between tasks (frames in the paper) are not handled.

Analysis Capabilities

Simulation and Formal Proof

There is no need for specific analysis tools with this approach: worst-
case analysis tools can be used. However, there must exist modeling
tools providing the expected type of uncertain timing information.

script "R"

Description: This modeling tool is used for statistical inference about
inter-arrival of event and the computation of the reasonable worst
case curve. It is freely available.

Associated Tools

Not applicable

3.3 Other tools

The tools described in this section are applied in industrial tool chains
for automatic code generation from function models.

3.3.1 Simulink®

Type of Properties

Continuous, discrete and hybrid timing information

Modeling Concepts

Simulink® is a mathematical multi-domain modelling and simulation,
design, implementation, and integration tool based on the MATLAB®
environment. This tool is suitable for modelling and simulating
heterogeneous systems (linear and non-linear, continuous, discrete
and hybrid) with different implementation levels and solvers, based
on the MATLAB® environment.

Within a Simulink® model, Stateflow blocks can be used to model
state charts and flow graphs.

Selecting and Customizing Blocks

Simulink® software includes an extensive library of functions
commonly used in modeling a system. These include:

• Continuous and discrete dynamics blocks, such as Integrator and
Unit Delay

• Algorithmic blocks, such as Sum, Product, and Lookup Table

• Structural blocks, such as Mux, Switch, and Bus Selector

Deliverable D9.3 Version 1.0 34

You can customize these built-in blocks or create new ones directly in
Simulink®. Additional blocksets (available separately) extend
Simulink® with specific functionality (aerospace, communications,
etc.). You can also model physical systems such as those with
mechanical, electrical, and hydraulic components.

Incorporating MATLAB® Algorithms and Hand-Written Code

With the MATLAB® code, you can call MATLAB® functions for data
analysis and visualization. Additionally, you can design embedded
algorithms that can then be deployed through code generation with
the rest of your model. You can also incorporate hand-written C,
Fortran, and Ada code directly into a model, enabling you to create
custom blocks in your model.

Defining and Managing Signals and Parameters

Simulink® enables you to define and control the attributes of signals
and parameters associated with your model. You can define the
following signal and parameter attributes:

• Data type: single, double, signed or unsigned 8-, 16- or 32-bit
integers; boolean; and fixed-point

• Dimensions: scalar, vector, matrix, or N-D arrays

• Complexity: real or complex values

• Minimum and maximum range, initial value, and engineering
units

Managing temporal aspects with solvers

Simulink® software provides some features like fixed-step and
variable-step solvers for simulating these models. Solvers are
numerical integration algorithms that compute the system dynamics
over time using information contained in the model. The solvers
support the simulation of a broad range of systems, including
continuous-time (analog), discrete-time (digital), hybrid (mixed-
signal), and multirate systems of any size. These solvers can
simulate stiff systems and systems with state events, such as
discontinuities, including instantaneous changes in system dynamics.
Simulation options can be configurable in the sense that it has a
number of adjustable parameters such as the type and properties of
the solver, simulation start and stop times, amplitude of signal, noise,
etc, and whether to load or save simulation data. Optimization and
diagnostic information for the simulation can be also defined,
together with different combinations of options.

Simulations in Simulink® are based on the so-called zero execution
time assumption, that means, Simulink® does not take into account
the execution time of an algorithm on a given target processor. An
ideal-fast processor is assumed and the behavior of the model is
computed at the points in time determined by the solver.

Analysis Capabilities

Model-Based Design/Simulation/Analysis

Deliverable D9.3 Version 1.0 35

Associated Tools

MATLAB Simulink® tool, a commercial product commercialized by
Mathworks. It provides a graphical user interface (GUI) for building
models as block diagrams. After you define a model, you can
simulate it, using a choice of mathematical integration methods,
either from the Simulink® menus or by entering commands in the
MATLAB® Command Window. The menus are convenient for
interactive work, while the command line is useful for running a batch
of simulations. As an analysis tool, Simulink® includes also
linearization and trimming tools, which can be accessed from the
MATLAB® command line.

Using scopes and other display blocks, you can see the simulation
results while the simulation runs. The simulation results can be put in
the MATLAB® workspace for post-processing and visualization.

The output files are with “mdl” extension.

3.3.2 Production Code Generation from Simulink®

Type of Properties

Discrete time Simulink/Stateflow® model (see 3.3.1)

Modeling Concepts

An ECU function is modeled as a subsystem in a Simulink/Stateflow
model® which describes the behavior of the function. The subsystem
can be embedded in an environment model which allows for closed
loop simulations and tests in the Simulink®.

For safety and efficiency reasons, only a limited subset of Simulink®
blocks is applied in production code models of ECU functions. This
subset contains mainly discrete-time blocks, algorithmic blocks, state
charts, and structural blocks, but no continuous-time blocks.

In addition to the normal Simulink® block parameters, some further
properties are specified to prepare a model for production code
 generation. These additional properties include:

• Datatypes, ranges and scaling factors for fixed-point variables.

• Variable classes, which control the implementation of
variables in the code, for example, the memory section and
type qualifiers like extern, static, volatile, and const.

Variable classes are also used to specify, if a variable is
 accessible for a calibration system.

• Function classes to control the code partitioning, for example,
 the name of a C code function and the name of the generated
source code file.

• Implementation options for lookup tables, for example, the
 search algorithm. The optimization of lookup tables has a
large impact on the performance of the generated code.

• AUTOSAR properties, for example, to assign a Simulink
 Inport/Outport to the data access of a runnable at an
 AUTOSAR SW-C port.

Deliverable D9.3 Version 1.0 36

Most of these implementation properties do not change the behavior
of the model during offline simulations, but they have a huge impact
on the performance of the generated code on the target processor,
with respect to RAM, ROM, and execution time.

Analysis Capabilities

The data flow and control flow in the model is analyzed by the code
 generator. Typically, each basic block is translated into an
intermediate representation which contains expressions and
assignments to variables. Several optimizations are applied to this
intermediate representation before the final production code is
generated, for example, expressions are combined and re-ordered to
avoid intermediate variables. The code generator also analyzes the
range of signal values to select data types for intermediate variables.
 Furthermore, call graphs are analyzed and code functions may be in-
lined (embedded) to improve the code efficiency. In multi-rate
models, each root function can be assigned to a task. Several
communication mechanisms are available for inter-task
communication. Depending on the task priorities, the inter-task
communication may be optimized. The final production code is
assigned to code modules. If possible, the scope of variables will be
limited to the code module where they are used.

Associated Tools

TargetLink® is a production code generator for Simulink/Stateflow®
 models provided by dSPACE. It is widely used in the automotive
 industry for model-based development of ECU functions.
TargetLink® is focused on safety and code efficiency and supports all
modeling techniques and optimization methods described above.
Further characteristics of TargetLink® are:

• A special, enhanced blockset which is seamlessly integrated
in Simulink and which allows the user to specify the required
 implementation properties for each block in the model.

• A data dictionary which may (optionally) be referenced by the
 blocks in the model. The data dictionary provides all required
 implementation properties. Thus, the behavioral model can be
 separated from the implementation details.

• After code generation, the data dictionary contains detailed
 meta-information about the generated code. This meta
 information can be used, for example, to export an A2L
 variable description for the generated component, or to
 generate a HTML documentation.

• The generated code can be customized according to
 company-specific coding style guides, for example, the names
of code files, functions, variables, data types etc. The
formatting of the source code can be controlled using XSL
style sheets.

• The generated production code can be simulated in MIL, SIL,
 or PIL mode in closed loop with a Simulink® environment
model. Thus, regression tests can be performed between the
behavior of the original model and the generated code. In PIL
mode, execution times of the code can be measured for a
given target compiler on an evaluation board.

Deliverable D9.3 Version 1.0 37

• TargetLink® is compatible to the MISRA guidelines for model-
based ECU development [MISRA] and it has a “fit for purpose”
certification according to the IEC 61508 and ISO 26262
standards.

The results of a TargetLink® code generation are:

• The source code files and optionally an AUTOSAR software
component description.

• A detailed meta description of the generated code in the Data
Dictionary.

• Simulation results which are recorded during MIL, SIL, and PIL
simulations, including execution time measurements for code
functions.

• A documentation of the generated code and an A2L variable
description for calibration systems.

Especially the dSPACE Data Dictionary provides an excellent basis
 for timing analysis tools, for example, to compute the worst-case
 execution time of the code on a given target processor. This will be
 exploited in the TIMMO-2-USE project.

Website

http://www.dspace.de/en/pub/home/products/sw/pcgs/targetli.cfm

3.3.3 AUTOSAR ECU Design and Implementation

Type of Properties

AUTOSAR System (see 4.1).

AUTOSAR SWC implementations, e.g. from TargetLink (see 3.3)

AUTOSAR basic software modules from ECU suppliers

Modeling Concepts

AUTOSAR has defined a standardized ECU software architecture,
consisting of

1. an application software layer with cross-platform reusable
software components,

2. a basic software layer providing services for the application
components and managing access to the ECU resources, and

3. a run-time environment (RTE) which realizes the
communication between the different modules and the
integration into the operating system.

AUTOSAR supports a component-based development process by
separating the external ports and interfaces of a software component
from the internal behavior and implementation on the code level.

On the application layer, several software components can be
combined to compositions, which reflect higher level functions or a
logical grouping. Thus both, top-down and bottom-up designs, are
possible.

Deliverable D9.3 Version 1.0 38

In an AUTOSAR system, the global software architecture, the
network communication, and the hardware topology are clearly
separated. Mappings are used to describe which system element
instances exist on a concrete ECU.

Analysis Capabilities

The AUTOSAR description of an ECU provides all relevant
information about the software architecture, network communication
and hardware topology, including the configuration of the operating
system and the communication stack. The software is described
down to the level of internal behavior and implementation, i.e. the
code files for a given target. This information can be used, for
example, to analyze the communication, or to perform a
schedulability analysis, if the execution times of runnable entities are
known.

Associated Tools

SystemDesk is an AUTOSAR authoring tool provided by dSPACE. It
supports the major steps in the AUTOSAR methodology:

• Modelling of the software architecture.

• Definition of the network communication, including import from
AUTOSAR, FIBEX, DBC, LDF files.

• Definition of the hardware topology.

• System mappings, such as SWCs to ECUs, data elements to
system signal instances, and runnables to tasks.

• Basic software configuration.

• RTE generation based on TargetLink technology, including A2L file
export.

• Offline simulation of the ECU network in a virtual environment (SIL
and PIL mode).

SystemDesk is seamlessly integrated with TargetLink (see 3.3) as a
production code generator for software components. It can be
extended with plug-ins. All features are fully automatable to support
integration in a company-specific tool-chain. Thus, external tools
have full access to the AUTOSAR data in SystemDesk.

SystemDesk’s data model supports all basic software modules,
including OS and COM. The AUTOSAR Timing Extensions or TADL
are currently not included. Within the TIMMO-2-USE project, the
management of timing information can be realized, for example, by
plugins.

Website

http://www.dspace.de/en/pub/home/products/sw/system_architecture
_software/systemdesk.cfm

Deliverable D9.3 Version 1.0 39

4 Project Results in the Field of Time Modeling

4.1 AUTOSAR

Project Name

AUTOSAR

Website

http://www.autosar.org

TIMMO-2-USE Participants

Bosch, Continental, dSPACE, INCHRON, Volvo

General Topics

The Automotive Open System Architecture (AUTOSAR) has been
formed with the goals of

• Implementation and standardization of basic system functions
as an OEM wide "Standard Core" solution

• Scalability to different vehicle and platform variants

• Transferability of functions throughout network

• Integration of functional modules from multiple suppliers

• Consideration of availability and safety requirements

• Redundancy activation

• Maintainability throughout the whole "Product Life Cycle"

• Increased use of "Commercial off the shelf hardware"

• Software updates and upgrades over vehicle lifetime

• The AUTOSAR scope includes all vehicle domains.

The AUTOSAR standard will serve as a platform upon which future
vehicle applications will be implemented and will also serve to
minimize the current barriers between functional domains. It will,
therefore, be possible to map functions and functional networks to
different control nodes in the system, almost independently from the
associated hardware.

Timing Related Topics

In the specification of timing extensions for AUTOSAR, which was
introduced in AUTOSAR 4.0, the notion of event is the main entity. It
is used to refer to an observable behavior within a system (e.g. the
activation of a runnable entity, the transmission of a frame etc.) at a
certain point in time. AUTOSAR introduced a new abstract type
TimingDescriptionEvent as a formal basis for the timing extensions.
Depending on the concrete model entity and the associated
observable behavior, specific timing events are defined and linked to
the different views. In order to relate timing events to one another, a

Deliverable D9.3 Version 1.0 40

further concept called TimingDescriptionEventChain is introduced in
AUTOSAR. It is important to note that for the events referred to within
an event chain a functional dependency is implicitly assumed. This
means that an event of a chain somehow causes subsequent chain
events. Based on events and event chains, it is possible to express
various specific timing constraints derived from the abstract type
TimingConstraint. These timing constraints specify the expected
timing behavior. As timing constraints shall be valid independently
from implementation details, they are also expressed on an abstract
level by referencing the TimingDescriptionEvents and
TimingDescriptionEventChains. Thus, by means of events, event
chains and timing constraints defined on top of these, a separate
central timing specification can be provided, decoupling the expected
timing behavior from the actually implemented behavior. This
approach supports timing contracts for AUTOSAR systems in a top-
down as well as bottom-up approach.

Results Connected to TIMMO-2-USE Topics

The idea of events, event chains, and timing constraints are common
to AUTOSAR and T2U. T2U will further advance TADL while keeping
the current alignment between TADL and AUTOSAR timing concepts
and adapting TADL in future if future changes of the AUTOSAR
timing concepts occur.

4.2 EAST-ADL

Project Name

ATESST2, MAENAD

Website

http://www.atesst.org, http://www.maenad.eu

TIMMO-2-USE Participants

Continental, Volvo

General Topics

EAST-ADL provides an information structure and ontology that
makes the development of stand-alone automotive embedded
systems more systematic and predictable. EAST-ADL is an
architecture description language with means for capturing the
requirements, characteristics and configurations of automotive
systems and the related analysis and V&V. A Methodology and
guidelines support language/tool adoption and cost-efficient
development and V&V. EAST-ADL is harmonized with relevant
standards including AUTOSAR and SysML.

The model-based development and V&V approach contributes to
improving communication among system stakeholders,
documentation, and V&V capabilities. This is a shift from today's
document-driven testing and simulation procedures, to a model-
based way of working. This provides means for stakeholders to deal
with the complexity and risk management of active safety systems.

Deliverable D9.3 Version 1.0 41

Timing Related Topics

EAST-ADL provides support for model-specific engineering
information, including non-functional properties that are relevant for
the timing of automotive functions. Conceptually, timing information
can be divided into timing requirements and timing properties, where
the actual timing properties of a solution must satisfy the specified
timing requirements.

The EAST-ADL timing package originates from the TIMMO project
(see Section 4.3) and is therefore also closely connected to the
timing concepts of AUTOSAR (see Section 4.1). Concretely,
modelling of timing requirements and properties on the functional
abstraction levels of the architecture description language is done by
means of the “Timing Augmented Description Language” TADL
developed by the TIMMO project. The Implementation Level, i.e.,
AUTOSAR, is addressed by the “AUTOSAR Timing Extensions”,
which are introduced in AUTOSAR release 4.0. These extensions are
based on TADL concepts, too.

Timing constraints are defined separately from the structural
modelling and reference structural elements of the EAST-ADL. The
requirements support in EAST-ADL allows for tracing from solutions
as modelled in the structural model to requirements, and from
verification cases to requirements. The TADL constraints fit in the
requirement support as refinements of the requirements.

The fundamental concept for describing timing constraints is that of
Events and Event Chains (see Section 4.2). On every level of
abstraction, events can be identified, i.e., a stimulus that causes a
reaction and such a reaction leads to another observable event, i.e.,
a response.

Timing requirements can be imposed on Event Chains, for example,
specifying that the time between the occurrence of a stimulus event
and the occurrence of the expected response event shall not exceed
a specific amount of time – i.e., an end-to-end delay from a sensor to
an actuator, or the response event shall not occur before a specific
amount in time and not later than a specific amount of time after the
point-in-time the stimulus event has occurred. In addition,
requirements regarding the synchrony of events can be expressed as
well, stating that a number of events shall occur “simultaneously” in
order to cause a reaction, or be considered as valid response of a
system function.

For example, in case of a passenger vehicle, its brake system shall
apply the brakes simultaneously; or the exterior light system shall
simultaneously turn on and off the rear- and front turn signal
indicators.

Results Connected to TIMMO-2-USE Topics

In the ATESST2 project, the TADL (as a result from the TIMMO
project) were integrated into EAST-ADL and further advanced. Also
in the MAENAD project, timing support will be further investigated, in
close relation with TIMMO-2-USE.

Deliverable D9.3 Version 1.0 42

4.3 TIMMO

Project Name

TIMing MOdel

Website

http://www.timmo.org/

TIMMO-2-USE Participants

Continental, Volvo, Bosch, SymtaVision, Chalmers, Paderborn
University C-Lab

General Topics

The European research project TIMMO (TIMing MOdel) developed
an automotive system timing management approach using a
common, standardised way for handling all timing-related information
during the development process. The complexity — and the cost —
of the development cycle is reduced significantly, while reliability is
improved. TIMMO is about developing a Timing Augmented
Description Language (TADL) and an accompanying methodology
that provide:

• a formal and standardised specification, analysis and
verification of timing constraints across all development
phases, avoiding over- or under-dimensioned systems and
unnecessary iterations in the development process;

• a formal and standardised specification, analysis and
verification of timing constraints at all levels of abstraction
enabling, e.g., timing requirements to be traced across all
abstraction levels;

• an improved and predictable development cycle enabling a
common, standardised infrastructure for handling timing to
shorten the development cycle and increase its predictability.,

TIMMO had three major results: A formal language for modelling
timing aspects, an accompanying methodology that describes how to
apply the language in the development process, and a set of case
studies serving as example applications and as validators for the
language and methodology.

Timing Related Topics

Modeling of timing requirements and properties is done by means of
the “Timing Augmented Description Language” (TADL). Please refer
to Section 4.2 for further details.

Results Connected to TIMMO-2-USE Topics

TIMMO-2-USE will take the results of the TIMMO project as a basis
and advance and improve them.

Deliverable D9.3 Version 1.0 43

5 Conclusion

This state-of-the-art document is centered on referencing modeling
and analysis techniques, tools and projects in the context of a multi-
level design process for automotive applications. A particular interest
is paid to the modeling of temporal behaviors of such real-time
embedded systems. This document aims at identifying and clarifying
the different notions of time handled at the different levels of an
automotive design process and the capabilities of models and tools to
handle the different timing characteristics.

A first result of this state-of-the-art analysis is the possibility to
establish the complementarities between adopted modeling language
and standard such as EAST-ADL, AUTOSAR and TADL and other
existing modeling languages concerning the capabilities of modeling
statistical, discrete, continuous and multiform timing aspects.

Concerning the continuous time, Modelica, Simulink are used for
modeling continuous combined (or not) with discrete events (hybrid
systems). Such modeling of continuous behavior can be connected
with the structural parts of a design (external behavior of EAST_ADL
functions) and some timing constraints applied on SysML/UML blocks
translated in Modelica concepts. Tools for simulating and detecting
errors of the continuous, discrete or mixed behaviors are available.
Simulink and Modelica can be used at analysis and design levels of a
development process. At the implementation level, discrete Simulink
models can be taken as input for the dSPACE tool TargetLink for
producing ECU function code and characterizing low levels
parameters such as data types and ranges.

Concerning the discrete time, EAST-ADL, AUTOSAR and TADL are
models capable to express timing constraints such as repetition
rates, end to end delays, and synchronization. Measurements are
constant values associated with two possible time units (ms and
°crank). The UML profiles MARTE and SysML make it possible to
integrate in a design, more complex algebraic expressions for
manipulating time. Discrete time is also a common concept for formal
languages such as CTL, PSL, and CCSL for the specification of
parameters/variables, constants, and expressions. These models are
independent from any abstraction level of a design. Tools for
analysis of such models are available such as Uppaal for simulation
and formal verification of CTL specifications or Timesquare which
allows timing analysis activities on CCSL specifications.

Different tools provide WCET analysis. Some of them can be used at
different levels (analysis, design) such as SymTA/S from
SymtaVision, INCHRON Tool-Suite, or RTAW at design and
implementation levels, Some need implementation code as input
which could be the implementation code for the application (for aiT)
or any code generated by intermediate tools (INCHRON Tool-Suite
and TargetLink from dSPACE).

Statistical and uncertain time refer to modeling uncertainties on
task/resource parameters. Such information can be provided or
processed by tools or can be inputs of analysis tools (RTAW tools).
For example, with TimeAnalyser from SymtaVision, RTaw-Sim or

Deliverable D9.3 Version 1.0 44

INCHRON Tool-Suite, statistical results on system behavior or bus
response times can be obtained by analyzing execution. In addition,
the INCHRON Tool-Suite takes this information as input for providing
system simulation. Modeling, composing and verifying statistical
information is an open issue. Statistical/uncertain information can be
integrated at the design and implementation levels.

Logical/Multiform time is a concept introduced by synchronous
languages. Manipulating multiple time bases in a common model can
be convenient for modeling timing requirement which mix for example
periods related to physical distance (meters, camshaft) and temporal
distance (ms). The UML profile MARTE allows such modeling and
the algebraic support for solving and simulating such “hybrid”
expressions.

Deliverable D9.3 Version 1.0 45

6 Bibliography

[1] F. A. Schreiber, Is Time a Real Time? An Overview of Time Ontology in Informatics, in W.
A. Halang, A. D. Stoyenko (Eds.) Real Time Computing, Springer Verlag NATO-ASI, vol.
F127, 1994, pp.283-307.

[2] D. G. Messerschmitt, Synchronization in Digital System Design, IEEE Journal on Selected
Areas in Communications, vol. 8, no 8, October, 1990, pp.1404-1419.

[3] L. Lamport, Time, Clocks, and the Ordering of Events in a Distributed System,
Communications of the ACM 21, (7), 558-565, 1978.

[4] R. Schwarz and F. Mattern, Detecting Causal Relationships in Distributed Computations –
in Search of the Holy Grail, Distributed Computing 7, 149-174, 1994.

[5] C. André. Syntax and semantics of the clock constraint specication language. Technical
Report 6925, INRIA, 2009.

[6] C. André, F. Mallet, and R. de Simone, Modeling time(s), in MoDELS. Lecture Notes in
Computer Science, G. Engels, B. Opdyke, D. C.Schmidt, and F. Weil, Eds., vol. 4735.
Springer, 2007, pp. 559–573.

[7] OMG. UML 2.2 Superstructure Specification, Feb 2009. OMG document number:
formal/09-02-02.

[8] B. Selic. On the semantic foundations of standard UML 2.0. In SFM-RT 2004, volume 3185
of LNCS, pages 181–199. Springer-Verlag, 2004.

[9] OMG. UML Profile for Schedulability, Performance, and Time Specification, January 2005.
OMG document number: formal/05-01-02 (v1.1).

[10] Enterprise Architect, Sparx System http://www.sparxsystems.com/products/ea/index.html

[11] Papyrus : Open source UML editor, CEA http://www.papyrusuml.org

[12] IBM Rational Rhapsody http://www-01.ibm.com/software/awdtools/rhapsody

[13] OMG. Systems Modeling Language (SysML) Specification 1.1. Object Management
Group, May 2008. OMG document number: ptc/08-05-17.

[14] OMG UML Profile for Modeling and Analysis of Real-time and Embedded Systems,
MARTE V1.0. Object November 2009. OMG document number: formal/2009-11-02.

[15] Magic Draw MARTE editor http://www.magicdraw.com

[16] Marte2Mast converter http://mast.unican.es/umlmast/marte2mast/index.html

[17] TimeSquare Model Development Kit, INRIA, http://www-sop.inria.fr/aoste/dev/time square/

[18] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and R. de Simone.
The synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64–83, 2003.

[19] ETSI/TTCN Homepage, http://www.ttcn-3.org/ , March 2011.

[20] ETSI ES 201 873-1 V2.2.1, Methods for Testing and Specification (MTS); The Testing
and Test Control Notation version 3; Part 1: TTCN-3 Core Language, Sophia Antipolis
Cedex, France, Feb. 2003.

[21] McGrath, Dylan. IEEE approves SystemVerilog, revision of Verilog, EE Times, 2005-11-9.
Retrieved on 2007-1-31.

[22] Acellera Consortium Homepage. http://www.accellera.org/, March 2011

[23] IEEE P1850 - Standard for PSL - Property Specification Language Homepage
http://www.vhdl.org/ieee-1850/, March 2011.

Deliverable D9.3 Version 1.0 46

[24] E.M. Clarke, O. Grumberg, and D.A. Peled: Model Checking. MIT Press, Cambridge MA,
USA, 1999.

[25] A. Pnueli. A temporal logic of concurrent programs. Theoretical Computer Science,
13:45-60, 1980.

[26] IEEE - P1666 SystemC WG Homepage http://www.vhdl.org/systemc/, March 2011.

[27] Open SystemC Initiative (OSCI) Homepage http://www.systemc.org/home/, March 2011.

[28] Manolache, S., Schedulability analysis of real-time systems with stochastic task execution
times, Citeseer, 2002.

[29] M. Gardner and J. Liu. Analyzing stochastic xed-priority real-time systems. Tools and
Algorithms for the Construction and Analysis of Systems, pages 44-58, 1999.

[30] J. Lehoczky. Real-time queueing theory. Proceedings of the 18th IEEE real-time systems
symposium, pp 58-67, 1997.K. Kim, JL Diaz, L.L. Bello, J.M. Lopez, C.G. Lee, and S.L.
Min. An exact stochastic analysis of priority-driven periodic real-time systems and its
approximations. Computers, IEEE Transactions on, 54(11):1460-1466, 2005.

[31] JL Diaz, DF Garcia, K. Kim, C.G. Lee, L. Bello, J.M. Lopez, S.L. Min, and O. Mirabella.
Stochastic analysis of periodic real-time systems. In Real-Time Systems Symposium,
2002. RTSS 2002. 23rd IEEE, pages 289-300. IEEE, 2003.

[32] José María Lopez, José Luis Díaz, Joaquín Entrialgo and Daniel García. Stochastic
analysis of real-time systems under preemptive priority-driven scheduling. In Real-Time
Systems, 2008, volume 40-2, pages 180-207.

[33] M. Ivers and R. Ernst. Probabilistic Network Loads with Dependencies and the Effect on
Queue Sojourn Times. Quality of Service in Heterogeneous Networks, pages 280-296,
2009.

[34] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution time problem - overview of methods and survey of tools. Trans. on
Embedded Computing Sys., 7(3):1-53, 2008.

[35] Christian Ferdinand and Reinhold Heckmann. Worst-case execution time - a tool provider's
perspective. In 11th IEEE ISORC 2008, Orlando, Florida, USA, May 2008.

[36] Dawood A. Khan and Nicolas Navet and Bernard Bavoux and Jörn Migge, Aperiodic traffic
in response time analysis with adjustable safety level, 2009.

[37] Guillem Bernat and Alan Burns and Albert Llamosi, Weakly hard real-time systems, IEEE
Transactions on Computers, 2001, vol 50, 308-321.

[38] Modelica Homepage, https://www.modelica.org/, March 2011.

[39] Open Modelica Homepage, http://www.openmodelica.org/, March 2011.

