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1 Introduction 

Purpose 

The purpose of this document is to identify the existing models and 
tools available to solve problems arising in the domain of modeling 
timing requirements, constraints, and properties at different levels of 
the design process of automotive embedded systems. 

 

Scope 

The scope of this document is to investigate the different models and 
tools which might be used in the context of the TIMMO-2-USE (T2U) 
project. Different timing requirements, constraints, and properties 
must be handled for designing automotive embedded systems. This 
document aims first at defining a set of timing characteristics 
generally expressed in such systems. Depending on the level of 
abstraction (vehicle, analysis, design, implementation, operational) in 
the design, different notions of time can be handled by models and 
tools. In the first paragraph we provide a definition of each of these 
notions of time and we give practical examples of their use. The 
second paragraph identifies models capable of expressing these 
timing characteristics. Approaches for timing analysis are presented, 
including tools supporting them, as well as their potential use in the 
T2U project. Finally a third paragraph presents the results of projects 
in connection with the modeling of embedded systems for 
automotive. 

 

Abbreviations and Acronyms 

The table lists all abbreviations and acronyms used in this document. 

Abbreviation 
Acronym 

 
Description 

T2U TIMMO-2-USE 
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2 Definition and Example of Timing Characteristics 

Time is a major concern in Computer Science and Engineering. 
However, each domain may have its own interpretation and modeling 
of time. F. Schreiber [1] has described several aspects of time and 
defines ontology for time in different domains of computers and their 
applications. 

A first form of time is the one used in physical laws, and especially in 
mechanics. In computer science this time is often referred to as 
“physical time”, but its nature is above all mathematical. 

In digital systems, this ideal time is approximated by circuits, called 
“clocks”, generating well defined “periodical” signals. This leads to a 
discrete model of time. Unfortunately, a digital system often needs 
several clocks. This raises the problem of clock synchronization [2].  

Distributed systems, because of their spatial extension, experience 
the same problem to agree on a unique time reading. To address this 
issue, L. Lamport [3] has introduced the concept of logical clock. With 
logical clocks, partial ordering of events can be obtained without 
recourse to any physical “real” time. Improvements in logical clocks 
permit to characterize the causal relationship among events [4]. For 
performance evaluation or hard real-time property verification, a time 
model restricted to partial ordering of events is not enough. 
Synchronization with physical time becomes necessary. 

For analysis purposes, the notion of worst-case time is essential. 
Traditional scheduling algorithms and analysis methods (e.g. for 
processor utilization or response time), provide deterministic timing 
guarantees (i.e., all task instances meet their deadline) which take 
into account worst-case timing information. However, these worst-
case scenarios may be very rare in practice. Thus, uncertain time is 
introduced for soft real-time systems [28] and even for some hard 
real-time systems where the application allows for a given failure rate 
(e.g. the probability of missing a deadline could be as small as the 
probability of hardware failure). 

2.1 Continuous Time 

 

Definition 

A continuous time is a varying quantity whose domain is an 
uncountable set (in general, an interval of the reals) unlike to the 
discrete time where the domain is countable (natural numbers). The 
continuous-time template generally results from measurements on a 
real physical system. The continuity of the time variable means that 
the signal value can be found at any arbitrary point in time; and this is 
usually expressed by differential equations.  

For modeling, the continuous time can be designed by discrete time 
by sampling and quantization in such a way that the resulting model, 
expressed as a signal flowchart, is capable to reproduce the behavior 
of the continuous-time. 
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Levels of Abstraction 

Automatic control – Analysis and Design level 

Examples of Constraints, Properties 

The system set its outputs with state=OFF until the command frame 
appearance. 

2.2 Discrete Time 

 

Definition 

In digital systems, this continuous time is approximated by circuits, 
called “clocks”, generating well defined strictly periodical signals. This 
leads to a discrete model of time. A clock provides access to a 
discrete time base, and possibly to a dense (continuous) time base, 
but through a discrete time base. The instants of this time base 
correspond to "ticks" of the clock. A clock associates time values with 
instants of the time base. A DiscreteTimeBase represents an ordered 
discrete set of instants. 

Levels of Abstraction 

Analysis, Design and Implementation Level 

Examples of Constraints, Properties 

Duration, period, deadline, etc. 

2.3 Logical respectively Multiform Time 

 

Definition 

In logical time (physical) time passing is represented by event 
occurrences; for instance a signal generated by an external device. 
Temporal distances between two occurrences of events linked to a 
logical clock are not necessarily strictly periodic. However, these 
events do not have any specific status that distinguishes them from 
other events. Hence, requirements linked to logical time may refer to 
statements such as “a task must complete before 10 ms”, and “a car 
must stop within 50 m”. Both statements express a deadline: “10 ms” 
for the former, and “50 m” for the latter. This is known as Multiform 
Time. 

Levels of Abstraction 

Requirement phase, Analysis, Design, and Implementation Level 

Examples of Constraints, Properties 

Function duration: knock control duration is 20° crank 

Period: Every 180° crank knock sensor must be sampled 

Deadline: knock control must be computed before 46° crank 

The ECU is 20% faster than a standard ECU (e.g. in a certain 
context, execution times are given assuming a nominal speed of 100 
MHz; Our CPU is then 120 MHz) 
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A car must stop within 50 m. 

2.4 Uncertain Time 

 

Definition 

There are various ways of representing uncertainty of timing 
information. One can for example use a probability distribution to 
represent the execution time of a task, thus expressing how frequent 
a given execution time will be in practice. Another possibility is to use 
one single probability to express a reasonable case. For example, 
one can express like this that the execution time of a task is less than 
a given time with a given probability. 

Besides, uncertainty can arise from different sources: from the 
activation pattern, e.g., in presence of a-periodic tasks, or from the 
execution time. This may lead to different representations of 
uncertainty in the same analysis. 

Levels of Abstraction 

Analysis, Design, and Implementation Level 

Examples of Constraints, Properties 

Function duration: the execution time of the task is given by the 
following distribution 

Deadline: 

• The message must be received within 25 ms in 90% of the 
cases. 

• In any 20 consecutive deadlines the process must always 
meet at least 18 of them and it must never miss any 2 
consecutively. 
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3 Modeling and Analysis of Timing Information 

At the different levels of a design, multiple languages, models and 
tools can be used to handle timing properties. In the first section, this 
paragraph describes the capabilities of different models and 
languages – that could be potentially used in the TIMMO-2-USE 
project – with respect to time modeling. In the second section several 
approaches dealing with timing analysis are described, and tools 
supporting these approaches are mentioned. Special attention is paid 
to analysis capabilities (simulation or formal proof) of these tools. In 
the latter section only those analysis approaches and tools are 
described which are being investigated in the TIMMO-2-USE project. 
Other tools which are not under consideration in the project are 
mentioned in the first section associated to the models and 
languages. 

3.1 Timing Modeling and Languages 

The models and languages  

3.1.1 UML Introduction 

 

Type of Properties 

Implicit time  

Modeling Concepts 

In UML [7], time is seldom part of the behavioral modeling, which is 
essentially untimed (by default, events are handled in the same order 
as they arrive in event handlers). 

UML describes two kinds of behaviors: the intra-object behavior — 
the behavior occurring within structural entities — and the inter-object 
behavior, which deals with how structural entities communicate with 
each other [8]. 

The CommonBehaviors package defines the relationship between 
structure and behavior and the general properties of the behavior 
concept. A subpackage called SimpleTime adds metaclasses to 
represent time and duration, as well as actions to observe the 
passing of time. This is a very simple time model, not taking account 
of problems induced by distribution or by clock imperfections. In 
particular the UML causality model, which prescribes the dynamic 
evaluation mechanisms, does never refer to time (stamps). Instead, 
the UML specification document explicitly states that “It is assumed 
that applications for which such characteristics are relevant will use a 
more sophisticated model of time provided by an appropriate profile”. 

Analysis Capabilities 

Not applicable concerning timing aspects. 

Associated Tools 
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UML editors: Enterprise Architect [10], Papyrus [11], IBM Rational 
Rhapsody [12]. 

3.1.2 UML SPT Profile 

 

Type of Properties 

Discrete time, instant duration, clocks timers 

Modeling Concepts 

The UML Profile for Schedulability, Performance, and Time (SPT) [9] 
aimed at filling the lacks of UML in some key areas that are of 
particular concern to real-time system designers and developers. 
SPT introduces a quantifiable notion of time and resources. It 
annotates model elements with quantitative information related to 
time, information used for timeliness, performance, and schedulability 
analyses. 

SPT only considers metric time, which makes implicit reference to 
physical time. It provides time-related concepts: concepts of instant 
and duration, concepts for modeling events in time and time-related 
stimuli. SPT also addresses modeling of timing mechanisms (clocks, 
timers), and timing services. But “time” here is only introduced 
through dedicated stereotype annotations that are not interpreted and 
given meaning as part of UML semantics. Instead, their purpose is to 
be understood by external analysis tools to perform schedulability or 
performance evaluation and after automatic translation from the UML 
model into a corresponding tool input format. SPT, which relies on 
UML 1.4, had to be aligned with.UML 2.1. 

Analysis Capabilities 

Not applicable 

Associated Tools 

Not applicable 

 

3.1.3 UML SysML Profile 

 

Type of Properties 

Time with units, Probability distribution 

Modeling Concepts 

The OMG Systems Modeling Language [13] (OMG SysML™) is a 
general-purpose graphical modeling language for specifying, 
analyzing, designing, and verifying complex systems that may include 
hardware, software, information, personnel, procedures, and 
facilities. In particular, the language provides graphical 
representations with a semantic foundation for modeling system 
requirements, behavior, structure, and parametrics, which is used to 
integrate with other engineering analysis models.  
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Though SysML offers no specific support for Time, it extends UML in 
several ways: value property with units, and constraint block. A 
SysML value property defines a value with units, dimensions, and 
probability distribution. 

A SysML constraint block contains equations expressing constraints 
between value properties. The usages of the constraints in an 
analysis context are represented in a parametric diagram. 

Analysis Capabilities 

Not applicable 

Associated Tools 

SysML editors: Enterprise Architect [10], Papyrus [11], IBM Rational 
Rhapsody [12]. 

 

3.1.4 UML MARTE Profile 

 

Type of Properties 

Continuous / discrete / multiform time 

Modeling Concepts 

Modeling and Analysis of Real-Time and Embedded Systems 
(MARTE) is a response to the OMG RFP to provide a UML profile for 
real-time and embedded systems [14]. MARTE is a successor of 
SPT, aligned on UML 2, and with a wider scope. MARTE introduces a 
number of new concepts, including time concepts.  

The underlying model of time is a set of time bases. A time base is 
an ordered set of instants. Instants from different time bases can be 
bound by relationships (coincidence or precedence), so that time 
bases are not fully independent and instants are partially ordered. 
This partial ordering of instants characterizes the time structure of the 
application. This model of time is sufficient to check the logical 
correctness of the application. Quantitative information can be added 
to this structure when quantitative analyses become necessary. Note 
that a specification of a temporal behavior may refer to points of time 
(instants) or to segments of time (durations). In the MARTE meta-
model of time, Instant and Duration are two distinct concepts, 
specialization of the abstract concept of time.  

The users of MARTE have access to the time structure through 
clocks. Here, clocks are not physical devices; they are model 
elements representing a general concept of time. While in SPT, 
clocks were implicitly bound to the physical time, in MARTE, a clock 
can be bound to any recurrent event. Thus, MARTE distinguishes two 
kinds of clocks:  

• chronometric clocks, which make reference to physical time, 
and  

• logical clocks, which focus on the ordering of instants, 
possibly ignoring the physical duration between instants. 
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Some classes are stereotyped by the stereotype ClockType, they 
define the type of a clock. Such a class specifies the nature (dense or 
discrete) and the kind (chronometric or logical) of the represented 
time, a set of clock properties (e.g., resolution, maximal value, etc.) a 
set of accepted time units. For the chronometric clock types, time 
units are the usual time units: the second (s) and its derived units. 
Most logical clock types use a generic time unit called tick. In some 
cases, they may use more specific units: a processor cycle, for 
instance, or even units for physical quantities, such as for example 
time measured in angular degree (◦). A Clock (i.e., an instance of a 
Clock-Type) is characterized by its unit and the values (real numbers) 
given to its optional properties: resolution, maximalValue, offset. 
Resolution gives the granularity of the clock; maximalValue is the 
value at which the clock rolls over; offset specifies the origin instant. 
The resolution, the maximalValue and the offset are given with the 
unit of the clock. A predefined Clock is provided in the TimeLibrary of 
MARTE: 

• idealClk. This hypothetical clock reads the dense “physical 
time”. It is used as a reference clock for the (imperfect) 
chronometric clocks defined by the users of the profile.  

A ClockConstraint sets dependencies up amongst clocks.  

In the MARTE time model, time-related concepts (e.g., event 
occurrences and behavior executions) make explicit reference to one 
or several clocks, through the property on, on identifies the clock and 
then the unit used. In UML, an Event describes a set of possible 
occurrences; an occurrence may potentially trigger effects in the 
system. A TimeEvent is an Event that defines a point in time (instant) 
when the event occurs. The specification can be either absolute or 
relative to some other instant. A TimedEvent is a TimeEvent, where 
the instant specification explicitly refers to a clock. Note, that in the 
general case it is not possible to compare two events that refer to two 
different clocks. The comparison is only possible when specific 
constraints on the clocks (ClockConstraint) or the events 
(InstantConstraint) are given. A UML Behavior describes a set of 
possible executions; an execution is the performance of an algorithm 
according to a set of rules. MARTE associates a duration, an instant 
of start, an instant of termination with an execution, these times being 
read on a clock. A TimedProcessing is a Behavior or an Action with 
explicit references to clocks. 

Analysis Capabilities 

Simulation and Formal Proof 

Timing simulation: Timesquare tool  

Schedulability analysis: MAST tool 

Associated Tools 

MARTE editors: Papyrus [11], IBM Rational Rhapsody [12], 

MagicDraw [15] 

Scheduling analysis: Marte2Mast [16] 

Timing analysis: Timesquare tool [17] 

 



Deliverable D9.3 Version 1.0 15 

3.1.5 Clock Constraint Specification Language CCSL 

 

Type of Properties 

Continuous / discrete / multiform time 

Modeling Concepts 

The Clock Constraint Specification Language (CCSL) has been first 
introduced in the annex of the MARTE profile. After many 
improvements, CCSL has now a formal semantics [5] that can be 
exploited to process a correct execution, if any. Foundational CCSL 
constraints are defined in a kernel library. CCSL allows building new 
libraries and the definition of user-defined constraints by composing 
existing relations (from the kernel library or from other ones) in order 
to fit the constraints from a specific domain. CCSL is a mean to 
specify relations between the evolutions of some clocks. These 
relations can either be synchronous or asynchronous.  

All these relations between clocks are first defined by using a 
reflexive and transitive instant relation named precedence and noted 

. 

From precedence four new instant relations are derived: 
Coincidence, Strict precedence, Independence and Exclusion. 

To express clock relations, one can then use these instant relations. 
For instance, a strict clock precedence relation (denoted ) between 
two clocks a and b is asynchronous and specifies that for all natural 
number k, the k

th
 instant of a occurs before the k

th
 instant of b:  

The coincidence relation (denoted =) between these two clocks 
imposes a stronger synchronous dependency: the k

th
 instant of a 

must be coincident with the k
th
 instant of b: 

The same mechanism applies for all relations. Informally, the 
exclusion relation (denoted #) between two clocks a and b specifies 
that no instants of the clock a coincide with one of the clock b.  

The alternatesWith relation (denoted ~) between two clocks a and b 
specifies that instants of the clock b are interleaving instants of the 
clock a.  

Additionnally to constraints some expressions can be directly defined 
on clocks. For instance, the isPeriodicOn expression takes three 
parameters: a clock specifying the super clock, a positive natural 
number specifying period and a positive natural number specifying 
the offset. It results in a clock which is a subclock of the super clock 
and whose instants are always separated by period instants of the 
super clock. Moreover, the first instant of the resulting clock coincides 
with the offset

th
 instant of the super clock.  

Another useful expression is delayedFor. It takes three parameters: a 
reference clock, which represents the clocks we want to delay; a 
counter clock, which represents the clock on which the delay is 
counted and a positive natural number, which specifies the number of 
ticks of the counter clock by which the reference clock is delayed. 

A CCSL specification is the conjunction of all these constraints. As a 
result, because synchronous and asynchronous relations are used 
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conjointly, the execution of a CCSL specification is a partially ordered 
set of coincidence equivalence classes of instants [6]. It is important 
to notice that the addition of new constraints to a CCSL specification 
results in a new partial order that is either the same than the previous 
one (i.e., the new constraint has no impact) or a subset of the 
previous partial order (i.e., it is “more ordered”). 

Because clocks are defined in the MARTE profile and used in the 
CCSL semantics, they act as an interesting junction between the 
structural model and its behavior. In some sense, Clocks (that can be 
applied on every property or instance specification) generalize the 
concept of UML events, which are used in only very specific parts of 
the model. 

The current version of TimeSquare generates a sequence of steps 
that satisfies the set of constraints. An inconsistent specification can 
lead to a deadlock: after a finite sequence of steps, the simulation 
gets at a point where all the clocks are disabled (not allowed to tick). 

Examples of Properties 

Intervals: (tFBDC + 40 ≤ tIC ≤ tFBDC + 60) on crkClk  

Period: T  isPeriodicOn cc period p offset o;  

Temporal patterns between clocks   camClk = crkClk filteredBy (10) 

Mathematical relations tKWE - tKWB = min (sampleNb * Tsampling on 
idealClk, KAWD on crkClk) 

Causal relation Aj Bj 

 

Analysis Capabilities 

Simulation and Formal Proof 

Associated Tools 

TimeSquare [17] is the software environment to deal with MARTE 
time model and CCSL. TimeSquare is an Eclipse plug-in that has 
four main functionalities: 1) interactive specifications, 2) clock 
constraint checking, 3) generation of a solution, 4) displaying and 
exploring waveforms. 

TimeSquare has been designed to be used with UML tools applying 
MARTE profile. In this profile, clocks and clock constraints can be 
associated with many and various model elements. 

A wizard is included in TimeSquare. It facilitates clock definitions, 
clock constraint specifications, model element browsing, and 
parameter setting. 

The second functionality checks constraint sanity and is called when 
the above mentioned wizard is not used. 

The third functionality relies on a constraint solver that yields a 
satisfying execution trace or issues an error message in case of 
inconsistency. The traces are given as waveforms written in VCD 
format. VCD (Value Change Dump) is an IEEE standard textual 
format for dump files used by EDA logic simulation tools. The solver 
intensively uses Binary Decision Diagrams (BDD) to manipulate 
boolean equations induced by CCSL clock constraints. Waveforms 
can be displayed with any VCD viewer. 
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As fourth functionality, TimeSquare has its own viewer enriched with 
interactive constraint highlighting and access facilities. 

 

3.1.6 Synchronous Languages 

 

Type of Properties 

Discrete / multiform time 

Modeling Concepts 

Synchronous languages [18] like Esterel/SyncCharts, Lustre/Scade 
and Signal appear in the early 1980

th
. They are suited to reactive 

systems programming and their formal semantics allows taking off 
ambiguous behavioral interpretation and a synchronous design can 
be proved to be correct. The synchronous languages used in reactive 
system programming also make use of logical time. In synchronous 
programming, (physical) time passing is represented by event 
occurrences; for instance a signal generated by an external device. 
However, these events do not have any specific status that 
distinguishes them from other events. Hence, a synchronous 
program may have statements such as “a task must complete before 
10 ms”, and “a car must stop within 50 m”. Both statements express 
a deadline: “10 ms” for the former, and “50 m” for the latter. This is 
known as Multiform Time. 

Analysis Capabilities 

Simulation and model checking 

Associated Tools 

Simulation and model checking are two ways to validate a system. 
With synchronous languages, simulation can be used for early bug 
finding. With simulation, a designer can test scenarios through a 
user-friendly interface, and moreover, see the internal reactions of 
the controller. 

However, even if the design passes successfully all the simulation 
tests, it is not sure that a safety property holds. To prove this, an 
exhaustive simulation of the controller behavior should be provided. 
Symbolic executions of the model can solve this problem. Symbolic 
model checker, part of the synchronous languages distribution, does 
this job very well. A limitation is that signals must not convey values. 
They use only pure signals (associated with event occurrences) and 
counters. When a safety property is violated, model checkers 
generate a counter-example input sequence. This sequence can be 
played back in order to understand the flaw. 

Another technique widely used in synchronous programming [12] is 
the technique of an observer. An observer is a reactive program 
expressing the property to verify. The observer is put in parallel with 
the program and receives the same inputs from the environment. It 
takes also as input the outputs of the program. The unique output of 
the observer is a violation signal. The verification consists of checking 
that the observer never emits the violation signal. Analysis is provided 
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by calculating reachability analysis onto the synchronous composition 
of the observer and the program. 

 

3.1.7 Property Specification Language PSL 

 

Type of Properties 

PSL can be applied for the definition of assertions, as well as for 
complex modeling. It can be used for the precise formulation of 
specifications in the area of hardware design by means of hardware 
description and modeling languages like VHDL, Verilog, SystemC, or 
SystemVerilog. The IEEE Conclusion PSL can be seen as a variant 
of CTL and LTL mainly introducing a different syntax to future based 
TLs. Thus timing concepts are already covered when CTL and LTL is 
considered. As PSL also covers timing intervals based on semantics 
of discrete event simulation along the lines of VHDL, SystemVerilog, 
and SystemC (delta-cycle with time advance) it also provides insights 
to TL extension towards this simulator family. 

Modeling Concepts 

The Property Specification Language (PSL) is derived from Sugar, 
which was originally developed by IBM. PSL as a standard was 
developed by the industrial consortium Accellera, and it has recently 
been adopted as IEEE Standard P 1850 [22] [23]. PSL is defined in 
four layers: boolean, temporal, verification, and modeling layer. 

The boolean layer encompasses expressions, as defined for the 
underlying HDL. 

The temporal layer is a central building block of PSL. It allows all 
expressions from the boolean layer in connection with temporal 
operators and Sequential Extended Regular Expressions (SEREs). 

The verification layer specifies syntactic elements for grouping PSL 
expressions, as well as mechanisms to bind such expressions to 
models in an HDL.  

The modeling layer, finally, allows behavioral elements of the 
underlying HDL. This allows, e.g., the calculation of expected results 
for a simulation. This layer also supports mechanisms, which allow 
the access to values from previous simulation cycles. 

Analysis Capabilities 

PSL is a specification language to be used in conjunction with 
hardware description languages, such as VHDL, Verilog, and 
SystemC. Verification is performed either dynamically, e.g. by means 
of simulation, or in a formal static manner, e.g., by means of model 
checking, or theorem proving. 

Associated Tools 

There are several tools that support PSL for simulation and formal 
verification (e.g. from Mentor Graphics, Cadence, and Synopsys). 
The tools support PSL assertions for use in dynamic simulation 
verification. 
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3.1.8 Temporal Logic and CTL 

 

Type of Properties 

Some variants of temporal logic allow the specification of time-
intervals (CCTL, TCTL, TLTL). Other variants are based on different 
execution models, e.g. discrete vs. continuous time. Some of these 
variants restrict themselves to certain kinds of operators for efficiency 
reasons (ACTL, UPPAAL). Most temporal logics applied today are 
restricted to future based expressions, though some exist, which also 
allow past expressions. 

Modeling Concepts 

A modal logic based on temporal modalities is called temporal logic. 
Operators of a temporal logic relate to future (Next, Henceforth, 
Eventually, Until, Unless) or past (Previous, Has-Always-Been, Once, 
Since, Back-To). Temporal operators usually relate to state 
sequences. The most frequently applied temporal logics are future 
oriented. They apply either a branching or a linear time model. In the 
branching time model, a formula applies from a current state to all 
possible execution paths simultaneously, whereas in the linear time 
model, a formula evaluates over a certain path. 

Analysis Capabilities 

The primary application area of temporal logic is in formal 
requirements descriptions. The high degree of abstraction supports 
discrete and continuous specifications in the value and in the time 
domain. Temporal logics are frequently applied in model-checking 
[24]. Several techniques have been described for the generation of 
test cases from a model and from temporal logic specifications. The 
formal means of temporal logics and its variants CTL and LTL [25] 
are the most commonly used means for formal verification. 

Associated Tools 

The described temporal logics are supported by several tools (e.g. 
SPIN and UPPAAL). Each Tool defines its own, specific syntax for 
logic expressions. The semantics of each temporal logic are usually 
defined formally. Temporal logics allow the precise formulation of 
temporal dependencies.  

3.1.9 Testing and Test Control Notation TTCN 

 

Type of Properties 

In comparison with its predecessor TTCN-2, which mainly bases on 
hierarchical tables, TTCN-3 is similar to modern programming 
languages. TTCN-3 basically differs from established imperative 
programming languages because it features a compact additional 
syntax for the description of alternative execution paths and allows 
the handling of synchronous and asynchronous communication 
mechanisms. As an administrative feature, test cases can be 
grouped hierarchically and integrated in a test suite. 
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Modeling Concepts 

The Testing and Test Control Notation (TTCN) is used for the 
detailed specification of tests and its latest version is TTCN-3 
standardized by ETSI and ITU-T [19] [20]. Its main feature is the 
separation of concern between abstract test suites and an adapter 
layer which allows full portability of test suites and therefore makes 
them independent of any platform implementation. The test adapter 
handles all platform and implementation languages (e.g. C/C++ or 
JAVA) issues for the communication with a System Under Test (SUT) 
and also the actual coding and decoding requirements of an 
application. 

Analysis Capabilities 

TTCN was mainly applied in the telecommunication sector and most 
recently was also used for automotive software testing. Its description 
of alternative execution paths allows the handling of synchronous and 
asynchronous communication mechanisms. Furthermore, the 
definition of alternatives triggered by time-outs enables protocol tests 
in a straightforward manner. 

Associated Tools 

There are several open source tools as well as commercial 
compilers, interpreters, and generators for TTCN-3 available. These 
tools offer automatically generated TTCN-3 test cases and scripts by 
means of the state model of the SUT, test data, test scripts, and 
timed tests. 

3.1.10 SystemC 

 

Type of Properties 

Properties for SystemC can be specified either in the language itself 
e.g., by annotating the model with assertions or specifying state 
machines/automatons which react sensitive to state changes of the 
system model. Moreover, formal temporal languages (e.g. IEEE 
P1850 PSL) can be applied on the signal level. 

Modeling Concepts 

System modeling in SystemC (IEEE Std. 1666™-2005) [26] is based 
on the discrete event modeling concepts. Occurrences of an event 
are assigned to certain points on a linear time line. Processes are 
sensitive to events which again notify events immediately or in future. 
Thus, timing aspects are modeled using wait statements blocking a 
process for a certain amount of time or until an event occurs. In order 
to model the structure of a system, processes can be grouped to 
(hierarchical) modules which communicate via ports, interfaces and 
channels. 

Analysis Capabilities 

Analysis in SystemC is based on dynamic verification through the 
executable model (simulation). A pseudo parallel simulation is 
achieved by means of a cooperative multi-tasking kernel. Simulation 
output can be either proprietary (e.g. textual) or a standardized trace 
format (e.g. Value Change Dump IEEE 1364-2001). 
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Associated Tools 

The Open SystemC Initiative (OSCI) [27] reference implementation of 
the SystemC language and the simulation kernel consists of a 
collection of C++ macros and class libraries. Thus, the model itself is 
pure C++ code that must be linked to the SystemC library. Compiling 
the model for simulation on a host requires the availability of a C++ 
toolchain (e.g. the GNU toolchain). 

3.1.11 SystemVerilog 

 

Type of Properties 

SystemVerilog specifies so-called assertions (SystemVerilog 
Assertion, SVA) to verify properties of a design or a system evolving 
and manifesting over time. These assertions are based on so-called 
sequences and properties (supersets of sequences). Sequences 
consist of boolean expressions augmented with special temporal 
operators. 

Modeling Concepts 

SystemVerilog (IEEE Std 1800™-2005) is a unified hardware 
description and verification language (HDVL) standard based on 
extensions to the Verilog (IEEE Std 1364

TM
-2002) language [21]. The 

combination of description and verification in SystemVerilog provides 
means to handle all important aspects of the design and verification 
flow: design description, functional simulation, property specification, 
and formal verification. SystemVerilog is based on a behavioral 
semantics for discrete event simulation comparable to VHDL, 
SystemC, and SpecC. This implies causal relationships between 
events plus advancement of discrete time scalable through user 
specified time units. 

Analysis Capabilities 

Analyses and formal verification with SystemVerilog are performed by 
means of its test bench features which include the specification of 
functional coverage and constraint-based random test generations. 
Functional coverage refers to statistics based on sampling events 
throughout the simulation. It is used to determine when the device 
under test (DUT) has been exposed to a sufficient variety of stimuli, 
so that there is a high confidence that the DUT is working correctly. 
This coverage ensures that all desired corner cases in the design 
space have been explored. Combined with simulation and SVA this 
also enables the analysis and verification of the system timing 
behavior. 

Associated Tools 

There are several tools that support SystemVerilog for simulation and 
formal verification (e.g. from Mentor Graphics and Synopsys). The 
tools support SystemVerilog assertions, functional coverage and 
constraint-based random test generation for use in dynamic 
simulation verification. 
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3.1.12 Modelica 

 

Type of Properties 

Continuous / discrete time 

Modeling Concepts 

Modelica is an object-oriented equation-based general purpose 
modeling language primarily aimed at physical systems. The model 
behavior is based on ordinary differential algebraic equation (OAE 
and DAE) systems combined with discrete events, so-called hybrid 
DAEs. Such models are ideally suited for representing physical 
behavior and the exchange of energy, signals, or other continuous-
time or discrete-time interactions between system components. 
Nevertheless it is possible to represent time discrete SW systems or 
the runtime behavior of embedded systems based on the discrete 
event semantic. 

Modelica models are similar in structure to UML/SysML models in the 
sense that Modelica models consist of compositions of sub-models 
connected by ports that represent directed or undirected signal flow. 
Constraints and timing constraints can be realized by assert 
statements. Timing constraints in the Model (SysML, EAST-ADL) 
must therefore be represented as textual constraints on block or 
function level. 

Analysis Capabilities 

Simulation of hybrid (continuous and discrete) DAE 

Associated Tools 

OPENMODELICA, supported by OpenSource Modelica Consortium 

• Compiler/Interpreter for the Modelica language 

• Model evaluation.  

The results of a simulation can be visualized by a plotter, Assert 
statements can raise warnings, errors. 

ModelicaML is a UML profile for Modelica supported by OSMC. 

3.2 Timing Analysis Approaches and Tools 

In the scope of phase I of the TIMMO-2-USE project, in the 
predecessor of this document i.e. in the State-of-the-art document of 
work package 1 (Deliverable D1), several existing ways and 
approaches dealing with timing have been collected. Corresponding 
descriptions have been provided from the perspective and experience 
of contributing partners. Within work package 3, analysis approaches 
have been discussed and finally structured. As a result of these 
investigations, in this version of the State-of-the-art document 
(Deliverable D9) the structuring of the analysis approaches has been 
aligned with the results from work package 3 (see also Deliverable 
D10). 

Tools supporting the approaches are mentioned in association. 
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3.2.1 Worst and Best Case Analysis 

 

3.2.1.1 Worst-Case Execution Time Analysis 

 

Type of Properties 

Worst-case timing information 

Modeling Concepts 

Worst-case timing information does not require specific modeling 
concepts as it can be represented as discrete time. 

Worst-case execution time analysis basically focuses on execution 
times of target code or basic blocks and therefore applies to lower 
levels of abstraction. 

Analysis Capabilities 

Embedded systems with hard real-time constraints need reliable 
guarantees for the satisfaction of their timing constraints. These 
guarantees can be obtained by sound timing-analysis methods. An 
overview of timing-analysis methods is provided in [34]. One such 
method is static program analysis by abstract interpretation, which 
works by analyzing the program code without actually executing the 
program. The analysis results obtained in this way are valid for all 
non-interrupted program runs with all inputs. 

Over the last several years, a more or less standard architecture for 
code-level timing-analysis tools has emerged. One can distinguish 
three major building blocks: 

• Control-flow reconstruction and static analyses for control and 
data flow find possible values of registers and memory cells, 
addresses of memory accesses, and (some) loop bounds. 

• Micro-architectural analysis determines upper bounds on 
execution times of basic blocks. It performs an abstract 
interpretation of the program execution on the particular 
architecture, taking into account its pipeline, caches, memory 
buses, and attached peripheral devices. By means of an 
abstract model of the hardware architecture, the pipeline 
analysis simulates the execution of each instruction. The 
cache analysis provides safe approximations of the contents 
of the caches at each program point. Complex architectural 
features are the main challenges for this analysis phase. 

• Path analysis computes the longest execution paths through 
the whole program. This can be done by modeling the control 
flow by an integer linear program so that the solution to the 
objective function is the predicted worst-case execution time 
for the input program. The values of the variables are the 
execution counts of the basic blocks and their links, which 
together define the worst-case execution path. 

Associated Tools 
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aiT 

Description: The commercially available tool aiT by AbsInt 
implements this architecture, cf. http://www.absint.com/ait. The tool is 
employed in the aeronautics and automotive industries and has been 
successfully used to determine precise bounds on execution times of 
real-time software [35]. 

Results: aiT determines safe and precise upper bounds for the worst-
case execution times of tasks in real-time systems. Here, a task 
means a sequentially executed piece of code (no threads, no 
parallelism, and no waiting for external events). aiT operates on 
binary executables for selected target architectures and produces 
results valid for all program runs with all inputs. aiT takes as input an 
executable containing the task to be analyzed, a description of the 
hardware on which the task is running including a description of 
(external) memories and buses (i.e. a list of memory areas with 
minimal and maximal access times), and code annotations providing 
additional information like targets of indirect jumps, loop bounds, etc. 
The annotations may be written by the user or generated by other 
tools. 

The tool then computes an upper bound for the runtime of the task 
(assuming no interference from the outside). Results about the basic-
block execution times, the worst-case path, and also the results of 
auxiliary analyses such as register values are provided as a textual 
report intended for human reading, an XML report intended for 
machine reading, and graphical output in the form of an annotated 
control-flow graph. 

SWEET 

Description: The Swedish Execution Time Analysis Tool (SWEET) is 
a research prototype WCET analysis tool from Mälardalen University. 
It has the same basic architecture as aiT, but its use is mainly for 
automatic program flow analysis and computing program flow 
constraints rather than making precise WCET estimates using a 
micro-architectural analysis. SWEET’s program flow analysis can 
take into account restrictions on possible values for program 
variables, and can produce tighter results if such restrictions are 
given. SWEET performs its flow analysis on the “ALF” code format, 
and can analyze different kinds of code, both on source and binary 
level, by first translating them into ALF. SWEET can also perform an 
approximate WCET analysis for source code if a cost model is 
provided. 

Results: SWEET can compute advanced program flow constraints for 
C code using a C-2-ALF translator. If desired, the constraints can be 
exported as source-level annotations that are readable by aiT. 
SWEET can also compute approximate (unsafe) WCET estimates for 
C source code. 

RapiTime 

Description: RapiTime by Rapita Systems Ltd is a commercially 
available tool that computes worst case execution times and reports 
other timing and code coverage information based on evidence from 
testing. RapiTme is typically used during system testing, where 
detailed timing measurements are taken of the software running on 
the real hardware, with operating system scheduling/interrupts etc. 
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Static analysis of the source code structure is used in conjunction 
with test data to compute the WCET for functions in the system. 
RapiTime is used for timing verification, performance optimization 
and code coverage measurements. RapiTime operates mostly at the 
source-code level, supporting C, C++ and Ada on most 8, 16 and 32-
bit targets with a variety of on-target tracing options. 

Results: RapiTime determines accurate upper bounds for the worst-
case execution times of components for real-time systems, the test 
evidence to support detailed “drill-down” and optimization processes. 
RapiTime can import and export data and traces in a variety of 
formats. 

 

3.2.1.2 Worst-Case Response Time Analysis 

 

Type of Properties 

Worst-case timing information: 

Complete abstract system description including buses, 
communication layers, ECUs, cores, bus speed, tasks, runnable 
entities, task priority, execution times, runnable entities order, task 
chaining, variables, signals, etc. 

Modeling Concepts 

Worst-case response time analysis basically focuses on the 
dependencies and interferences of different components with their 
properties and therefore applies to higher levels of abstraction. 

System level: 

On system level, worst-case response time analysis is also referred 
to as Scheduling Analysis which also covers the consideration of best 
cases, resulting in lower and upper bounds for the parameter under 
investigation. 

Worst-case response times can be applied to and computed for 
several objects in an embedded system, for example response times 
of tasks, end-to-end delays spanning multiple components e.g. from 
sensor to actuator, or communication paths. 

Worst-case response times are impacted by scheduling properties 
like activation periods, delays / execution times of components, 
interrupts, etc. 

CAN communication: 

CAN frame transmissions are modeled with a trajectory based 
approach (like stochastic processes, but without probabilities) so that 
results about worst case (=longest possible) response times can 
mathematically be proven and worst case values or upper bounds on 
them can concretely be computed. This approach allows to verify 
latency constraints. 

[37] introduces and formalizes the notion of meeting n out of m 
deadline constraints. This type of uncertainty loosens the requirement 
imposed in TADL by the delay constraint. 
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Analysis Capabilities 

Computation of worst-case response times, or upper bounds, for 
tasks, path latencies, or communication frames. 

Associated Tools 

SymTA/S 

SymTA/S is used for predicting, optimizing and verifying software 
integration (embedded controllers), communication integration (field 
buses), and system integration (controllers and buses).  

The SymTA/S tool-suite automatically predicts and verifies worst-
case and typical-case timing using efficient models of the system 
functions, electronic architecture, controller and bus scheduling, and 
the system environment. A key strength of SymTA/S is the right level 
of abstraction. SymTA/S focuses on the ‘time consumers’ in the 
system at an appropriate level of detail for each development phase. 
Most data is imported automatically, avoiding unnecessary modeling 
overhead. 

INCHRON Tool-Suite 

The INCHRON Tool-Suite with its tool component chronVAL allows 
constructing system models using an intuitive GUI, supported by an 
import facility for OIL (OSEK Implementation Language) files. Tasks 
can be specified as black box or with functions/runnables. The Tool-
Suite GUI provides the view of the system from different 
perspectives, e.g. system view, hardware view, or clocks view, 

Main features: 

• worst-case response time calculation for tasks and CAN 
communication 

• worst-case response time analysis for end-to-end delays / 
event chains, also covering distributed systems including CAN 
and FlexRay communication 

• analysis of Residual Bus (Restbus) traffic (chronBUS) 

• specification and supervision of different timing requirements 

• extensive HTML report containing detailed information about 
each task, ISR, function, and CAN message, event chains, 
and timing requirements 

NETCAR-Analyzer 

The NETCAR-Analyzer tool provides worst-case response time 
analysis for CAN frames. It requires as input 

• Bus Speed 

• Frame periods, payloads, priorities, transmission offsets 

and offers the following features: 

• Computation of worst-case response times of periodic CAN 
frames 

• Takes into account transmission offsets 

• Near-optimal offsets assignment algorithms with user-defined 
performance criteria: e.g. optimize the worst-case response 
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times for a specific subset of tasks, for instance, the 10 lowest 
priority frames 

• Exhibit the situations leading to the worst-case: results can be 
checked by simulation (e.g. with RTaW-Sim) or testing 

• Enable dimensioning frame transmission queues and buffers 
at ECU and communication controller level 

• Handle both FIFO and prioritized waiting queues at the ECU 
level 

• Fast multi-core implementation: typically, an exact response 
time computation requires less than 30 seconds for 100 
frames on a dual-core system 

3.2.2 Worst and Best Seen Cases and Statistics 

 

3.2.2.1 Simulation of CAN Bus Communication 

 

Type of Properties 

Discrete timing information 

Modeling Concepts 

Discrete event based simulation that allows inferring statistics about 
response times of CAN frames. The simulated events are limited to 
those strictly needed to reproduce the typical behavior of CAN bus 
communications. 

Type of Properties 

The simulation of CAN bus communications requires as input: 

• Bus Speed 

• Frame periods, payloads, priorities, transmission offsets 

• Clock drifts 

• Transmission error models 

Analysis Capabilities 

Statistics about CAN frame response times derived by simulation: 

• Min, average, max, quantiles, histogram 

Associated Tools 

RTaW-Sim 

RtaW-Sim provides the following features: 

• Simulates frame exchanges on CAN buses 

• Provides fine grained statistics (histogram, min, average, 
max, quantiles) for frame transmission delays  

• Takes frame transmission offsets into account  
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• Models ECU clocks drifting apart 

• Takes into account the queuing policies at the ECU and com. 
controller levels (FIFO, HPF, etc) 

• Fault-injection : transmission errors through user-defined error 
models 

• Simulates the total functioning time of a vehicle in a couple of 
hours 

INCHRON Tool-Suite 

The INCHRON Tool-Suite with the add-on tool component chronBUS 
provides analysis capabilities for CAN and FlexRay communication. 

Main features: 

• automatic import of industrial CAN and FlexRay configuration 
files (CANdb dbc, FIBEX) 

• support of separate ECU clocks in distributed systems 

• editing of ECU and message properties 

• extensive HTML report containing detailed information about 
CAN buses and CAN messages 

3.2.2.2 System Simulation 

 

Type of Properties 

Execution times can be specified as best-case, worst-case, or 
probabilistic distribution (normal or uniform) between bounds. 

• Discrete event descriptions 

• Discrete clocks 

• Stimulation patterns (periodic, sporadic, burst, jitter) for task 
activations and external stimuli 

• Bus schedules, speeds, and transmission times 

• ISR, task, runnable entity, and functions execution times (to 
be specified as best-case, worst-case, or probabilistic 
distribution (normal or uniform) between bounds) 

Modeling Concepts 

Static and probabilistic timing information can be associated to 
different entities in a distributed system: 

• activation patterns for tasks and functions 

• execution times of tasks, functions, and basic blocks 

• communication means e.g. buses 

• hardware clocks 

Constructing a system model composed of (hardware) resources, 
processes (tasks and ISRs) deployed on the resources, operating 
system and scheduling properties, and equipping these entities with 
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timing properties like execution times allows to simulate and analyze 
the system model both in a pessimistic (worst-case) and optimistic 
(best-case) context, and in any (probabilistic) context between best-
case and worst-case. 

Simulation and analysis take into account inter-process impact like 
scheduling-based preemptions or data dependencies which may 
influence start and end time of processes as well as their execution 
times. 

Simulation results in a variety of diagrams and graphs, e.g. sequence 
diagram, state diagram, and load diagram. Histograms show 
statistical distributions of chosen parameters. 

Analysis results in graphs showing best-case and worst-case under 
consideration of inter-process interference according to the specified 
system criteria. 

Analysis Capabilities 

Simulation in the scope of an ECU or of distributed systems 

Applicable to Analysis, Design, and Implementation levels 

 

Associated Tools 

INCHRON Tool-Suite 

The INCHRON Tool-Suite including the components chronSIM, 
chronBUS, chronVIEW, and chronEST allows constructing system 
models using an intuitive GUI, supported by an import facility for OIL 
(OSEK Implementation Language) files. Tasks can be specified in 
different granularity, from black box via functions/runnables to basic 
blocks, and even target code. Furthermore a profile for IBM Rational 
Rhapsody® is available which enhances a UML model by timing 
characteristics and which allows to automatically generate a 
simulation model out of a UML model. 

The Tool-Suite GUI provides the view of the system from different 
perspectives, e.g. system view, hardware view, or clocks view, 

Main features: 

• support of separate clocks in distributed systems 

• specification of execution time in time units (granularity from 
picosecond to second) or in clock ticks 

• estimation of execution time of target C / C++ code 
(chronEST) 

• consideration of CAN, FlexRay, and Ethernet buses 

• simulation of Residual Bus (Restbus) traffic (chronBUS) 

• simulation and visualization of event chains and their 
segments 

• specification and supervision of different timing requirements 

• extensive HTML report containing detailed information about 
each task, ISR, function, and CAN message, event chains, 
and timing requirements 
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• visualization of trace logs with timing relevant events 
(chronVIEW) 

 

Website 

http://www.inchron.com/tool-suite-inchron.html  

 

 

3.2.3 Probabilistic Timing Analysis 

 

3.2.3.1 Distributions Analysis and Typical Case Analysis 

 

Type of Properties 

Probabilistic 

Modeling Concepts 

One possibility to reduce the pessimism inherent to worst-case 
analysis is to introduce uncertainty in the model of the system. This 
approach applies only to soft real-time systems, as the result of the 
analysis will also be uncertain. 

In probabilistic analysis, the uncertainties on task/resource 
parameters are modeled by probability distributions, obtained for 
example by using statistical analysis of execution traces. As the 
behavior of a system that has a probabilistic choice at every instant is 
called a stochastic process, probabilistic timing analysis is often 
referred to as stochastic analysis. 

Analysis Capabilities 

The key idea of probabilistic timing analysis is to model at least one 
parameter in the task/resource model by a random variable. In the 
case of execution times for instance, this parameter is ideally 
represented by a function which associates with each possible 
execution time, relative to a given sampling scenario, a probability 
value. In practice, such a function is approximated by a set of pairs 
(execution time, probability value). 

Then compositional techniques must be found to provide guarantees 
(expressed using probabilities) on the global system based on the 
properties of its constituting tasks. 

Since the 1990’s probabilistic timing analysis has been extensively 
studied. Earlier approaches include Gardner and Liu [29], Lehoczky 
[30] and Manolache [28] and all make some worst-case assumptions 
such as restrictions on preemption, restrictive load conditions etc. 

Díaz et al. [30] [31] have greatly contributed to the state of the art in 
stochastic analysis of real-time systems under various scheduling 
policies. Assuming a periodic and independent task model, their 
approach provides safe bounds for response time distributions. Their 



Deliverable D9.3 Version 1.0 31 

use of correct approximations renders the complexity of the analysis 
“manageable” while preserving soundness of the result. Besides no 
worst-case of restrictive condition is needed anymore. 

Furthermore, dependencies arising from shared resources can be 
taken into account. However, other dependencies are not dealt with. 
More precisely, interdependency between different tasks of a system 
can be classified as follows: 

• Inter-stream dependency: several tasks sharing a resource 
(e.g. executing on the same processor) interfere with each 
other. 

• Intra-stream dependency, which can be twofold:  

1. Data dependency: the output value of some task may have 
an impact on the execution time of another task. This is 
due to the fact that the execution time of a task may 
depend on the input data it is provided with. 

2. History dependency: successive activations of the same 
task may not be independent of each other (e.g., bursts 
may never occur). Typically, if the result of a computation is 
stored, then the second activation of a task will be much 
faster than the first one. 

When supposing independence of tasks, it is possible to combine 
tasks’ execution times using convolution. However, this hypothesis 
does not hold in many practical situations and may lead to major 
errors in the results of timing analysis, as shown by Ivers and Ernst 
[32]. When dependencies are unknown, Bernat et al. showed in [37] 
that execution times should be combined using supremal convolution 
and Ivers integrates this result into the scheduling analysis approach 
followed by Díaz. 

Associated Tools 

INCHRON Tool-Suite 

The INCHRON Tool-Suite allows to model probabilistic distributions 
for process/function/runnable execution times and for periodic event 
patterns. Such models can be both simulated and statically validated. 

RapiTime 

Part of the analysis that RapiTime does is based on measuring and 
analyzing the distributions of execution time and producing probability 
distributions of worst case execution time: evidence-based 
probabilities of different execution times occurring when the worst 
case path is executed. 

 

3.2.3.2 Probabilistic Timing Information Visualization and Analysis 

 

Modeling Concepts 

Understanding system timing and performance are key when testing 
real-time systems. Tracing is regularly applied today to log the timing 
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of relevant events. A challenge is to efficiently analyze such trace 
data and quickly identify timing problems and their root causes. 

Analysis Capabilities 

Visualize and analyze traces 

Associated Tools 

TraceAnalyzer 

Description: The SymtaVision TraceAnalyzer analyzes and visualizes 
network and ECU traces and enables engineers to find the cause of 
timing problems. TraceAnalyzer can create timing models for 
scheduling analysis in SymTA/S. 

Results: 

• Visualize controller and bus schedules with events, blocking, 
and preemptions. 

• See the flow of signals and data through a system. 

• Automatically create overviews of key timing parameters, e.g. 
load over time. 

• Automatically generate key statistics, e.g. distribution of task 
response times. 

• Create timing models of existing systems as input for 
SymTA/S 

INCHRON Tool-Suite 

The INCHRON Tool-Suite with its component chronVIEW allows 
processing of trace logs in a way that activation, start, termination, 
entry and exit events are assigned to the corresponding processes 
(tasks, ISRs, functions/runnables), resulting in the possibility to 
transform this information into diagrams known from the tool 
chronSIM. Once the diagrams are available, statistical information 
can be retrieved and probabilistic distributions can be visualized e.g. 
in histograms. Furthermore, timing requirements can be defined or 
imported to supervise the traced behavior of the measured system 
with respect to constraints. 

Main features: 

• visualization of trace logs with timing relevant events 
(chronVIEW) 

• specification and supervision of different timing requirements 

• extensive HTML report containing detailed information about 
each task, ISR, function/runnable, event chains, and timing 
requirements 

 

3.2.3.3 Reasonable-Case Timing Analysis 

 

Type of Properties 

Uncertain 
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Modeling Concepts 

[36] presents a method based on reasonable heavy-load case 
analysis for dealing with a-periodic tasks. The idea behind a 
reasonable heavy-load case is to be less pessimistic than a worst-
case analysis while being more pertinent for validation of timing 
constraints than an average case analysis. However, dependencies 
between tasks (frames in the paper) are not handled. 

Analysis Capabilities 

Simulation and Formal Proof 

There is no need for specific analysis tools with this approach: worst-
case analysis tools can be used. However, there must exist modeling 
tools providing the expected type of uncertain timing information. 

script "R" 

Description: This modeling tool is used for statistical inference about 
inter-arrival of event and the computation of the reasonable worst 
case curve. It is freely available. 

Associated Tools 

Not applicable 

3.3 Other tools 

The tools described in this section are applied in industrial tool chains 
for automatic code generation from function models. 

3.3.1 Simulink® 

 

Type of Properties 

Continuous, discrete and hybrid timing information 

Modeling Concepts 

Simulink® is a mathematical multi-domain modelling and simulation, 
design, implementation, and integration tool based on the MATLAB® 
environment. This tool is suitable for modelling and simulating 
heterogeneous systems (linear and non-linear, continuous, discrete 
and hybrid) with different implementation levels and solvers, based 
on the MATLAB® environment. 

Within a Simulink® model, Stateflow blocks can be used to model 
state charts and flow graphs. 

Selecting and Customizing Blocks 

Simulink® software includes an extensive library of functions 
commonly used in modeling a system. These include: 

• Continuous and discrete dynamics blocks, such as Integrator and 
Unit Delay 

• Algorithmic blocks, such as Sum, Product, and Lookup Table 

• Structural blocks, such as Mux, Switch, and Bus Selector 
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You can customize these built-in blocks or create new ones directly in 
Simulink®. Additional blocksets (available separately) extend 
Simulink® with specific functionality (aerospace, communications, 
etc.). You can also model physical systems such as those with 
mechanical, electrical, and hydraulic components. 

Incorporating MATLAB® Algorithms and Hand-Written Code 

With the MATLAB® code, you can call MATLAB® functions for data 
analysis and visualization. Additionally, you can design embedded 
algorithms that can then be deployed through code generation with 
the rest of your model. You can also incorporate hand-written C, 
Fortran, and Ada code directly into a model, enabling you to create 
custom blocks in your model. 

Defining and Managing Signals and Parameters 

Simulink® enables you to define and control the attributes of signals 
and parameters associated with your model. You can define the 
following signal and parameter attributes: 

• Data type: single, double, signed or unsigned 8-, 16- or 32-bit 
integers; boolean; and fixed-point 

• Dimensions: scalar, vector, matrix, or N-D arrays 

• Complexity: real or complex values 

• Minimum and maximum range, initial value, and engineering 
units 

 

Managing temporal aspects with solvers 

Simulink® software provides some features like fixed-step and 
variable-step solvers for simulating these models. Solvers are 
numerical integration algorithms that compute the system dynamics 
over time using information contained in the model. The solvers 
support the simulation of a broad range of systems, including 
continuous-time (analog), discrete-time (digital), hybrid (mixed-
signal), and multirate systems of any size. These solvers can 
simulate stiff systems and systems with state events, such as 
discontinuities, including instantaneous changes in system dynamics. 
Simulation options can be configurable in the sense that it has a 
number of adjustable parameters such as the type and properties of 
the solver, simulation start and stop times, amplitude of signal, noise, 
etc, and whether to load or save simulation data. Optimization and 
diagnostic information for the simulation can be also defined, 
together with different combinations of options. 

Simulations in Simulink® are based on the so-called zero execution 
time assumption, that means, Simulink® does not take into account 
the execution time of an algorithm on a given target processor. An 
ideal-fast processor is assumed and the behavior of the model is 
computed at the points in time determined by the solver. 

Analysis Capabilities 

Model-Based Design/Simulation/Analysis 
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Associated Tools 

MATLAB Simulink® tool, a commercial product commercialized by 
Mathworks. It provides a graphical user interface (GUI) for building 
models as block diagrams. After you define a model, you can 
simulate it, using a choice of mathematical integration methods, 
either from the Simulink® menus or by entering commands in the 
MATLAB® Command Window. The menus are convenient for 
interactive work, while the command line is useful for running a batch 
of simulations. As an analysis tool, Simulink® includes also 
linearization and trimming tools, which can be accessed from the 
MATLAB® command line. 

Using scopes and other display blocks, you can see the simulation 
results while the simulation runs. The simulation results can be put in 
the MATLAB® workspace for post-processing and visualization. 

The output files are with “mdl” extension. 

3.3.2 Production Code Generation from Simulink® 

 

Type of Properties 

Discrete time Simulink/Stateflow® model (see 3.3.1) 

Modeling Concepts 

An ECU function is modeled as a subsystem in a Simulink/Stateflow 
model® which describes the behavior of the function. The subsystem 
can be embedded in an environment model which allows for closed 
loop simulations and tests in the Simulink®. 

For safety and efficiency reasons, only a limited subset of Simulink®   
blocks is applied in production code models of ECU functions. This 
subset contains mainly discrete-time blocks, algorithmic blocks, state 
charts, and structural blocks, but no continuous-time blocks.  

In addition to the normal Simulink® block parameters, some further   
properties are specified to prepare a model for production code 
 generation. These additional properties include:  

• Datatypes, ranges and scaling factors for fixed-point variables.  

• Variable classes, which control the implementation of 
variables  in the code, for example, the memory section and 
type  qualifiers like extern, static, volatile, and const.  

Variable classes are also used to specify, if a variable is 
 accessible for a calibration system.  

• Function classes to control the code partitioning, for example, 
 the name of a C code function and the name of the generated 
source code file.  

• Implementation options for lookup tables, for example, the 
 search algorithm. The optimization of lookup tables has a 
large  impact on the performance of the generated code.  

• AUTOSAR properties, for example, to assign a Simulink 
 Inport/Outport to the data access of a runnable at an 
 AUTOSAR SW-C port.  
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Most of these implementation properties do not change the behavior 
of the model  during offline simulations, but they have a huge impact 
on the  performance of the generated code on the target processor, 
with  respect to RAM, ROM, and execution time. 

Analysis Capabilities 

The data flow and control flow in the model is analyzed by the code 
 generator. Typically, each basic block is translated into an 
intermediate  representation which contains expressions and 
assignments to variables. Several optimizations are applied to this 
intermediate  representation before the final production code is 
generated, for example, expressions are combined and re-ordered to 
avoid  intermediate variables. The code generator also analyzes the 
range of  signal values to select data types for intermediate variables. 
 Furthermore, call graphs are analyzed and code functions may be  in-
lined (embedded) to improve the code efficiency. In multi-rate 
models, each root  function can be assigned to a task. Several 
communication mechanisms are available for inter-task 
communication. Depending on the  task priorities, the inter-task 
communication may be optimized. The  final production code is 
assigned to code modules. If possible, the scope  of variables will be 
limited to the code module where they are used.  

Associated Tools 

TargetLink® is a production code generator for Simulink/Stateflow® 
 models provided by dSPACE. It is widely used in the automotive 
 industry for model-based development of ECU functions. 
TargetLink® is  focused on safety and code efficiency and supports all 
modeling  techniques and optimization methods described above. 
Further  characteristics of TargetLink® are:  

• A special, enhanced blockset which is seamlessly integrated 
in  Simulink and which allows the user to specify the required 
 implementation properties for each block in the model.   

• A data dictionary which may (optionally) be referenced by the 
 blocks in the model. The data dictionary provides all required 
 implementation properties. Thus, the behavioral model can be 
 separated from the implementation details.  

• After code generation, the data dictionary contains detailed 
 meta-information about the generated code. This meta 
 information can be used, for example, to export an A2L 
 variable description for the generated component, or to 
 generate a HTML documentation.  

• The generated code can be customized according to 
 company-specific coding style guides, for example, the names 
of  code files, functions, variables, data types etc. The 
formatting  of the source code can be controlled using XSL 
style sheets.  

• The generated production code can be simulated in MIL, SIL, 
 or PIL mode in closed loop with a Simulink® environment 
model. Thus, regression tests can be  performed between the 
behavior of the original model  and the generated code. In PIL 
mode, execution times of the  code can be measured for a 
given target compiler on an evaluation board.  
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• TargetLink® is compatible to the MISRA guidelines for model-
based ECU development [MISRA] and it has a “fit for purpose” 
certification according to the IEC 61508 and ISO 26262 
standards. 

The results of a TargetLink® code generation are: 

• The source code files and optionally an AUTOSAR software 
component description. 

• A detailed meta description of the generated code in the Data 
Dictionary. 

• Simulation results which are recorded during MIL, SIL, and PIL 
simulations, including execution time measurements for code 
functions. 

• A documentation of the generated code and an A2L variable 
description for calibration systems. 

Especially the dSPACE Data Dictionary provides an excellent basis 
 for timing analysis tools, for example, to compute the worst-case 
 execution time of the code on a given target processor. This will be 
 exploited in the TIMMO-2-USE project.  

Website 

http://www.dspace.de/en/pub/home/products/sw/pcgs/targetli.cfm 

3.3.3 AUTOSAR ECU Design and Implementation 

 

Type of Properties 

AUTOSAR System (see 4.1). 

AUTOSAR SWC implementations, e.g. from TargetLink (see 3.3) 

AUTOSAR basic software modules from ECU suppliers 

Modeling Concepts 

AUTOSAR has defined a standardized ECU software architecture, 
consisting of 

1. an application software layer with cross-platform reusable 
software components, 

2. a basic software layer providing services for the application 
components and managing access to the ECU resources, and 

3. a run-time environment (RTE) which realizes the 
communication between the different modules and the 
integration into the operating system. 

AUTOSAR supports a component-based development process by 
separating the external ports and interfaces of a software component 
from the internal behavior and implementation on the code level.  

On the application layer, several software components can be 
combined to compositions, which reflect higher level functions or a 
logical grouping. Thus both, top-down and bottom-up designs, are 
possible. 
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In an AUTOSAR system, the global software architecture, the 
network communication, and the hardware topology are clearly 
separated. Mappings are used to describe which system element 
instances exist on a concrete ECU. 

Analysis Capabilities 

The AUTOSAR description of an ECU provides all relevant 
information about the software architecture, network communication 
and hardware topology, including the configuration of the operating 
system and the communication stack. The software is described 
down to the level of internal behavior and implementation, i.e. the 
code files for a given target. This information can be used, for 
example, to analyze the communication, or to perform a 
schedulability analysis, if the execution times of runnable entities are 
known. 

Associated Tools 

SystemDesk is an AUTOSAR authoring tool provided by dSPACE.  It 
supports the major steps in the AUTOSAR methodology: 

• Modelling of the software architecture. 

• Definition of the network communication, including import from 
AUTOSAR, FIBEX, DBC, LDF files. 

• Definition of the hardware topology. 

• System mappings, such as SWCs to ECUs, data elements to 
system signal instances, and runnables to tasks. 

• Basic software configuration. 

• RTE generation based on TargetLink technology, including A2L file 
export. 

• Offline simulation of the ECU network in a virtual environment (SIL 
and PIL mode). 

SystemDesk is seamlessly integrated with TargetLink (see 3.3) as a 
production code generator for software components. It can be 
extended with plug-ins. All features are fully automatable to support 
integration in a company-specific tool-chain. Thus, external tools 
have full access to the AUTOSAR data in SystemDesk. 

SystemDesk’s data model supports all basic software modules, 
including OS and COM. The AUTOSAR Timing Extensions or TADL 
are currently not included. Within the TIMMO-2-USE project, the 
management of timing information can be realized, for example, by 
plugins. 

Website 

http://www.dspace.de/en/pub/home/products/sw/system_architecture
_software/systemdesk.cfm 
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4 Project Results in the Field of Time Modeling 

 

4.1 AUTOSAR 

 

Project Name 

AUTOSAR 

Website 

http://www.autosar.org 

TIMMO-2-USE Participants 

Bosch, Continental, dSPACE, INCHRON, Volvo 

General Topics 

The Automotive Open System Architecture (AUTOSAR) has been 
formed with the goals of 

• Implementation and standardization of basic system functions 
as an OEM wide "Standard Core" solution  

• Scalability to different vehicle and platform variants  

• Transferability of functions throughout network  

• Integration of functional modules from multiple suppliers  

• Consideration of availability and safety requirements  

• Redundancy activation  

• Maintainability throughout the whole "Product Life Cycle"  

• Increased use of "Commercial off the shelf hardware"  

• Software updates and upgrades over vehicle lifetime  

• The AUTOSAR scope includes all vehicle domains. 

The AUTOSAR standard will serve as a platform upon which future 
vehicle applications will be implemented and will also serve to 
minimize the current barriers between functional domains. It will, 
therefore, be possible to map functions and functional networks to 
different control nodes in the system, almost independently from the 
associated hardware. 

Timing Related Topics 

In the specification of timing extensions for AUTOSAR, which was 
introduced in AUTOSAR 4.0, the notion of event is the main entity. It 
is used to refer to an observable behavior within a system (e.g. the 
activation of a runnable entity, the transmission of a frame etc.) at a 
certain point in time. AUTOSAR introduced a new abstract type 
TimingDescriptionEvent as a formal basis for the timing extensions. 
Depending on the concrete model entity and the associated 
observable behavior, specific timing events are defined and linked to 
the different views. In order to relate timing events to one another, a 
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further concept called TimingDescriptionEventChain is introduced in 
AUTOSAR. It is important to note that for the events referred to within 
an event chain a functional dependency is implicitly assumed. This 
means that an event of a chain somehow causes subsequent chain 
events. Based on events and event chains, it is possible to express 
various specific timing constraints derived from the abstract type 
TimingConstraint. These timing constraints specify the expected 
timing behavior. As timing constraints shall be valid independently 
from implementation details, they are also expressed on an abstract 
level by referencing the TimingDescriptionEvents and 
TimingDescriptionEventChains. Thus, by means of events, event 
chains and timing constraints defined on top of these, a separate 
central timing specification can be provided, decoupling the expected 
timing behavior from the actually implemented behavior. This 
approach supports timing contracts for AUTOSAR systems in a top-
down as well as bottom-up approach. 

Results Connected to TIMMO-2-USE Topics 

The idea of events, event chains, and timing constraints are common 
to AUTOSAR and T2U. T2U will further advance TADL while keeping 
the current alignment between TADL and AUTOSAR timing concepts 
and adapting TADL in future if future changes of the AUTOSAR 
timing concepts occur. 

4.2 EAST-ADL 

 

Project Name 

ATESST2, MAENAD 

Website 

http://www.atesst.org, http://www.maenad.eu  

TIMMO-2-USE Participants 

Continental, Volvo 

General Topics 

EAST-ADL provides an information structure and ontology that 
makes the development of stand-alone automotive embedded 
systems more systematic and predictable. EAST-ADL is an 
architecture description language with means for capturing the 
requirements, characteristics and configurations of automotive 
systems and the related analysis and V&V. A Methodology and 
guidelines support language/tool adoption and cost-efficient 
development and V&V. EAST-ADL is harmonized with relevant 
standards including AUTOSAR and SysML. 

The model-based development and V&V approach contributes to 
improving communication among system stakeholders, 
documentation, and V&V capabilities. This is a shift from today's 
document-driven testing and simulation procedures, to a model-
based way of working. This provides means for stakeholders to deal 
with the complexity and risk management of active safety systems. 
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Timing Related Topics 

EAST-ADL provides support for model-specific engineering 
information, including non-functional properties that are relevant for 
the timing of automotive functions. Conceptually, timing information 
can be divided into timing requirements and timing properties, where 
the actual timing properties of a solution must satisfy the specified 
timing requirements. 

The EAST-ADL timing package originates from the TIMMO project 
(see Section 4.3) and is therefore also closely connected to the 
timing concepts of AUTOSAR (see Section 4.1). Concretely, 
modelling of timing requirements and properties on the functional 
abstraction levels of the architecture description language is done by 
means of the “Timing Augmented Description Language” TADL 
developed by the TIMMO project. The Implementation Level, i.e., 
AUTOSAR, is addressed by the “AUTOSAR Timing Extensions”, 
which are introduced in AUTOSAR release 4.0. These extensions are 
based on TADL concepts, too. 

Timing constraints are defined separately from the structural 
modelling and reference structural elements of the EAST-ADL. The 
requirements support in EAST-ADL allows for tracing from solutions 
as modelled in the structural model to requirements, and from 
verification cases to requirements. The TADL constraints fit in the 
requirement support as refinements of the requirements. 

The fundamental concept for describing timing constraints is that of 
Events and Event Chains (see Section 4.2). On every level of 
abstraction, events can be identified, i.e., a stimulus that causes a 
reaction and such a reaction leads to another observable event, i.e., 
a response. 

Timing requirements can be imposed on Event Chains, for example, 
specifying that the time between the occurrence of a stimulus event 
and the occurrence of the expected response event shall not exceed 
a specific amount of time – i.e., an end-to-end delay from a sensor to 
an actuator, or the response event shall not occur before a specific 
amount in time and not later than a specific amount of time after the 
point-in-time the stimulus event has occurred. In addition, 
requirements regarding the synchrony of events can be expressed as 
well, stating that a number of events shall occur “simultaneously” in 
order to cause a reaction, or be considered as valid response of a 
system function. 

For example, in case of a passenger vehicle, its brake system shall 
apply the brakes simultaneously; or the exterior light system shall 
simultaneously turn on and off the rear- and front turn signal 
indicators. 

Results Connected to TIMMO-2-USE Topics 

In the ATESST2 project, the TADL (as a result from the TIMMO 
project) were integrated into EAST-ADL and further advanced. Also 
in the MAENAD project, timing support will be further investigated, in 
close relation with TIMMO-2-USE. 
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4.3 TIMMO 

 

Project Name 

TIMing MOdel 

Website 

http://www.timmo.org/ 

TIMMO-2-USE Participants 

Continental, Volvo, Bosch, SymtaVision, Chalmers, Paderborn 
University C-Lab 

General Topics 

The European research project TIMMO (TIMing MOdel) developed 
an automotive system timing management approach using a 
common, standardised way for handling all timing-related information 
during the development process. The complexity — and the cost — 
of the development cycle is reduced significantly, while reliability is 
improved. TIMMO is about developing a Timing Augmented 
Description Language (TADL) and an accompanying methodology 
that provide: 

• a formal and standardised specification, analysis and 
verification of timing constraints across all development 
phases, avoiding over- or under-dimensioned systems and 
unnecessary iterations in the development process;  

• a formal and standardised specification, analysis and 
verification of timing constraints at all levels of abstraction 
enabling, e.g., timing requirements to be traced across all 
abstraction levels;  

• an improved and predictable development cycle enabling a 
common, standardised infrastructure for handling timing to 
shorten the development cycle and increase its predictability.,  

TIMMO had three major results: A formal language for modelling 
timing aspects, an accompanying methodology that describes how to 
apply the language in the development process, and a set of case 
studies serving as example applications and as validators for the 
language and methodology. 

 

Timing Related Topics 

Modeling of timing requirements and properties is done by means of 
the “Timing Augmented Description Language” (TADL). Please refer 
to Section 4.2 for further details. 

Results Connected to TIMMO-2-USE Topics 

TIMMO-2-USE will take the results of the TIMMO project as a basis 
and advance and improve them. 
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5 Conclusion 

This state-of-the-art document is centered on referencing modeling 
and analysis techniques, tools and projects in the context of a multi-
level design process for automotive applications. A particular interest 
is paid to the modeling of temporal behaviors of such real-time 
embedded systems. This document aims at identifying and clarifying 
the different notions of time handled at the different levels of an 
automotive design process and the capabilities of models and tools to 
handle the different timing characteristics.  

A first result of this state-of-the-art analysis is the possibility to 
establish the complementarities between adopted modeling language 
and standard such as EAST-ADL, AUTOSAR and TADL and other 
existing modeling languages concerning the capabilities of modeling 
statistical, discrete, continuous and multiform timing aspects.  

Concerning the continuous time, Modelica, Simulink are used for 
modeling continuous combined (or not) with discrete events (hybrid 
systems). Such modeling of continuous behavior can be connected 
with the structural parts of a design (external behavior of EAST_ADL 
functions) and some timing constraints applied on SysML/UML blocks 
translated in Modelica concepts. Tools for simulating and detecting 
errors of the continuous, discrete or mixed behaviors are available. 
Simulink and Modelica can be used at analysis and design levels of a 
development process. At the implementation level, discrete Simulink 
models can be taken as input for the dSPACE tool TargetLink for 
producing ECU function code and characterizing low levels 
parameters such as data types and ranges.  

Concerning the discrete time, EAST-ADL, AUTOSAR and TADL are 
models capable to express timing constraints such as repetition 
rates, end to end delays, and synchronization. Measurements are 
constant values associated with two possible time units (ms and 
°crank). The UML profiles MARTE and SysML make it possible to 
integrate in a design, more complex algebraic expressions for 
manipulating time. Discrete time is also a common concept for formal 
languages such as CTL, PSL, and CCSL for the specification of 
parameters/variables, constants, and expressions. These models are 
independent from any abstraction level of a design.  Tools for 
analysis of such models are available such as Uppaal for simulation 
and formal verification of CTL specifications or Timesquare which 
allows timing analysis activities on CCSL specifications.  

Different tools provide WCET analysis. Some of them can be used at 
different levels (analysis, design) such as SymTA/S from 
SymtaVision, INCHRON Tool-Suite, or RTAW at design and 
implementation levels,  Some need implementation code as input 
which could be the implementation code for the application (for aiT) 
or any code generated by intermediate tools (INCHRON Tool-Suite 
and TargetLink from dSPACE). 

 

Statistical and uncertain time refer to modeling uncertainties on 
task/resource parameters. Such information can be provided or 
processed by tools or can be inputs of analysis tools (RTAW tools).  
For example, with TimeAnalyser from SymtaVision, RTaw-Sim or 
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INCHRON Tool-Suite, statistical results on system behavior or bus 
response times can be obtained by analyzing execution. In addition, 
the INCHRON Tool-Suite takes this information as input for providing 
system simulation. Modeling, composing and verifying statistical 
information is an open issue. Statistical/uncertain information can be 
integrated at the design and implementation levels.  

 

Logical/Multiform time is a concept introduced by synchronous 
languages. Manipulating multiple time bases in a common model can 
be convenient for modeling timing requirement which mix for example 
periods related to physical distance (meters, camshaft) and temporal 
distance (ms). The UML profile MARTE allows such modeling and 
the algebraic support for solving and simulating such “hybrid” 
expressions. 
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