
D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 1

Secure and Agile Connected Things

D2.1 - IoT platform

Franklin Selgert (AnyWi), franklin.selgert@anywi.com

Till S. Witt (NXP Semiconductors Germany GmbH), till.witt@nxp.com

Arne Ehrlich (consider it GmbH), ehrlich@consider-it.de

2021-08-30

DE/NL
ITEA3, 17005

BMBF, 01IS18062(A-E)

Abstract

Development and operation of secure, large-scale IoT systems is hard. While
there are Software Development Environments (SDE), platforms aimed at
providing tools and methods to control software development, testing and
integration, they do not solve the major concerns of today’s software-intensive
systems: security, agility and a need for fast deployment of IoT system updates.
Tooling is just one element of an SDE, evenly important are the processes that
control the workflow of all developer involved, and which include the necessary
security steps. SDEs are one part of the puzzle, companies apply different
methods to guide their IoT development. This mix of methods, practices and
tools do not have a common standard or way of working*(ref method wars
Jacobson).

The main challenge in the SCRATCh project is to describe a method, way of
working that improves the overall security of IoT systems, without inventing yet
another method or way of working. Our approach to this is to use available
practice and methods, abstract commonalities and describe what specific
actions and tooling could contribute to more security awareness in IoT
development.

In this paper the DevOps cycle is used as a common workflow process and
combined with elements from the Essence method SDE of the OMG group, with

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 2

the intention to provide a kind of frame work for the tools developed and a
working method with a specific attention to security.

1. Contents
1. Contents .. 2

2. Introduction ... 3

3. The 3C Method explained ... 4

Crash course of the Essence method .. 4

4. CONSTRAIN the first C of the method ... 5

Tools .. 11

5. COMPLY the second C of the Method ... 12

Tools .. 13

6. CONTROL the third C of the Method ... 14

Tools .. 15

7. Conclusion ... 16

8. References ... 17

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 3

2. Introduction
What is a method? According to the Cambridge dictionary “a particular way of doing something”.
This covers almost anything including throwing a dice to decide on the most important security
requirement. That also explains the multitude of available methods; a comparison of methods for IoT
development is given in (Merzouk, Cherkaoui, Marzak, & Nawal, 2020). Each method tends to have
its own focus point, e.g. Xtreme programming focuses on writing “good” code, DevOps, focuses on
the relation between operation and development. SecDevOps focuses on the relation between
security development and operation.

Most of DevOps discussions are about continuous integration and delivery. Less attention is paid to
the Plan Phase of DevOps. In SCRATCh we identified the Plan Phase as an important step to improve
on security. In search for a method to apply within the context of SCRATCh we took the generic
method the Essence, Kernel and language for software engineering methods (OMG, 2018). Figure 1
shows the approach. The Essence method is composed of practices and we add two elements to this
model: a Kernel existing of standard practice elements and a common language to describe those. A
metamodel is constructed that could be used to describe most methods in a common language.
(Jacobson & Stimson, 2018). Assuming most development processes have a similar structure, taking
the Essence model as a start and describe the attention points that SCRATCh considers important to
improve on the security standpoint of IoT system, led
to the 3C method of SCRATCh, not a new method but
more a clarification, as an addition to two existing ones: DevOps and Essence.

Figure 1 Method architecture Essence

Methods

Practices

The Kernel

The Language

are composed of

are described usingare defined in terms of

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 4

3. The Essence Method Introduction
In this chapter we will explain the 3C method using the Essence method and the DevOps process.
The assumption is that the reader has some knowledge of DevOps and a generic understanding of
software development.

Crash course of the Essence method
The main concept in the Essence theory is the existence of a Kernel that is common to all software
development methods, the main element in this Kernel is what is called Alpha’s (Abstract Level
Progress Health Attribute) a complicated name that captures the versatile nature of an Alpha,
depending on the area of concern that it belongs to.

Figure 2 Essence Method

The essence method has three main concepts:

1. Things to work with, these are called Alphas. Alphas undergo states, e.g. for the Work alpha
this is initiates-prepared-started-under control-concluded-closed. Each alpha has its own
state transitions.

2. Things to do, activities that combine certain states of Alphas as input to realize a state
transition of one or more Alpha’s, as an example see Figure 6: Essence method tasks to do
within “Test the System” activity.

3. Competencies relate to the skills needed to fulfil the task of state transitions. This concept
relates to the DevOps philosophy that certain competencies need to be combined in one
team.

The essence method organizes alphas in areas of concern, concepts that are common to any
development cycle, a customer with needs, a solution to comply with those needs and an Endeavour
to manage and organize the work that creates the solution. Security is not a separate competence
nor an integrated item in one of the Alphas; it is inherently addressed in the Alpha “Requirements”.
The paper (Syynimaa., 2018) gives an overview and explanation of the Essence standard.

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 5

4. DevOps introduction

One of the core ideas of DevOps is to unify both loops development and operation into one, and to
create teams that can do the full iteration. Still both halves have different methodologies, tools and
skillsets applied to them, a remanence of the split of software developers and system administrators.
DevOps is a process approach on top of a software Development and maintenance methodologies. In
the development Phase methods like agile or V-model approaches and in the maintenance Phase ITIL
methods and processes may still apply. (DevOps)

The main focus of DevOps is the continuity of release and deploy, very much in alignment with the
Agile paradigm. The general thought is quickly release new features and quickly repair errors, as such
also a fast repair of security vulnerabilities. Most DevOps companies focus on Continuous
deployment or CD involving plan/Code/Build/Test/release and deploy. Most implementation realize
Continuous integration (Mann, Stahnke, Brown, & Kersten, 2019)

Development and operation of large-scale IoT systems is hard just because of the
lack of continuous deployment. Systems are scattered out and not always
continuously connected making DevOps CD difficult. While there exist technological
platforms aimed at providing the necessary building blocks to integrate devices and
backbone logic, they do not address the major concerns of today’s software-intensive
systems: security, agility and a need for continuous deployment.

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 6

5. The SCRATCh 3C Method

SCRATCh proposes a integrative approach to IoT, security, development and DevOps
practices through combining the Essence and DevOps method into a simple
methodology the 3C Method. The emphasis for security is reflected in 3C’s Constrain,
Comply and Control. The 3C method is supported by a set of interoperable tools
(toolkit) based on a common conceptual architecture and consisting of the following
elements

Security foundation for strong device identity – use of secure elements protecting
secrets providing guarantees on device identity, communication confidentiality,
tamper resistance and evidence as well as collecting security metrics as part of the
continuous secure deployment chain.

A SecDevOps-inspired development process combining two methodologies and is
supported by tools that actively enable continuous deployment of incremental
system upgrades that facilitate security and reliability, based on real-world
operational metrics.

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 7

3C methodology IoT tools integrating process and technology that accelerate
development and continuous deployment of IoT solutions. This is based on the
DevOps and Essence principles and includes security controls, tests and feedback
loops, built on top of a secure-by-design architecture.

CONSTRAIN - the first C of the method
In SCRATCh we identified the Plan Phase of DevOps or the Design Phase of a software development
process as the starting point for security.

The first C covers Plan Code and Build from the DevOps cycle

As a proven concept that costs incurred by changing a product are low in the design phase, this also
applies to security-related adaptations of a product, page 18 (Fraunhofer, 2014). Security in most
models is an attention point across all phases and items. In case of Essence, this would span the areas
of concern of customer, solution, and endeavor, (Figure 3: Security and areas of concern). Although
true this does not provide much guidance.

Areas of concern SCRATCh, DevOps and Essence

Figure 3: Security and areas of concern

The DevOps viewpoint, has a focus on processes, security viewpoint would be: “involve the security
discipline in the process at start”. From the customer perspective it means a security-minded customer
or stakeholder to guard the security aspect. From the development part have security “experts” in the
development team, etc..

The essence, however, is that the solution should be as secure as possible or needed. The question to
answer is: what guides the solution development? Most likely answer, seen from different
methodologies: stakeholder needs and requirements.

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 8

Getting security on top in the beginning of the process stakeholder needs or requirements are the
items to look at. SCRATCh proposes “constrains” or essential security requirements to achieve security
attention from the start. They can act as a design-constrain throughout the development process.

In SecDevOps it would mean that in the Plan Phase a security requirement from a standard or best
practices is inserted as a design constraint. As an example In the SCRATCh whitepaper (Selgert, 2020),
one constraint is identified as no.-1-important type of constraint: the capability to update the IoT
device securely, keeping the system safe. In all major standards like ETSI, ENISA, OWASP IoTSF,
requirements are mentioned taking this constraint seriously.

In the Essence method Constraints are part of the Kernel Alphas, Restrictions, policies, or regulatory
requirements the team must comply with see Figure 4: Constraints as security requirements.

Figure 4: Constraints as security requirements

HOW TO implement the constraints. The first C, constrain means that a set of security needs should
be available matching the type of development at hand, and matching the granularity of the
stakeholders’ need. Choosing the best practices / regulations to start the development is time-
consuming and depends on the sector where the IoT device/software is supposed to work in. Scratch
proposes a minimal basis set of relevant essential security requirements to incorporate in the plan
phase or requirements management process. Its then up to each company to add specific sector
requirements.

The SCRATCh knowledge base provides several starting points.

(change to Github or public source)

1. https://trusttab.com/req_tool/dcms_code, 13 high level security requirements that are
mapped to 47 regulatory, standards and industry consortia.

2. https://trusttab.com/req_tool/owasp_top10 , 10 high-level security requirements and related
with these https://trusttab.com/req_tool/owasp_isvs_1_0rc 125 test requirements.

3. https://trusttab.com/req_tool/enisa_req ENISA baseline security recommendations.

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 9

Example: If security from a stakeholder requires basic security requirements like Confidentiality,
Integrity, Authentication searching on these keywords in ENISA Best Practices gives a starting list of
the following constraints:

Table 1: ENISA, authentication constraints

Table 2: ENISA, software and firmware update constraints

Description
For control systems which cannot be updated (e.g. legacy systems), apply compensating
measures, such as network segmentation, micro segmentation, system relocation or additional
real-time monitoring tools. Perform risk analysis to determine if it is possible and sufficient to
improve security of existing system or if the replacement of the system is necessary.
Allow Third Parties to perform patching only if they guarantee and are able to prove that the
patch has been tested and will not have any negative consequences on the device or if the Third
Party assumes the liability for the update according to an applicable agreement. In addition,
require Third Parties to report any executed actions related to the patching process and inform
about them in advance. Update procedures shall be documented, known and controlled by the
organization.
Perform deployment of patches for the IoT devices only after proving that no negative
consequences exist. Test the patches in a test environment before implementing them in
production. If this is not possible, begin with deploying patches only on a segment of a system,
ensuring that other zones will continue to operate normally in case a patch exerts any negative
impact on a chosen segment.
Execute automatic update procedures only if they are based on the risk analysis and if the devices
for which the automatic update can be allowed are identified. Verify the source of the update.
Verify endpoints' software/firmware authenticity and integrity and ensure tight control over the
update. Signing code updates (to be able to authenticate the code before it is loaded) and
maintaining the authenticity is advisable.

Description
Ensure password recovery or reset mechanism is robust and does not supply an attacker with
information indicating a valid account. The same applies to key update and recovery
mechanisms.
Protect against ‘brute force’ and/or other abusive login attempts. This protection should also
consider keys stored in devices.
Authentication credentials including but not limited to user passwords shall be salted, hashed
and/or encrypted.
Authentication mechanisms must use strong passwords or personal identification numbers
(PINs), and should consider using two-factor authentication (2FA) or multi-factor
authentication (MFA) like Smartphones, Biometrics, etc., and certificates.
Ensure default passwords and even default user names are changed during the initial setup,
and that weak, null or blank passwords are not allowed.
Design the authentication and authorization schemes (unique per device) based on the
system-level threat models.

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 10

As a practical starting set for minimal security SCRATCh defined a limited set of

7 essential security requirements to start with as a bare minimum (ref d1,1)

Table 3: Minimal Set

short_d description origin
Securely store
credentials and
security-sensitive data

Any credentials shall be stored securely within
services and on devices. Hard-coded credentials in
device software are not acceptable.

DCMS nr 4
OWASP nr
7

Minimize exposed
attack surfaces

All devices and services should operate on the
principle of least privilege. unused ports should be
closed, hardware should not unnecessarily expose
access, services should not be available if they are not
used and code should be minimized to the
functionality necessary for the service to operate.
Software should run with appropriate privileges,
taking account of both security and functionality.

DCMS nr 6
OWASP nr
10

No default passwords All IoT device passwords shall be unique and not
resettable to any universal factory default value.

DCMS
code nr 1
OWASP nr
1

Ensure software
integrity

Software on IoT devices should be verified using
secure boot mechanisms. If an unauthorized change
is detected, the device should alert the
consumer/administrator to an issue and should not
connect to wider networks than those necessary to
perform the alerting function.

DCMS
code nr 7

Make systems
resilient e.g. to
outages or firmware
update failures

Resilience should be built in to IoT devices and
services where required by their usage or by other
relying systems,

DCMS
code nr 9

Monitoring telemetry
data

If telemetry data is collected from IoT devices and
services, such as usage and measurement data, it
should be monitored for security anomalies.

DCMS
code nr 10

validate input data Data input via user interfaces and transferred via
application programming interfaces (APIs) or between
networks in services and devices shall be validated.

DCMS
Code nr 13

Firmware update
mechanism

Lack of Secure Update Mechanism Lack of ability to
securely update the device. This includes lack of
firmware validation on device, lack of secure delivery
(un-encrypted in transit), lack of anti-rollback
mechanisms, and lack of notifications of security
changes due to updates.

OWASP
top 10 nr 4
DCMS nr 3

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 11

Additional Design Constrains for use of SCRATCh Tools

Design requirements Firmware / software update tool

Having identified firmware and software update as important, a tool is developed in SCRATCh to
provide a method to perform updates securely, a tool that is used in the Deployment Phase of
DevOps. This tool, however, poses constraints this phase of the development, if a component of an
IoT system does not have an update capability, there is no way to perform it securely or insecurely.

And in case a component is lacking the update capability for whatever reason another counter
measure must be designed as pointed out in ENISA best practice:

For control systems which cannot be updated (e.g. legacy systems), apply compensating measures,
such as network segmentation, micro segmentation, system relocation or additional real-time
monitoring tools.

Design constrains needed for use of firmware update tools

1. Device support for openssl, to generate private, public keypair
2. Availability of signing server (e.g redwax)
3. Provisioned "edge" device" with smart element or other ID
4. Minimum Manifest definition for firmware update, stating the update

definition, (describes the policy for update)

Secure firmware update tool: https://github.com/SCRATCh-ITEA3/AnyWiRedWaxFirmwareUpdate

Other tools to be used in the constrain Phase of the SCRACTCh Process:

https://github.com/SCRATCh-ITEA3/SCRATCh-Tools-Repo/tree/master/C1_Constrain

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 12

COMPLY - the second C of the Method
The second C covers /Test/release and deploy from the DevOps cycle

The second C “Comply” refers to testing, a major part of the effort for creating a new system. The
assumption is that if the constraints also contain the essential security-related requirements, then
testing has to prove compliance with them as is with all the other requirements. Testing itself is a
complex activity and occurs at different moments of the development (ref whitepaper SoTA).

From a DevOps perspective Comply covers the Code, Build, Test and Release Phase

From the DevOps perspective (see Figure 5; Testing cycles in DevOps), it is clear that there are multiple
methods for testing a system, from code testing to load testing. Testing of the essential security
constraints is done in the complete testing chain depending on the type of requirement.

Figure 5; Testing cycles in DevOps

As an example, the requirement from ENISA: Verify endpoints' software/firmware authenticity and
integrity and ensure tight control over the update. Signing code updates (to be able to authenticate the
code before it is loaded) and maintaining the authenticity is advisable. can only be tested on an already
deployed system at point of loading new firmware. In DevOps “Load testing” of an IoT system means to
have an identical copy of parts of the life system or the test is conducted on the live system. Mirroring
an IoT environment is a real identified bottleneck for end system testing. Potential solutions for this
might be a digital twin system emulation or a software copy of a hardware system. Currently these two
solutions are not available.

A second example of a security requirement from ENISA: Authentication credentials including but not
limited to user passwords shall be salted, hashed and/or encrypted. can be tested at code level and/or at
unit integration.

A third example reflected in OWASP ISVS: Verify that compilers, version control clients, development
utilities, and software development kits are analyzed and monitored for tampering, trojans, or malicious
code. is a requirement that is more on a process level for software development. It requires to check
for known threats/vulnerabilities in the libraries and tools used to create the system.

Taking a look at the Essence method Figure 6: Essence method tasks to do within “Test the System”
activity, it indicates the same process as with DevOps, although its presentation is different and more
abstract. The essence method also sees testing as verifying the compliance to requirements. However,

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 13

the different stages of testing are spread out over different states of the system and its requirements.
The activity “Test the System” is equivalent to functional testing, user acceptance testing and load
testing.

Figure 6: Essence method tasks to do within “Test the System” activity

Other testing is done in an activity labelled “Implement the System” where bug fixing and unit testing
can be positioned. There is no specific mentioning of the check for known threats/vulnerabilities in the
libraries and tools used to create the system. In Essence terms this would be handled by the item “Way
of Working” as it is a more process-related requirement.

We can conclude that this step of the 3C method Comply is well covered in existing methods, the
emphasis is done in the Constrain step by identifying essential security requirements.

Tools
For this step there are multiple tools commercially available (see D1.2 SCRATCH), In SCRATCh we
developed a few specific tools for testing:

https://github.com/SCRATCh-ITEA3/SCRATCh-Tools-Repo/tree/master/C2_Comply

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 14

CONTROL - the third C of the Method
The third C covers Operate and Monitor from the DevOps cycle

Controlling a system is all about keeping it safe, the level of control possible depends on what part of
a collection of essential security requirements is implemented in the system and what part of the
security policies are embedded in the support organisation. This is the last C of the proposed 3C
method but actually the most important one as it is to be expected that any system will fail one time
during its lifecycle, as explained in Cynefin Framework, DevOps and Secure IoT (Selgert, 2020). In the
3C method Control includes the deployment step of Essence and DevOps, as this step is about the
control over updates to the system.

From a DevOps perspective Control covers the deploy, operate and monitor Phase

DevOps is, amongst other things, about shifting operational knowledge to the design Phase e.g. by
stating certain requirements are important to maintain a system, SecDevOps is about security
involvement from start to finish e.g. by inserting essential security related requirements in the design
phase (the first C)

The Essence Method is less explicit about this phase and so is the DevOps method, Operation is the
part where methodology explicitly enters the domain of a specific implementation and where a
complete new area of knowledge is introduced, e.g. ITIL. Operation tends to be more process- or
policy-focused and tailored towards the capabilities of the company that maintains a system. The
inclusion of “constrains” to make a level of control possible is laid out by the first 2 C’s and is in essence
covered by both methods DevOps and Essence (see Figure 7: Essence Things to Do, Operate the
System).

Figure 7: Essence Things to Do, Operate the System

Eliciting new essential security requirements as feedback from the operations phase is explicitly
covered by the DevOps process approach. What is missing is an organisational-level of constraints
posed by the restrictions of a specific organisation that is maintaining a solution. For this issue, there

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 15

is not a clear solution, but a recommendation is available in the form of the policy best practices by
ENISA.

E.G ENISA: Clearly define all relevant aspects of the partnership with Third Parties, including security,
within the appropriate agreements and contracts (e.g. SLA - service level agreement, NDA - Non-
Disclosure Agreements). Sign these agreements and contracts before the start of cooperation.

Establish and maintain asset management procedures and configuration controls for key network and
information systems.

There are more requirements, but it is clear that these requirements should translate to features in
the system. Asset management could need a strict and secure identification method of devices,
partnership type of relations could mean a segmented authorisation method to the system.

As part of Control also the DevOps step “Deployment“ is considered,

Tools
For the control phase tools can be found in :

https://github.com/SCRATCh-ITEA3/SCRATCh-Tools-Repo/tree/master/C3_Control

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 16

6. Project Learnings:
During the development of the tools and maturing the use-cases and use of the tools, the project
team identified a minimum set of essential security requirements that can be helpful as a low effort
start for any IoT development to reach a minimum level of security.

In applying the 3C method as described in this deliverable the following observations were made:

1. The Essence Method lacks a description of the research Phase.

2. The role of essential security requirements or practices as a standard set for development was
not clearly described in the essence method.

3. General remark standing organisations have already an implemented method of working, the
Work part of the essence Method was not used or useful in the retail use case.

4. Simplified DevOps view of the 3C method proofed to be useful.

The Essence Method lacks a description of the research Phase.
The research phase is ad-hoc, unstructured information is taken in without clear reference to
opportunity or stake holder. It makes sense to have a demarcation between a research phase and a
development Phase. The research phase is loosely coupled with stakeholder wishes or foreseen
market demands. A handover to a development phase can mend the shortcomings and make
development a more controlled process.

The role of essential security requirements or practices as a standard set for development
was not clearly described in the essence method.
Security was part of the research phase and delivered a list of security requirements that can be
handed over to a development phase. As part of the research the essential security requirements of
SCRATCh were taken into account and can be an input for the development phase.

General remark standing organizations have already an implemented method of working, the
Work part of the essence Method was not used or useful in the retail use case.
There was no greenfield situation for the retail use case. Adapting work methods to a new
methodology like essence is not wanted nor efficient. New start-ups without a working method
could have a quick start using essence and set a first step in preparation for certification.

Simplified DevOps view of the 3C method proofed to be useful.
DevOps is a popular method, having a lot of community support and tooling. The popularity however
contributed to confusion as many interpretations of the method popup. For starters and employees
not involv3ed in process improvement The 3C method gave a simple handle on the relation between
Security and DevOps.

D2.1 - IoT platform 2021-08-30

Copyright © 2018-2022, SCRATCh 17

7. Conclusion
Getting to Secure DevOps for SMEs is about awareness, process and activities. To get to the point on
security: Three main aspects can be identified to contribute to more secure products* Constrain,
Comply, Control, aspects that are mainstream in the last five decades of software development in
different wording.

In the Essence model the wording “constraints” is related to requirements. Comply is the activity to
construct a (software) system that fulfils these requirements. Control is an activity related to the use
of the (software) system. In more detail, the Essence model works with the transition of states of an
object, called an alpha; things to be performed by the work alpha guide in a certain way of working to
progress from one state to another. Certain combinations of states for the alphas, e.g. requirements
alpha or software system alpha, correlate with the process-oriented phases of DevOps.

The 3C method is a rough simplification using both models and is focused on security, to serve
SCRATCh’s intent to guide SMEs towards more secure IoT-system development. The complex nature
of both DevOps and software development is simplified to implement basic security with a minimal
effort. This 3C method is supported by the aforementioned tooling developed in the SCRATCH project.

Tools developed to support SecDEvOps can be found on:

https://github.com/SCRATCh-ITEA3/SCRATCh-Tools-Repo

8. References
(sd).DevOps. https://biteofnews.com/what-is-devops-its-introduction-and-tools/.

Mann, A., Stahnke, M., Brown, A., & Kersten, N. (2019). 2019-state-of-devops-report.html. Retrieved
from https://www2.circleci.com/: https://puppet.com/resources/report/state-of-devops-
report/

OMG. (2018). OMG (2018). Essence - Kernel and Language for Software v 1.2. OMG.

