

BUMBLE Deliverable D2.1

Use Cases for Blended Modeling

Edited by: BUMBLE Team

Date: July 2021

Project: BUMBLE - Blended Modeling for Enhanced Software and Systems Engineering

2

BUMBLE
Deliverable 2.1

Page 2 of 56 Deliverable D2.1 Use Cases for Blended Modelling

Contents

ACRONYMS .. 5

1. INTRODUCTION ... 7

1.1. Structure of this Deliverable .. 8

2. UC1 - SOFTWARE OPEN-SOURCE BLENDED MODELING .. 9

2.1. Background .. 9

2.2. Use Case Description ... 9
2.3. BUMBLE Features .. 10
2.4. Demonstrator .. 10

3. UC2 - COMBINED TEXTUAL AND GRAPHICAL MODELING OF STATE MACHINES IN HCL RTIST .. 11

3.1. Background .. 11
3.2. Use Case Description ... 11

3.2.1. User Stories .. 12
3.2.2. Non-Functional Requirements ... 12
3.2.3. Current baseline of tools and technologies... 13

3.3. BUMBLE Features .. 13
3.3.1. Blended Syntaxes and Modeling .. 13

3.4. Demonstrator .. 14

4. UC3 - VEHICULAR ARCHITECTURAL MODELING IN EAST-ADL ... 15

4.1. Background .. 15

4.2. Use Case Description ... 15
4.2.1. User Stories .. 15
4.2.2. Current Status and Existing Functionalities .. 16
4.2.3. Desired Functionalities to be Provided by BUMBLE ... 17
4.2.4. Mapping of Language Elements to Editors ... 19
4.2.5. User Stories Illustrating Typical Engineering Tasks .. 21
4.2.6. Current Baseline of Tools and Technologies .. 23

4.3. BUMBLE Features .. 23
4.3.1. Blended Syntaxes and Modeling .. 23
4.3.2. Collaborative Modeling .. 23
4.3.3. Evolution .. 23
4.3.4. Traceability ... 23
4.3.5. Model Non-Conformance... 23

4.4. Demonstrator .. 24

5. UC4 - CROSS-DISCIPLINARY COUPLING OF MODELS .. 25

5.1. Background .. 25

5.2. Use Case Description ... 25
5.2.1. Current Status and Existing Functionality ... 25
5.2.2. Desired Functionalities to be Provided by BUMBLE ... 25
5.2.3. User Stories .. 26
5.2.4. Non-Functional Requirements ... 27
5.2.5. Current Baseline of Tools and Technologies .. 27

5.3. BUMBLE Features .. 28
5.3.1. Blended Syntaxes and Modeling .. 28
5.3.2. Collaborative Modeling .. 28
5.3.3. Evolution .. 28
5.3.4. Traceability ... 28
5.3.5. Model Non-Conformance... 28

3

BUMBLE
Deliverable 2.1

Page 3 of 56 Deliverable D2.1 Use Cases for Blended Modelling

5.4. Demonstrator .. 28

6. UC5 - REACTIVE AND INCREMENTAL TRANSFORMATIONS ACROSS DSMLS 29

6.1. Background .. 29

6.2. Use Case Description ... 29
6.2.1. Current Baseline of Tools and Technologies .. 29

6.3. BUMBLE Features .. 30
6.4. Demonstrator .. 30

7. UC6 - BLENDED EDITING AND CONSISTENCY CHECKING OF SYSML MODELS AND RELATED

PROGRAM CODE ... 31

7.1. Background .. 31

7.2. Use Case Description ... 31
7.2.1. User Stories .. 31

7.3. BUMBLE Features .. 32
7.3.1. Blended Syntaxes and Modeling .. 32
7.3.2. Evolution .. 32
7.3.3. Traceability ... 32

7.4. Demonstrator .. 32

8. UC7 - MULTI- AND CROSS-DISCIPLINARY MODELING WORKBENCH 33

8.1. Background .. 33

8.2. Use Case Description ... 33
8.2.1. Description and Rationale ... 33
8.2.2. Current Status and Existing Functionalities .. 33
8.2.3. Desired Functionalities to be Provided by BUMBLE ... 34
8.2.4. User Stories .. 34
8.2.5. Desired Non-Functional Requirements .. 35
8.2.6. Current Baseline of Tools and Technologies .. 35

8.3. BUMBLE Features .. 35
8.3.1. Blended Syntaxes and Modeling .. 35
8.3.2. Collaborative Modeling .. 36

8.4. Demonstrator .. 36

9. UC8 - MODEL-DRIVEN DEVELOPMENT OF WORKFLOW MODELS FOR DEBT COLLECTING

ADVOCACY ... 37

9.1. Background .. 37
9.2. Use Case Description ... 37

9.2.1. Current Status and Existing Functionalities .. 37
9.2.2. User Stories .. 37
9.2.3. Current Baseline of Tools and technologies ... 38

9.3. BUMBLE Features .. 39
9.3.1. Blended Syntaxes and Modeling .. 39
9.3.2. Collaborative Modeling .. 39
9.3.3. Traceability ... 39
9.3.4. Model Non-Conformity .. 39

9.4. Demonstrator .. 39

10. UC9 - AUTOMATED DESIGN RULE VERIFICATION ON VEHICLE MODELS 40

10.1. Background ... 40
10.2. Use Case Description .. 40
10.3. BUMBLE Features ... 42

10.3.1. Blended Syntaxes and Modelling ... 42

4

BUMBLE
Deliverable 2.1

Page 4 of 56 Deliverable D2.1 Use Cases for Blended Modelling

10.3.2. Collaborative Modelling ... 42
10.3.3. Traceability ... 42
10.3.4. Model Non-Conformance... 42

10.4. Demonstrator ... 42

11. UC10 - DEVELOPMENT PROCESS OF LOW-LEVEL SOFTWARE .. 43

11.1. Background ... 43
11.2. Use Case Description .. 44

11.2.1. Current Status and Existing Functionalities .. 44
11.2.2. User Stories .. 44
11.2.3. Current baseline of tools and technologies... 44

11.3. BUMBLE Features ... 45
11.3.1. Blended Syntaxes and Modeling .. 45
11.3.2. Collaborative Modeling .. 45
11.3.3. Traceability ... 45
11.3.4. Model Non-Conformance... 45

11.4. Demonstrator ... 45

12. UC11 - MULTI-ASPECT MODELING FOR HIGHLY CONFIGURABLE AUTOMOTIVE TEST BEDS

READY FOR SMART ENGINEERING DEMANDS ... 47

12.1. Background ... 47

12.2. Use Case Description .. 47
12.2.1. Description and Rationale ... 47
12.2.2. Current Status and Existing Functionality ... 47
12.2.3. User Stories .. 48
12.2.4. Desired Functionality to be Provided by BUMBLE .. 50
12.2.5. Desired Non-Functional Requirements .. 50
12.2.6. Current Baseline of Tools and Technologies .. 51

12.3. BUMBLE Features ... 51
12.3.1. Blended Syntaxes and Modeling .. 51
12.3.2. Collaborative Modeling .. 51
12.3.3. Evolution .. 51
12.3.4. Traceability ... 51
12.3.5. Model Non-Conformance... 51

12.4. Demonstrator ... 51

13. UC12 - AGILE V-MODEL SYSTEM ARCHITECTURE ... 53

13.1. Background ... 53
13.2. Use Case Description .. 53

13.2.1. Description and Rationale ... 53
13.2.2. User Stories .. 54

13.3. BUMBLE Features ... 55
13.3.1. Blended Syntaxes and Modeling .. 55
13.3.2. Evolution & Traceability ... 55
13.3.3. Model Non-Conformance... 55

13.4. Demonstrator ... 56

5

BUMBLE
Deliverable 2.1

Page 5 of 56 Deliverable D2.1 Use Cases for Blended Modelling

Acronyms

2D Two Dimensional

3D Three Dimensional

API Application Programming Interface

AST Abstract Syntax Tree

BPM4DCA Business Process Management for Debt Collector Advocates

CAD Computer Aided Design

CAE Computer Aided Engineering

CPU Central Processing Unit

CR Change Request

CRUD Create, Read, Update, Delete

DB Data Base

DCA Debt Collector Advocates

DSL Domain-Specific Language

DSML Domain-Specific Modeling Language

ECU Electronic Control Unit

EMF Eclipse Modelling Framework

EN European Norm

FAA Federal Aviation Administration

FDA Food and Drug Administration

FTNCHEK Fortran Checker

GEF Graphical Editing Framework

GLSP Graphical Language Server Platform

GMF Graphical Modelling Framework

HDA Housing Development Account

6

BUMBLE
Deliverable 2.1

Page 6 of 56 Deliverable D2.1 Use Cases for Blended Modelling

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JSON JavaScript Object Notation

JVM Java Virtual Machine

LSP Language Server Protocol

MARTE Modeling and Analysis of Real-Time and Embedded systems

MOF Meta-Object Facility

MPS Meta-Programming System

OEM Original Equipment Manufacturer

OIL Open Interface Language

SBVR Semantics of Business Vocabulary and Business Rules

SMS Short Message Service

UC Use Case

UI User Interface

UML Unified Modelling Language

UML-RT UML Real-Time

UX User Experience

VCS Version Control System

WP Work Package

WPF Windows Presentation Foundation

XML Extensible Markup Language

7

BUMBLE
Deliverable 2.1

Page 7 of 56 Deliverable D2.1 Use Cases for Blended Modelling

1. Introduction

This document defines the use cases for blended modelling identified in BUMBLE. The purpose of

these use cases is to support the elicitation of requirements for the technologies to develop: Based

on the refined use cases, a set of top level functional and non-functional requirements will be

derived. If necessary, a further breakdown into low-level requirements with finer granularity is made.

The resulting requirements specification (Deliverable D2.2) is used as input for the concept and

implementation WPs in BUMBLE, more specifically: WP3, WP4 and WP5. After realising the use

cases based on the developments in those WPs, the BUMBLE technologies will be evaluated by

exercising the use cases and assessing the validity and utility of the outcome.

BUMBLE identifies use cases addressing two different kinds of areas:

• System/software specification (S): use cases about system and software engineering

• Testing (T): use cases concerning automation of test activities

Table 1 gives an overview of the 12 use cases in BUMBLE. Use case UC1 is a public use case by

all academic partners in BUMBLE, while the other use cases are by industrial partners .

Table 1. BUMBLE Use Cases

Use Case Description Lead Partner

UC1 (S) Software Open-Source Blended Modeling MDH

UC2 (S) Combined Textual and Graphical Modeling of State

Machines in HCL RTist

HCL

UC3 (ST) Vehicular Architectural Modeling in EAST-ADL Volvo

UC4 (S) Cross-Disciplinary Coupling of Models Canon

UC5 (S) Reactive and Incremental Transformations across DSMLs MVG

UC6 (S) Blended Editing and Consistency Checking of SysML

Models and Related Program Code

Saab

UC7 (S) Multi- and Cross-Disciplinary Modeling Workbench Sioux

UC8 (S) Model-Driven Development of Workflow Models for Debt

Collecting Advocacy

Hermes

UC9 (S) Automated Design Rule Verification on Vehicle Models Ford

UC101 (S) Development Process of Low-Level Software Unibap

1 Change Request CR3 describes two use cases of Ford. These have been merged into a single
use case (UC9). Identifier UC10 is assigned to a use case of Unibap, which was not yet in CR3.

8

BUMBLE
Deliverable 2.1

Page 8 of 56 Deliverable D2.1 Use Cases for Blended Modelling

Use Case Description Lead Partner

UC11 (T) Multi-Aspect Modeling for Highly Configurable Automotive

Test Beds Ready for Smart Engineering Demands

AVL

UC12 (T) Agile V-model System Architecture Pictor

1.1. Structure of this Deliverable

This deliverable presents each use case according to a common structure as follows:

• Background: Explains the domain / engineering context from where the use case originates.

• Use Case Description: Detailed description of the use case including user stories.

• Bumble Features: Description of how BUMBLE technologies are expected to contribute to

realising the use case. This gives a high-level overview of technical needs to be addressed.

• Demonstrator: Describes how the use case and hence relevant BUMBLE technologies will be

demonstrated.

9

BUMBLE
Deliverable 2.1

Page 9 of 56 Deliverable D2.1 Use Cases for Blended Modelling

2. UC1 - Software Open-Source Blended Modeling

2.1. Background

This use case is intended to provide the main public demonstrator of a full-fledged open-source

blended modeling framework conceiving the core features of BUMBLE. Starting from a set of

experiments run on a simple prototype for blended modeling of UML and MARTE, we assessed the

potential benefits of providing for instance a textual notation for UML state-machines, but also for

hardware platform modeling and software-hardware allocation in MARTE. In this use case, we will

target multiple DSMLs and build upon previous works on UML state-machines and UML profiles in

order to demonstrate a full-fledged blended modeling toolchain in open-source. Besides individual

blended modeling, we will also provide and demonstrate collaborative features.

While the other use cases are driven by industrial actors, this use case is intended to enclose the

set of open-source solutions provided by the academic actors, supported by industry. The rationale

is that this use case will represent the public channel for BUMBLE to disseminate and demonstr ate

the project results to a broader audience of both researchers and practitioners. The use case will

cover all major project outputs planned in BUMBLE.

2.2. Use Case Description

Starting from a DSML, the framework is expected to provide the possibility to generate at least two

model specific notations, one graphical and one textual, and related editors. In addition, the

framework will need to support model synchronization mappings between the DSML and the

generated notations.

Given the DSML, the generated notations, and the model synchronization mappings, the framework

is expected to semi-automatically generate synchronization mechanisms between notations and

DSML and co-evolution transformations. In addition, the framework should provide an API to access

the elements of the abstract syntax tree in order to enable traceability to model elements

independent of the concrete notation in which the model is edited.

Given the DSML and its corresponding editor(s), the framework provides a collaboration mechanism

that allows multiple users to collaboratively edit the models in real-time. The collaboration

mechanism is independent of the number of users collaborating on the models at a given moment

in time and supports remotely distributed users. In addition to real-time editing, the collaboration

mechanism also supports keeping track of different versions of the edited models via a set of Git -

like diff/merging functionalities.

Eclipse and MPS will be exploited as base modeling and development platforms. Additional

technologies will depend on the needs of the industrial use-cases, since we aim at maximizing the

effort on a minimal set of technologies that allows us to cover as many use cases as possible. We

will leverage at least three concrete DSMLs: EAST-ADL and RTist’s UML-RT in Eclipse and OIL in

MPS. We will investigate the possibility to provide Ecore-based language exchange between

Eclipse (EMF) and MPS too. The mechanisms for Ecore-based language exchange will operate

both at the modeling (M1) and metamodeling (M2) levels of abstraction.

10

BUMBLE
Deliverable 2.1

Page 10 of 56 Deliverable D2.1 Use Cases for Blended Modelling

2.3. BUMBLE Features

The BUMBLE features covered by this use case are:

• Automatic generation of blended modelling editors for MOF-based DSMLs to support blended

graphical-textual modelling.

• Semi-automatic generation of synchronization mechanisms across notations.

• Automatic synchronization between multiple editors/notations and support for seamless

collaborative editing.

• Support for semi-automatic co-evolution of generated artefacts in response to evolution of the

original DSML (e.g., a change in the metamodel will be reflected also on the blended modeling

editors generated from the metamodel).

• Automatic generation and maintenance of representation-agnostic traceability links in situ for

synchronization and co-evolution purposes.

2.4. Demonstrator

The demonstrators will cover all features mentioned in Section 2.3 in relation to the core aspects of

the industrial use-cases. More specifically, we will demonstrate the following:

• From a given DSML, a blended editing environment (including editors and synchronization

mechanisms) is automatically generated.

• Once a model is created in the blended environment, it can be opened and edited using multiple

notations/editors (e.g., textual, graphical, tabular, etc) .

• A model change in one of the editors is seamlessly reflected to the others. Change propagation

and synchronization can be either on-demand or on-the-fly, upon user’s choice.

• A model can be viewed and edited in real-time in a collaborative fashion by multiple users.

Versioning and diff/merge features are handled in a GIT-based fashion.

We will provide one demonstrator per target platform -- Eclipse and MPS.

11

BUMBLE
Deliverable 2.1

Page 11 of 56 Deliverable D2.1 Use Cases for Blended Modelling

3. UC2 - Combined Textual and Graphical Modeling of State

Machines in HCL RTist

3.1. Background

The most important modeling language used in HCL RTist is UML RealTime (UML-RT), described

by the UMLRealtime profile (it’s actually a very small subset of the full UML, as described here).

Some other DSMLs are also used in the tool, for example to describe how the models are

transformed into C++ code. But for BUMBLE it’s UML-RT that is important, and more specifically

the part of UML-RT which describes state machines.

Our customers use RTist to design and develop various kinds of real-time applications implemented

in C++. This can be anything from embedded systems deployed on micro controllers to distributed

systems deployed on powerful servers, and anything in between. UML-RT allows our users to

design their applications at a higher abstraction level compared to doing it in plain C++. I t also

provides automation so that a large part of the C++ code can be automatically generated from the

UML-RT model.

The UML-RT language is at the very core of RTist and users create, view, and edit these models

using RTist. However, often, not all parts of the application benefit from the abstractions of UML-

RT. Therefore, it is very common to combine the generated code with handwritten C++ code. Both

generated and handwritten code then gets compiled into the final executable or library. Al so note

that RTist uses C++ as action and expression language inside the model. This means the UML-RT

model contains embedded snippets of C++ code, for example to define the entry action of a state,

or the guard condition of a transition.

3.2. Use Case Description

Our BUMBLE use case is about letting users create, view, and edit state machines of their UML-

RT model using a textual syntax, as an alternative to the current graphical notation. We believe this

will be useful in several scenarios:

• For an experienced user, that has learnt the textual syntax, it can be much faster to work with

a state machine in a text editor as opposed to using the current graphical editors.

• Some editing, for example state machine refactoring, will benefit from standard text editor

features such as copy/paste, incremental find etc.

• When state machines are used for modelling test cases it is convenient with a textual notation

since test cases often need to be updated to match changes in the application behaviour. Many

small updates are easier to do textually than graphically, and it is common to copy/paste

contents from one test case to another.

• When comparing or merging a state machine it can be easier to understand changes or conflicts

using a textual notation as a complement to graphical diagrams.

• A textual state machine notation can be a first step of letting RTist support more IDEs than just

Eclipse. Text editors are readily available in all IDEs while graphical editors tend to be rather

specific to a certain IDE.

HCL owns this use case. Participation is welcome from any BUMBLE partner with similar interests.

Canon is an experienced RTist user and is considering the opportunity of providing early feedback

https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/pdf/RTist%20Concepts.pdf

12

BUMBLE
Deliverable 2.1

Page 12 of 56 Deliverable D2.1 Use Cases for Blended Modelling

on the solution’s usability for working with industrial models (we may also involve other non -

BUMBLE customers that we think are interested). An important part of the work is to define a good

textual state machine syntax (unfortunately, there is no already established syntax that can be

reused for this). We think MDH can contribute here with their experience of XText and related

technologies.

There is currently no support for textual state machines in RTist, but we have done some

experiments and prototypes in the past. A long time ago (in a previous product), we had a feature

allowing state machines to be edited textually. From that we learned the importance of giving a

“true” text feeling when editing. The user’s indentations and comments must be preserved exactly

as written. We also learned the importance of using a syntax that is easy to learn and that is not too

“exotic” compared to other syntaxes the users are used to working with. Finally, it is important to

preserve the identity of model elements when they are being edited in a textual syntax. Links to the

edited elements should not become easily broken. We have automatic layout implemented for our

state machine editor, although it certainly could be improved.

Currently in RTist, we have an editor (a transformation configuration editor) which combines usage

of form-based editing with a textual syntax (JavaScript). We have some of the problems mentioned

above also in this editor (like comments and formatting that get lost when editing in the forms).

We’ve also learned the importance of providing features such as code completion (a.k.a. content

assist) to make text editing more productive and less error prone.

3.2.1. User Stories

• As a DSML user, I want to have a textual syntax which covers all features of UML-RT state

machines, so that I can define a state machine completely in a text editor without having to also

use other notations.

• As a DSML user, I want standard text editor features such as code completion, navigation,

source formatting etc, to increase my productivity.

• As a DSML user, I want the textual syntax to include C++ code snippets (used for action code

and expressions), integrated in a seamless way (for example, it should not be necessary, or at

least very rarely, to use any kind of escape characters in the C++ code).

• As a DSML user, I want syntax colouring both for the state machine syntax and the embedded

C++ code snippets for increased readability.

• As a DSML user, I want a command for navigating from the textual syntax to the generated C++

code from the UML-RT syntax.

• As a DSML user, I want a command for navigating from a line in an embedded C++ code snippet

to the corresponding code line in the generated C++ code, so that I can use features such as

code completion and navigation at C++ level.

• As a DSML user, I want commands for navigating from the textual syntax to the Project Explorer

and state machine diagram.

• As a DSML user, I don’t want a small syntax error in a textual state machine definition to prevent

anything in the text file from being successfully parsed. Parsing should try to recover from

errors, and existing model elements should not be deleted from the model just because of

transient errors in one of the notations.

3.2.2. Non-Functional Requirements

The textual state machine syntax should be easy to learn and use. It should be an “Algol -style”

syntax to look familiar for users familiar with other languages used in RTist (C++, JavaScript, Java).

13

BUMBLE
Deliverable 2.1

Page 13 of 56 Deliverable D2.1 Use Cases for Blended Modelling

The usability of editing state machines textually should be the same as when working in any other

text editor. User formatting, comments etc. should be preserved (to an as large extent as possible)

when the textual representation needs to update because the model is changed.

Performance should be good and there should be no noticeable delays when editing a state

machine in the text editor.

If it turns out the current GMF editor needs anything but small changes, new web-based editor

frameworks should be considered to make it easier in the future to support non-Eclipse IDEs.

Textual editing should not break incoming links to edited model elements as it’s poor usability to

have to recreate such links all the time.

3.2.3. Current baseline of tools and technologies

The baseline of RTist to be compared with is version 11.0 2020.50 (using Eclipse 2019.06 with

OpenJDK 8). The model is the standard open source UML2 model, version 2.3 (i.e. not the latest

version of UML). It is an EMF model. Graphical editors are implemented using GMF and GEF.

3.3. BUMBLE Features

3.3.1. Blended Syntaxes and Modeling

It should be possible to freely choose between the textual and graphical notation when creating or

editing a state machine. Changes in one notation should be synchronized so other notations update

automatically (in a way that feels natural and non-intrusive for the user).

Note: For our use case, automatic generation of editors is not of big interest since in our experience

usability of such editors tends to become too poor. The metamodel used in RTist is very stable

(UML-RT is more or less unchanged for the past 15 years) so we don’t expect a need to handle an

evolving metamodel (if needed it will anyway have a huge impact that requires manual modifications

in many places).

An XText-based editor should be implemented which implements a textual state machine syntax.

The concrete syntax used in the editor will be mapped to the existing UML2 metamodel that is

currently used in RTist. The Compare/Merge editor of RTist will also be extended to provide a new

view that shows changes and conflicts in state machines using the textual syntax in addition to the

graphical, tree and tabular views currently offered.

The XText-based editor parses the state machine syntax continuously as soon as the user stops

typing for a while. It builds a state machine UML2 model as its AST. This model is then merged with

the RTist model to which it belongs so that changes made in text get reflected in the model. This is

synchronization from text to model. If the user changes the state machine model in RTist (using

some other view than the text editor) then synchronization in the opposite direction will have to take

place (model to text). The demonstrator (see section 3.4) will show some use cases that involve

both kinds of synchronization. The overall goal is to show that the synchronizations are as precise

as possible, leaving the model always in a consistent state and with as few negative side-effects as

possible:

14

BUMBLE
Deliverable 2.1

Page 14 of 56 Deliverable D2.1 Use Cases for Blended Modelling

• For text to model synchronization all textual references in the parsed text should be attempted

to be bound. There are both internal links (where the target element is inside the parsed model

itself) and external links (where the target element is somewhere else in the RTist model). Both

types of links should be bound and enable navigation to the target element.

Example

The state machine snippet

t1: State1 -> State2 on timer.timeout;

contains 2 internal links (State1 and State2 - assumed to be declared previously in the file) and

2 external links (timer and timeout - assumed to be possible to look up from the context of the

capsule that owns the state machine in the RTist model).

• For text to model synchronization incoming links to elements in the RTist model must be

preserved even if those elements get replaced during the merge with the parsed model.

Example

A dependency from a capsule to a state in its state machine should not become unbound when

editing the text file. However, if the state itself gets deleted or renamed the dependency will get

unbound, but if that state later reappears (e.g. by renaming another state) then the dependency

will get bound again.

• For model to text synchronization white space, comments and formatting should be preserved

to an as large extent as possible.

Example

Deletion of a state outside the text editor (e.g. in the Project Explorer) requires a serialization

of the state machine model and a merge of the resulting text with the text in the file.

To avoid conflicting modifications in these synchronizations it is important that they happen instantly

(or at least very shortly after an edit). In some cases, this may not be possible, for example if

deleting a state when the text editor with its definition is not open. In this case, synchronization

must happen immediately when the text editor opens before the user has a chance to make any

modifications himself in the text.

3.4. Demonstrator

A demonstrator will show how a state machine can be defined textually in RTist. A simple state

machine will be created from scratch, using the content assist feature to simplify typing. The model

will then be built with the model compiler, and the generated executable will be run , to show that

the textual state machine behaves identically to a graphical one.

We will also show several scenarios that require synchronization, as mentioned in the previous

section. For example, changing a textually defined state in the Properties view, adding new states

using the Project Explorer etc.

Finally, we will show how a textual version of a state machine can help in a scenario of merging two

state machines. In addition to the graphical, tree and tabular views that RTist currently uses, the

textual view of a state machine can make it easier to merge the state machine in the same way as

other text documents are merged.

15

BUMBLE
Deliverable 2.1

Page 15 of 56 Deliverable D2.1 Use Cases for Blended Modelling

4. UC3 - Vehicular Architectural Modeling in EAST-ADL

4.1. Background

Development of automotive embedded systems at AB Volvo involves large amounts of data from

multiple stakeholders, including requirements, specifications, log data, components, code, binaries

and so on. To organize this data efficiently and ensure that syntax and semantics of the content are

consistent, a metamodel is required. On such a basis, engineers work with a standardized

representation, content is machine readable for automated engineering tasks, and Continuous

Integration (CI) pipelines can use data in a non-ambiguous way.

Autosar and EAST-ADL are architecture description languages for automotive embedded systems.

Both are based on an infrastructure where an M3 metamodel provides rules for the definition of the

AUTOSAR and EAST-ADL languages, and Eclipse tooling generates XML schemata and editor

infrastructure for basic editing and serialization. Models are stored in XML format as eaxml and

arxml, and tool platforms are EATOP and Artop respectively. Since EAST-ADL complements

AUTOSAR, all results for EAST-ADL in BUMBLE will also align with AUTOSAR, even though

AUTOSAR's intellectual property protection complicates working with the language directly.

The role of software and system architecture description languages is to identify common data

between different parts of the organization and define its representation. Such representation

secures non-ambiguous, complete, and consistent information and allows tooling for analysis and

synthesis to act on harmonized input.

BUMBLE technology is anticipated to provide multimode editors for the EAST-ADL metamodel (and

indirectly for Autosar, due to shared technology). The editors are expected to support tree -based,

textual, and graphical editing. Currently, EATOP uses Ecore and Sphinx to a) (de-)serialize eaxml

to conform with industry standards for data exchange and b) generate a tree-based editor and the

storage layer for EAST-ADL data. It is expected that this existing infrastructure is reused in BUMBLE

where appropriate. Alternatively, a new infrastructure is set up to provide editor s with serialization

capability.

4.2. Use Case Description

AB Volvo expects that BUMBLE provides new frameworks to generate editors for graphical, textual,

and tree-based editing of EAST-ADL models.

4.2.1. User Stories

To characterize this use case, three example user stories are used. The detailed capabilities and

functionalities support these user stories and more. More user stories are given in Section 4.2.5.

Graphical Editing

• As a DSML user, I want to be able to graphically view and edit system descriptions represented

as eaxml files, so that I get a good overview of my system.

Textual Editing

• As a DSML user, I want to be able to see system descriptions represented as eaxml files as

plain text, so that I can efficiently edit, diff, and merge my system description.

16

BUMBLE
Deliverable 2.1

Page 16 of 56 Deliverable D2.1 Use Cases for Blended Modelling

Views and Viewpoints

• As a DSML user, I want to be able to work with partial views of my system descriptions

represented as eaxml files, so that I can focus on relevant parts of a large information set.

4.2.2. Current Status and Existing Functionalities

Currently, AB Volvo uses EATOP to model EAST-ADL models, mostly with tree-based editors, but

also with graphical editors for different, specific viewpoints. EATOP uses Ecore and Sphinx to a)

(de-)serialize eaxml to conform with industry standards for data exchange and b) generate a tree -

based editor and the storage layer for EAST-ADL data. The following describes the existing

functionality.

Define Metamodel According to MOF Subset defined as AUTOSAR M3

The meta-model is currently defined as a UML model in Enterprise Architect based on MOF M3 and

uses some constraints like:

• Only element allowed is Class.

• Enumerations can be defined with <<enumeration>> stereotype.

• Only relations allowed are associations and compositions.

• Associations may be marked <<isoftype>> and <<InstanceRef>>.

Generate XML Schema for Model Exchange

This schema defines how the model is serialized. The schema is currently generated by the EATOP

Metamodel generator org.eclipse.eatop.metamodelgen. The generator takes information from the

EAST-ADL meta-model and wraps it in schema entries that provide additional structure. This

ensures that the schema for eaxml files conform to industry standards for information exchange in

the automotive industry.

Generate Tool for Tree-Based Editing

The existing tree-based editor and the persistence layer is currently generated by the EATOP

Metamodel generator org.eclipse.eatop.metamodelgen.

Generate Tool for Graphical Editing

There are limited graphical editing capabilities available. A graphical view of the model is currently

available that supports drag-and-drop of existing entities and which shows their relationships, in

particular ones of type <<InstanceRef>> (org.eclipse.eatop.volvo.sgraphml.gefeditor). This editor

is only capable of renaming entities and has no other capabilities to edit the underlying model.

In addition, there are view-specific editors (org.eclipse.eatop.examples.graphicaleditor). These

editors provide function modelling and safety modelling viewpoints among others but are limited to

these specific viewpoints. In addition, these editors have dependencies to plugins that are no longer

maintained.

Generate Tool for Text-Based Editing

Text-based editing is currently only available for XML, which is not efficient and readable. ARText

is a textual editor for an AUTOSAR subset that can serve as an example for a future text -based

editor for EAST-ADL models.

17

BUMBLE
Deliverable 2.1

Page 17 of 56 Deliverable D2.1 Use Cases for Blended Modelling

4.2.3. Desired Functionalities to be Provided by BUMBLE

General Requirements for Editors

• It should be possible to split the information in one model into different files.

The package structure uniquely identifies the elements in an EAST-ADL model. The elements

themselves can reside in separate files. The persistence layer the editors are based on resolves

these references automatically in the memory representation of the model without exposing the

concrete file decomposition to the user.

• Information should be possible to subset according to different model aspects.

A particular editor or editor view may address only a subset of the model. According to

o Package containment.

Edit only elements in the selected package or its sub packages.

o Element kind.

Edit only elements of a certain kind or set of kinds, e.g. related to a package of the

metamodel related to, e.g., variability, timing, behaviour.

o Element criteria.

Edit only elements that fulfil a selected set of criteria, e.g., allocated to a certain ECU ,

realizing a certain feature, part of a certain variability configuration, active in a certain

mode, etc.

In adding elements in such a view, the model will be updated such that the new element

complies with the criterion. For example, the new element may be allocated to the ECU,

realize the Feature, be part of the variant, etc.

• Shared information relevant only to specific editors (graphical, textual, tree-based) should be

stored separately from the model itself.

Graphical information such as colours and positions should be stored in a separate file; the

graphical editor aspects shall be separated. This information needs to be updated if the model

is edited in a different representation.

Meta information needed by the textual editor shall also be separated.

• It should be possible to create models in the editor that do not fully conform to the meta -model

in order to ensure rapid prototyping and evolution of content.

• It should be possible to integrate automated semantic checks into the editors to inform the user

about inconsistencies of the model, e.g., with respect to the meta-model or the semantics.

General Requirements for (De-)Serialisation

The order of elements in the eaxml file should be preserved on deserialization. New elements

should be added according to the order in the tree or textual representation on serialisation. New

elements added in the graphical representation should be added at the end of the list of existing

elements in the respective package. The order of existing elements should be maintained in the

serialisation.

General Requirements for Tree-Based Editing

The tree-based editor shows all elements of a model using the metamodel element hierarchy in

packageable elements to structure the information.

Views shall be possible to define based on information subsetting, i.e. only a subset of model

content is exposed according to criteria defined by the user or pre-defined by the editor (e.g., to

only show elements in a specific package of the meta-model such as timing or variability).

18

BUMBLE
Deliverable 2.1

Page 18 of 56 Deliverable D2.1 Use Cases for Blended Modelling

The order of elements in the underlying model can be changed by dragging elements into a different

order in an unsorted view.

It should be possible to sort the information in the tree by either the meta-class type, or in

alphabetical order of the short name of the element, or in the order in which they are stored in the

underlying eaxml file. View sorting does not affect the underlying order of elements in the model.

General Requirements for Textual Modelling

A text editor will typically operate on a subset of the model. Declarations in the text are probably

required to define which packages are available the package for anything added. For example,

packages with datatypes or other elements may be imported and subsequently visible and part of

the scope.

General Requirements for Graphical Modelling

A diagram will concern a subset of the model. This subset will be defined by the user and needs to

be stored for later retrieval. The elements shown in the diagram are based on a query. This query

can select elements that are in a parent/child relation (e.g., elements in the same package or

function decomposition), in a reference relation (relations implemented as association classes in

EAST-ADL, e.g., allocations [e.g., elements that are allocated to a certain ECU], realisations;

alternatively relations as references with a role name from a safety case to other elements), or of

the same meta-class (e.g., all requirements).

Diagrams depicting a parent/child relation can be instantiated from any editor by invoking an action

on the parent element (e.g., on a package). If no parent element is selected, a dialog allowing to

select a package should be shown.

It is also necessary to define the context for new elements that are added to the model in the

graphical view. This context defines where in the package hierarchy new elements are stored and

how they are woven with existing elements, e.g., realising a specific feature or allocating to a

specific ECU. The context can be derived from the query that defines the diagram, since that query

contains the type of relationship that is being shown in the diagram.

Deleting anything in a diagram is primarily about deleting from the diagram canvas. If an element

shall also be deleted from the model, it must be done explicitly, e.g., by right clicking or ctrl-deleting.

This is because a user may want to customize the viewpoint and include/exclude elements

depending on the purpose of the diagram.

It should be possible to model concepts in different ways. Containment could, e.g., be modelled

using the black diamond composition relation or direct graphical containment (boxes within boxes).

Both ways of modelling should be supported and might need to change the appearance of the

elements (e.g., whether attributes are shown or not). It should be possible to switch between these

alternatives easily.

It should be possible to have different diagram types that use a slightly different concrete graphical

syntax and different editor capabilities. Timing diagrams can expose event chains, feature diagrams

can show the variation points, structural diagrams show allocations, and specialised diagrams for

the safety cases are also necessary.

19

BUMBLE
Deliverable 2.1

Page 19 of 56 Deliverable D2.1 Use Cases for Blended Modelling

The editor should support auto-layouting that automatically selects the diagram type and the kind

of visualisation (e.g., composition or containment), in particular when generating a new diagram

from a different editor. Auto-layouting should be based on element types, i.e., keep elements of the

same type together.

General Requirements for Diffing and Merging

There should be functionality for diffing and merging of EAST-ADL models to support collaborative

modelling of different team members. Diffing and merging should be performed based on the

concrete elements of the model, i.e., based on the meta-model rather than on the structure of the

file. This means that changes in the order of the underlying eaxml file should not be made visible

to the user.

Visualising and managing diff and merge should be possible in a graphical, textual, and tree -based

view. It should be possible to see conflicts, added elements, and deleted elements. It should be

possible to select the version to keep.

General Requirements for Multi-User Support

Ideally, multi-user editing should be supported, even though these requirements have low priority.

It should be possible to define access and editing rights for different stakeholders that are

automatically enforced by the tooling in order to limit users’ ability to see certain parts of the model

or change certain parts of the model.

Two or more users should be able to concurrently edit the same model without the need for explicit

commit and check-out operations. Changes performed by one user should automatically become

visible to the other user. Editing conflicts should be dealt with using conflict resolu tion mechanisms

(e.g., first come, first serve).

Even if multi-user concurrent editing is available, it should still be possible to diff and merge a model

that has been modified offline with a model that has been concurrently edited in order to support

engineers that have been working on the model without access to the concurrent editing

environment.

4.2.4. Mapping of Language Elements to Editors

Not all language elements need to be edited in all editors. Certain language elements lend

themselves better to modelling in a certain type of editor. The table below details which language

elements should be edited where.

What to Model Tree Textual Graphical Details

Element X
Anything in the tree view should be

possible to sort and subset

Element X

Anything in the tree view should have a

property window where its attributes can

be seen and edited

20

BUMBLE
Deliverable 2.1

Page 20 of 56 Deliverable D2.1 Use Cases for Blended Modelling

What to Model Tree Textual Graphical Details

Element X x x

Anything in the tree view should have a

property window where its attributes can

be seen and edited

Types X X X
Anything with an isoftype relation shall

exhibit the properties of its type

Components and

Compositions

(FAA, FDA, HDA,

ErrorModel, ...)

X X X
Parts typed by Types will exhibit the

ports and properties of the type

Connectors X X
Connectors that connect port groups

shall be collapsed to one entity

Connectors X
Connectors shall be possible to hide

using goto blocks

Allocation X
Allocation shall be visualized using

relations or containment

Packages and

packable elements
 X

Package containment can be shown as

a circumventing box or as line with filled

diamond

Elements and

composite elements
 X

Element containment can be shown as a

circumventing box or as line with filled

diamond

Attributes X

Element Attributes are contained but

should be shown as shortname: value

on the element rather than as a line with

filled diamond.

References X Lines between any element in a diagram

References X Packagepath string to elements

InstanceReferences X
Lines to specific occurrences of parts in

a diagram

InstanceReferences X Prototype path string to parts

InstanceReferences X
Prototype path string to parts and tree-

based editing of instanceref

21

BUMBLE
Deliverable 2.1

Page 21 of 56 Deliverable D2.1 Use Cases for Blended Modelling

What to Model Tree Textual Graphical Details

Reference

Navigation
X

It shall be possible to navigate from one

element to any of its referenced or

referencing elements

Instance Reference

Navigation
X

It shall be possible to navigate from one

element to any of its instancereferenced

or instancereferencing elements

“Reference

Element”

Navigation

X

It shall be possible to navigate from one

element to any of its referenced or

referencing elements also when

“reference elements” are used

(associations where a containing entity

identifies the source and target)

Element Navigation X X

It shall be possible to navigate from a

textual or graphical entity to its

corresponding model entity in a tree

view. Alternatively, to copy its package

path or instanceref path.

4.2.5. User Stories Illustrating Typical Engineering Tasks

The following user stories illustrate typical tasks an engineer would do with the EAST-ADL editors

generated by the BUMBLE framework. Therefore, they refer to concepts in the EAST-ADL

language. Please note that EAST-ADL uses a prototype-based form of inheritance.

Allocate Functional Components to Hardware Components

• A user selects one or several function (proto-)types.

• The user can now assign it to one hardware (proto-)type (i.e., a representation of a physical

hardware component).

• These prototypes are navigable and selectable as a prototype path in a tree view.

• A semantic check may warn about invalid allocation decisions (e.g., a prototype and its type

being allocated to different nodes).

Connect Ports of Parts in Component Diagrams

• A user selects two ports in a (composite) type.

• If the two ports are located on contained prototypes, an assembly connector is created .

Otherwise, a delegation connector is created.

Auto-Connect Ports of Parts in Component Diagrams

Selecting two or more parts should allow an “auto-connect” action, where ports of matching name

and/or type should be connected.

• A user selects two or more prototypes in a composite type.

• A connector is created for each matching port pair.

Matching means that either:

o Names are matching (near-match or precise match could be chosen).

22

BUMBLE
Deliverable 2.1

Page 22 of 56 Deliverable D2.1 Use Cases for Blended Modelling

o Types are matching (same type, same type name, compatible type could be chosen) .

o Send - receive on two prototypes results in assembly connector.

o Send - receive on the composite type results in a delegation connector .

o Send - send or receive - receive on the composite type and prototype results in a

delegation connector.

Collapse and Explode Components

• A user selects two or more prototypes in a composite type.

• On selecting “collapse”

o a new type is created with all the parts of the two or more prototype’s types.

o a new prototype is created with its type set to the new type.

o connectors are re-connected to the new prototype.

o (possibly other relations are also transferred to the new prototype).

• On selecting “join”

o a new type is created with the two or more prototypes inside and existing assembly

connectors.

o ports are added to the new type as well as delegation connectors to the contained

prototypes.

o a new prototype is created with its type set to the new type.

o connectors are re-connected to the new prototype.

o (possibly other relations are also transferred to the new prototype).

• A user selects one prototype in a composite type.

• On selecting “explode”

o the type of the selected prototype is copied.

o a new prototype is created which is typed by the new type.

o connectors of the selected prototype are connected also to the new prototype.

o (now the user can start to delete ports and connectors).

Auto-Edit Ports and Connectors

• A user selects one port on a prototype in a composite type.

• On dragging-dropping the port on another prototype, the corresponding types are updated, and

the connector follows to the new prototype.

• A user selects two ports and selects “Connect”.

• If ports are in the same composition an assembly or delegation connector are created.

• When connecting a port across a hierarchy, the ports and delegations should be automatically

added to the parts.

Synchronize Content between Abstraction Levels

• Two compositions are linked with a Realize relation.

• A user adds or removes elements in either of the compositions.

• The corresponding elements are added or removed in the synchronized composition, subject to

approval of the engineer.

• On adding components, corresponding Realize relations are added.

• Synchronization results can be visualized in tree, text, or graphical view.

Create and Connect Component Prototype Based on Available Ports

• A user selects a type and places it in another type.

• A prototype that is typed by the type is added.

23

BUMBLE
Deliverable 2.1

Page 23 of 56 Deliverable D2.1 Use Cases for Blended Modelling

• Ports are automatically connected based on port names and types.

4.2.6. Current Baseline of Tools and Technologies

Tool and technologies related to the EAST-ADL/Autosar workflow include

• Eclipse EATOP Metamodel Generator.

Based on a metamodel expressed in a UML subset using Enterprise Architect, this too

generates

o XML schema.

o Java code for EATOP plugins for (de-)serialisation, persistence and basic tree editing

of EAST-ADL models.

EATOP supports splitting models over multiple files and the editing/navigating of

models, in particular for the type/prototype pattern of EAST-ADL/Autosar.

• Eclipse EATOP Plugin.

Plugins on the EATOP platform use the EAST-ADL model in ECORE for analysis and synthesis.

There is also a GEF-based plugin to allow a graphical view of models.

BUMBLE solutions would have to interface to the EATOP platform in order to capitalize on the

infrastructure for (de-)serialisation and basic tree editing. On the other hand, if another technology

can provide the same capabilities without EATOP, it is enough to respect the EAST-ADL metamodel

(expressed in any UML tool) and eaxml (de-)serialization format.

4.3. BUMBLE Features

4.3.1. Blended Syntaxes and Modeling

It is expected that the architecture model can be edited both in tree view, textually and graphically,

and the same model element may appear in any of these representations.

4.3.2. Collaborative Modeling

Collaborative can be supported by allowing parallel edits of the same model. In such cases, the

tooling needs to support diff and merge of the edits, without corrupting the model. Concurrent editing

is a nice feature, but not as important as diff and merge.

4.3.3. Evolution

The metamodel will change and multiple versions of the metamodel may be used interchangeably.

In such cases the tooling should make a best effort mapping of content to the chosen metamodel.

Possibly, the mapping can be based on mapping rules between original and new metamodel.

4.3.4. Traceability

Traceability within the model is represented by various relations, such as Realize, Verify and is -of-

type. Tooling support is helpful to navigate the model back and force along those relations. Further,

the associations can be used to create various views.

4.3.5. Model Non-Conformance

The tooling may warn about non-conformance of models vs. the metamodel. Such deviations are

inevitable as content evolves, but identifying non-conformance, possibly with correction

suggestions, is a helpful feature.

24

BUMBLE
Deliverable 2.1

Page 24 of 56 Deliverable D2.1 Use Cases for Blended Modelling

4.4. Demonstrator

A demonstration at a review would show a main scenario where the BUMBLE capabilities to handle

model files and edit them in different modes is demonstrated:

• Open model file in tree editing mode

• Open model file in textual editing mode

• Make edits and save

• Open model file in graphical editing mode

• Make edits and save

• Show changes in tree view

On-the-fly synchronization is beneficial but optional. However, while editing in a graphical editor,

changes shall appear in the textual editor after refreshing or reopening the model, and vice versa.

In addition to the basic capabilities, a selection of engineering tasks could be demonstrated. Fur ther,

some evidence of meeting the requirements could be demonstrated.

25

BUMBLE
Deliverable 2.1

Page 25 of 56 Deliverable D2.1 Use Cases for Blended Modelling

5. UC4 - Cross-Disciplinary Coupling of Models

5.1. Background

Canon Production Printing is aiming to increase printer modularity/variability and shortening product

development lead time while maintaining high-quality software for each configuration of a Product

Family. Specifying the software to perform the media handling is a core activity to achieve a

productive and reliable digital cut-sheet printer. The media handling software component requires

tight coupling to information from CAD/CAE models specified in Siemens NX. Mismatches between

the CAD/CAE model and the embedded software leads to errors and underperformance.

We have built several JetBrains MPS DSMLs that focus on: (1) capturing/importing the 2-

dimensional nominal paper path layout and points of interest in the layout of printer modules, (2)

specifying the allowed variability within a product family, along with the concrete configurations, and

(3) specifying the functional usage of the paper path, such as routes, timing behaviour of a single

sheet, functional timing constraints between subsequent sheets.

This collection of linked specifications can then be used to generate (part of) the real time embedded

software, as well as artifacts for early analysis and visualization of the specifications. These are

coupled to sheet-flow simulations with different levels of integration of the final embedded device

control software.

These DSMLs are starting to show their value by consistent ly supplying a high-quality media

handling software component that is integrated in the embedded device control. The mechanical

engineers and function designers (for the print process, fixation (heating), and cooling) provide and

review information about how the media should be transported. Keeping the notation close to the

familiar domain notation is therefore essential to the speed at which iterations of the product

development are performed.

5.2. Use Case Description

5.2.1. Current Status and Existing Functionality

The DSMLs mentioned are being implemented in JetBrains MPS and are becoming quite mature.

The DSMLs are being adopted by the software developers in the media handling component, but

not yet by the mechanical engineers/function designers. The software developers can import

CAD/CAE models through MPS, visualize the paper path layout, and specify the variability and

functionality at an abstract level. The models are then combined for different printer configurations

and generated into C++ and XML artifacts used to compile and configure the media handling

component of the embedded device control software.

5.2.2. Desired Functionalities to be Provided by BUMBLE

A collaborative environment (preferably web-based) that allows reusing the projective editor

definitions of our DSMLs in MPS.

26

BUMBLE
Deliverable 2.1

Page 26 of 56 Deliverable D2.1 Use Cases for Blended Modelling

5.2.3. User Stories

The following user stories detail the kinds of actions and benefits envisioned by a collaborative

blended environment. It is assumed that only one version of each language is deployed at a time

and accessible through the website.

Modelling and Model Management

• As a modelling user, I can login to a website, so that I can identify myself and get access to a

blended collaborative modelling environment.

• As a modelling user, I can navigate the existing models on a website, so that models can be

found with a low threshold.

• As a modelling user, I can manage (CRUD) a hierarchy/organisation of models

(folders/packages, as well as model roots), to achieve a maintainable organisation of the

modelling content.

• As a modelling user, I can tag model versions, so that they can be used as snapshots for later

reference.

• As a modelling administrator, I want to set access levels for models and packages, so that these

models and packages are visible/readable/writable by a particular set of users.

• As a modelling user, I can generate/download/deploy modelling artifacts, so that modelling

artifacts can be used outside of the modelling environment.

• As a modelling user, I can start/perform analysis on a model, to check for the model for certain

properties (correctness, performance, etc).

• As a modelling user, I can see errors and feedback (if any) in the model editor, so that I can

quickly identify issues in the model.

• As a modelling user, I can see an overview of errors and feedback (if any) in an overview, so

that I can quickly identify issues in the project.

• As a modelling user, I can follow a modelling reference (hyperlink), so that I can easily navigate

the relationships between models.

Blended Modelling

• As a modelling user, I can view the model through my selected projection, so that I can

simplify/extend the information shown in the model based on my needs.

• As a modelling user, I can see my model in multiple (at least two) views, with different

projections, so that I can focus on the structure and particular details at the same time.

• As a modelling user, I can use textual syntax (with highlighting, completion, cross-referencing)

within a graphical (diagrammatic/tabular) model.

• As a language engineer, I can set the default view of a model (entity) to a particular projection,

so that I can simplify/extend the information shown in the model based on my needs.

• As a modelling user, I can edit text, tables, diagrams, and forms in my model, so that I have the

freedom to choose the most effective representation.

Model Collaboration

• As a modelling user, I can see the current state of the model when I am connected to the

modelling environment, so that I am always up to date.

• As a modelling user, I can retrieve and export models from external sources (like Git), so that I

can collaborate with external versioning systems.

• As a modelling user, I can apply (free-form text) reviewing annotations to the model, so that we

can review and track progress.

27

BUMBLE
Deliverable 2.1

Page 27 of 56 Deliverable D2.1 Use Cases for Blended Modelling

• As a modelling user, I want to see which users have the model open, to improve communication

and avoid modelling conflicts.

• As a modelling user, I can see the mutation history of a model, so that the differences over time

can be viewed.

• As a modelling user, I can select model versions in the mutation history, so that I can compare

the current model to the old model.

• As a modelling user, I can resolve merge conflicts, so that the models remain in a consistent

state.

• As a modelling user, I can use a notebook-style view on my models, so that I can mix the content

with the description/documentation.

• As a modelling user, I can perform undo actions inside a model, so that I can undo my own

changes.

Integration

• As a modelling user, I want to instantiate a template for new (related) models using a web-

based wizard, so that creation of new models is low-effort.

• As a language developer, I want to create web-based wizards to create templates for models

that have a default structure and sets required dependencies to the DSMLs, to enable the

modelling user to instantiate new models.

• As a modelling user, I want to (incrementally) import (i.e., uploaded by me, or retrieved from a

server) data from a CAD/CAE repository, so that the external relationships can remain up to

date.

• As a language engineer, I want to connect an action (button-press, intention called) in the (web-

based) front-end to a computation/analysis/transformation on the server, so that the model can

be used for analysis/generation purposes.

• As a modelling user, I want to visualize (interactively, inline, or in an external window) the results

of the modelling artifacts, to achieve a smooth integration between the specification and the

visualization.

• As a modelling user, I want to use model editors within a larger application that defines the

workflow of the modelling activity, so that it eases the creation/interaction with other

components.

• As a language engineer, I want to integrate model editors with web-based components, so that

I can create simplified workflows.

5.2.4. Non-Functional Requirements

• We expect the collaborative modelling environment to provide a very low threshold for modelling

by the end user, while providing a mature modelling front-end with high usability. For example:

o No or little installation required for end user (through, for example, a web front -end).

o Very quick feedback on viewing models and model editing actions.

o Very little clutter around the actual modelling view and editing capabilities.

o To the point and easy-to-use user interface that performs well in collaboration between

engineers (low latencies etc). Note: we do not exclude the need for using non DSML

technologies in combination with MPS-based technologies to achieve such easy-to-use

user interface.

5.2.5. Current Baseline of Tools and Technologies

We are using JetBrains MPS to define our DSMLs and edit our models. We use the IETS3 (KernelF)

and mbeddr plugins from itemis A.G., as well as their shadow model transformations. The

28

BUMBLE
Deliverable 2.1

Page 28 of 56 Deliverable D2.1 Use Cases for Blended Modelling

collaborative environment provided by BUMBLE should allow access to the modeling features of

MPS (so explicitly not the language development features).

5.3. BUMBLE Features

5.3.1. Blended Syntaxes and Modeling

It is expected that the models in the DSMLs can be edited in their provided notations in MPS. It

should be easy to mix notations and switch between notations (even within a single model instance)

where relevant.

5.3.2. Collaborative Modeling

Multiple users can view and edit the same model in different notations, while immediately syncing

parallel edits.

5.3.3. Evolution

It should be possible to migrate to newer versions of the DSML. We expect to use only one deployed

version of the DSML/metamodel at a time for all users.

5.3.4. Traceability

It should be possible to trace relationships between the multi -disciplinary models. I.e., from

CAD/CAE to linked functional specifications, to parts of the generated embedded software

component.

5.3.5. Model Non-Conformance

We do not expect to require features regarding Model Non-Conformance. The default behaviour of

MPS suffices, where we do not expect that the projective editor allows applying non-conforming

changes to the models.

5.4. Demonstrator

The following demonstrators are expected for the reviews, to show the BUMBLE capability of

creating and updating models with multiple users collaboratively, in multiple notations. The

demonstrator will be based on the MPS-based DSMLs described above:

• 2nd review

o Editing the default textual projection with rich features such as auto-completion, cross-

referencing.

o Near-immediate synchronisation of models between multiple users.

• 3rd review

o Importing paper path layouts for printer modules.

o Editing the graphical diagram of paper path layouts.

o Generating a piece of embedded software, which allows visualizing the sheet movement

behaviour in an (external) visualization tool.

o Exporting the generated embedded software to a VCS like Git .

29

BUMBLE
Deliverable 2.1

Page 29 of 56 Deliverable D2.1 Use Cases for Blended Modelling

6. UC5 - Reactive and Incremental Transformations across DSMLs

6.1. Background

The Modelling Value Group has customers in different domains. Therefore, the Modelling Value

Group has developed many DSLs for different purposes. Examples are: Insurance products,

business logic, decision support, document structures and diagnostic knowledge. Those languages

are used by groups of domain experts in the organisation that work together to maintain the models.

In all cases, we provided means to validate, run, test, or simulate the models in the modelling

environment itself. On top of that the models are transformed into software that is executed in

production environments. The modelling-workbenches are built using either EMF (Eclipse) or MPS,

extended with our own domain-independent libraries like Dclare.

6.2. Use Case Description

Since the Modelling Value Group is a tool-builder and not limited to any specific domain, we will

define a use-case that is more based on the requirements and context of other members of the

BUMBLE consortium.

The use-case combines collaborative and blending modelling of two different state-transition

modelling-languages that are transformed and synchronized immediately. The modellers (the DSML

users in the uses-case) can change their models in different network locations and can view and

edit their models in their own preferred syntax, yet still be able to edit the models together. Changes

made by one user are immediately visible by other users. The rationale behind this use-case is

that it combines two major goals of the BUMBLE project: blending and collaboration.

The two models can both be changed independently and synchronized later-on, or immediately

synchronize when either model is changed. Furthermore, the two models are not wired together

persistently, the transformation will match the models only when synchronized and only change

models when needed.

The use case blends two languages that are both languages for defining state-machines. State-

machines are well understood by most of the BUMBLE participants. One of the two languages will

have state-transformations that are children of the source-states (referring to the target state), the

other language will have state-transformations that are children of the state-machine itself (hence

peers from the states, and referring to the source and target states). This use case will therefore

contain a non-trivial (bidirectional) language-transformation.

The use-case is owned by the Modelling Value Group. We are using models and examples from

other BUMBLE members to create a use-case that is understandable and valuable to other

members.

6.2.1. Current Baseline of Tools and Technologies

We will use MPS and DclareForMPS to build the use case. We are currently enriching and improving

DclareForMPS to support the combination of blending, immediate-transformation, and

collaboration.

30

BUMBLE
Deliverable 2.1

Page 30 of 56 Deliverable D2.1 Use Cases for Blended Modelling

We will also use at least one (perhaps only partially) language for defining sta te-machines that are

developed by another BUMBLE partner. We are now considering the language OIL from Canon for

this purpose.

6.3. BUMBLE Features

This use case will combine blending and collaboration. Blending by immediately transforming two

languages with different abstract syntaxes, and collaboration by synchronizing the two models

across the network, each model living in its own MPS run on different machines.

6.4. Demonstrator

We will demonstrate two remote client environments, each showing the same state-machine. One

in a tabular representation and one in a textual representation. Changes in one client environment

will be (immediately) transformed to the other client environment, and vice-versa. The two

languages will have different concrete and different abstract syntaxes, where the two abstract

syntaxes do not have a trivial mapping. Hence, it will involve a non-trivial bi-directional

transformation.

Apart from demonstrating immediate synchronization, we will also demonstrate deferred

synchronization: The two clients will be disconnected, the models changed, and connected again

to show that after reconnecting the two clients the models will be synchronized again.

We will demonstrate this using MPS and DclareForMPS. If requested we will later demonstrate the

same functionality together with an extra synchronized client using Eclipse, EMF using (yet to be

developed) DclareForEMF.

31

BUMBLE
Deliverable 2.1

Page 31 of 56 Deliverable D2.1 Use Cases for Blended Modelling

7. UC6 - Blended Editing and Consistency Checking of SysML

Models and Related Program Code

7.1. Background

At SAAB, developing large distributed systems consisting of multiple complex logical functions

distributed over several hardware units is a complex task that requires a lot of systematic work to

ensure that all parts of the system work together. Systems are modelled with SysML to ensure that

all functions are consistent and coherent from a functional perspective. All functions are divided into

smaller manageable blocks, called system components. Each system component realizes a part of

a function and is realized either in software as a software component or is realized in hardware.

Each software component is allocated to one CPU in a hardware unit. Software components are

always allocated to a CPU as a whole component. In the SysML model, each system component is

augmented with a state machine in order to reason about the total state of a system function.

It is fair to say that the SysML model describes the functional architecture by describing the

functional partitioning of the system into system components and describing the ir required

interactions to fulfil the system functions.

Modelling is only used on the system level, whereas software components are selected from either

existing ones or implemented from scratch. In any case, the system model is not used for generating

code.

In addition to the SysML model, the detailed behaviour of a system component may be specified in

a range of different artefacts, such as Matlab models, structured or unstructured data, textual

descriptions, or pseudo code. The SysML model is the most important model from an architectural

perspective and is the leading artefact describing the intended architecture of software components.

The BUMBLE framework is expected to facilitate:

• The consistency checking between the intended architecture expressed in the system

architectural model (SysML) and the implemented architecture in C/C++ software components

and their interaction.

• Blending notations of architecture and implementation to enable bidirectional navigation of

portions of the SysML model and corresponding portions of the C/C++ code.

• Traceability and visualization of unstructured data artefacts additional to code and model, used

for describing the internals of system components.

7.2. Use Case Description

To exemplify the use case, several user stories are described.

7.2.1. User Stories

Implement a Software Component from the System Model

• As a software developer, I want to be able to edit code and models in a blended fashion, that is

to say concurrently and while keeping consistency between them intact seamlessly.

• As a software developer, I want to be able to seamlessly link unstructured data (such as data

sheets, notes, etc.) to code and visualize them together in a blended fashion.

32

BUMBLE
Deliverable 2.1

Page 32 of 56 Deliverable D2.1 Use Cases for Blended Modelling

• As a software developer, I want to be able to graphically view al l the traced artefacts (system

model, documents, etc.) that should be implemented in the software.

• As a software developer I want to use a single IDE for implementing and viewing.

Validate Implementation

• As a developer I want to be able to automatically validate architectural violations of my

implementation compared to the systems model.

• As a developer I want to be notified of architectural violations in the graphical views.

Feedback Changes to the System Model

• As a developer I want to suggest or feedback changes to the system model required to

implement the system.

7.3. BUMBLE Features

7.3.1. Blended Syntaxes and Modeling

Models in SysML, related code and unstructured data shall be visualized in a structured and blended

manner. Models and code should be editable in a blended fashion keeping consistency intact

seamlessly.

7.3.2. Evolution

The system model and implementation will evolve throughout the development and (long-term)

maintenance of the system. The traceability and consistency checks should as much as possible

be automatically updated upon a change to the system model or the implementation. We will

distinguish between automatically established traceability links and manually added traceability

links, since they need to be treated differently during the system’s evo lution.

7.3.3. Traceability

We initially aim to facilitate traceability between the system model and corresponding

implementation. Additionally, we want to also link unstructured data to the implementation and

provide traceability and a visualization thereof to the developers.

7.4. Demonstrator

We will focus on two technologies to create a demonstrator for this project. In particular , we will

create a bridge between the modeling tool Rational Rhapsody (for SysML modeling) and the IDE

CLion (for implementation of software components and system code). The bridge shall allow

navigation between code fragments related to a selected model element and vice versa. Moreover,

we will show how consistency between the different artefacts is modeled, established, and kept

intact.

33

BUMBLE
Deliverable 2.1

Page 33 of 56 Deliverable D2.1 Use Cases for Blended Modelling

8. UC7 - Multi- and Cross-Disciplinary Modeling Workbench

8.1. Background

At Sioux, we use an in-house developed modeling workbench, named Supermodels. Supermodels

workbench provides facilities to create and use graphical DSMLs (with diagrammatic notations) in

high fidelity editors.

In Supermodels, we have built interconnected DSMLs that focus on specifying different aspects of

a system and its control software like: (1) the structure [decomposition], (2) behavior [state

machines] and (3) constraints [SBVR]. Such interconnected specifications are captured in a DSMLs

instance (model) which is used for generating (part) of control software, documentation, review

purposes and/or simulators (of the controlled system).

8.2. Use Case Description

8.2.1. Description and Rationale

We intend to blend graphical DSMLs of Supermodels with multi -notation DSMLs of MPS.

Strong point of Supermodels is that it allows us to create WPF based diagram editors for our DSMLs

which are flexible and customizable. But graphical editors are not so convenient for DSMLs that are

better represented as text, such as SBVR. SBVR is a formal language that describes requirements

of a system, but it’s readable in a natural way. We want to use a subset of SBVR to specify interlocks

(constraints) on system behavior. JetBrains MPS projectional text editor would be a great way to

edit SBVR, while Supermodels can be used for the graphical DSMLs (like state machines,

decomposition).

A weaker point of Supermodels is its meta modeling environment. It is implemented directly in C#

with almost no special tooling for editing meta models. Also, the MetaMetaModel does not define

itself, but is defined by C#. On the other hand, MPS has a strong and mature meta modeling

environment but lacks high fidelity graphical editors.

MPS has a proven merge functionality. That works with multiple versions of the MetaModel and has

great integration with the textual editors. On the other hand, Supermodels has a merge tool that

has several limitations in certain edge cases when merging. There is no diff tool with proper

visualization of differences. Also, evolution of the language poses a set of problems in the merging.

To get the best of Supermodels and MPS we imagine an approach where MPS is used as back -

end and Supermodels as front-end (view). Thus, Supermodels benefits from proven language

services provided by MPS while keeping its simpler user experience (as opposed to programming

IDE like experience) and nice graphical editors.

8.2.2. Current Status and Existing Functionalities

Supermodels provides a plain text editor to edit SBVR rules. It can check and indicate syntax errors

based on ANTLR4 grammar. It doesn’t provide autocompletion in referencing elements from the

other DSMLs (like components or states).

34

BUMBLE
Deliverable 2.1

Page 34 of 56 Deliverable D2.1 Use Cases for Blended Modelling

In Supermodels, we store a DSMLs instance (model) as a file. File format and model meta-meta

formats are not compatible with JetBrains MPS. The provided diagram editor is fully implemented

for the used graphical DSMLs (state machines, decomposition).

There are some 3rd party solutions to interoperate with JetBrains MPS like MPSServer, Modelix,

Java – dotNet bridges that are worth exploring at least as a starting point.

Supermodels provides a basic merge tool that can visualize merge conflicts but no diffs. That merge

tool resolves most merge conflicts problems, except for some edge cases.

8.2.3. Desired Functionalities to be Provided by BUMBLE

SBVR editor in MPS that could reference items from Supermodels DSMLs (state machines and

decomposition), has autocompletion and has good intentions for refactoring.

Live synchronization between the Supermodels views (created in .NET/C#) and JetBrains MPS

views (JVM). Possibility of using JetBrains MPS language services (model checks, model storage,

generators, intentions, DCLARE, etc.) and showing, if necessary, the results in Supermodels views.

Exposed MPS API for diff/merge functionality (server) coupled to .NET based diff/merge client

(prototype) with WPF to visualize source/target, differences and conflicts in diagram editor.

8.2.4. User Stories

Modeling and Model Management

• As a DSML user, I want to open (or create new) and save (persist) a model from both

Supermodels workbench and MPS.

• As a DSML user, I want to use some DSMLs (mostly diagrammatic like State machines,

Decomposition) in Supermodels workbench to edit (parts of) a model.

• As a DSML user, I want to use some DSMLs (like SBVR) in MPS to edit (parts of) a model.

• As a DSML user, I want to be able to observe live (with negligible latency) the changes made

in one view/environment (e.g. MPS) from the other (e.g. Supermodels) and vice versa [assumes

both are used on the same host computer].

• As a DSML user, I want to trigger model checks from both Supermodels and MPS (engages

model checkers in both Supermodels and MPS).

• As a DSML user, I want to trigger generation from both Supermodels and MPS (engages

generators in both Supermodels and MPS).

• As a DSML user, I want to be able to work with big models of 50+K elements while keeping the

UI responsive enough.

Blended Modeling

• As a DSML user, I want to specify some, potentially interconnected, aspect(s) of system control

software by using DSMLs (views) appropriate to the aspect at hand.

• As a DSML user, I want to use such interconnected specifications for generation of control

software, documentation, and/or simulators.

Model Collaboration

• As a DSML user, I want to use version control (like git, svn) to collaborate with my fellow

modellers.

35

BUMBLE
Deliverable 2.1

Page 35 of 56 Deliverable D2.1 Use Cases for Blended Modelling

• As a DSML user, I want support for diff and merge on DSML level from MPS (and optiona lly

from Supermodels).

• As a DSML user, I expect to use both Supermodels and MPS on the same host computer only

by myself (thus no multi-user collaboration on the same machine).

Language Development

• As a DSML developer, I want to be able to continue developing the existing Supermodels

DSMLs (structure, diagram editor, generator, model checker).

• As a DSML developer, I want to specify (new) DSMLs (structure, editor, generator, behaviour,

type system etc.) in MPS and have the possibility to implement diagrammatic editors in

Supermodels.

8.2.5. Desired Non-Functional Requirements

• Usability: user experience in editing the SBVR rules should be close enough to a plain text

editor (hiding the projectional nature of the editor).

• Usability: synchronization between MPS and Supermodels views should happen fast enough.

to be perceived by the user as live updates (probably less than 0.5s).

• Scalability: handle models of 50+K elements.

• Usability: visualize differences/conflicts of elements and their properties in a concise, readable,

and clear way.

8.2.6. Current Baseline of Tools and Technologies

Within Sioux, Supermodels is actively developed and used for predominantly graphical DSMLs.

Also, JetBrains MPS is used for development of mostly textual DSMLs. The мulti - and cross-

disciplinary modelling workbench provided by BUMBLE should allow Sioux to benefit from the best

of both Supermodels and MPS.

Sioux is interested in DCLARE to explore its ability to synchronize models between multiple

DCLARE instances. The synchronization interface provided by DCLARE can be potentially useful

to synchronize between MPS and Supermodels.

Sioux is interested in exploring MPSServer as it exposes an interface of MPS to query and modify

the model via HTTP and/or WebSockets.

Sioux is interested in exploring Modelix as it gives a way to directly include MPS editors into other

environments like Supermodels.

8.3. BUMBLE Features

8.3.1. Blended Syntaxes and Modeling

Blend different but interconnected aspects of a system specification, some of which are expressed

in graphical DSMLs of Supermodels and others in multi-notation DSMLs of MPS. Thus, facilitating

multi- and cross- disciplinary modeling. Live synchronization between Supermodels and MPS views

on the multi aspect system specification.

36

BUMBLE
Deliverable 2.1

Page 36 of 56 Deliverable D2.1 Use Cases for Blended Modelling

8.3.2. Collaborative Modeling

Support version control (git, svn) collaboration model between multiple DSML users working on the

same model.

[Feasibility] Approach to visualize differences between models using graphical DSMLs and resolve

conflicting changes on DSML level.

8.4. Demonstrator

A demonstration at final review would show a main scenario where the BUMBLE capabilities of

blending different but interconnected aspects of a system specification. The demonstrator will be

based on the MPS-based DSMLs described above.

• Editing SBVR in MPS with rich features such as auto-completion, cross-referencing to model

elements created in Supermodels.

• Near-immediate synchronisation between Supermodels and MPS views.

37

BUMBLE
Deliverable 2.1

Page 37 of 56 Deliverable D2.1 Use Cases for Blended Modelling

9. UC8 - Model-Driven Development of Workflow Models for Debt

Collecting Advocacy

9.1. Background

HERMES İletisim’s main aim is to design and implement a model-driven engineering platform to

ensure Business Process Management for Debt-Collector Advocates (DCAs), shortly called

BPM4DCA. DCAs try to reach their customers/debtors via many different ways as shown in the

following sample workflow.

In the above sample workflow, a DCA collects debts in the following steps:

1. Reach the debtor using various communication channels such as Phone Call, SMS, Voice

Message or National ID SMS.

2. If the debtor couldn’t be reached, his/her guarantor, mother, father, or other relatives in many

different ways will be reached using various communication channels such as Phone Call, SMS,

Voice Message or National ID SMS.

Moreover, to reach debtors in these complicated and iterative ways, these debt collectors should

deal with more than 10K case files on average which must be handled only in one month.

Managing this complex process leads to various errors and difficulties as follows:

• Difficulties to trace the workflow in verifying the accomplishment of a task .

• Errors resulting from performing unnecessary and extra tasks despite the completion of a

task that leads to complaints and dissatisfaction from the users .

• Being error-prone when modifying an existing workflow.

• Complexity of designing a new workflow.

9.2. Use Case Description

9.2.1. Current Status and Existing Functionalities

Currently, a DCA reaches a debtor from different communication channels manually. As illustrated

in Figure 1. Call center employees take each row of an Excel file as a new case and tries to

accomplish the task until achieving the desired result. These processes are done consecutively

(sequentially) for more than 10K cases in one month. In this current design, there is not any model

driven / blended modelling which is seen as a need in our use case as managing complex workflows

since constructing specific workflow for each case is so hard, error prone and time consuming.

9.2.2. User Stories

In the following, details of the user stories are given to characterize expected functionalities of the

BPM4DCA use case.

• As a system designer, I want to login to a platform to get access to a graphical and textual

modelling environment.

• As a system designer, I want to design my desired workflow by drag-and-dropping elements in

an editing environment to alleviate the modifying process of the model.

• As a system designer, I want to be able to reach my previous models on a platform to modify

them easily.

38

BUMBLE
Deliverable 2.1

Page 38 of 56 Deliverable D2.1 Use Cases for Blended Modelling

• As a system designer, I want to view and draw graphically my workflow’s rules represented in

the JsonLogic format.

• As a system designer, I want to give different priorities to users to give access to the existing

models.

• As a system designer, I want to perform live tests of my workflow to validate and evaluate the

applicability and correctness of it.

• As a system designer, I want to be informed about the notifications and errors in the modelling

environment to satisfy problems that have occurred.

• As a system designer, I want to easily edit my defined rules to represent them in a graphical

view simultaneously.

• As a system designer, I want to be able to get the output of the model to use it programmatically.

• As a system designer, I want to generate the model in XML format to store in a database to

ease the access of them when the models are needed.

• As a system designer, I want to create new tasks by using the attributes of the current task and

visualize relations of their workflows in a single diagram so that I will have better workflow

management.

• As a system user, I want to be able to modify the workflow in a textual and graphical ed iting

environment without writing any code or low code.

Figure 1. Current dept collecting workflow.

9.2.3. Current Baseline of Tools and technologies

Advocators trace debtors until they collect the whole debt manually. Information of the debtors are

stored in an Excel file where each row in it is related to a debtor. Advocates take a row of an Excel

file and try to reach the debtors or their relatives and guarantors via different communication

channels such as Telephone, SMS, and email. Advocates perform this process for all debtors which

produces more than 10K cases in one month. Modeling the management of this complex workflow

in a blended (textual and graphical) modeling environment eases the trace of the debt collecting

process.

39

BUMBLE
Deliverable 2.1

Page 39 of 56 Deliverable D2.1 Use Cases for Blended Modelling

9.3. BUMBLE Features

9.3.1. Blended Syntaxes and Modeling

It is expected that models can be generated, viewed, and modified in a blended environment to

satisfy graphical and textual representation.

9.3.2. Collaborative Modeling

Collaborative modelling can be satisfied by allowing to run multiple workflows in parallel so that it

can trigger different flows of a process for related tasks. We expect the tool to be able to support

task forking to use in the same workflow or different workflows.

9.3.3. Traceability

It is expected to trace dependencies and relations among model (workflow) artifacts to measure the

model correctness and performance.

9.3.4. Model Non-Conformity

Non-conformance report is expected to keep track of deviations and accepted standards to warn

and notify the user about the failures of standards and particular specification.

9.4. Demonstrator

We expect a demonstration brought by BUMBLE project capabilities to facilitate modeling and

implementation of both choreography and orchestration of complex business services inside the

BPM4DCA use case. A demonstration would show a blended modeling environment where visual

business process models seamlessly integrate with the use case components which are de fined in

some sort of textual rule formalizations. We will demonstrate all MDE tools enabling users (e.g.

advocates with no programming skills) to create their communication way and debt collecting

process workflows visually with drag and drop facilities which paves the way for the low coding and

auto-generation of the required software.

40

BUMBLE
Deliverable 2.1

Page 40 of 56 Deliverable D2.1 Use Cases for Blended Modelling

10. UC9 - Automated Design Rule Verification on Vehicle Models

10.1. Background

Ford Otosan aims to have a software solution that automates design rule verification on vehicle

models in collaboration with UNIT Information Technologies R&D Ltd. Two main components of the

use case will benefit from the software deliverables of the BUMBLE project: the textual and

graphical representation of design requirements and touch conditions; the synchronization of design

rules with the geometry and product manufacturing information.

We will develop a textual domain specific language to formalize clearance rules of Ford-Otosan

conforming to ISO’s XMI standard (ISO/IEC 19503:2005) and a graphical projection of the touch

conditions of parts in the 3D models. We will check the validity of the design rules against

manufacturing and geometric data using ISO’s JT Standard (ISO 14306:2017) using a

synchronization engine to be developed on top of traceability facilities of the BUMBLE project.

10.2. Use Case Description

The following 3D design view demonstrates the engine cover submodule of a vehicle’s engine, see

Figure 2. Each manufacturing part in this module has some touch conditions with the other inner

parts or other subsystems of the engine such as engine and transmission wiring as shown on the

CAD design. However, the environment will be capable of analysing the whole vehicle.

Figure 2. 3D-Design Overview of an Engine.

We have prepared the following mock-up to visualize the graphical representation of the touch

conditions based on Ford-Otosan’s internal manufacturing part hierarchy, see Figure 3.

41

BUMBLE
Deliverable 2.1

Page 41 of 56 Deliverable D2.1 Use Cases for Blended Modelling

Figure 3. Mock-up Visualization of Touch Conditions.

Each touch condition comprises one or more design rules (clearance specifications), which should

be provided with a syntax-directed textual language as sketched in the following (rules from r_1 to

r_5) by the design-engineering experts. Example clearance specifications are shown in Figure 4.

Figure 4. Example Clearance Specification.

Our aim is to provide a tool for design teams at Ford-Otosan to support the design-rule verification

process by checking the design under development conforms to clearance design rules. The

modelling environment will blend the graphical projection of touch conditions from 3D design and

manufacturing data with the textual design rules.

42

BUMBLE
Deliverable 2.1

Page 42 of 56 Deliverable D2.1 Use Cases for Blended Modelling

10.3. BUMBLE Features

10.3.1. Blended Syntaxes and Modelling

We aim at using BUMBLE modules that support generation of the blended modelling environment.

We will develop two domain specific languages: a graphical touch-condition diagram that identifies

subsystem and part hierarchy as well as touch conditions and a textual, syntax -directed editor for

design-rule specification.

10.3.2. Collaborative Modelling

Since different engineering teams work on various subsystems of a vehicle model under

development, the design rule repository should allow for collaborative editing. Therefore, we aim to

exploit the features of the BUMBLE project that facilitates collaborative modelling, particularly on

the textual part of the blended language.

10.3.3. Traceability

All touch conditions should be traced back to the CAD designs of the vehicles aligning with the

ISO’s JT Standard (ISO 14306:2017). Actually, all touch conditions must be first generated from the

CAD designs and then kept synchronized throughout the design process. If there is an inconsistency

detected among synchronization points, it should be reported to the development team pinpointing

the source of the inconsistency.

10.3.4. Model Non-Conformance

The main purpose of the project is to identify clearance violations among touch conditions, which

requires automated geometric reasoning on CAD models. This can be only achieved by checking

whether CAD design meets the design rules (mainly clearance rules). Therefore, this module will

be separately developed by UNIT and integrated to the BUMBLE’s blended modelling environment

on top of traceability infrastructure of the BUMBLE environment.

10.4. Demonstrator

We aim to demonstrate the following features on a Ford-Otosan’s real vehicle model: blended

language, collaborative modelling, traceability and synchronization, consistency checking.

43

BUMBLE
Deliverable 2.1

Page 43 of 56 Deliverable D2.1 Use Cases for Blended Modelling

11. UC10 - Development Process of Low-Level Software

11.1. Background

Unibap is a young tech company, with a high level of innovation and variation in our por tfolio, and

a wide range of skills and projects distributed among a relatively small number of engineers. Like

in all tech companies, our projects flow along the chain:

Case → Idea → Implementation, testing and documentation → Review → Maintenance

where each step typically involves different people, skills, and tools. This diversity introduces many

error sources, such as

• miscommunication between customers, sales staff, project managers, engineers, etc.,

• difficulties in finding suitable reviewers, with the right skills and enough time, within the

engineering team,

• complicated documentation, as it needs to be readable to all involved parties , and

• a high learning threshold for other engineers when the code needs adaptation to new conditions .

The possibility to automatically switch between representations of a model would, of course, simplify

communication between the involved parties, as well as eliminate the risk of introducing errors

during manual translation between representations. It would also make the process more efficient,

both in terms of working hours, and distribution of resources:

• Automatically generated code would decrease implementation time, and, possibly, reduce the

risk of errors.

• Less time would need to be spent on documentation, as the possibility to visualize (part of) the

implementation in different ways would make it partly self-explanatory.

• The threshold would be lower for engineers with different skill sets to get to know, interact with,

maintain, and adapt implemented functionality, as each could work with the representation that

suits them best.

In short, BUMBLE technology would support companies like Unibap in efficient utilization of valuable

resources.

At present, Unibap has no company standard for modelling languages, but the choice varies among

both projects and engineers, depending on skills and requirements. Please see the following

sections for a list of languages and tools that are used in the particular project on which this use

case is based. We use graphical models and modelling languages to

• model safety critical software parts to ensure their robustness, and

• convey design information between engineers that have knowledge of different parts of the

platform.

Textual modelling languages are used to, for example, set up complex systems with internal

modules and communication, as some frameworks used in the company do not support automatic

code generation from graphical representations.

44

BUMBLE
Deliverable 2.1

Page 44 of 56 Deliverable D2.1 Use Cases for Blended Modelling

11.2. Use Case Description

11.2.1. Current Status and Existing Functionalities

Currently available tools support automatic generation of code (for example, C, C++, Java) from

graphical representations of state machines. In our perspective, there are, however, two major

problems:

• Dependencies on internal libraries

We have found no tools that allow dependencies on internal libraries. This prevents us from

using graphical methods to implement more complex parts of the software, where the approach

would otherwise be very desirable.

• Version control

We have also found no tools with sensible diff/merge functionalities or proper version control.

The design tool that we currently use does not support blended modelling, which is a big loss as it

makes communicating design decisions harder and thus increases the time it takes to develop code.

11.2.2. User Stories

• As a system designer, I want to automatically translate my (Yakindu) models to UML and XML,

to increase readability for other people in the project and company.

• As a system designer, I want to be able to analyze coverage based on a graphical model, to

ensure the sanity of my design.

• As a developer, I want to automatically generate C code from a graphical representation of state

machines, to make development more efficient.

• As a developer, I need the code of my models to have dependencies on internal and external

libraries, to be able to efficiently develop custom software.

• As a developer, I want to do proper version control and diff/merge operations on my models, to

simplify cooperation on a model, and thus increase development speed.

• As a developer, I want to generate different graphical representations of implementations,

where applicable, for use in documentation.

• As a reviewer, I want to be able to convert a representation of a model to other modeling

languages, textual and graphical, to help me review an implementation without being familiar

with the tool used to create it.

• As a developer, I want to include code snippets with full standard C support in the textual syntax,

to be able to customize state machines.

• As a developer, I want to be able to use nested includes, to make development efficient, and to

keep my code concise and readable. (Nice to have).

11.2.3. Current baseline of tools and technologies

Purpose and Role of the Currently used Relevant Tools and Technologies

• Yakindu Statechart Tools

Yakindu statechart tools is used to model, simulate, and test state machines. The created

models can then be transformed into source code in C (among other languages) that then can

be compiled and used. Unibap uses Yakindu to model and test safety critical parts of our

software platform. Modelling the state machines graphicly reduces the risk of introducing bugs

during development, and also makes it easier to evaluate the robustness of the system when

testing.

• Atlassian Confluence and DrawIO

45

BUMBLE
Deliverable 2.1

Page 45 of 56 Deliverable D2.1 Use Cases for Blended Modelling

Model designs are represented using XML, created in DrawIO in Confluence, to explain the

workings of the specialized parts of our platform to representatives of all parts of the company,

and to convey critical design information to contributing engineers.

Tools and Technology that BUMBLE Solutions need to Interface With

• Yakindu Statechart Tools

We have very positive experience from using this particular tool, which is also an Eclipse plugin.

A similar tool would do, but this one is high on our wish list.

• DrawIO / XML / …

We would have great use of a tool for drawing a representation of a model from which code can

be generated automatically. The choice of tool is not important, but we need the functionality.

The tool should be collaborative (diff/merge operations should be possible), but it does not need

to be web based.

11.3. BUMBLE Features

11.3.1. Blended Syntaxes and Modeling

• We expect that models can be created, viewed, and edited both as graphical and textual

representations.

• We expect that models can be viewed and edited as C code. It is, however, not required that a

model can be created from scratch in C. We need the possibility of adding snippets of full C17

to the C code representation of models.

11.3.2. Collaborative Modeling

Multiple developers are expected to contribute to a model. We expect to be able to use git-like

diff/merge operations, as well as version control, to enable them to work efficiently, and to keep

track of changes.

11.3.3. Traceability

We expect to be able to analyse coverage in the graphical, textual and code representations of the

models.

11.3.4. Model Non-Conformance

Some non-conformance must be expected in conversions between graphical and from text -based

representations. We expect all information, such as for example comments in code, to be preserved

behind the scenes. A warning message, notifying the user that there is information that cannot be

conveyed by the chosen modelling language, would be of great help.

11.4. Demonstrator

We expect to provide a report in which we describe the experiences we gain from our case study,

for example:

• communication difficulties stemming from different model representations being used

simultaneously,

• difficulties in resource allocation due to skill distribution within the company,

• time spent on design, implementation, and documentation, and where we think time could have

been saved, and

46

BUMBLE
Deliverable 2.1

Page 46 of 56 Deliverable D2.1 Use Cases for Blended Modelling

• how product quality is affected by choices that must be made because of tool limitations.

If a BUMBLE prototype, fulfilling some or all of our listed user stories, is available in tim e, we hope

to provide corresponding observations for a similar project in which the prototype is used. If only

some of the user stories are fulfilled, the evaluation of the workflow in the second project will focus

on them.

47

BUMBLE
Deliverable 2.1

Page 47 of 56 Deliverable D2.1 Use Cases for Blended Modelling

12. UC11 - Multi-Aspect Modeling for Highly Configurable

Automotive Test Beds Ready for Smart Engineering Demands

12.1. Background

AVL is the world's largest private company providing automotive OEMs with test equipment and

development knowledge. Virtualization and the use of models has a long tradition at AVL. However,

there is a strong focus on the application of models in vehicle development (e.g. application to

simulation and physical models) and less focus on the use of models for test equipment

development. In the case of test equipment, we are usually talking about a very complex system of

systems that need to interact with each other. Developing the individual systems and assembling

them into a (often customized) system of systems adds a certain complexity to the development

process involving different stakeholders and departments. A reduced focus on models does not

mean that there is no focus. However, the extent to which models are used by different stakeholders

varies and thus cross-departmental collaboration remains complex. A main goal of our participation

in BUMBLE (and the national part HybriDLUX) is to bring some of the involved departments to the

same level of model usage in order to increase collaboration efficiency and indirectly product

quality. We believe that DSLs strongly oriented towards end-user requirements, which include UX

aspects as a first-class requirement, have great potential to achieve this goal.

12.2. Use Case Description

12.2.1. Description and Rationale

At BUMBLE (and HybriDLUX) we want to extend existing and new DSLs with the ideas of blended

and collaborative modelling. With regard to collaborative modelling, two dimensions are of interest:

One is about enhancing existing/new DSLs in terms of collaborat ive modelling within a dedicated

user group/department (e.g. graphical model diff), while the second dimension is about collaborative

modelling across departments. In order to somewhat concretise the DSLs applied in this context,

the following three DSLs will be considered here:

• DSL A for measurement device specification (textual and graphical aspects) with database

integration and code generation - related to department X.

• DSL B for measurement device integration test definition (textual and graphical aspects) -

related to department Y. This DSL has links to DSL A regarding the reuse of the data sets there.

Furthermore, DSL B is considered for test case generation.

• DSL C for the definition of step-by-step instructions (textual, graphical and 3D CAD aspects),

applied in department Z. This DSL also has direct links to DSL A. Generated results of this DSL

are interactive documentations (e.g. web-based) up to virtual and augmented reality

applications.

Intra-departmental collaboration is most relevant for DSL A, while inter-departmental collaboration

is relevant for DSL B and DSL C. Note that there is not a single physical source or data model for

all DSLs. Instead, the DSLs are developed independently, but are actively linked for reuse of data

and notification of changes (subject of improvements).

12.2.2. Current Status and Existing Functionality

The DSLs mentioned have different levels of maturity in terms of functionality and departmental

integration.

48

BUMBLE
Deliverable 2.1

Page 48 of 56 Deliverable D2.1 Use Cases for Blended Modelling

• DSL A: There is a quite mature prototype based on Eclipse Theia, but the departmental

integration is still limited.

• DSL B: There is a very mature and industrialised DSL that is textually based. It is currently

being extended by a graphical user interface, which also has a fairly high degree of maturity

and is currently being industrialised and evaluated for UX aspects. The link to DSL A is made

via a DB between the two DSLs (DSL A writes to the DB, while DSL B has read access here).

• DSL C: A mature prototype exists that is currently being integrated into several depar tments. A

UX evaluation is planned shortly. In addition, an integration of the DSL into a third -party

(Eclipse-based) graphical DSL tool is being discussed. The reference to DSL A will be made in

the same way as for DSL B.

The functionality of DSL B was presented at the first review meeting of BUMBLE. The focus of the

functionality of DSL A is on a so-called round-trip integration with the underlying DB including intra-

departmental collaboration functions (Model Diff/Merge on textual and graphical level). The focus

of DSL C's functionality is currently on use case-oriented textual language design and interaction

with 3D CAD representations.

12.2.3. User Stories

DSL A (Device Modelling for Device Knowledge Base)

• Blended Modelling

o As a modeller, I want to create, modify, and manipulate state machine models using

both at textual (JSON-based) and at graphical level.

o As a modeller, I expect that any change on a specific textual model view causes an

immediate update on the graphical view and vice versa.

• Collaborative Modelling

o Inter-Department (same DSL)

▪ As a modeller, I want to commit any change on my model to a shared DB (write

access only within the same department).

▪ As a modeller, I want to see any merge conflicts of my modified model to the

version stored in the DB.

▪ As a modeller, I want to see conflicts in both views, i.e., in the graphical and

textual representation.

▪ As a modeller, I want to resolve any conflicts on both views, graphical and

textual representation.

o Intra-Department (different DSLs)

▪ None (DSL B and C are consumers of DSL A).

• Model traceability / debugging

o Not in the focus for this DSL.

• Model evolution

o Not in the focus for this DSL.

DSL B (Device Integration Testing)

• Blended Modelling

o As a modeller, I expect that the textual representation of my DSL is the driver, but a

graphical representation should show me certain aspects not easy to discover on the

textual representation.

o As a modeller, I expect that the graphical view is updated after a change in the textual

DSL accordingly.

49

BUMBLE
Deliverable 2.1

Page 49 of 56 Deliverable D2.1 Use Cases for Blended Modelling

o As a modeller, I expect that I can examine in the graphical representation, how a change

of the textual model affects certain aspects shown in the graphical representation (e.g.

before/after illustration).

• Collaborative Modelling

o Inter-Department (same DSL)

▪ As a modeller, I would like to re-use similar existing models, if I start a new

modelling project based on certain criteria (model zoo), like device classes,

which are based on similar properties and thus on similar test cases.

o Intra-Department (different DSLs)

▪ As a modeller, I expect to get information of the device interface defined by DSL

A.

▪ As a modeller, I expect that this information is represented by corresponding

suggestions in my editor (e.g. code completion).

▪ As a modeller, I would like to see immediately, if I am not conforming to the

device interface (e.g. red underlines).

▪ As a modeller, I would expect a notification mechanism, if something changed

on DSL A, where I am depending on.

▪ As a modeller, I would expect a semi-automatic support in reacting to any

changes on DSL A, where I am depending on.

• Model traceability / debugging

o As a testing engineer, I would like to generate test cases out of the models.

o As a testing engineer, I would like to trace, which generated test case belongs to which

artefacts.

o As a testing engineer, I would like to understand in case of failed test case executions,

which model artefacts are related to those failed ones.

• Model evolution

o As a modeller, I would like to migrate from one language version to another with the

least possible effort.

o As a modeller, I would expect an automatic migration for most cases.

o As a modeller, I would expect a navigation to all model parts, where automatic migration

is not possible.

o As a modeller, I would expect suggestions or proposed alternatives to finalizing the

migration.

o As a testing engineer, I would like to evaluate the migration with the least possible effort

(e.g. all tests the went through in the old version, go through in then new version - or if

not, I am pointed to those cases in the model -> relation to model

traceability/debugging).

DSL C (Step-by-Step Guidance)

• Blended Modelling

o As modeller, the textual language representation is the main driver, however interaction

with other model representation may change the textual representation in certain cases .

o As a modeller, I expect a preview of my definitions in an interactive 3D player (e.g. steps

and animations defined in the textual DSL).

o As a modeller, I expect to use this 3D player as well to link to certain aspects of the

underlying CAD model (e.g. (spare) parts), predefined animations.

o As a modeller, I also want to have a 2D representation of the decision tree of the

sequence of task steps.

o As a modeller, I also want to use the 2D view to manipulate the decision tree.

50

BUMBLE
Deliverable 2.1

Page 50 of 56 Deliverable D2.1 Use Cases for Blended Modelling

o As a modeller, I want that the textual representation is updated automatically, if the 2D

representation is manipulated.

• Collaborative Modelling

o Inter-Department (same DSL)

▪ None at the moment of UC definition (however same mechanism as for DSL A

could be useful on a mid-term perspective).

o Intra-Department (different DSLs)

▪ As a modeller I want to refer to artefacts, which are external to DSL C

• This external source is DSL A

o especially measurement channels, states, and errors.

• The underlying CAD models

o especially (spare) parts and animations.

▪ As a modeller, I would expect a notification mechanism, if something changed

the mentioned external sources, where I am depending on.

▪ As a modeller, I would expect a semi-automatic support in reacting to any

changes on external sources, where I am depending on.

• Model traceability / debugging

o As a modeller, I would like to execute the step-by-step guidance and see the effect on

the 3D player and on the 2D view (decision tree).

o As a modeller, I would like to apply breakpoints if applicable.

o As a modeller, I would like to be pointed to the respective task step definition, if running

the 3D step-by-step guide interactively.

• Model evolution

o As a modeller, I would like to migrate from one language version to another with the

least possible effort.

o As a modeller, I would expect an automatic migration for most cases.

o As a modeller, I would expect a navigation to all model parts, where automatic migration

is not possible.

o As a modeller, I would expect suggestions or proposed alternatives to finalizing the

migration.

12.2.4. Desired Functionality to be Provided by BUMBLE

• Blended textual/graphical (incl. 3D) DSL modelling support. In particular, improvements to

maintenance requirements regarding blended modelling in case of language evolution.

• Improvements regarding intra-departmental model collaboration, in particular regarding

graphical model diff/merge support.

• Improvements regarding interdepartmental model collaboration for independent but related

DSLs, with particular focus on model change management and notification.

• Model traceability and debugging support for the generation of artefacts from DSL models (e.g.

generation of test cases and feedback of test case execution results into the related DSL

model).

12.2.5. Desired Non-Functional Requirements

• UX aspects must be treated as first-class aspects for all the above functionalities (focus in

HybriDLUX).

• Long-term support of the underlying frameworks must be guaranteed to a certain extent (e.g.

by relying on open source frameworks with a very active community avoiding the direct or

indirect use of outdated frameworks).

51

BUMBLE
Deliverable 2.1

Page 51 of 56 Deliverable D2.1 Use Cases for Blended Modelling

12.2.6. Current Baseline of Tools and Technologies

All DSLs mentioned are more or less based on technologies/frameworks such as Xtext, Xtend,

JSON, EMF, LSP, GLSP, Eclipse IDE, Sprotty and Theia. Special technologies are various DBs for

data storage and (web-based) 3D players based on Unity. The different DSLs differ in terms of

focus, which technology is used for UX, historical, socio-cultural, organizational and use case

reasons. This makes the combination of DSLs partly challenging, partly exciting. End-user

acceptance factors sometimes trump technological arguments for straightforward implementation.

This underlines the importance of flexible combinations of different techniques, such as those

supported by LSP, to separate the DSL definition from its modelling authoring tool.

12.3. BUMBLE Features

12.3.1. Blended Syntaxes and Modeling

Required by DSL A, B and C (including 3D CAD support).

12.3.2. Collaborative Modeling

• Required for intra-department collaboration (i.e. working on the same model) required for DSL

A (including model merge/diff on textual and graphical level) .

• Required for cross-department collaboration (linking different kinds of DSLs) in a loose coupled

manner (links). Change notification mechanism required.

12.3.3. Evolution

Required especially for DSL B and even more for DSL C for two aspects

• Ensuring the models from previous DSL versions can be re-used in later version (for both textual

and graphical representation).

• Ensuring that the maintenance effort for blending modelling is kept low in case of language

evolution.

12.3.4. Traceability

• Vaguely yes for DSL B: Tracing back integration test results to the model representations .

• Required for DSL B, model debugging feature in case of designing interactive documentation

applications.

12.3.5. Model Non-Conformance

How can a (partly) invalid textual model be (partly) visualized in other views?

12.4. Demonstrator

Demonstrators for all three DSLs are already available in varying degrees of maturity . DSL B was

demonstrated at the 1st review meeting (beginning of slide 126 of this presentation). It shows a

unidirectional approach to blended modeling, where the textual DSL aspect remains the main actor

and the graphical aspect is considered as a specialized view to present certain aspects that are

difficult to cover by the textual aspects in a user-friendly way. More information on the principles

applied can be found here.

https://drive.google.com/file/d/1qVmFR8utlPr4EWR8oUAJdM99YokJ5igd/view?ts=5f8977c1
https://drive.google.com/file/d/1NohEtp15pxXGPhORchbHqGuyrEe1Uerr/view?usp=sharing

52

BUMBLE
Deliverable 2.1

Page 52 of 56 Deliverable D2.1 Use Cases for Blended Modelling

DSL A should be ready to demonstrate for the 2nd review session. Focus should be on

demonstrating intra-departmental collaboration using textual and graphical DSL aspects that also

support model diff/merge functions for both aspects. Risks: graphical model diff/merge remains

challenging also within the scope of the project.

DSL C could be considered for the 3rd review meeting. It could even go beyond the traditional

blended modeling use cases where a textual representation is combined with a graphical

representation such as 2D diagrams. Instead, 3D CAD models including animation and online

connections to the referenced devices should play a central role here.

Depending on the level of maturity reached, the cross-DSL relationships/dependencies could be

demonstrated at either the 2nd and/or the 3rd review meeting. The focus of all demonstrations

should be on blended modeling and why BUMBLE/HybriDLUX improves the maintainability of model

evolution for blended modeling.

The DSL B concepts currently in use were presented by EclipseSource in a previous workshop and

are discussed as compatible in relation to the BUMBLE architecture presented above.

53

BUMBLE
Deliverable 2.1

Page 53 of 56 Deliverable D2.1 Use Cases for Blended Modelling

13. UC12 - Agile V-model System Architecture

13.1. Background

The V-model System Architecture is of great interest to Pictor because of its role in fulfilling

functional safety-standard requirements. There could be great benefits achieved in the safety critical

domain if agile methods are researched and implemented. However, the few years of research in

this focus suggests that there are challenges in combining safety critical systems and agile

methods. The solutions to these challenges represent an opportunity to be industrialized and

applied transversely in many different sectors. Several studies have attempted to balance the agile

methods with support for the V-model of safety cases. This use case is ideal for the BUMBLE

project, because the solution may lie in bridging the existing gaps with the development of bett er

blended modelling of graphical and textual representation that can be used for the safety

inspections.

Our focus for this use case is in regards with public infrastructure for civil engineering and their

safety requirements, with a special interest in bridge design for roads and railway tracks. The safety

inspections have several steps including the drawings and calculation of many types of stress,

deformation, and reactions under a growing number of combinations of static and dynamic loads.

There is modelling used in proprietary definitions for various applications systems like the actual

SW package used for structural analysis work and the physical design object for civil engineering.

Currently there is a lack of usage of modelling tools due to lack of tools support, which provides an

opportunity. The lack of software functionality results in costly and error -prone manual calculations.

It is of note that modelling work is often made ad-hoc. Also, a large SW base for the legacy that

needs to be maintained in industrial usage. There are several DSML for the application domain

depending on the program vendor. For checking and consistency of Fortran programs there is

FTNCHEK with options for producing artifacts. There is a call graph option that produces a .vcg file

which can be further processed in other tools. The tools are graphical editors and analysers.

The table-based specifications of geometry and characteristics of the members and hinges. The

target system is a model of building structure with thousands of elements and hinges in different

materialsFor example a concrete bridge with steel reinforcement and prestressing cables. These

target systems are subject to norms that must fulfill high safety standards for public transportation

in European Union member states. The European norms “EN 1992” for concrete structures are

updated with more advanced practices in civil engineering for building bridges in concrete and steel.

New civil engineering norms and practices impose new requirements on the software package.

These requirements must always fulfill technical aspects such as correctness and system safety for

the calculation of structural analysis. In total more than 100 man-years have been in the

development of just one of the software packages.

13.2. Use Case Description

13.2.1. Description and Rationale

There is a need to generalize the domain specific language and interwork with other tools.

54

BUMBLE
Deliverable 2.1

Page 54 of 56 Deliverable D2.1 Use Cases for Blended Modelling

The confirmed customer project is a consultancy company in Sweden with structural engineering

projects using software packages for the structural analysis of large bridges and tunnels. The

structural analysis software packages are used for calculation of gross forces and different load

cases that are combined into load combinations. The result is used to check the dimensioning and

safety limits of the design of civil engineering structures.

First discussions with the customer have taken place and the customer requires a blended

modelling solution that just BUMBLE can provide. The domain specific language is based on textual

input in the form of a table for the geometric elements in concrete and steel. These tables are

translated into 3D-geometric shapes. There are tables with proprietary formats for definitions of

geometry and elements for structural engineering. This can provide significant added value for civil

engineering firms.

Overall, there is an opportunity for the BUMBLE project to solve a major weakness in the SW tools

currently used in modern civil engineering.

13.2.2. User Stories

The following user stories detail the kinds of actions and benefits envisioned by a collaborative

blended environment. It is assumed that only one version of each language is deployed at a time

and accessible through the website.

Modelling and Model Management

• As a modelling user, I can login to a website, so that I can identify myself and get access to a

blended collaborative modelling environment.

• As a modelling user, I can navigate the existing models on a website, so that models can be

found with a low threshold.

• As a modelling user, I can manage a hierarchy/organisation of models (folders/packages, as

well as model roots), to achieve a maintainable organisation of the modelling content.

• As a modelling user, I can tag model versions, so that they can be used as snapshots for later

reference.

• As a modelling administrator, I want to set access levels for models, so that these models are

available to a particular set of users.

• As a modelling user, I can generate/download/deploy modelling artifacts, so that modelling

artifacts can be used outside of the modelling environment.

• As a modelling user, I can start/perform analysis on a model, to check for the model for certain

properties (correctness etc.)

• As a modelling user, I can see errors and feedback (if any) in the model editor, so that I can

quickly identify issues in the model.

• As a modelling user, I can see an overview of errors and feedback (if any) in an overview, so

that I can quickly identify issues in the project.

Blended Modelling

• As a modelling user, I can view the model through my selected projection, so that I can

simplify/extend the information shown in the model based on my needs.

• As a modelling user, I can see my model in multiple views, with different projections in 3-D, so

that I can focus on the structure and particular details at the same time.

• As a modelling user, I can use textual syntax (with highlighting, completion, cross-referencing)

within a graphical (diagrammatic/tabular) model.

55

BUMBLE
Deliverable 2.1

Page 55 of 56 Deliverable D2.1 Use Cases for Blended Modelling

• As a language engineer, I can set the default view of a model (entity) to a particular projection,

so that I can simplify/extend the information shown in the model based on my needs.

• As a modelling user, I can edit text, tables, diagrams, and forms in my model, so that I have the

freedom to choose the most effective representation.

Language Development

• As a language engineer, I can deploy a new language version, so that the model users can

make use of the new language features.

• As a language engineer, I can perform language migrations, so that the models become

consistent with the new language.

Model Collaboration

• As a modelling user, I can see the current state of the model when I am connected to the

modelling environment, so that I am always up to date.

• As a modelling user, I can retrieve and export models from external sources (like Git), so that I

can collaborate with external versioning systems.

• As a modelling user, I can apply (free-form text) reviewing annotations to the model, so that we

can review and track progress.

• As a modelling user, I can see the mutation history of a model, so that the differences over time

can be viewed.

• As a modelling user, I can select model versions in the mutation history, so that I can compare

the current model to the old model.

• As a modelling user, I can resolve merge conflicts, so that the models remain in a consistent

state.

• As a modelling user, I can use a notebook-style view on my models, so that I can mix the content

with the description/documentation.

• As a modelling user, I can perform undo actions inside a model, so that I can undo my own

changes.

13.3. BUMBLE Features

13.3.1. Blended Syntaxes and Modeling

• Blended syntaxes with synchronization.

• Automatic generation of blended modelling editors for MOF-based DSMLs to support blended

graphical-textual modelling.

• Semi-automatic generation of synchronization mechanisms across notations.

13.3.2. Evolution & Traceability

• Support for semi-automatic co-evolution of generated artefacts in response to evolution of the

original DSML.

• Automatic generation and maintenance of representation-agnostic traceability links in situ for

synchronization and co-evolution purposes.

13.3.3. Model Non-Conformance

The tooling may warn about non-conformance of models vs. the metamodel. Such deviations are

inevitable as content evolves, but identifying non-conformance, possibly with correction

suggestions, is a helpful feature.

56

BUMBLE
Deliverable 2.1

Page 56 of 56 Deliverable D2.1 Use Cases for Blended Modelling

13.4. Demonstrator

A demo with Eclipse will enable showing the complete V-model tools chain from HL modelling

included blended modelling steps across the V-model to the system test. We will demonstrate the

graphic output of 3D graphs modelling structural engineering design. The current StripGraf can be

used as an example of an implementation. There are also other prototypes developed to meet the

current for blended modelling of structural design in the civil engineering application domain. The

requirements on the demonstrator can be derived from the current tool prototypes for generating

graphical representation. The demonstrator should at least have the capability to produce a

graphical model of the textual input.

From the textual domain, we will demonstrate

• Textual element with characteristics.

• Geometric specification of frames of interconnected elements.

From graphical domain and textual domain, we will show

• Changes of positions of members in the structure.

• Addition and removal of members in both graphical and textual domain.

• Changing the dimension of members.

• Changes hinge type.

Figure 5 shows a possible graphical view of the envisioned blended modelling solution. The symbols

connecting the elements are hinges. Different types of hinges are listed as graphical symbols.

Figure 5. Example graphical view for a DSML instance.

